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Abstract We present new quantum algorithms for Triangle Finding improving its best previously known quantum
query complexities for both dense and sparse instances. For dense graphs on n vertices, we get a query complexity
of O(n5/4) without any of the extra logarithmic factors present in the previous algorithm of Le Gall [FOCS’14].
For sparse graphs with m ≥ n5/4 edges, we get a query complexity of O(n11/12m1/6√logn), which is better than
the one obtained by Le Gall and Nakajima [ISAAC’15] when m ≥ n3/2. We also obtain an algorithm with query
complexity O(n5/6(m logn)1/6 +d2

√
n) where d2 is the quadratic mean of the degree distribution.

Our algorithms are designed and analyzed in a new model of learning graphs that we call extended learning
graphs. In addition, we present a framework in order to easily combine and analyze them. As a consequence we
get much simpler algorithms and analyses than previous algorithms of Le Gall et al based on the MNRS quantum
walk framework [SICOMP’11].

Keywords Quantum query complexity · Quantum walk · Triangle finding · Learning graph

1 Introduction

Decision trees form a simple model for computing Boolean functions by successively reading the input bits until
the value of the function can be determined. In this model, the query complexity is the number of input bits queried.
This allows us to study the complexity of a function in terms of its structural properties. For instance, sorting an
array of size n can be done using O(n logn) comparisons, and this is optimal for comparison-only algorithms.

In an extension of the deterministic model, one can also allow randomized and even quantum computations.
Then the speed-up can be exponential for partial functions (i.e. problems with promise) when we compare deter-
ministic with randomized computation, and randomized with quantum computation. The case of total functions is
rather fascinating. For them, the best possible gap can only be polynomial between each models [27,5], which is
still useful in practice for many problems. But surprisingly, the best possible gap is still an open question, even
if it was improved for both models very recently [4,1]. In the context of quantum computing, query complexity
captures the great algorithmic successes of quantum computing like the search algorithm of Grover [17] and the
period finding subroutine of Shor’s factoring algorithm [29], while at the same time it is simple enough that one
can often show tight lower bounds.
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Reichardt [28] showed that the general adversary bound, formerly just a lower bound technique for quantum
query complexity [18], is also an upper bound. This characterization has opened an avenue for designing quantum
query algorithms. However, even for simple functions it is challenging to find an optimal bound. Historically,
studying the query complexity of specific functions led to amazing progresses in our understanding of quantum
computation, by providing new algorithmic concepts and tools for analyzing them. Some of the most famous prob-
lems in that quest are Element Distinctness and Triangle Finding [12]. Element Distinctness consists in deciding if
a function takes twice the same value on a domain of size n, whereas Triangle Finding consists in determining if an
n-vertex graph has a triangle. Quantum walks were used to design algorithms with optimal query complexity for
Element Distinctness. Later on, a general framework for designing quantum walk based algorithms was developed
with various applications [25], including for Triangle Finding [26].

For seven years, no progress on Triangle Finding was done until Belovs developed his beautiful model of
learning graphs [6]. Learning graphs can be viewed as the dual form of the general adversary bound with an
additional structure imposed on the form of the solution. This additional structure makes learning graphs easier
to reason about without any background on quantum computing. On the other hand, they may not always provide
optimal algorithms. Learning graphs have an intuitive interpretation in terms of electrical networks [8]. Their
complexity is directly connected to the total conductance of the underlying network and its effective resistance.
Moreover this characterization leads to a generic quantum implementation which is time efficient and preserves
query complexity.

Among other applications, learning graphs have been used to design an algorithm for Triangle Finding with
query complexity O(n35/27) [7], improving on the previously known bound Õ(n1.3) obtained by a quantum walk
based algorithm [26]. Then the former was improved by another learning graph using O(n9/7) queries [23]. This
learning graph has been proven optimal for the original class of learning graphs [10], known as non-adaptive
learning graphs, for which the conductance of each edge is constant. Then, Le Gall showed that quantum walk
based algorithms are indeed stronger than non-adaptive learning graphs for Triangle Finding by constructing a new
quantum algorithm with query complexity Õ(n5/4) [15]. His algorithm combines in a novel way combinatorial
arguments on graphs with quantum walks. One of the key ingredient is the use of an algorithm due to Ambainis
for implementing Grover Search in a model whose queries may have variable complexities [2]. Le Gall used
this algorithm to average the complexity of different branches of its quantum walk in a quite involved way. In
the specific case of sparse graphs, those ideas have also demonstrated their advantage for Triangle Finding on
previously known algorithms [16].

The starting point of the present work is to investigate a deeper understanding of learning graphs and their
extensions. Indeed, various variants have been considered without any unified and intuitive framework. For in-
stance, the best known quantum algorithm for k-Element Distinctness (a variant of Element Distinctness where
we are now checking if the function takes k times the same value) has been designed by several clever relaxations
of the model of learning graphs [6]. Those relaxations led to algorithms more powerful than non-adaptive learning
graphs, but at the price of a more complex and less intuitive analysis. In Section 3, we extract several of those
concepts that we formalize in our new model of extended learning graphs (Definition 3). We prove that their com-
plexity (Definition 4) is always an upper bound on the query complexity of the best quantum algorithm solving
the same problem (Theorem 2). We also introduce the useful notion of super edge (Definition 5) for compressing
some given portion of a learning graph. We use them to encode efficient learning graphs querying a part of the
input on some given index set (Lemmas 3 and 4). In some sense, we transpose to the learning graph setting the
strategy of finding all 1-bits of some given sparse input using Grover Search.

In Section 4, we provide several tools for composing our learning graphs. We should first remind the reader
that, since extended learning graphs cover a restricted class of quantum algorithms, it is not possible to translate
all quantum algorithms in that model. Nonetheless we succeed for two important algorithmic techniques: Grover
Search with variable query complexities [2] (Lemma 5), and Johnson Walk based quantum algorithms [26,25]
(Theorem 3). In the last case, we show how to incorporate the use of super edges for querying sparse inputs.

We validate the power and the ease of use of our framework on Triangle Finding in Section 5. First, denoting
n is the number of vertices, we provide a simple adaptive learning graph with query complexity O(n5/4), whose
analysis is arguably much simpler than the algorithm of Le Gall, and whose complexity is cleared of logarithmic
factors (Theorem 4). This also provides the first natural separation between non-adaptive and adaptive learning
graphs. Then, we focus on sparse input graphs and develop extended learning graphs. All algorithms of [16] could
be rephrased in our model. But more importantly, we show that one can design more efficient ones. For sparse
graphs with m≥ n5/4 edges, we get a learning graph with query complexity O(n11/12m1/6√logn), which improves
the results of [16] when m≥ n3/2 (Theorem 5). We also construct another learning graph with query complexity
O(n5/6(m logn)1/6 + d2

√
n), where d2 is the quadratic mean of the degree distribution (Theorem 6). To the best
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of our knowledge, this is the first quantum algorithm for Triangle Finding whose complexity depends on this
parameter d2. The complexities obtained in Theorem 5 and Theorem 6 are displayed in Figure 1.
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Fig. 1 Upper bounds on the query complexity as a function of the number of edges. Black: complexity given by Le Gall and Nakajima [16].
Red: m 7→ n11/12m1/6, which corresponds (up to log factors) to the complexity given by Theorem 5. Green: m 7→ n5/6m1/6 +m/

√
n, which

corresponds (up to log factors) to the complexity given by Theorem 6 under the assumption that d2 is of order m/n (which is the case if the
graph has uniform degree for instance). Dashed line: m 7→ n5/6m1/6, which represents what one would obtain if we could get rid of the term
involving d2 in the query complexity given by Theorem 6.

2 Preliminaries

We will deal with Boolean functions of the form f : Z→ {0,1}, where Z ⊆ {0,1}N . In the query model, given a
function f : Z → {0,1}, the goal is to evaluate f (z) by making as few queries to the z as possible. A query is a
question of the form ‘What is the value of z in position i ∈ [N]?’, to which is returned zi ∈ {0,1}.

In this paper we will discuss functions taking as input the adjacency matrix of a graph. Then z will encode
an undirected graph G on vertex set [n], and N =

(n
2

)
in order to encode the possible edges of G. If S ⊆ [N] is

a subset of (indices of) edges, we encode into a partial assignment the corresponding assigned location, that is,
zS = {(i,zi) : i ∈ S}. For k1,k2 ∈ [n], it will be convenient to write zk1k2 to denote the value of z at the index
corresponding to the possible edge between vertices k1 and k2. So, with this notation, zk1k2 = 1 if and only if there
is an edge between k1 and k2 in G.

In the quantum query model, these queries can be asked in superposition. We refer the reader to e.g. [20,3,
30,13] for precise definitions and background on the quantum query model. We denote by Q( f ) the number of
queries needed by a quantum algorithm to evaluate f with error at most 1/3. Surprisingly, the general adversary
bound, that we define below, is a tight characterization of Q( f ).

Definition 1 Let f : Z→{0,1} be a function, with Z ⊆{0,1}N . The general adversary bound Adv±( f ) is defined
as the optimal value of the following optimization problem:

minimize: max
z∈Z

∑
j∈[n]

X j[z,z] subject to: ∑
j∈[n] :x j 6=y j

X j[x,y] = 1, when f (x) 6= f (y),

X j � 0, ∀ j ∈ [N],

where the optimization is over positive semi-definite matrices X j with rows and columns labeled by the elements
of Z, and X j[x,y] is used to denote the (x,y)-entry of X j.

Theorem 1 ([18,24,28]) Q( f ) =Θ(Adv±( f )).

3 Extended learning graphs

Consider some fixed Boolean function f : Z→{0,1}, where Z ⊆ {0,1}N . The set of positive inputs (or instances)
will be usually denoted by Y = f−1(1). A 1-certificate for f on y ∈ Y is a subset I ⊆ [N] of indices such that
f (z) = 1 for every z ∈ Z with zI = yI .
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3.1 Model and complexity

Intuitively, learning graphs are simply electric networks of a special type, see e.g. [8]: the network is embedded
in a rooted directed acyclic graph, which has a few similarities with decision trees as we explain next. Indeed,
in the learning graph model, vertices are labelled by subsets S ⊆ [N] of indices (input positions) and edges are
basically from any vertex labelled by, say, S to any other one labelled S∪ { j}, for some j 6∈ S. Such an edge
can be interpreted as querying the input bit x j, while xS has been previously learnt. The weight on the edge is
its conductance: the larger it is, the more flow will go through it. Sinks of the graph are labelled by potential
1-certificates of the function we wish to compute.

Thus a random walk on that network starting from the root (labelled by /0), with probability transitions pro-
portional to conductances, will hit a 1-certificate with average time proportional to the product of the total con-
ductance by the effective resistance (the minimal possible energy of a flow) between the root of leaves having
1-certificates [8].

If weights are independent of the input, then the learning graph is called non-adaptative. When they depend
on previously learned bits, it is called adaptative. In this case, the weight of an edge, say (S,S∪{ j}), is a function
of zS, where z is the input. Formally, adaptive learning graphs can be defined as follows.

Definition 2 (Adaptive learning graph) Let Y ⊆ Z be finite sets. An adaptive learning graph G is a 5-tuple
(V ,E ,S ,{wz : z ∈ Z},{py : y ∈ Y}) satisfying

– (V ,E ) is a directed acyclic graph rooted in some vertex r ∈ V ;
– S is a vertex labelling mapping each v ∈ V to S (v)⊆ [N] such that S (r) = /0 and S (v) = S (u)∪{ j} for

every (u,v) ∈ E and some j 6∈S (u);
– Values wz(u,v) are in R≥0 and depend on z only through zS (v), for every (u,v) ∈ E ;
– py : E →R≥0 is a unit flow whose source is the root and such that py(e) = 0 when wy(e) = 0, for every y ∈Y .

We say that G is an adaptive learning graph for some function f : Z→{0,1}, when Y = f−1(1) and each sink of
py contains a 1-certificate for f on y, for all positive input y ∈ f−1(1).

When there is no ambiguity, we usually define S by stating the label of each vertex. We also say that an edge
e = (u,v) loads j when S (v) = S (u)∪{ j}.

In the extended model of learning graphs that we formalize below, the weights can also depend on both the
value of the next queried bit and the value of the function itself through the XOR of these two bits. We call them
extended learning graphs.

Formally, we generalize the original model of learning graphs by allowing two possible weights on each
edge: one for positive instances and one for negative ones. Those weights are linked together as explained in the
following definition.

Definition 3 (Extended learning graph) Let Y ⊆ Z be finite sets. An extended learning graph G is a 5-tuple
(V ,E ,S ,{wb

z : z ∈ Z,b ∈ {0,1}},{py : y ∈ Y}) satisfying

(i) (V ,E ) is a directed acyclic graph rooted in some vertex r ∈ V ;
(ii) S is a vertex labelling mapping each v ∈ V to S (v)⊆ [N] such that S (r) = /0 and S (v) = S (u)∪{ j} for

every (u,v) ∈ E and some j 6∈S (u);
(iii) Values wb

z (u,v) are in R≥0 and depend on z only through zS (v), for every (u,v) ∈ E ;
(iv) w0

x(u,v) = w1
y(u,v) for all x ∈ Z \Y,y ∈ Y and edges (u,v) ∈ E such that xS (u) = yS (u) and x j 6= y j with

S (v) = S (u)∪{ j}.
(v) py : E →R≥0 is a unit flow whose source is the root and such that py(e) = 0 when w1

y(e) = 0, for every y ∈Y .

We say that G is a learning graph for some function f : Z→{0,1}, when Y = f−1(1) and each sink of py contains
a 1-certificate for f on y, for all positive input y ∈ f−1(1).

The combination of (iii) and (iv) yields that wb
z (u,v), with S (v) = S (u)∪{ j}, depends on z and b only through

zS (u) and the XOR of b and z j. Notice that if w0
z = w1

z for all z ∈ Z, then this definition reduces to an adaptive
learning graph (see Definition 2). In the sequel, unless otherwise specified, by learning graph we mean extended
learning graph.

The complexity of extended learning graphs is inspired by the notion of complexity for learning graphs or
adaptive learning graphs. It relies on the choice of the appropriate weight function for each complexity term.
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Definition 4 (Extended learning graph complexity) Let G be an extended learning graph for a function f : Z→
{0,1}. Let x ∈ Z \Y , y ∈ Y , and F ⊆ E . The negative complexity of F on x and the positive complexity of F on
y (with respect to G ) are respectively defined by

C0
G (F ,x) = ∑

e∈F
w0

x(e) and C1
G (F ,y) = ∑

e∈F

py(e)2

w1
y(e)

. (1)

Then the negative and positive complexities of F are C0
G (F ) = maxx∈ f−1(0)C

0
G (F ,x) and C1

G (F ) =

maxy∈ f−1(1)C
1
G (F ,y). The complexity of F is CG (F ) =

√
C0(F )C1(F ) and the complexity of G is C(G ) =

CG (E ). When the underlying learning graph G is clear from the context, we will not write explicitly the sub-
script and use the notations C0(F ,x), C1(F ,x), C0(F ), C1(F ), and C(F ). Last, the extended learning graph
complexity of f , denoted L G ext( f ), is the minimum complexity of an extended learning graph for f .

Most often we will split a learning graph into stages F , that is, when the flow through F has the same total
amount 1 for every positive inputs. This allows us to analyze the learning graph separately on each stage.

As for adaptive learning graphs [7,9], the extended learning graph complexity upper bounds the standard query
complexity.

Theorem 2 For every function f : Z→{0,1}, we have Q( f ) = O(L G ext( f )).

Proof We assume that f is not constant, otherwise the result holds readily. The proof follows the lines of the
analysis of the learning graph for Graph collision in [6]. We already know that Q( f ) =O(Adv±( f )) by Theorem 1.
Fix any extended learning graph G for f . Observe from Definition 1 that Adv±( f ) is defined by a minimization
problem. Therefore finding any feasible solution with objective value C(G , f ) would conclude the proof. Without
loss of generality, assume that C0(G ) =C1(G ) (otherwise we can multiply all weights by

√
C1(G )/C0(G )). Then

both complexities become
√

C0(G )C1(G ) and the total complexity remains C(G ).
For each edge e = (u,v) ∈ E with S (v) = S (u)∪{ j}, define a block-diagonal matrix Xe

j = ∑α(Y e
j )α , where

the sum is over all possible assignments α on S (u). Each (Y e
j )α is defined as (ψ0ψ∗0 +ψ1ψ∗1 ), where for each

z ∈ {0,1}n and b ∈ {0,1}

ψb[z] =


pe(z)/

√
w1

z (e) if zS (u) = α , f (z) = 1 and z j = 1−b,√
w0

z (e) if zS (u) = α , f (z) = 0 and z j = b,
0 otherwise.

Define now X j = ∑e Xe
j where the sum is over all edges e loading j. Fix any x ∈ f−1(0) and y ∈ f−1(1). Then

we have Xe
j [x,x] = w0

x(e) and Xe
j [y,y] = (pe(y))2/w1

y(e). So the objective value is

max
z∈{0,1}n ∑

j∈[n]
X j[z,z] = max

{
max

x∈ f−1(0)
∑

j
X j[x,x], max

y∈ f−1(1)
∑

j
X j[y,y]

}
= max

{
C0(G ),C1(G )

}
=C(G ).

Consider the cut F over G of edges (u,v) ∈ E such that S (v) = S (u)∪{ j} and xS (u) = yS (u) but x j 6= y j.
Then each edge e ∈F loading j satisfies w0

x(e) = w1
y(e) and therefore Xe

j [x,y] = pe(y). Thus, ∑ j:x j 6=y j X j[x,y] =
∑e∈F pe(y) = 1. Hence the constraints of Definition 1 are satisfied. ut

3.2 Compression of learning graphs into super edges

We will simplify the presentation of our learning graphs by introducing a new type of edge encoding specific
learning graphs as sub-procedures. Since an edge has a single ‘exit’, we can only encode learning graphs whose
flows have unique sinks.

Definition 5 (Super edge) A super edge is an extended learning graph such that each possible flow has the same
unique sink. If G̃ is a super edge, by analogy with edges, we will sometimes denote its positive and negative
edge-complexities on input x ∈ Z \Y and y ∈ Y by c0(G̃ ,x) =C0

G̃
(G̃ ,x) and c1(G̃ ,y) =C1

G̃
(G̃ ,y) respectively.
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Fig. 2 Expansion and contraction of a super edge (in blue). The incoming flow is pe. The set S has been loaded before the super edge, and the
super edge loads S′.

In particular, an edge can be viewed as a super edge in the following way. Let G = (V ,E ,S ,{wz : z ∈ Z},{py :
y ∈Y}) be a learning graph, and let e = (u,v) ∈ E be one of its edges. Let us define Ge = ({u,v},{e},S ,{wz : z ∈
Z},{py ≡ 1 : y ∈Y}) where the flow is constant (the labelling mapping and the weights are restricted respectively
to {u,v} and {e}). We say that Ge is the super edge associated to the edge e. To alleviate further notations, we will
also use the notion of positive and negative edge-complexities for edges. So we will write c0

G (e,x) = C0(Ge,x),
c1
G (e,y) =C1(Ge,y), c0

G (e) =C0(Ge), and c1
G (e) =C1(Ge). Observe that in particular, using the notation (1) with

F = {e}, C0
G ({e},x) = c0

G (e,x) and C1
G ({e},y) = py(e)2× c1

G (e,y), where py is the flow in G . If the underlying
graph G is clear from the context, we shall drop the subscript G . We now use this idea in order to define the
complexity of learning graphs with super edges.

Indeed, one can now consider learning graphs with super edges. They are equivalent to learning graphs with-
out super edges by doing recursively the following replacement for each super edge, say e: (1) replace it by its
underlying learning graph, say Ge, plugging the root to all incoming edges and the unique flow sink to all outgoing
edges; (2) root the incoming flow according to the plugged learning graph. Let us call this learning graph the ex-
pansion of the original one with super edges. In Figure 2, we provide an graphical representation of the expansion
and the contraction of a super-edge. Then, a direct inspection leads to the following result that we will use in order
to compute complexities directly on our original learning graphs.

Lemma 1 Let G be a learning graph with super edges for some function f . Then the expansion of G is also a
learning graph for f . Moreover, let exp(F ) be the expansion of F ⊆ E . Then exp(F ) has positive and negative
complexities

C0(exp(F ),x) = ∑
e∈F

c0(e,x) and C1(exp(F ),y) = ∑
e∈F

py(e)2× c1(e,y)

where the sums are over edges or super edges e ∈F .

Fix some stage F ⊆ E of G , that is such that the flow through F has the same total amount 1 for every
positive input. We will use the following lemma, that we adapt from non-adaptive learning graphs, to assume that
a learning graph has positive complexity at most 1 on F .

Lemma 2 (Speciality [6]) Let G = (V ,E ,S ,{wz : z ∈ Z},{py : y ∈ Y}) be a learning graph for a function
f : Z → {0,1}. Let F ⊆ E be a stage of G whose flow always uses the same ratio 1/T of transitions and is
uniform on them. Then there is a learning graph G̃ = (V ,E ,S ,{w̃z : z∈ Z},{py : y∈Y}) with the same structure
as G but weights w̃ which can be different for edges in F (that is, w̃z(e) = wz(e) for all z ∈ Z and all e /∈F ) such
that for every x ∈ f−1(0) and y ∈ f−1(1)

C0
G̃
(F ,x)≤ T E

e∈F

[
c0
G (e,x)c

1
G (e)

]
and C1

G̃
(F ,y)≤ 1.

The parameter T involved in the above result is usually called the speciality of F .

Proof Let ntotal be the number of transitions in F and nused the number of them used by each flow (i.e. with
positive flow). Therefore T = ntotal/nused. By assumption, the flow on each edge is either 0 or 1/nused. For each
edge e in F , let λe = c1(e)/nused, and for every edge e /∈F , let λe = 1. For every input z, we let w̃b

z (e) = λewb
z (e).

We name G̃ the associated learning graph with the new weights.
Then for any x ∈ f−1(0), C0

G̃
(F ,x) = ∑e∈F λec0

G (e,x) = T Ee∈F
[
c0
G (e,x)c

1
G (e)

]
. Similarly, for any y ∈

f−1(1), C1
G̃
(F ,y) = ∑e∈F py(e)2c1

G (e,y)/λe ≤ 1, since each term in the sum is positive only for edges with
positive flow. ut
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3.3 Loading sparse inputs

We study a particular type of super edge, that we will use repeatedly in the sequel. To construct a learning graph
for a given function, one often needs to load a subset S of the labels. This can be done by a path of length |S| with
negative and positive complexities |S|, which, after some rebalancing, leads directly to the following lemma.

Lemma 3 For any set S, there exists a super edge denoted DenseLoadS loading S with the following complexities
for any input z ∈ {0,1}N:

c0(DenseLoadS,z) = |S|2 and c1(DenseLoadS,z) = 1.

Proof Let us assume for simplicity that N = |S| and denote S = {1, . . . ,N}. We define the learning graph
DenseLoadS as the sequence of edges e1 = ( /0,{1}),e2 = ({1},{1,2}),eN = ([N− 1], |S|). The weights are de-
fined as:

w0
ek
= N and w1

ek
= N.

They satisfy the requirements of Definition 3. We obtain the values of the complexities by using their definition.
ut

When the input is sparse one can do significantly better as we describe now, where |zS| denotes the Hamming
weight of zS.

Lemma 4 For any set S, there exists a super edge denoted SparseLoadS loading S with the following complexities
for any input z ∈ {0,1}N:

c0(SparseLoadS,z)≤ 6|S|(|zS|+1) log(|S|+1) and c1(SparseLoadS,z)≤ 1.

Proof Let us assume for simplicity that N = |S| and S = {1, . . . ,N}. We define the learning graph SparseLoadS as
the path through edges e1 = ( /0,{1}), e2 = ({1},{1,2}), . . . , eN = ({1, . . . ,N−1},S). The weights are defined as,
for b ∈ {0,1} and z ∈ Z,

wb
ek
(z) =

{
3 · (|z[ j−1]|+1) · log(N +1) if z j = b,
3N · log(N +1) if z j = 1−b,

When |z| > 0, let us denote i0 = 0, i|z|+1 = N + 1 and (ik)k=1,...,|z| the increasing sequence of indices j such that
z j = 1. Then, for k = 1, . . . , |z|+ 1, we define mk as the number of indices j ∈ (ik−1, ik) such that z j = 0. More
precisely, mk = ik− ik−1−1 for 1≤ k ≤ |z| and m|z|+1 = N− i|z|. So ∑

|z|+1
k=1 mk = N−|z|. Then, for any input z,

C0(SparseLoadS,z) =

{
3N · log(N +1) if |z|= 0,

3 ·
(
|z|N +∑

|z|+1
i=1 i×mi

)
· log(N +1) otherwise,

which is bounded above by 6N · (|z|+1) · log(N +1). Moreover, using ∑
|z|+1
i=1

1
i ≤ log(|z|+1)+1, we get

C1(SparseLoadS,z) =
1

3 · log(N +1)

(
(N−|z|) 1

N
+
|z|+1

∑
i=1

1
i

)
≤ 1.

ut

4 Composition of learning graphs

To simplify our presentation, we will use the term empty transition for an edge between two vertices representing
the same set. They carry zero flow and weight, and they do not contribute to any complexity.
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4.1 Learning graph for OR

Consider n Boolean functions f1, . . . , fn with respective learning graphs G 1, . . . ,G n. The following lemma explains
how to design a learning graph GOR for f =

∨
i∈[n] fi whose complexity is the squared mean of former ones. We

will represent GOR graphically as

/0 G i
i

This result is similar to the one of [2], where a search procedure is designed for the case of variable query costs,
or equivalently for a search problem divided into subproblems with variable complexities.

Lemma 5 Let G1, . . . ,Gn be learning graphs for Boolean functions f1, . . . , fn over Z. Assume further that for every
x such that f (x) = 1, there are at least k functions fi such that fi(x) = 1. Then there is a learning graph G for
f =

∨
i∈[n] fi such that for every z ∈ ZC0(G ,z)≤ n

k
× E

i∈[n]

(
C0(Gi,z)C1(Gi)

)
when f (z) = 0,

C1(G ,z)≤ 1 when f (z) = 1.

Proof We define the new learning graph G by considering a new root /0 that we link to the roots of each G i. In
particular, each G i lies in a different connected component. For n = 3, the graph is displayed below:

/0

G 1 G 2 G 3

Then, we rescale the original weights of edges in each component G i by λi =C1(Gi)/k.
The complexity C0(G ,x) for a negative instance x is

C0(G ,x) =
n

∑
i=1

λiC0(Gi,x) =
n
k
×E

i

(
C0(Gi,x)C1(Gi)

)
.

Consider now a positive instance y. Then y is also a positive instance for at least k functions fi. Without
loss of generality, assume further that these k functions are f1, f2, . . . , fk. We define the flow of G (for y) as a
flow uniformly directed from /0 to G i for i = 1,2, . . . ,k. In each component G i, the flow is then routed as in G i.
Therefore we have

C1(G ,y) =
k

∑
i=1

1
k2 ×

C1(Gi,y)
λi

≤ 1.

Finally, observe that by construction the flow is directed to sinks having 1-certificates, thus GOR indeed computes
f =

∨
i∈[n] fi. ut

4.2 Learning graph for Johnson walks

In [26,25], a new method was proposed for designing quantum search algorithms to find a “marked” element in
the state space of a classical Markov chain. The complexity analysis of the quantum algorithms is based on the
following three costs: the set-up cost for sampling a state; the update cost for simulating a transition along of the
Markov chain; and the checking cost for checking if the current state is marked. Then, intuitively, a quantum algo-
rithm can simulate the amplitude amplification algorithm [17,11,19] by first generating the quantum analogue of
the stationary distribution of states according to the Markov chain, and then iterating a rotation made of the com-
position of a reflection through the marked states and of a reflection through the starting state. Creating the starting
state and implementing the first reflection requires the two basic operations, namely set-up and checking. A spec-
tral analysis of the Markov chain reveals that the last reflection can be approximated using Phase Estimation [21,
22,14] on the update operator.

Although this approach mostly requires a worst-case definition of the three corresponding costs, we can re-
prove a similar result using expected costs for the case of a Markov chain on Johnson graphs. In that case, states
are k-subsets of [n], and one transition consists in replacing one element of the current state by another one. Using
the Learning Graph framework, the set-up corresponds to loading all elements but k of them, whereas the update
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corresponds to loading the last k elements, which are marked on the flow. The checking part is represented by an
extra learning graph.

To formalize these ideas, let us introduce some notations. Recall that we encode into a partial assignment
the corresponding assigned location, that is, zS = {(i,zi) : i ∈ S}. Fix some parameters r ≤ k ≤ n. We would
like to define a learning graph GJohnson for f =

∨
A fA, where A ranges over k-subsets of [n] and fA are Boolean

functions over Z, but differently than in Lemma 5. For this, we are going to use a learning graph for fA when
the input has been already partially loaded, that is, loaded on I(A) for some subset I(A) ⊆ [N] depending on A
only. Namely, we assume we are given, for every partial assignment λ , a learning graph GA,λ defined over inputs
Zλ = {z ∈ Z : z(I(A)) = λ} for fA restricted to Zλ .

Then, instead of the learning graph of Lemma 5, our learning graph GJohnson factorizes the load of input z over
I(A) for |A|= k and then uses GA,zI(A) . This approach is more efficient when, for every positive instance y, there is
a 1-certificate I(Ty) for some r-subset Ty, and A 7→ I(A) is monotone. This is indeed the analogue of a walk on the
Johnson Graph.

We will represent the resulting learning graph GJohnson graphically using r+1 arrows: one for the first load of
(k− r) elements, and r smaller ones for each of the last r loads of a single element. For example, when r = 2 we
draw:

/0 GA,xI(A)
A

In the following, LoadS denotes any super edge loading the elements of S, such as DenseLoad or SparseLoad
that we have defined in Lemmas 3 and 4.

Theorem 3 For every subset S ⊆ [N], let LoadS be any super edge loading S with c1(LoadS) ≤ 1. Let r ≤ k ≤ n
and let f =

∨
A fA, where A ranges over k-subsets of [n] and fA are Boolean functions over Z.

Let I be a monotone mapping from subsets of [n] to subsets of [N] with the property that, for every y ∈ f−1(1),
there is an r-subset Ty ⊆ [n] whose image I(Ty) is a 1-certificate for y.

Let S,U > 0 be such that every x ∈ f−1(0) satisfies

E
A′⊂[n] : |A′|=k−r

(
C0(LoadI(A′),z)

)
≤ S2 ; (2)

E
A′⊂A′′⊆[n] : |A′|=|A′′|−1=i

(
C0(LoadI(A′′)\I(A′),z)

)
≤ U2, for k− r ≤ i < k . (3)

Let GA,λ be learning graphs for functions fA on Z restricted to inputs Zλ = {z ∈ Z : z(I(A)) = λ}, for all
k-subsets A of [n] and all possible assignments λ over I(A). Let finally C > 0 be such that every x ∈ f−1(0)
satisfies

E
A⊆[n] : |A|=k

(
C0(GA,xI(A) ,x)C

1(GA,xI(A) , f )
)
≤ C2. (4)

Then there is a learning graph GJohnson for f such that for every z ∈ ZC0(GJohnson,z) = O
(

S2 +
(n

k

)r (
k×U2 +C2)) when f (z) = 0,

C1(GJohnson,z) = 1 when f (z) = 1.

Proof Construction. We define GJohnson by emulating a walk on the Johnson graph J(n,k) for searching a k-subset
A having an r-subset Ty such that I(Ty) is a 1-certificate for y. In that case, by monotonicity of I, the set I(A) will
be also a 1-certificate for y.

Our learning graph GJohnson is composed of (r+2) stages (that is, layers whose total incoming flow is 1), that
we call Stage `, for `= 0,1, . . . ,r+1. An example of such a learning graph for n= 4, k = 3 and r = 1 is represented
below:

/0

{1,2} {1,3} {1,4} {2,3} {2,4} {3,4}

{1,2,3} {1,2,4} {1,3,4} {2,3,4}
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Stage 0 of GJohnson consists in
( n
(k−r)

)
disjoint paths, all of same weights, leading to vertices labelled by some

(k− r)-subset A′ and loading I(A′). They can be implemented by the super edges LoadI(A′). For positive instances
y, the flow goes from /0 to subsets I(A′) such that I(A′)∩Ty = /0.

For `= 1, . . . ,r, Stage ` consists in (n−(k−r)−`+1) outgoing edges to each node labeled by a (k−r+`−1)-
subset A′. Those edges are labelled by (A′, j) where j 6∈ A′ and load I(A′∪{ j})\ I(A′). They can be implemented
by the super edges LoadI(A′∪{ j})\I(A′). For positive instances y, for each vertex A′ getting some positive flow, the
flow goes out only to the edge (A′, j`), with the convention Ty = { j1, . . . , jr}.

The final Stage (r + 1) consists in plugging in nodes A the corresponding learning graph GA,xI(A) , for each
k-subset A. We take a similar approach than in the construction of GOR above. The weights of the edges in each
component GA,zI(A) are rescaled by a factor λA =C1(GA,xI(A))/

(n−r
k−r

)
. For a positive instance y, the flow is directed

uniformly to each GA,yI(A) such that T (y)⊆ A, and then according to GA,yI(A) .
Observe that by construction, on positive inputs the flow reaches only 1-certificates of f . Therefore GJohnson

indeed computes f .

Analysis. Remember that the positive edge-complexity of our super edge Load is at most 1.
At Stage 0, the

( n
(k−r)

)
disjoint paths are all of same weights. The flow satisfies the hypotheses of Lemma 2

with a speciality of O(1). Therefore, using inequality (2), the complexity of this stage is O(S2) when f (x) = 0,
and at most 1 otherwise.

For `= 1, . . . ,r, at Stage ` consists of (n− (k− r)− `+1) outgoing edges to each node labeled by a (k− r+
`−1)-subset. Take a positive instance y. Recall that, for each vertex A′ getting some positive flow, the flow goes
out only to the edge (A′, j`). By induction on `, the incoming flow is uniform when positive. Therefore, the flow
on each edge with positive flow is also uniform, and the speciality of the stage is O(( n

k )
` · k). Hence, by Lemma 2

and using inequality 3, the cost of each such stage is O(( n
k )

` ·k ·U2). The dominating term is thus O
(
( n

k )
r · k ·U2

)
.

The analysis of the final stage (Stage (r+1)) is similar to the proof of Lemma 5. For a negative instance x, the
complexity of this stage is:

∑
A

λAC0(GA,xI(A) ,x) =

(n
k

)(n−r
k−r

) E
A

(
C0(GA,xI(A) ,x)C

1(GA,xI(A))
)

= O
((n

k

)r
×E

A

(
C0(GA,xI(A) ,x)C

1(GA,xI(A))
))

.

Similarly, when f (y) = 1, we get a complexity at most 1. ut

5 Application to Triangle Finding

5.1 An adaptive Learning graph for dense case

We start by reviewing the main ideas of Le Gall’s algorithm in order to find a triangle in an input graph G with
n vertices. More precisely, we decompose the problem into similar subproblems, and we build up our adaptive
learning graph on top of it. Doing so, we get rid of most of the technical difficulties that arise in the resolution of
the underlying problems using quantum walk based algorithms.

Let V be the vertex set of G. For a vertex u, let Nu be the neighborhood of u, and for two vertices u,v, let
Nu,v = Nu ∩Nv. Figure 3 and the algorithm described in Figure 4 illustrate the following strategy for finding a
potential triangle in some given graph G = (V,E). Here the sizes of the sets X ,A, and B, namely x,a, and b
respectively, are integers playing the role of parameters whose values will be determined later (see Theorem 4
below).

First, fix an x-subset X of vertices, that is, a subset of X of size x. Then, either G has a triangle with one vertex
in X or each (potential) triangle vertex is outside X . The first case is quite easy to deal with, so we ignore it for
now and we only focus on the second case. Thus there is no need to query any possible edge between two vertices
u,v connected to the same vertex in X . Indeed, if such an edge exists, the first case will detect a triangle. Therefore
one only needs to look for a triangle edge in ∆(X) = {(u,v) ∈V 2 : Nu,v∩X = /0}.

Second, search for an a-subset A with two triangle vertices in it. For this, construct the set ∆(X ,A) =A2∩∆(X)
of potential triangle edges in A2. The set ∆(X ,A) can be easily set once all edges between X and A are known.

Third, in order to decide if ∆(X ,A) has a triangle edge, search for a vertex w making a triangle with an edge
of ∆(X ,A).
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t

w
∆(X, t,B)

B2

A2
N 2

t

u

v

X

Fig. 3 Sets involved in Le Gall’s algorithm.

Algorithm (simplified version of Le Gall’s algorithm)

Search for X ⊆V , |X |= x, such that (all possible subsets X of size x are valid or none)

(1) Either X has a triangle vertex, in which case
(a) Search for t ∈ X
(b) Search for an edge of G connected to t

(2) Or there is a triangle with no vertex in X , in which case
(a) Perform a Johnson walk on A⊆V , |A|= a, with I(A) = X×A (see Theorem 3)
(b) Search for t
(c) Perform a Johnson walk on B⊆V , |B|= b, with J(B) = {t}×B
(d) Look for an edge in ∆(X , t,B), pairs of vertices in J(B) not connected to the same vertex in X

Fig. 4 Simplified version of Le Gall’s algorithm for finding a triangle in G = (V,E).

Otherwise, search for a b-subset B of A such that w makes a triangle with two vertices of B. For this last step,
we construct the set ∆(X ,B,w) = (Nw)

2 ∩∆(X ,B) of pairs of vertices connected to w. If any of such pair is an
actual edge, then we have found a triangle.

We will use learning graphs of type GOR for the first step, for finding an appropriate vertex w, and for deciding
weither ∆(X ,B,w) has an edge; and learning graphs of type GJohnson for finding subsets A and B.

More formally now, let Triangle be the Boolean function such that Triangle(G) = 1 iff graph input G has
a triangle. We do the following decomposition. First, observe that Triangle =

∨
X : |X |=x(hX ∨ fX ) with hX (G) =

1 (resp. fX (G) = 1) iff G has a triangle with a vertex in X (resp. with no vertex in X). Then, we pursue the
decomposition for fX (G) as fX (G) =

∨
A : |A|=a fX ,A(G) and fX ,A(G) =

∨
w∈V fX ,A,w(G), for A ⊆ V and w ∈ V ,

where

– fX ,A(G) = 1 iff G has a triangle between two vertices in A\X and a third one outside X ;
– fX ,A,w(G) = 1 iff w 6∈ X and G has a triangle between w and two vertices in A\X .

Last, we can write fX ,A,w(G) =
∨

B⊂A, |B|=b fX ,B,w(G).
With our notations introduced in Section 4, our adaptative learning graph G for Triangle Finding can be

represented as in Figure 5.

/0
X

t uv

A w B ∆(X ,B,w)

Fig. 5 Learning graph for Triangle Finding with complexity O(n5/4).

Using adaptive learning graphs instead of the framework of quantum walk based algorithms from [25] sim-
plifies the implementation of the above strategy because one can consider all the possible subsets X instead of
choosing just a random one. Then one only needs to estimate the average complexity over all possible X . Such an
average analysis was not considered in the framework of [25]. In addition, we do not need to estimate the size of
∆(X ,A,w) at any moment of our algorithm. As a consequence, our framework greatly simplifies the combinatorial
analysis of our algorithm as compared to the one of Le Gall, and lets us shave off some logarithmic factors.
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Theorem 4 The adaptive learning graph of Figure 5 with |X |= x, |A|= a, |B|= b, and using Load=DenseLoad,
has complexity

O

(√
xn2 +(ax)2 +

(n
a

)2
(

a · x2 +n
(

b2 +
(a

b

)2
(

b+
b2

x

))))
.

In particular, taking a = n3/4 and b = x =
√

n leads to Q(Triangle) = O(n5/4).

Proof From now on, fix some input graph G = (V,E) (with or without a triangle). We compute the complexity
C(G ,G) of G on G using Lemma 5 and Theorem 3. From the decomposition of Triangle one can already check
that the resulting learning graph computes the function Triangle.

Also all complexities for positive instances will be at most 1. Therefore, we only compute the complexity of
negative instances, and drop multiplicative factors corresponding to the complexity of a learning graph on positive
instances.

We decompose the analysis in stages as in Figure 6, and we compute their respective negative complexities on
some given graph G. In the sequel, x,a and b are positive integers playing the role of parameters whose values are
to be determined later.

/0
X

t uv

A w B ∆(X ,B,w)

1 2 3 4 5 6

Fig. 6 Adaptive learning graph for Triangle Finding with its corresponding stages.

Stage 1. G consists in the combination of learning graphs GX , where X is a x-subset of [n], as in Lemma 5. The
particularity of the learning graphs GX is that they all compute Triangle.
Stage 2. Each GX is again a combination of two learning graphs FX and HX as in Lemma 5. The learning graph
FX , described in the remaining stages, computes fX , whereas HX computes hX . Observe that HX consists in a
very simple non-adaptative learning graph with negative complexity xn2. Therefore we can already deduce that

C0(G ,G)≤ E
X
(C0(FX ,G))+ xn2.

In the sequel we focus on the analysis of FX .
Stage 3. FX is decomposed using Theorem 3 with LoadS = DenseLoadS and parameters n = |V |, k = a, r = 2.
Therefore

C0(EX ,G) = O
(
(SG,X )

2 +
(n

a

)2 (
a · (UG,X )

2 +(CG,X )
2))

where we take

(SG,X )
2 = E

A′⊂V : |A′|=a−2

(
|IX (A′)|2

)
,

(UG,X )
2 = max

a−2≤i<a

(
E

A′⊂A′′⊆V : |A′|=|A′′|−1=i

(
|IX (A′′)\IX (A′)|2

))
,

(CG,X )
2 = E

A⊆V : |A|=a

(
C0(FX ,A,G)

)
,

with IX (A′) = X×A′, and FX ,A is the learning graph for fX ,A that we describe in the remaining stages.
Stage 4. We use Lemma 5 and w stands for the third triangle vertex. Therefore,

C0(FX ,A,G)≤ n×E
w
(C0(FX ,A,w,G)),

where w ∈ [n] and FX ,A,w is the learning graph for fX ,A,w described below.
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Stage 5. Next, we use Theorem 3 with LoadS = DenseLoadS and parameters n′ = a, k′ = b, r′ = 2. Therefore

C0(FX ,A,w,G) = O
(
(SG,X ,A,w)

2 +
(a

b

)2 (
b · (UG,X ,A,w)

2 +(CG,X ,A,w)
2))

where we take

(SG,X ,A,w)
2 = E

B′⊂A : |B′|=b−2

(
|Iw(B′)|2

)
,

(UG,X ,A,w)
2 = max

b−2≤i<b

(
E

B′⊂B′′⊆V : |B′|=|B′′|−1=i

(
|Iw(B′′)\Iw(B′)|2

))
,

(CG,X ,A,w)
2 = E

B⊆A : |B|=b

(
C0(FX ,A,w,B,G)

)
,

with Iw(B′) = {w}×B′, and FX ,A,w,B is the learning graph for fX ,A,w,B described in the last stage.
Stage 6. The last stage consists in the learning graph obtained by Lemma 5, with negative complexity of order
|∆(X ,B,w)|, for searching a potential edge in ∆(X ,B,w).

In order to conclude, we observe that for any w ∈ V and any set of vertices V1 ⊆ V , we have |IX (V1)| = x|V1|
and |Iw(V1)|= |V1|. Applying this for V1 = A and V1 = B we obtain

SG,X ≤ ax, UG,X ≤ x, SG,X ,A,w ≤ b, UG,X ,A,w ≤ 1.

We therefore get that C0(G ,G) has order

xn2 +(ax)2 +
(n

a

)2
(

a · x2 +n
(

b2 +
(a

b

)2
(

b+ E
X ,w,B

[
|∆(X ,B,w)|

])))
.

We now conclude using Lemma 6 with V1 =V , and C(G ) =
√

C0(G ) since C1(G )≤ 1. ut

Lemma 6 Let x,b be positive integers. Let G be a graph on a vertex set V of size n and let B ⊆ V be a b-subset.
Then

E
X ,w

[
|∆(X ,B,w)|

]
≤ b2

x
,

where the expectation is taken over x-subsets X ⊆V and vertices w ∈V .

Proof Let ∆(X) be the set of pairs of vertices which are not both neighbors of any vertex in X . Let B⊆V of size
b, the expectation on X and w is:

E
X ,w

[
|∆(X ,B,w)|

]
= ∑

(u,v)∈B2

Pr
X ,w

((u,v) ∈ ∆(X ,B,w)). (5)

In order to bound the probabilities of the events on the right hand side, fix (u,v) ∈ B2 and let Nu,v be the
intersection of the neighborhoods of u and v in V . Then

Pr
X ,w

((u,v) ∈ ∆(X ,B,w)) = Pr
X ,w

(w ∈ Nu,v and (u,v) ∈ ∆(X)).

The two events of the right hand side are independent, therefore with t = |Nu,v| and n = |V | we get

Pr
X ,w

((u,v) ∈ ∆(X ,B,w)) =
t
n

(
1− t

n

)x
.

Renaming α = tx
n leads to

Pr
X ,w

((u,v) ∈ ∆(X ,B,w)) =
α

x

(
1− α

x

)x
≤ αe−α

x
≤ 1

x
.

Finally, combining the above bound with equation (5) gives the result. ut

Remark 1 Notice that the complexity of HX (see Stage 2 in the proof), namely xn2, is negligible compared to the
other terms. Hence the lower branch of the learning graph presented in Figure 6, could be removed by directly
bounding the probability that X contains a vertex which belongs to a triangle.
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5.2 Sparse graphs

In the sparse case we now show how to use extended learning graphs in order to get a better complexity than the
one of Theorem 4.

First, the same learning graph of Theorem 4 has a much smaller complexity for sparse graphs when SparseLoad
is used instead of DenseLoad.

Theorem 5 The learning graph of Figure 5, using Load= SparseLoad, has complexity over graphs with m edges

O

(√(
xm+(ax)2 · m

n2 +
(n

a

)2
(

a · x2 · m
n2 +n

(
b2 · m

n2 +
(a

b

)2
(

b+
b2

x

))))
logn

)
.

In particular, taking a = n3/4 and b = x =
√

n/(m/n2)1/3 leads to a complexity of O(n11/12m1/6√logn) when
m≥ n5/4.

Proof We reuse the notations introduced in the proof of Theorem 4. In addition we let d = 2m/n be the average
degree of the input graph.

Here HX has complexity O(xdn logn + x(d2)
2) = O(xdn logn) on any negative instance, where d2 =√

Ev(|Nv|2). Indeed, fix any negative instance. For each v ∈ X , we learn Nv by loading {v}×V with negative
complexity |Nv|(n+1) log(n+1). Then we load Nv×Nv simply using DenseLoad with negative complexity |Nv|2.
So summing those complexities for every v ∈ X and taking the expectation on x-subsets X ⊆ V , the average
negative complexity becomes

E
X⊆V,|X |=x

[
∑
v∈X

(
|Nv|(n+1) log(n+1)+ |Nv|2

)]
= x× E

v∈V

(
|Nv|(n+1) log(n+1)+ |Nv|2

)
= xd(n+1) log(n+1)+ x(d2)

2.

For the first step of the Johnson walk in FX , we now get using SparseLoad

E
X

(
(SG,X )

2)= E
X

E
A′⊆V : |A′|=a−2

(
|IX (A′)| · log(|IX (A′)|+1) · (|GIX (A′)|+1)

)
≤ ax log(ax+1)E

X
E

A′⊆V : |A′|=a−2
(|E(X ,A′)|+1)

= O
((ax

n

)2
m log(ax+1)

)
,

where for the second step we used that |IX (A′)|= |X ×A′| ≤ ax, and for the last one Lemma 8 below with X and
Y = A. Similarly, using the fact that |IX (A′′)\IX (A′)|= |X× (A′′\A′)|= x, we obtain

E
X

(
(UG,X )

2)= E
X

(
x · log(x+1) · max

a−2≤i<a

(
E

A′⊂V : |A′|=i

(
E

v∈V\A′
(|E(X ,v)|+1)

)))

= O
(
E
X

(
x · log(x+1) ·

(
E

v∈V
(|E(X ,v)|+1)

)))
= O

(
x2m
n2 · log(x+1)

)
,

where the second equality holds by Lemma 8 below with X and Y = {v}.
For the second step of the walk, since |Iw(B′)|= |{w}×B′| ≤ b, we have by Lemma 7, with x = b−2, V1 = A

and N = Nw∩A:

(SG,X ,A,w)
2 ≤ b log(b+1) E

B′⊂A : |B′|=b−2

(
|E(B′,w)|+1

)
= O

(
b2|Nw∩A|

a
log(b+1)

)
.
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Moreover, again by Lemma 7 below but this time with x = a, V1 =V and N = Nw, we get

E
w∈V

E
A⊆V : |A|=a

(|Nw∩A|) = a
n E

w∈V
|Nw∩V |= ad

n
.

So,

E
A⊆V : |A|=a

(
(SG,X ,A,w)

2)= O
(

b2 · d
n

log(b+1)
)
.

Last, since |Iw(B′′)\Iw(B′)|= |{w}× (B′′\B′)|= 1, we directly obtain:

U2
G,X ,A,w = O(1).

Thus, the total negative complexity is of order[
xdn+(ax)2 · d

n
+
(n

a

)2
(

a · x2 · d
n
+n
(

b2 · d
n
+
(a

b

)2
(

b+
b2

x

)))]
︸ ︷︷ ︸

Kn

× log(n). (6)

Denoting t = d
n ≤ 1, we have:

Kn = t
(

xn2 +a2x2 +
n2

a2

(
ax2 +nb2))+

n3

b

(
1+

b
x

)
.

If x = b≤ a≤ n, we have xn2 ≥ x2n2/a and n3

b ≥ n2, hence :

Kn = O
(

t
(

xn2 +a2x2 +
n3b2

a2

)
+

n3

b

)
.

Taking a = n3/4 and b = x =
√

n/t1/3, leads to:

Kn = O
(

tb2n3/2 +
n3

b

)
= O

(
n5/2t1/3

)
.

Going back to (6), this yields a negative complexity of order:

n5/2t1/3× log(n),

and thus a total complexity of order:

n5/4t1/6 · log(n)1/2 = n11/12m1/6 log(n)1/2.

This complexity is valid until
√

n/t1/3 ≤ n3/4, that is when t ≥ 1/n3/4, i.e. d ≥ n1/4. This concludes the proof of
the theorem. ut

Lemma 7 Let 1≤ x≤ |V | and N ⊆V1 ⊆V . Then

E
X⊆V1, |X |=x

|N∩X |= x|N|
|V1|

.

Proof Let 1X be the indicator function of X . Then observe that the left hand side can be rewritten as

E
X
|N∩X |= E

X

(
∑

u∈N
1X (u)

)
= ∑

u∈N
E
X
(1X (u)) .

Then we conclude by observing that each term of the sum on the right hand side satisfies EX (1X (u)) = x
|V1| ,

independently of u ∈V1. ut

Lemma 8 Let 1≤ x,y≤ |V |. Let E(X ,Y ) denote the set of edges between X and Y . Then

E
X ,Y⊆V, |X |=x, |Y |=y

|E(X ,Y )|= 2xym
n2 ,

15



Proof For any v ∈V we denote Nv ⊆V its neighbors. We prove the equality by decomposition of the expectation
term:

E
X ,Y
|E(X ,Y )| = E

X ,Y
∑
v∈Y
|E(X ,{v})|

= E
X

∑
v∈V
|E(X ,{v})|×Pr

Y
(v ∈ Y )

=
y
n
×∑

v∈V
E
X
|Nv∩X |

=
xy
n2 ×∑

v∈V
|Nv| by Lemma 7 with k = 1, V1 =V and N = Nv

=
2xym

n2 .

ut

We now end with an even simpler learning graph whose complexity depends on its average of squared degrees.
It consists in searching for a triangle vertex w. In order to check if w is such a vertex, we search for a b-subset
B with an edge connected to w. For this purpose, we first connect w to B, and then check if there is an edge in
(Nw∩B)2. See Figure 7 for the illustration.

Formally, we do the decomposition Triangle=
∨

w∈V fw, with fw(G) = 1 iff w is a triangle vertex in G. Then,
we pursue the decomposition with fw(G) =

∨
B⊆V : |B|=b fw,B(G) where fw,B(G) = 1 iff G has a triangle formed

by w and two vertices of B. Using our notations, the resulting learning graph is represented by the diagram in
Figure 8.

B2

(Nw ∩B)2 w

v

u

Fig. 7 Sets involved in the sparse decomposition used in Theorem 6.

w B (Nw ∩B)2

Fig. 8 Learning graph for Triangle Finding with complexity Õ((n5/6m1/6 +d2
√

n) logn).

We prove the following theorem, where d2 =
√

Ev
[
|Nv|2

]
denotes the quadratic mean of the degrees.

Theorem 6 Let b ≥ n2/m. The learning graph of Figure 8, using SparseLoad for the first stage of GJohnson and
DenseLoad otherwise, has complexity over graphs with m edges

O

(√
n
(

b2 m
n2 logn+

n2

b2

(
b+

b2(d2)2

n2

)))
.

Taking b = n4/3/(m logn)1/3 leads to a complexity of O(n5/6(m logn)1/6 +d2
√

n).

Proof Let us denote G the learning graph of Figure 8. It can be seen as a special case of the one of Figure 5
with X = /0 and A =V (i.e. x = 0 and a = n). That is we start at Stage 5, and in our case ∆(X ,B,w) = (Nw∩B)2.
Moreover we are going to use DenseLoad everywhere except for the first part, where we use SparseLoad in order
to minimize the term (SG,X ,A,w)

2.

16



Therefore we can duplicate the analysis in the proof of Theorem 5 starting from Stage 4 and replacing
∆(X ,B,w) by (Nw∩B). Then we get that the negative complexity for any graph G satisfies

C0(G ,G) = O
(

n
(

b2d
n
· log(b+1)+

(n
b

)2
(

b+ E
w,B

(
|Nw∩B|2

))))
.

Then, the last piece of the proof is provided by Lemma 9 below which gives, with x = b,V1 =V , and N = Nw,

E
w∈V,B⊆V : |B|=b

(
|Nw∩B|2

)
≤ 2

(
E
w

(
b2|Nw|2

n2

))
≤ 2

(
b2(d2)

2

n2

)
,

where d2 =
√
Ev
[
|Nv|2

]
.

This concludes the proof of the theorem. ut

Lemma 9 Let 1≤ x≤ |V | and N ⊆V1 ⊆V be such that x|N| ≥ |V1|. Then

E
X⊆V1, |X |=x

(
|N∩X |2

)
≤ 2

(
x|N|
|V1|

)2

.

Proof Similarly to the proof of Lemma 7, let 1X be the indicator function of X . Then

E
X

(
|N∩X |2

)
= E

X

(∑
u∈N

1X (u)

)2
= ∑

u,v∈N
E
X
(1X (u)1X (v)) .

Observe that 1X (u) and 1X (v) are independent for u 6= v, and that (1X (u))2 = 1X (u). Therefore

E
X

(
|N∩X |2

)
= ∑

u,v∈N, u6=v

(
E
X

1X (u)
)(

E
X

1X (v)
)
+ ∑

u∈N
E
X

1X (u).

Remember that for all u ∈V1, EX 1X (u) = x
|V1| . Thus

E
X

(
|N∩X |2

)
= |N|(|N|−1)

(
x
|V1|

)2

+ |N| x
|V1|

.

Using x|N| ≥ |V1|, we finally get

E
X

(
|N∩X |2

)
≤ |N|(|N|−1)

(
x
|V1|

)2

+

(
|N| x
|V1|

)2

≤ 2
(
|N| x
|V1|

)2

.

ut
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