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Abstract. We consider the design of self-testers for quantum gates. A self-tester for the gates
F 1, . . . , F m is a procedure that, given any gates G1, . . . , Gm, decides with high probability if each
Gi is close to F i. This decision has to rely only on measuring in the computational basis the effect
of iterating the gates on the classical states. It turns out that instead of individual gates, we can
only design procedures for families of gates. To achieve our goal we borrow some elegant ideas of
the theory of program testing: we characterize the gate families by specific properties, we develop a
theory of robustness for them, and show that they lead to self-testers. In particular we prove that
the universal and fault-tolerant set of gates consisting of a Hadamard gate, a c-NOT gate, and a
phase rotation gate of angle π/4 is self-testable.

1. Introduction. As experimentalists attempt to realize quantum computers,
we need some way to test whether the desired quantum operations are actually being
implemented. Our motivation is to derive sufficient and self-contained tests for veri-
fying the action of specific finite sets of quantum gates. One of the most important
features of our work is that our tests do not rely on the use of some other trusted
quantum operations that have somehow already been characterized and tested.

Inspired by classical work on self-testing programs [10, 30, 25, 19] (see section 1.1),
our approach is to characterize quantum gates by testable properties. For example,
one testable property of the Hadamard gate H is that if one starts with input |0〉,
applies H, and then measures, one should measure |0〉 with probability 1

2 . This of
course does not uniquely characterize the Hadamard gate; for instance, there are
many non-unitary quantum gates with the same property. If a gate is known to be
unitary, then it is quite easy to find a set of testable properties that characterize it.
So one of our key techniques for characterizing gates is a test for unitarity. Since any
reasonable test could only verify that the probability of outputting |0〉 is likely very
close to 1

2 , we need robust properties. Informally, a property is robust if whenever
a function satisfies the property approximately, then it is close to a function that
satisfies it exactly.

Our tests are in the quantum circuit model of computation, which corresponds
most naturally to what experimentalists are implementing. The quantum circuit
model and the quantum Turing machine are the first formal models of quantum com-
puting that were defined by Deutsch[13, 14]. Yao has shown[38] that these two models
have polynomially equivalent computational power when the circuits are uniform.

A quantum circuit operates on n quantum bits (qubits), where n is some integer.
The actual computation takes place in the Hilbert space C{0,1}n

whose computational
basis consists of the 2n orthonormal vectors |i〉 for i ∈ {0, 1}n. According to the
standard model, during the computation the state of the system is a unit length
linear combination, or a superposition, of the basis states. The computational steps
of the system are done by quantum gates which perform unitary operations and are
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local in the sense that they involve only a constant number of qubits. At the end of the
computation a measurement takes place on one of the qubits. This is a probabilistic
experiment whose outcome can be 0 or 1, and the probability of measuring the bit b is
the squared length of the projection of the superposition to the subspace spanned by
the basis states that are compatible with the outcome. As a result of a measurement,
the state of the system becomes this projected state.

The most convenient way to describe all possible operations on a quantum regis-
ter is in the formalism of ‘density matrices’. In this approach, which differs from the
Dirac notation, the quantum operations are described by completely positive superop-
erators (CPSOs) that act on matrices. These density matrices describe mixed states
(that is, classical probability distributions over pure quantum states), and the CPSOs
correspond exactly to all the physically allowed transformations on them. Such a
model of quantum circuits with mixed states was described by Aharonov, Kitaev and
Nisan[3], and we will adopt it here. The unitary quantum gates of the standard model
and measurements are special CPSOs. CPSOs can be simulated by unitary quantum
gates on a larger number of qubits, and in [3] it was shown that the computational
powers of the two models are polynomially equivalent.

Unitary quantum gates for small number of qubits have been extensively stud-
ied. One reason is that although quantum gates for up to three qubits have already
been realized (e.g. in [24]), constructing gates for large numbers seems to be elusive.
Another reason is that universal sets of gates can be built from them, which means
that they can simulate (approximately) any unitary transformation on an arbitrary
number of qubits. The first universal quantum gate which operates on three qubits
was identified by Deutsch[14]. After a long sequence of work on universal quantum
gates [17, 4, 15, 26, 6, 35, 22, 21], Boykin et al.[8] have recently shown that the set
consisting of a Hadamard gate, a c-NOT gate, and a phase rotation gate of angle π/4
is universal. In order to form a practical basis for quantum computation, a universal
set must also be able to operate in a noisy environment, and therefore there has to
be an implementation of fault tolerant quantum computation using this set of gates
[35, 2, 21, 23]. The above set of three gates has the additional advantage of also being
fault-tolerant in this sense.

In this paper we develop the theory of self-testing of quantum gates by classical
procedures. Given a CPSO G for n qubits, and a family F of unitary CPSOs, we
would like to decide if G belongs to F . Intuitively, a self-tester is a procedure that
answers the question “G ∈ F ?” by interacting with the CPSO G in a purely classical
way. More precisely, it will be a probabilistic algorithm that is able to access G as a
black box in the following sense: it can prepare the classical states w ∈ {0, 1}n, iterate
G on these states, and afterwards, measure in the computational basis. The access
must be seen as a whole, performed by a specific, experimental oracle for G: once the
basis state w and the number of iterations k have been specified, the program in one
step gets back one of the possible probabilistic outcomes of measuring the state of
the system after G is iterated k-times on w. The intermediate quantum states of this
process cannot be used by the program, which cannot perform any other quantum
operations either. For 0 ≤ δ1 ≤ δ2, such an algorithm will be a (δ1, δ2)-tester for F if
for every CPSO G, whenever the distance of G and F is at most δ1 (in some norm),
it accepts with high probability, and whenever the same distance is greater than δ2,
it rejects with high probability, where the probability is taken over the measurements
performed by the oracle and by the coin tosses of the algorithm. Finally we will say
that F is testable if for every δ2 > 0, there exists 0 < δ1 ≤ δ2 such that there exists a
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(δ1, δ2)-tester for F . These definitions can be extended to several classes of CPSOs.
We note in the Preliminaries that for any real ϕ the states |1〉 and eiϕ|1〉 are

experimentally indistinguishable. This implies that if we start by only distinguishing
the classical states 0 and 1 then there are families of CPSOs which are indistinguish-
able as well. For example, let H be the well-known Hadamard gate, and let Hϕ be
the same gate expressed in the basis (|0〉, eiϕ|1〉), for ϕ ∈ [0, 2π). Any experiment
that starts in state 0 or 1 and uses only H will produce outcomes 0 and 1 with
the same probabilities as the same experiment with Hϕ. Thus no experiment that
uses this quantum gate alone can distinguish it from all the other Hadamard gates.
Indeed, a family F containing H can only be tested if the entire Hadamard family
H = {Hϕ : ϕ ∈ [0, 2π)} is included in F . This degree of freedom is formalized
generally for any gate in Fact 4.1.

It might seem at first sight that not being able to get rid of this degree of freedom
is a serious handicap. Nonetheless, it remains coherent when we test several gates
simultaneously. Thus for example if we define NOTϕ similarly to Hϕ, we are able
to test the family of couples {(NOTϕ,Hϕ) : ϕ ∈ [0, 2π)}.

The main result of this paper is Theorem 6.5 which states that for several sets of
unitary CPSOs, in particular, the Hadamard gates family, Hadamard gates together
with c-NOT gates, and Hadamard gates with c-NOT and phase rotation gates of
angle ±π/4, are testable. This last family is of particular importance since every
triplet in the family forms a universal and fault-tolerant set of gates for quantum
computation [8].

For the proof we will define the notion of experimental equations which are func-
tional equations for CPSOs corresponding to the properties of the quantum gate that
a self-tester can approximately test. These tests are done via the interaction with
the experimental oracle. The proof itself contains three parts. In Theorems 4.2,
4.4, and 4.5 we will exhibit experimental equations for the families of unitary CPSOs
we want to characterize. In Theorem 5.2 we will show that actually all experimen-
tal equations are robust; in fact, the distance of a CPSO from the target family is
polynomially related to the error tolerated in the experimental equations. Finally
Theorem 6.3 gives self-testers for CPSO families which are characterized by a finite
set of robust experimental equations.

In some cases, we are able to calculate explicitly the polynomial bound in the ro-
bustness of experimental equations. Such a result will be illustrated in Theorem 5.4
for the equations characterizing the Hadamard family H.

Technically, these results will be based on the representation of one-qubit states
and CPSOs in R3, where they are respectively vectors in the unit ball of R3, and
particular affine transformations. This correspondence is known as the Bloch Ball
representation.

1.1. Related prior work. Experimental procedures for determining the prop-
erties of quantum “black boxes” were given by Chuang and Nielsen [12] and Poyatos,
Cirac and Zoller [28], however these procedures implicitly require apparatus that has
already been tested and characterized.

The idea of self-testing in quantum devices is implicit in the work of Adleman,
Demarrais and Huang [1]. They have developed a procedure by which a quantum
Turing machine is able to estimate its internal angle by its own means under the
hypothesis that the machine is unitary. In the context of quantum cryptography
Mayers and Yao [27] have designed tests for deciding if a photon source is perfect.
These tests guarantee that if source passes them then it is adequate for the security
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of the Bennett-Brassard [5] quantum key distribution protocol.
The study of self-testing programs is a well-established research area which was

initiated by the work of Blum, Luby and Rubinfeld [10], Rubinfeld [30], Lipton [25]
and Gemmel et al. [19]. The purpose of a self-tester for a function family is to detect
by simple means if a program which is accessible as an oracle computes a function from
the given family. This clearly inspired the definition of our self-testers which have the
particular feature that they should test quantum objects that they can access only in
some particular way. The analogy with self-testing does not stop with the definition.
One of the main tools in self-testing of function families is the characterization of
these families by robust properties. The concept of robustness was introduced and
its implication for self-testing was first studied by Rubinfeld and Sudan [31] and by
Rubinfeld [32]. It will play a crucial role in our case.

2. Preliminaries.

2.1. The quantum state. A pure state in a quantum physical system is de-
scribed by a unit vector in a Hilbert space. In the Dirac notation it is denoted by
|ψ〉. In particular a qubit (a quantum two-state system) is an element of the Hilbert
space C{0,1}. The orthonormal basis containing |0〉 and |1〉 is called the computa-
tional basis of C{0,1}. Therefore a pure state |ψ〉 ∈ C{0,1} is a linear combination, or
a superposition, of the computational basis states, that is, |ψ〉 = c0|0〉 + c1|1〉, with
|c0|2 + |c1|2 = 1. A physical system which deals with n qubits is described mathemat-
ically by the 2n-dimensional Hilbert space which is by definition C{0,1}⊗ · · ·⊗C{0,1},
that is, the nth tensor power of C{0,1}. Let N = 2n. The computational basis of
this space consists of the N orthonormal states |i〉 for 0 ≤ i < N . If i is in binary
notation i1i2 . . . in, then |i1 . . . in〉 = |i1〉 . . . |in〉, where this is a short notation for
|i1〉⊗· · ·⊗|in〉. All vectors and matrices will be expressed in the computational basis.
The transposed complex conjugate |ψ〉† of |ψ〉 is denoted by 〈ψ|. The inner product
between |ψ〉 and |ψ′〉 is denoted by 〈ψ|ψ′〉, and their outer product by |ψ〉〈ψ′|.

Quantum systems can also be in more general states than what can be described
by pure states. The most general states are mixed states, described by a probability
distribution over pure states. Such a mixture can be denoted by {(pk, |ψk〉) : k ∈ N},
where the system is in the pure state |ψk〉 with probability pk.

Different mixtures (even different pure states |ψ〉) can represent the same physical
system. This notational redundancy can be avoided if we use the formalism of the
density matrices. A density matrix that represents an n-qubit state is an N × N
Hermitian semi-positive matrix with trace 1. The pure state |ψ〉 in this representation
is described by the density matrix ψ = |ψ〉〈ψ|, and a mixture {(pk, |ψk〉) : k ∈ N}
by the density matrix ψ =

∑
k∈N pk|ψk〉〈ψk|. For example, the pure states eiγ |ψ〉,

for γ ∈ [0, 2π), or the mixtures {( 1
2 , |0〉), (

1
2 , |1〉)} and {( 1

2 ,
|0〉+|1〉√

2
), ( 1

2 ,
|0〉−|1〉√

2
)} have

respectively the same density matrix.
Since a density matrix is Hermitian semi-positive, its eigenvectors are orthogonal

and its eigenvalues are non-negative. Because the density matrix has trace 1, its eigen-
values sum to 1. Therefore a density matrix represents the mixture of its orthonormal
eigenvectors, where the probabilities are the respective eigenvalues. Note that diag-
onal density matrices correspond to a mixture over pure states |i〉, for 0 ≤ i < N .
Density matrices that represent pure states have a simple algebraic characterization:
ρ is a pure state if and only if it has two eigenvalues, 0 with multiplicity N − 1 and 1
with multiplicity 1, equivalently ρ is a pure state exactly when ρ2 = ρ.

A 2×2 Hermitian matrix of unit trace is semi-positive if and only if its determinant
4



is between 0 and 1/4. Therefore in the case of one qubit, any density matrix ρ can
be written as ρ = p|0〉〈0| + (1 − p)|1〉〈1| + α|1〉〈0| + α∗|0〉〈1|, where p ∈ [0, 1], and α
is a complex number such that |α|2 ≤ p(1 − p). This density matrix will be denoted
by ρ(p, α). Remark that ρ(p, α) is a pure state exactly when |α|2 = p(1− p), that is,
its determinant is 0.

2.2. Superoperators. The evolution of physical systems is described by specific
transformations on density matrices, that is, on operators. A superoperator for n
qubits is a linear transformation on CN×N . A positive superoperator (PSO) is a
superoperator that maps density matrices to density matrices. A completely positive
superoperator (CPSO) G is a PSO such that for all positive integers M , G ⊗ IM is
also a PSO, where IM is the identity on CM×M . CPSOs are exactly the physically
allowed transformations on density matrices. An example of a PSO for one qubit
that is not a CPSO is the transpose superoperator T defined by T (|i〉〈j|) = |j〉〈i|, for
0 ≤ i, j ≤ 1.

Quantum computation is traditionally based on the possibility of constructing
some particular CPSOs, unitary superoperators, which preserve the set of pure states.
These operators are characterized by transformations from U(N), the set of N × N
unitary matrices. For any A ∈ U(N), we define a CPSO which maps a density matrix
ρ into AρA†. When the underlying unitary transformation A is clear from the context,
by a slight abuse of notation we will denote this CPSO simply by A. If |ψ′〉 denotes
A|ψ〉, then the unitary superoperator A maps the pure state ψ to the pure state ψ′. As
was the case in the Dirac representation of states, there is the same phase redundancy
in the set of unitary transformations U(N). If A ∈ U(N), then for all γ ∈ [0, 2π),
the transformations eiγA are different, however the corresponding superoperators are
identical. We will therefore focus on U(N)/U(1).

Conversely, CPSOs can be defined using unitary transformations. For every
CPSO G for n qubits, there exists a unitary transformation A ∈ U(23n) for 3n
qubits, such that G corresponds the application of A after tracing out the additional
n qubits [3]: G maps a density matrix ρ into G(ρ) = Tr2(A(ρ⊗ I22n)A†), where Tr2
denotes the trace out over the last 2n qubits.

2.3. Measurements. Measurements form another important class of (non-
unitary) CPSOs. They describe physical transformations corresponding to the ob-
servation of the system. We will define now formally one of the simplest classes of
measurements which correspond to the projections to elements of the computational
basis.

A Von Neumann measurement in the computational basis of n qubits is the n-qubit
CPSO M that, for every density matrix ρ, satisfies M(ρ)i,i = ρi,i and M(ρ)i,j = 0,
for i 6= j.

In the case of one qubit, the Von Neumann measurement in the computational
basis maps the density matrix ρ(p, α) into ρ(p, 0). We will say that p = 〈0|ρ|0〉 is the
probability of measuring |0〉〈0|, and we will denote it by Pr0[ρ].

In general, a Von Neumann measurement of n qubits in any basis can be viewed as
the Von Neumann measurement in the computational basis preceded by some unitary
superoperator.

2.4. The Bloch Ball representation. Specific for the one-qubit case, there is
an isomorphism between the group U(2)/U(1) and the special rotation group SO(3),
the set of 3× 3 orthogonal matrices with determinant 1. This allows us to represent
one-qubit states as vectors in the unit ball of R3, and unitary superoperators as
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Fig. 2.1. Bloch Ball representation of a pure state

rotations on R3. We will now describe exactly this correspondence.
The Bloch Ball B (respectively Bloch Sphere S) is the unit ball (respectively unit

sphere) of the Euclidean affine space R3. Any point u ∈ R3 determines a vector with
the same coordinates which we will also denote by u. The inner product of u and v
will be denoted by (u, v), and their Euclidean norm by ‖u‖.

Each point u ∈ R3 can be also characterized by its norm r ≥ 0, its latitude
θ ∈ [0, π], and its longitude ϕ ∈ [0, 2π). The latitude is the angle between the z-axis
and the vector u, and the longitude is the angle between the x-axis and the orthogonal
projection of u in the plane defined by z = 0. If u = (x, y, z), then these parameters
satisfy x = r sin θ cosϕ, y = r sin θ sinϕ and z = r cos θ.

For every density matrix ρ for one qubit there exists a unique point ρ = (x, y, z) ∈
B such that

ρ =
1
2

(
1 + z x− iy
x+ iy 1− z

)
.

This mapping is a bijection that also obeys

ρ(p, α) = (2Re(α), 2Im(α), 2p− 1).

In this formalism, the pure states are nicely characterized in B by their norm.
Fact 2.1. A density matrix ρ represents a pure state if and only if ρ ∈ S, that

is, ‖ρ‖ = 1.
Also, if θ ∈ [0, π] and ϕ ∈ [0, 2π) are respectively the latitude and the longitude

of ψ ∈ S, then the corresponding density matrix represents a pure state and satisfies
|ψ〉 = cos(θ/2)|0〉+ sin(θ/2)eiϕ|1〉 (see Figure 2.1). Observe that the pure states |ψ〉
and |ψ⊥〉 are orthogonal if and only if ψ = −ψ⊥. We will use the following notation for
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Fig. 2.2. Bloch Ball representation of a density matrix

the six pure states along the x, y and z axes: |ζ±x 〉 = 1√
2
(|0〉±|1〉), |ζ±y 〉 = 1√

2
(|0〉±i|1〉),

|ζ+
z 〉 = |0〉, and |ζ−z 〉 = |1〉, with the respective coordinates (±1, 0, 0), (0,±1, 0) and

(0, 0,±1) in R3. Recall that for every density matrix ρ for one qubit there exists two
orthogonal pure states |ψ〉 and |ψ⊥〉 such that ρ = p|ψ〉〈ψ| + (1−p)|ψ⊥〉〈ψ⊥|, where
0 ≤ p ≤ 1. Thus ρ is just the barycenter of ψ and ψ⊥ with respective weights p and
(1−p) (see Figure 2.2).

For each CPSO G, there exists a unique affine transformation G over R3, which
maps the ball B into B and is such that, for all density matrices ρ, G(ρ) = G(ρ).
Unitary superoperators have a nice characterization in B.

Fact 2.2. The map between U(2)/U(1) and SO(3), which sends A to A, is an
isomorphism.

For α ∈ (−π, π], θ ∈ [0, π2 ], and ϕ ∈ [0, 2π), we will define the unitary transforma-
tion Rα,θ,ϕ over C2. If |ψ〉 = cos(θ/2)|0〉 + eiϕ sin(θ/2)|1〉 and |ψ⊥〉 = sin(θ/2)|0〉 −
eiϕ cos(θ/2)|1〉 then by definition Rα,θ,ϕ|ψ〉 = |ψ〉 and Rα,θ,ϕ|ψ⊥〉 = eiα|ψ⊥〉. If A is
a unitary superoperator then we have A = Rα,θ,ϕ for some α, θ, and ϕ. In R3 the
transformation Rα,θ,ϕ is the rotation of angle α whose axis cuts the sphere S in the
points ψ and ψ⊥. Note that for θ = 0 the CPSO Rα,0,ϕ does not depend on ϕ. We
will denote this phase rotation by Rα.

The affine transformation in B which corresponds to the Von Neumann measure-
ment in the computational basis is the orthogonal projection to the z-axis. Therefore
it maps ρ = (x, y, z) into (0, 0, z), the point which corresponds to the density matrix
1+z
2 |0〉〈0|+ 1−z

2 |1〉〈1|. Thus Pr0[ρ] = 1+z
2 .

2.5. Norm and distance. Let N = 2n. We will consider the trace norm on
CN×N which is defined as follows: for all V ∈ CN×N , ‖V ‖1 = Tr

√
V †V . This norm

has several advantages when we consider the difference of density matrices. Given a
7



Von Neumann measurement, a density matrix induces a probability distribution over
the basis of the measurement. The trace norm of the difference of two density matrices
is the maximal variation distance between the two induced probability distributions,
over all Von Neumann measurements. It also satisfies the following properties.

Fact 2.3. For all density matrices ρ(p, α) and ρ(q, β) for one qubit we have:

‖ρ(p, α)− ρ(q, β)‖1 = ‖ρ(p, α)− ρ(q, β)‖
= 2

√
(p− q)2 + |α− β|2.

Fact 2.4. For all V ∈ CN×N and W ∈ CM×M we have ‖V ⊗W‖1 = ‖V ‖1‖W‖1

and
√

Tr(V †V ) ≤ ‖V ‖1. For density matrices ρ it holds that ‖ρ‖1 = 1.
For n-qubit superoperators, the superoperator norm associated to the trace norm

is defined as

‖G‖∞ = sup{‖G(V )‖1 : ‖V ‖1 = 1}.

This norm is always 1 when G is a CPSO (see e.g. [3][Lemma 12]). The norm
‖ ‖∞ can be easily generalized for k-tuples of superoperators by ‖(G1, . . . ,Gk)‖∞ =
max(‖G1‖∞, . . . , ‖Gk‖∞). We will denote by dist∞ the natural distance induced by
the norm ‖ ‖∞.

For our purposes we could have considered any other norm on superoperators
since our results are motivated by the testability of universal sets of gates which act
on a constant number of qubits. Indeed, it is a well known fact that in fixed dimension
all the norms are equivalent. As stated in Fact 6.2, the testability remains invariant
under changing norms.

3. Properties of CPSOs. Here we will establish the properties of CPSOs that
we will need for the characterization of our CPSO families. The first lemma does not
use the complete positivity thus it is stated in general for PSOs for one qubit. Note
that in the Bloch Ball formalism PSOs for one qubit are exactly affine maps that
preserve B.

Lemma 3.1. Let G be a PSO for one qubit, and let ρ and τ be density matrices
for one qubit.

(a) ‖G(ρ)−G(τ)‖1 ≤ ‖ρ− τ‖1.
(b) If G is not constant and G(ρ) is a pure state then ρ is a pure state.
The first property is clear when G is a CPSO since ‖G‖∞ = 1 and G is linear.

Moreover, the second property does not hold for PSOs (and even for CPSOs) that act
on more than one qubit. For example, the CPSO on two qubits that is the identity on
the first qubit and constant to some pure state on the second qubit is a counterexample
(take for instance, ρ = ψ ⊗ ( 1

2I2), where ψ is any pure state).
Proof. We prove the lemma using the Bloch Ball formalism.
(a) Let ρ, τ ∈ B be two distinct elements. Let L and u be respectively the linear

part and the constant part of the affine map G, that is G = L + u. Then we
have

G(ρ)−G(τ) = ‖ρ− τ‖L
(

ρ− τ

‖ρ− τ‖

)
.

Note that v = ρ−τ
‖ρ−τ‖ has norm 1. To conclude the proof, we now show that

8



‖L(v)‖ ≤ 1. Observe that

‖G(v)‖2 + ‖G(−v)‖2 = ‖L(v) + u‖2 + ‖−L(v) + u‖2

= 2(‖L(v)‖2 + ‖u‖2).

Since G preserves B and ±v ∈ B, the images G(±v) are also in B. Therefore
‖G(±v)‖ ≤ 1, and then ‖L(v)‖ ≤ 1.

(b) We prove the second property by contradiction. Let us recall that S denotes
the Bloch sphere. Suppose that there exists ρ ∈ B − S such that G(ρ) ∈ S.
Since G is not constant, there exists an element τ ∈ B such that G(τ) 6= G(ρ).
For every real ε > 0, let wε = ρ+ ε(ρ− τ). Fix some ε > 0 such that wε ∈ B.
Such an ε exists since, by hypothesis, ρ ∈ B − S. Moreover G is affine, thus

G(wε) = G(ρ) + ε(G(ρ)−G(τ)).

Therefore using ‖G(ρ)‖ = 1, the norm of G(wε) satisfies

‖G(wε)‖2 = 1 + 2ε
(
(G(ρ)−G(τ)),G(ρ)

)
+ ε2‖G(ρ)−G(τ)‖2

= 1 + 2ε
(
1−

(
G(τ),G(ρ)

))
+ ε2‖G(ρ)−G(τ)‖2

≥ 1 + ε2‖G(ρ)−G(τ)‖2

> 1.

Therefore there exists some element wε ∈ B such that G(wε) 6∈ B, which
contradicts G(B) ⊆ B.

An affine transformation of R3 is uniquely defined by the images of four non-
coplanar points. Surprisingly, if the transformation is a CPSO for one qubit, the
images of three points are sometimes sufficient. The following will make this precise
more generally for n qubits.

Lemma 3.2. Let n ≥ 1 be an integer, and let ρ1, ρ2, and ρ3 be three distinct one-
qubit density matrices representing pure states, such that the plane in R3 containing
the points ρ1, ρ2, ρ3 goes through the center of B. If G is a CPSO for n qubits that
acts as the identity on the set {ρ1, ρ2, ρ3}⊗n, then G is the identity mapping.

Proof. Let P be the plane defined in R3 by ρ1, ρ2 and ρ3. To simplify the
discussion, we suppose w.l.o.g. that ζ±z and ζ±x are in P . Every one-qubit ρ satisfying
ρ ∈ P is a linear combination of ρ1, ρ2 and ρ3. Therefore by linearity of G we get
that it acts as the identity on {ρ : ρ ∈ P}⊗n. Moreover it is sufficient to show that G
is the identity on density matrices representing non-entangled pure states, since they
form a basis for all density matrices. To see this fact, note that any 2 × 2 complex
matrix can be expressed as a linear combination of pure state density matrices. For
example, the elementary matrix |0〉〈1| can be written as

2|0〉〈1| = (|0〉+ |1〉)(〈0|+ 〈1|) + i(|0〉+ i|1〉)(〈0| − i〈1|)− (1 + i)|0〉〈0| − (1 + i)|1〉〈1|.

Thus any tensor product of 2×2 matrices can be expanded as a linear combination of
the tensor product of single qubit pure state density matrices. Since a 2n×2n density
matrix can be written as a linear combination of tensor products of 2×2 matrices (see
e.g. section 3.1 of [33]), it follows that any such density matrix can be expressed as a
linear combination of the density matrices representing non-entangled pure states.

9



Using the fact that G is the identity on both the computational basis and the
diagonal basis, that is on {ζ±x , ζ±z }⊗n, we would like to derive that G acts as identity
everywhere. One way of proving this is to use the correspondence between unitary
transformations and CPSOs. Let A be a unitary matrix such that G(ρ) = Tr2(A(ρ⊗
I2n)A†), for every n-qubit state ρ (recall that Tr2 denotes the trace out over half
of the last qubits). By assumption, for every n-qubit pure state |ψ〉 ∈ {ζ±x , ζ±z }⊗n,
there exists a n-qubit pure state |ϕψ〉, such that A|ψ〉|0n〉 = |ψ〉|ϕψ〉. Therefore, by
the linearity of A, we get that |ϕψ〉 does not depend on |ψ〉, which implies by again
the linearity of A, that for every n-qubit pure state |ψ〉, A|ψ〉|0n〉 = |ψ〉|ϕ〉, for some
n-qubit pure state |ϕ〉. Then we directly conclude that G is the identity.

For the sake of completeness, we now prove the result in more detail by induction
using our first definition of CPSOs. For this, for every k, let Ek be the set of density
matrices representing k-qubit non-entangled pure states, and let Fk = {ζ±x , ζ±z }⊗k.
We will show by induction on k that, for every 0 ≤ k ≤ n, the CPSO G acts as the
identity on Ek ⊗ Fn−k. The case k = 0 follows by the hypothesis of the lemma.

Suppose the statement is true for some k. Fix σ ∈ Ek and τ ∈ Fn−k−1. For every
one-qubit density matrix ρ let ρ̃ denote the n-qubit density matrix σ ⊗ ρ⊗ τ .

We now prove that G(ρ̃) = ρ̃, for every ρ ∈ E1. For this, we use the fact that
the density matrix Ψ+ representing the entangled EPR state (|00〉+ |11〉)/

√
2, can be

written in terms of tensor products of the ζ states:

Ψ+ = 1
2 (ζ+

x ⊗ ζ+
x + ζ−x ⊗ ζ−x + ζ+

z ⊗ ζ+
z + ζ−z ⊗ ζ−z )− 1

2 (ζ+
y ⊗ ζ+

y + ζ−y ⊗ ζ−y ).

This can be generalized for the pure state |µ〉 = (|0̃〉|0̃〉+ |1̃〉|1̃〉)/
√

2:

µ = 1
2 (ζ̃+

x ⊗ ζ̃+
x + ζ̃−x ⊗ ζ̃−x + ζ̃+

z ⊗ ζ̃+
z + ζ̃−z ⊗ ζ̃−z )− 1

2 (ζ̃+
y ⊗ ζ̃+

y + ζ̃−y ⊗ ζ̃−y ).

If we apply the CPSO I2n ⊗G to the state µ we get:

(I2n ⊗G)(µ)
= 1

2 [ζ̃+
x ⊗ ζ̃+

x + ζ̃−x ⊗ ζ̃−x + ζ̃+
z ⊗ ζ̃+

z + ζ̃−z ⊗ ζ̃−z − ζ̃+
y ⊗G(ζ̃+

y )− ζ̃−y ⊗G(ζ̃−y )].

If |ϕ〉 and |ϕ′〉 are orthogonal n-qubit pure states, then let Φ−
ϕϕ′ = (|ϕ〉|ϕ′〉 −

|ϕ′〉|ϕ〉)/
√

2. Since Φ−
ϕϕ′ is orthogonal to all symmetric 2n-qubit pure states of the

form ψ ⊗ ψ, by projecting (I2n ⊗G)(µ) to Φ−
ϕϕ′ we obtain:

〈Φ−
ϕϕ′ |(I2n ⊗G)(µ)|Φ−

ϕϕ′〉 = − 1
2 〈Φ

−
ϕϕ′ |ζ̃+

y ⊗G(ζ̃+
y )|Φ−

ϕϕ′〉− 1
2 〈Φ

−
ϕϕ′ |ζ̃−y ⊗G(ζ̃−y )|Φ−

ϕϕ′〉.

Since G is a CPSO, the left-hand side of this equality is non-negative and in the
right-hand side both terms are non-positive. Therefore for every orthogonal n-qubit
pure states |ϕ〉 and |ϕ′〉, we get:

〈Φ−
ϕϕ′ |ζ̃+

y ⊗G(ζ̃y
+
)|Φ−

ϕϕ′〉 = 〈Φ−
ϕϕ′ |ζ̃−y ⊗G(ζ̃y

−
)|Φ−

ϕϕ′〉 = 0.

A straightforward calculation then shows that G(ζ̃y
±

) = ζ̃±y . Therefore G acts as the
identity on density matrices ζ̃±z , ζ̃+

x and ζ̃+
y , which generate all density matrices, and

thus G(ρ̃) = ρ̃.
We also use the property that for CPSOs unitarity and invertibility are equivalent

(see e.g. [29, Ch. 3, Sec. 8]).
Lemma 3.3. Let G be a CPSO for n qubits. If there exists a CPSO H for n

qubits such that H ◦G is the identity mapping, then G is a unitary superoperator.
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Using the following lemma, we can give a version of Lemma 3.2 in the approximate
context.

Lemma 3.4. Let G be a superoperator for one qubit. Let 0 ≤ ε ≤ 1 be such that
‖G(ζ±x )− ζ±x ‖1, ‖G(ζ±y )− ζ±y ‖1, ‖G(ζ±z )− ζ±z ‖1 ≤ ε. Then ‖G− I2‖∞ ≤

√
10ε.

Proof. Every 2× 2 complex matrix V can be decomposed as

V =
(
a b
c d

)
= aζ+

z + dζ−z +
b+ c

2
(ζ+
x − 1

2
(ζ+
z + ζ−z )) + i

b− c

2
(ζ+
y − 1

2
(ζ+
z + ζ−z )).

All norms ‖ζ±· ‖1 are 1, therefore the hypotheses on G imply

‖G(V )− V ‖1 ≤ ε(|a|+ 2|b|+ 2|c|+ |d|).

From Fact 2.4 we also have that
√

Tr(V †V ) ≤ ‖V ‖1. Moreover Tr(V †V ) = |a|2 +
|b|2 + |c|2 + |d|2. Then we conclude the proof by the Cauchy-Schwarz inequality
|a|+ 2|b|+ 2|c|+ |d| ≤

√
10

√
|a|2 + |b|2 + |c|2 + |d|2.

Lemma 3.5. Let u and v be two orthonormal vectors in R3, and 0 ≤ ε ≤
1 a constant. If G is a CPSO for one qubit such that ‖G(±u) − ±u‖ ≤ ε and
‖G(±v)−±v‖ ≤ ε, then ‖G− I2‖∞ ≤ 96ε.

Proof. We can suppose w.l.o.g. that u = ζ+
x and v = ζ+

z . Let ρ = G(ζ+
y ), where

ρ = (x, y, z). From Lemma 3.1 it follows that ‖G(ζ+
z )− ρ‖1 ≤ ‖ζ+

z − ζ+
y ‖1 =

√
2. By

the assumption of this lemma we have that ‖G(ζ+
z )−ζ+

z ‖1 ≤ ε, and hence ‖ζ+
z −ρ‖1 ≤√

2 + ε. The same relation holds also for the other three fixed points ζ−z , ζ+
x , and ζ−x .

As a result, the three coordinates of ρ have to obey the four inequalities

x2 + y2 + (z ± 1)2 ≤ (
√

2 + ε)2 ≤ 2 + 4ε
and (x± 1)2 + y2 + z2 ≤ (

√
2 + ε)2 ≤ 2 + 4ε.

(3.1)

A second set of restrictions on (x, y, z) comes from the complete positivity of G.
Again we use the decomposition of the EPR state Ψ+, to analyze the two-qubit state:

(I2 ⊗G)(Ψ+) = 1
2 (ζ+

x ⊗G(ζ+
x ) + ζ−x ⊗G(ζ−x ))

+ 1
2 (ζ+

z ⊗G(ζ+
z ) + ζ−z ⊗G(ζ−z ))

− 1
2 (ζ+

y ⊗G(ζ+
y ) + ζ−y ⊗G(ζ−y )).

Using the hypothesis, the projection of this state onto the anti-symmetrical entangled
qubit pair |Φ−〉 = (|01〉 − |10〉)/

√
2 yields

〈Φ−|(I2 ⊗G)(Ψ+)|Φ−〉 ≤ 2ε− 1
2 〈Φ

−|ζ+
y ⊗G(ζ+

y )|Φ−〉 − 1
2 〈Φ

−|ζ−y ⊗G(ζ−y )|Φ−〉.

Since G is a CPSO, as in Lemma 3.2 we get 〈Φ−|ζ+
y ⊗ρ|Φ−〉 ≤ 4ε. A straightforward

calculation shows that this last relation is equivalent with a restriction on the y
coordinate: y ≥ 1− 16ε.

This last inequality implies y2 ≥ 1− 32ε, which combined with the restrictions of
(3.1), leads to the conclusion that (x± 1)2 ≤ 2+4ε− y2− z2 ≤ 1+36ε, and similarly
(z ± 1)2 ≤ 1 + 36ε. The x and z coordinates of ρ satisfy |x|, |z| ≤ 18ε.

These bounds imply

‖G(ζ+
y )− ζ+

y ‖1 =
√
x2 + (y − 1)2 + z2 ≤

√
904ε.

The same result can be proved for ζ−y . Therefore by Lemma 3.4 we can conclude the
proof.
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4. Characterization.

4.1. One-Qubit CPSO Families. In this section, every CPSO will be for one
qubit. First we define the notion of experimental equations, and then we show that
several important CPSO families are characterizable by them.

An experimental equation in one variable is a CPSO equation of the form

Pr0[Gk(|b〉〈b|)] = r, (4.1)

where k is a non-negative integer, b ∈ {0, 1}, and 0 ≤ r ≤ 1. We will call the left-hand
side of the equation the probability term, and the right-hand side the constant term.
The size of this equation is k. A CPSO G will “almost” satisfy the equations if, for
example, it is the result of adding small systematic and random errors (independent
of time) to a CPSO that does satisfy them. For ε ≥ 0, the CPSO G ε-satisfies (4.1)
if |Pr0[Gk(|b〉〈b|)] − r| ≤ ε, and when ε = 0 we will just say that G satisfies (4.1).
Let (E) be a finite set of experimental equations. If G ε-satisfies all equations in (E)
we say that G ε-satisfies (E). If some G satisfies (E) then (E) is satisfiable. The set
{G : G satisfies (E)} will be denoted by F(E). A family F of CPSOs is characterizable
if it is F(E) for some finite set (E) of experimental equations. In this case we say that
(E) characterizes F .

All these definitions generalize naturally for m-tuples of CPSOs for m ≥ 2. In
what follows we will need only the case m = 2. An experimental equation in two
CPSO variables is an equation of the form

Pr0[F k1 ◦Gl1 ◦ · · · ◦ F kt ◦Glt(|b〉〈b|)] = r, (4.2)

where k1, . . . , kt, l1, . . . , lt are non-negative integers, b ∈ {0, 1}, and 0 ≤ r ≤ 1.
We discuss now the existence of finite sets of experimental equations in one

variable that characterize unitary superoperators, that is, the operators Rα,θ,ϕ, for
α ∈ (−π, π], θ ∈ [0, π/2], and ϕ ∈ [0, 2π). First observe that due to the restric-
tions of experimental equations, there are unitary superoperators that they cannot
distinguish.

Fact 4.1. Let α ∈ [0, π], θ ∈ [0, π/2], and ϕ1, ϕ2 ∈ [0, 2π) such that
ϕ1 6= ϕ2. Let (E) be a finite set of experimental equations in m variables. If
(Rα,θ,ϕ1 ,G2, . . . ,Gm) satisfies (E) then there exist G′

2, . . . ,G
′
m and G′′

2 , . . . ,G
′′
m such

that (R−α,θ,ϕ1 ,G
′
2, . . . ,G

′
m) and (Rα,θ,ϕ2 ,G

′′
2 , . . . ,G

′′
m) both satisfy (E).

In the Bloch Ball formalism this corresponds to the following degrees of freedom
in the choice of the orthonormal basis of R3. Since experimental equations contain
exactly the states |0〉〈0| and |1〉〈1| there is no freedom in the choice of the z-axis, but
there is complete freedom in the choice of the x and y axes. The indistinguishability
of the latitude ϕ corresponds to the freedom of choosing the oriented x-axis, and
the indistinguishability of the sign of α corresponds to the freedom of choosing the
orientation of the y-axis.

We introduce the following notations. Let Rα,θ denote the superoperator family
{R±α,θ,ϕ : ϕ ∈ [0, 2π)}. For ϕ ∈ [0, 2π), let the NOTϕ transformation be defined
by NOTϕ|0〉 = eiϕ|1〉 and NOTϕ(eiϕ|1〉) = |0〉, and recall that the Hadamard trans-
formation Hϕ obeys Hϕ|0〉 = (|0〉 + eiϕ|1〉)/

√
2 and Hϕ(eiϕ|1〉) = (|0〉 − eiϕ|1〉)/

√
2.

Observe that Hϕ = Rπ,π/4,ϕ and NOTϕ = Rπ,π/2,ϕ, for ϕ ∈ [0, 2π). Finally let
H = {Hϕ : ϕ ∈ [0, 2π)}, and N = {NOTϕ : ϕ ∈ [0, 2π)}.

Since the sign of α cannot be determined, we will assume that α is in the interval
[0, π]. We will also consider only unitary superoperators such that α/π is rational.
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This is a reasonable choice since these superoperators form a dense subset of all
unitary superoperators. For such a unitary superoperator, let nα be the smallest
positive integer n for which nα = 0 mod 2π. Then either nα = 1, or nα ≥ 2 and
there exists t ≥ 1 which is coprime with nα such that α = (t/nα)2π. Observe that
the case nα = 1 corresponds to the identity superoperator.

Our first theorem shows that almost all families Rα,θ are characterizable by some
finite set of experimental equations.

Theorem 4.2. Let (α, θ) ∈ (0, π]× (0, π/2]\{(π, π/2)} be such that α/π is ratio-
nal. Let zk(α, θ) = cos2 θ+ sin2 θ cos(kα). Then the following experimental equations
characterize Rα,θ:

Pr0[Gnα(|1〉〈1|)] = 0, (4.3)
Pr0[Gk(|0〉〈0|)] = (1 + zk(α, θ))/2, k ∈ {1, 2, . . . , nα}. (4.4)

In particular, since H = Rπ,π/4, the family H is characterized by :

Pr0[G2(|1〉〈1|)] = 0, Pr0[G2(|0〉〈0|)] = 1,

Pr0[G(|0〉〈0|)] = 1/2.

Proof. First observe that every CPSO in Rα,θ satisfies the experimental equations
of the theorem since the z-coordinate of Rk

α,θ,ϕ(|0〉〈0|) is zk(α, θ) for every ϕ ∈ [0, 2π).
Let G be a CPSO that satisfies these equations. We will prove that G is a unitary
superoperator. Then, Fact 4.3 implies that G ∈ Rα,θ.

Since z1(α, θ) 6= ±1, G(|0〉〈0|) 6∈ {|0〉〈0|, |1〉〈1|}. Observing that Gnα(|0〉〈0|) =
|0〉〈0|, Lemma 3.1(b) implies that G(|0〉〈0|) is a pure state. Thus |0〉〈0|, |1〉〈1|, and
G(|0〉〈0|) are distinct pure states, and since Gnα acts as the identity on them, by
Lemma 3.2 it is the identity mapping. Hence by Lemma 3.3 G is a unitary superop-
erator.

Fact 4.3. Let α ∈ (0, π], θ ∈ (0, π/2], α′ ∈ (−π, π], θ′ ∈ (0, π/2] be such that
α/π is rational. If zk(α, θ) = zk(α′, θ′), for k ∈ {1, 2, . . . , nα}, then |α′| = α and
θ′ = θ.

The remaining families Rα,θ for which α/π is rational are {R−α,Rα}, for α ∈
[0, π], and N . Let us recall that M is the CPSO that represents the Von Neumann
measurement in the computational basis. Since M satisfies exactly the same equations
as R±α, and NOT0 ◦ M satisfies exactly the same equations as NOTϕ, for any
ϕ ∈ [0, 2π), these families are not characterizable by experimental equations in one
variable. Nevertheless it turns out that together with the family H they become
characterizable. This is stated in the following theorem.

Theorem 4.4. The family {(Hϕ,NOTϕ) : ϕ ∈ [0, 2π)} ⊂ H ×N is character-
ized by the experimental equations in two variables (F ,G):

Pr0[F (|0〉〈0|)] = 1/2, Pr0[F 2(|0〉〈0|)] = 1, Pr0[F 2(|1〉〈1|)] = 0,
Pr0[G(|0〉〈0|)] = 0, Pr0[G(|1〉〈1|)] = 1,
Pr0[F ◦G2 ◦ F (|0〉〈0|)] = 1, Pr0[F ◦G ◦ F (|0〉〈0|)] = 1.

If α/π is rational, then the family H × {R±α} is characterized by the experimental
equations in two variables (F ,G):

Pr0[F (|0〉〈0|)] = 1/2, Pr0[F 2(|0〉〈0|)] = 1, Pr0[F 2(|1〉〈1|)] = 0,
Pr0[G(|0〉〈0|)] = 1, Pr0[G(|1〉〈1|)] = 0,
Pr0[F ◦Gnα ◦ F (|0〉〈0|)] = 1, Pr0[F ◦G ◦ F (|0〉〈0|)] = (1 + cosα)/2.
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In particular, since I2 = R0, the identity transformation on 1-qubit is characterizable,
namely the the family H× {I2} is characterized by :

Pr0[F (|0〉〈0|)] = 1/2, Pr0[F 2(|0〉〈0|)] = 1, Pr0[F 2(|1〉〈1|)] = 0,
Pr0[G(|0〉〈0|)] = 1, Pr0[G(|1〉〈1|)] = 0,
Pr0[F ◦G ◦ F (|0〉〈0|)] = 1.

Proof. Let us consider the first characterization. Observe that every couple (F ,G)
of {(Hϕ,NOTϕ) : ϕ ∈ [0, 2π)} satisfies the system of experimental equations.

Let now F and G be two CPSOs that satisfy the system. The CPSO F satisfies
also the system in (4.3) for α = π and θ = π/4, thus from Theorem 4.2 there exists
0 ≤ ϕ < 2π such that F = Hϕ. By hypothesis, G2 acts as the identity on |0〉〈0|
and |1〉〈1|. Moreover Hϕ ◦G2 ◦Hϕ(|0〉〈0|) = |0〉〈0|. Let us apply Hϕ on both sides
of the previous equality. Since H2

ϕ = I2, the CPSO G2 acts also as the identity
on Hϕ(|0〉〈0|). Therefore using Lemma 3.2 we get that G2 is the identity, then by
Lemma 3.3 G is a unitary CPSO. Since |0〉〈0| and |1〉〈1| are exchanged together
under the action of G, the rotation axis of G is necessarily in the plane with equation
z = 0. Moreover this axis goes through Hϕ(|0〉〈0|) because from the last experimental
equation G acts as the identity on Hϕ(|0〉〈0|). We conclude that the CPSO G is
NOTϕ.

We now consider the second characterization. The system is clearly satisfied by
every pair (F ,G) in H× {R±α}.

Let now F and G be two CPSOs that satisfy the system of experimental equa-
tions. Like in the previous characterization, there exists a real 0 ≤ ϕ < 2π such that
F = Hϕ, and Gnα is the identity. Therefore G is a unitary CPSO. Since G acts
as the identity on |0〉〈0| and |1〉〈1|, the rotation axis of G is the z-axis. The last
experimental equation implies that the angle α′ ∈ (−π, π] of the rotation G satisfies
cosα′ = cosα, that is α′ = ±α.

4.2. Characterization of c-NOT gates. In this section we will extend our
theory of characterization of CPSO families for several qubits. In particular, we will
show that the family of c-NOT gates together with the family H is characterizable.
First we need some definitions.

For every ϕ ∈ [0, 2π), we define c-NOTϕ as the only unitary transformation
over C4 satisfying c-NOTϕ(|0〉|ψ〉) = |0〉|ψ〉 and c-NOTϕ|1〉|ψ〉 = |1〉NOTϕ|ψ〉, for all
|ψ〉 ∈ C2.

We extend the definition of the experimental equation for CPSOs given in (4.2)
for n qubits. When variables denote CPSOs for n qubits, it is an equation of the form

Prv[F k1 ◦Gl1 ◦ · · · ◦ F kt ◦Glt(|w〉〈w|)] = r, (4.5)

where in addition to the notation of (4.2) v, w ∈ {0, 1}n, and Prv is the probability of
measuring |v〉〈v|. When variables denote CPSOs for less than n qubits, we also allow
both the tensor product of two CPSO variables and the tensor product of a CPSO
variable with the identity. We now state the characterization.

Theorem 4.5. The family {(Hϕ, c-NOTϕ) : ϕ ∈ [0, 2π)} is characterized by
14



the experimental equations in two variables (F ,G):

Pr0[F (|0〉〈0|)] = 1/2, Pr0[F 2(|0〉〈0|)] = 1, Pr0[F 2(|1〉〈1|)] = 0,
Pr00[G(|00〉〈00|)] = 1, Pr01[G(|01〉〈01|)] = 1,
Pr11[G(|10〉〈10|)] = 1, Pr10[G(|11〉〈11|)] = 1,
Pr00[(I2 ⊗ F ) ◦G ◦ (I2 ⊗ F )(|00〉〈00|)] = 1,
Pr10[(I2 ⊗ F ) ◦G ◦ (I2 ⊗ F )(|10〉〈10|)] = 1,
Pr00[(F ⊗ I2) ◦G2 ◦ (F ⊗ I2)(|00〉〈00|)] = 1,
Pr01[(F ⊗ I2) ◦G2 ◦ (F ⊗ I2)(|01〉〈01|)] = 1,
Pr00[(F ⊗ F ) ◦G ◦ (F ⊗ F )(|00〉〈00|)] = 1.

Proof. First observe that every pair (F ,G) in {(Hϕ, c-NOTϕ) : ϕ ∈ [0, 2π)}
satisfies the experimental equations of the theorem.

Let F and G satisfy these equations. By Theorem 4.2, with α = π and
θ = π/4, the first three equations imply that F = Hϕ, for some ϕ ∈ [0, 2π). Let
ρ = Hϕ(|0〉〈0|). The remaining equations imply that G2 acts as the identity on
{|0〉〈0|, |1〉〈1|, ρ}⊗2

. Then Lemma 3.2 implies that G2 = I4, and it follows from
Lemma 3.3 that G is a unitary CPSO.

We now show that indeed G = c-NOTϕ. To simplify we will suppose that ϕ = 0
since one can replace |1〉 by |1′〉 = eiϕ|1〉. Let G ∈ U(4) be a unitary transformation
such that G is the corresponding CPSO. Then since G acts as the identity on |00〉〈00|,
there exists a real 0 ≤ γ < 2π such that G|00〉 = eiγ |00〉. Since G is also the
corresponding CPSO of the unitary transformation e−iγG, we can suppose that γ =
0 without loss of generality. By hypothesis G acts as the identity on the density
matrices |01〉〈01| and |0〉〈0| ⊗ ρ. Therefore the linearity of G necessarily implies that
G|01〉 = |01〉.

Using a similar argument, since G acts as c-NOT0 on the density matri-
ces |10〉〈10|, |11〉〈11|, and |1〉〈1| ⊗ ρ, there exists a real 0 ≤ γ′ < 2π such that
G|10〉 = eiγ

′ |11〉 et G|11〉 = eiγ
′ |10〉.

Then the last experimental equation, which states that G acts as the identity on
ρ⊗ ρ, implies

G(|00〉+ |01〉+ |10〉+ |11〉) = eiγ
′′
(|00〉+ |01〉+ |10〉+ |11〉),

for some 0 ≤ γ′′ < 2π. We now conclude the proof by observing that the linearity of
G implies γ′ = 0, γ′′ = 0, and therefore G = c-NOT0.

5. Robustness. In this section we introduce the notion of robustness for exper-
imental equations which will be the crucial ingredient for proving self-testability. For
simplicity we will deal only with the case of experimental equations for one qubit and
in one variable. From now on (E) will always denote a set of such equations. Similar
results can be obtained for several qubits and several variables.

Definition 5.1. Let ε, δ ≥ 0, and let (E) be a finite satisfiable set of experimental
equations. We say that (E) is (ε, δ)-robust if whenever a CPSO G ε-satisfies (E), we
have dist∞(G,F(E)) ≤ δ.

When a CPSO family is characterized by a finite set of experimental equations
(E), one would like to prove that (E) is robust. The next theorem shows that this is
always the case.

Theorem 5.2. Let (E) be a finite satisfiable set of experimental equations. Then
there exists an integer k ≥ 1 and a real C > 0 such that for all ε ≥ 0, (E) is
(ε, Cε1/k)-robust.
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The proof uses the structure of semi-algebraic sets. Therefore we introduce few
notions of algebraic geometry over reals for which the reader can refer for example
to [11]. A (real) semi-algebraic set is a subset of Rm such that X = {x ∈ Rm : Q(x)},
where Q a finite Boolean combination of expressions of type P (x) > 0, P (x) <
0, or P (x) = 0, for any real polynomial P . Finite unions, finite intersections and
complements of such sets remain semi-algebraic sets. One of the main results on
these sets is that their projections also remain semi-algebraic sets. This is Tarski-
Seidenberg’s theorem (see e.g. [11, Theorem 2.3.4]). A consequence of that theorem
is that we can also use quantifiers ∃y ∈ Y and ∀y ∈ Y , where Y is a semi-algebraic
set, for defining semi-algebraic sets.

Let X ⊆ Rm. A function f : X → Rm′
is semi-algebraic if its graph representa-

tion is a semi-algebraic set. The composition of two semi-algebraic functions is also
semi-algebraic. Tarski-Seidenberg’s theorem implies that every real function defined
overX ⊆ Rm by x 7→ inf{f(x, y) : (x, y) ∈ X ′} (resp. x 7→ sup{f(x, y) : (x, y) ∈ X ′}),
whereX ′ ⊆ Rm′

and f : X ′ → R are semi-algebraic, is also semi-algebraic (see e.g. [20,
Cor. A.2.4]). In particular, the function that maps an element toward its distance to
a compact semi-algebraic set is a continuous semi-algebraic function. Another fun-
damental consequence of Tarski-Seidenberg’s theorem for continuous semi-algebraic
functions is Lojasiewicz’s inequality. For a proof of the following fact, see for exam-
ple [11, Prop. 2.3.11].

Fact 5.3 (Lojasiewicz’s inequality). Let X ⊆ Rm be a compact semi-algebraic
set. Let f, g : X → R be continuous semi-algebraic functions. Assume that for all
x ∈ X, if f(x) = 0 then g(x) = 0. Then there exists an integer k ≥ 1 and a real
C > 0 such that, for all x ∈ X, |g(x)|k ≤ C|f(x)|.

We can now prove Theorem 5.2, that is the generic robustness for experimental
equations.

Proof. In the proof, C is identified with R2. Then the set K of CPSOs for one
qubit is a real compact semi-algebraic set. Indeed we prove that for every n, the
set Kn of all CPSOs for n qubits is a real compact semi-algebraic set using one of
the Kraus representations for CPSOs. For that, let Tr2 be the partial trace operator.
Namely Tr2 is the unique linear map CN2 ⊗CN2

, where N = 2n, such that for every
i, j = 1, . . . , N2 and every V ∈ CN2

,

Tr2(V ⊗ |i〉〈j|) =

{
V if i = j,

0 otherwise.

Then the set Kn satisfies the following (see e.g. [29, Ch. 3, Sec 3]):

Kn = {G : ∃A ∈ U(N2), ∀V ∈ CN×N , G(V ) = Tr2(A(V ⊗ IN )A†)}.

Since U(N2) is a compact semi-algebraic set, Kn is also a compact semi-algebraic set.
Suppose now that in (E) there are d equations. Let f : K → R be the function

that maps the CPSO G to the maximum of the magnitudes of the difference between
the probability term and the constant term of the ith equation in (E), for i = 1, . . . , d.
By definition of f , we get f−1(0) = F(E). Moreover, f is a continuous semi-algebraic
function, since it is the maximum of the magnitudes of polynomial functions in the
(real) coefficients of G.

Let g : K → R be defined in G by g(G) = dist∞(G,F(E)). Since K is a compact
semi-algebraic set, g is a continuous semi-algebraic function. Moreover, for all G ∈ K,
we have f(G) = 0 if and only if g(G) = 0. Then Fact 5.3 concludes the proof.
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In some cases we can explicitly compute the constants C and k of Theorem 5.2.
We will illustrate these techniques with the equations in Theorem 4.2 for the case
α = π and θ = π/4. Let us recall that these equations characterize the set H.

Theorem 5.4. For every 0 ≤ ε ≤ 1, the following equations are (ε, 1824
√
ε)-

robust:

Pr0[G(|0〉〈0|)] = 1/2, Pr0[G2(|0〉〈0|)] = 1,
Pr0[G2(|1〉〈1|)] = 0.

Proof. Let G be a CPSO which ε-satisfies the equations. First we will show there
is a point ρ ∈ S with z-coordinate 0 whose distance from G(|0〉〈0|) is at most 10

√
ε.

The last two equations imply that ‖G2(|b〉〈b|)−|b〉〈b|‖1 ≤ 3
√
ε, for b = 0, 1. Therefore

‖G2(|0〉〈0|) − G2(|1〉〈1|)‖1 ≥ 2 − 6
√
ε, and by Lemma 3.1(a) we have ‖G(|0〉〈0|) −

G(|1〉〈1|)‖1 ≥ 2− 6
√
ε. Thus ‖G(|b〉〈b|)‖ ≥ 1− 6

√
ε, for b = 0, 1. Let τ = ρ(1/2, α),

where G(|0〉〈0|) = ρ(p, α). The first equation implies that ‖τ − G(|0〉〈0|)‖ ≤ 2ε.
Therefore for ρ = τ/‖τ‖ we get ‖G(|0〉〈0|)− ρ‖1 ≤ 10

√
ε.

The point ρ on S uniquely defines ϕ ∈ [0, 2π) such that Hϕ(|0〉〈0|) = ρ. One can
verify that H−1

ϕ ◦G acts as the identity with error at most 19
√
ε on the four density

matrices |0〉〈0|, |1〉〈1|, Hϕ(|0〉〈0|), and Hϕ(|1〉〈1|). From Lemma 3.5 we conclude
that ‖G−Hϕ‖∞ ≤ 1824

√
ε.

6. Quantum Self-Testers. In this final section we define formally our testers
and establish the relationship between robust equations and testability. Again, we
will do it here only for the case of one qubit and one variable. Let G be a CPSO.
The experimental oracle O[G] for G is a probabilistic procedure. It takes inputs from
{0, 1} × N and generates outcomes from the set {0, 1} such that for every k ∈ N,

Pr[O[G](b, k) = 0] = Pr0[Gk(|b〉〈b|)].

An oracle program T with an experimental oracle O[G] is a program denoted by
TO[G] which can ask queries from the experimental oracle in the following sense:
when it presents a query (b, k) to the oracle, in one computational step it receives the
probabilistic outcome of O[G] on it.

Definition 6.1. Let F be a family of CPSOs, and let 0 ≤ δ1 ≤ δ2 < 1. A
(δ1, δ2)-tester for F is a probabilistic oracle program T such that for every CPSO G,

• if dist∞(G,F) ≤ δ1 then Pr[TO[G] says PASS] ≥ 2/3,
• if dist∞(G,F) > δ2 then Pr[TO[G] says FAIL] ≥ 2/3,

where the probability is taken over the probability distribution of the outcomes of the
experimental oracle and the coin tosses of the program.

Since norms are equivalent in fixed dimension, the testability of families of CPSOs
acting on a constant number of qubits does not change for any norm. This is stated
in the following fact.

Fact 6.2. Assume that T is a (δ1, δ2)-tester for a family F of CPSOs for k-qubits.
Then T is a (δ1/α, δ2/β)-tester for F when dist∞ is replaced by any distance d such
that βd(G,G′) ≤ dist∞(G,G′) ≤ αd(G,G′), for all CPSOs G,G′ for k-qubits, and
for 0 < β ≤ α.

Theorem 6.3. Let ε, δ > 0, and let (E) be a satisfiable set of d experimental
equations such that the size of every equation is at most k. If (E) is (ε, δ)-robust then
there exists an (ε/(3k), δ)-tester for F(E) which makes O(d ln(d)/ε2) queries.

Proof. We will describe a probabilistic oracle program T . Let G be a CPSO.
We can suppose that for every equation in (E), T has a rational number r̃ such that
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|r̃ − r| ≤ ε/6, where r is the constant term of the equation. By sampling the oracle
O[G], for every equation in (E), T obtains a value p̃ such that |p̃ − p| ≤ ε/6 with
probability at least 1 − 1/(3d), where p is the probability term of the equation. A
standard Chernoff bound argument shows that this is feasible with O(ln(d)/ε2) queries
for each equation. If for every equation |p̃ − r̃| ≤ 2ε/3, then T says PASS, otherwise
T says FAIL. Using the robustness of (E) and Fact 6.4, one can verify that T is a
(ε/(3k), δ)-tester for F(E).

Fact 6.4. Let (E) be a finite satisfiable set of experimental equations such that
the size of every equation is at most k, and let G be a CPSO. For every ε ≥ 0, if
dist∞(G,F(E)) ≤ ε then G (kε)-satisfies (E).

Our main result is the consequence of Theorems 4.2, 4.4, 4.5, 5.2, 5.4, 6.3, and
the many-qubit generalizations of them.

Theorem 6.5. Let F be one of the following families :
• Rα,θ for (α, θ) ∈ (0, π]× (0, π/2]\{(π, π/2)} where α/π is rational,
• {(Hϕ,NOTϕ) : ϕ ∈ [0, 2π)},
• H × {R±α} for α/π rational,
• {(Hϕ, c-NOTϕ) : ϕ ∈ [0, 2π)},
• {(Hϕ,Rsπ/4, c-NOTϕ) : ϕ ∈ [0, 2π), s = ±1}.

Then there exists an integer k ≥ 1 and a real C > 0 such that, for all ε > 0, F has
an (ε, Cε1/k)-tester which makes O(1/ε2) queries. Moreover, for every 0 < ε ≤ 1, H
has an (ε/6, 4579

√
ε)-tester which makes O(1/ε2) queries.

Note that each triplet of the last family forms a universal and fault-tolerant set
of quantum gates[8].
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