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Abstract
We consider unidirectional data streams with restricted access, such as read-only and write-only
streams. For read-write streams, we also introduce a new complexity measure called expansion,
the ratio between the space used on the stream and the input size.

We give tight bounds for the complexity of reversing a stream of length n in several of the
possible models. In the read-only and write-only model, we show that p-pass algorithms need
memory space Θ(n/p). But if either the output stream or the input stream is read-write, then
the complexity falls to Θ(n/p2). It becomes polylog(n) if p = O(logn) and both streams are
read-write.

We also study the complexity of sorting a stream and give two algorithms with small expan-
sion. Our main sorting algorithm is randomized and has O(1) expansion, O(logn) passes and
O(logn) memory.
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1 Introduction

Background and Motivations. Streaming algorithms have been studied for estimating
statistics, checking properties and computing functions (more often with sublinear outputs)
on massive inputs for several years. However, less is known on computing functions that
also have a massive output, and therefore require two data streams, one for the input and
one for the output. The notion of reversal complexity on a multi-tape machine, which can
be related to streaming complexity with multiple streams, was first introduced in 1970 by
Kameda and Vollmar [12] for decision problems. The model however was not explored again
until 1991 when Chen and Yap [5] considered the computable functions in this model, and
gave an algorithm for sorting using two streams with O(logn) passes and (internal) memory
space of size O(logn). This was a significant improvement over the lower bound for the case
of a single stream which requires Ω(n/s) passes, where s is the size of the memory space, as
proved by Munro and Paterson [15].
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Recently the interest for complexity in models with multiple streams has been renewed.
Indeed, streams are now considered as a model of external storage allowing multiple sequential
passes on them. Hernich and Schweikardt [10] gave reductions from classical complexity
classes to the classes of problems decidable with O(1) streams. Grohe, Koch, Hernich
and Scwheikardt [9, 8] also gave several tight lower bounds for multi-stream algorithms
using o(logn) passes. Gagie [7] showed that two streams achieve perfect compression in
polylogarithmic memory space and a polylogarithmic number of passes. Beame, Huynh,
Jayram and Rudra [3, 2] also proved several lower bounds on approximating frequency
moments with multiple streams and o(logn) passes. However, there is a distinct lack of
lower bounds for multi-stream algorithms with Ω(logn) passes. Indeed, most classical tools
(such as reduction to communication complexity) for proving lower bounds on streaming
algorithms fail for multiple streams. One exception is Ruhl’s [17] W-Stream and StreamSort
models. In W-Stream each (unidirectional) stream is alternatively read-only and write-only,
and passes are synchronized; while this model seems similar to ours, it is actually much
less powerful and most lower bounds match the naive linear algorithms. StreamSort is the
W-Stream model augmented with a sorting oracle and yields more interesting results, but of
course trivializes the problem we study in this paper. Indeed, most classical tools (such as
reduction to communication complexity) for proving lower bounds on streaming algorithms
fail for multiple streams.

We therefore take an opposite approach and restrict the number of streams to two, the
input stream and the output stream. This leads to our notion of input/output streaming
algorithms. For many scenarios, this model is in fact more realistic since, as an external
storage, it comes at a cost to use several streams simultaneously. In fact, the idea of using
only input and output and constrained secondary storage can also be found in other models,
such as [1]. Additionally, we only allow passes in one direction on both streams. This may
looks too restrictive since bidirectional passes provide exponential speedup in several decision
problems, as exhibited by several works [14, 11, 4, 13, 6]. However, changing the direction
of processing a stream can have a higher cost: most hard drives spin in only one direction
and reading them in the other is not as practical. We also consider three types of stream
accesses: read-only (for the input stream), write-only (for the output stream) and read-write
(for any or both streams). We emphasise that by write-only stream we mean that once the
algorithm has written in a cell, it can never overwrite it.

For read-write streams, we introduce the new complexity measure of expansion of a
streaming algorithm, i.e. the ratio between the maximal size of the stream during the
computation and the size of the input (this concept does not make sense for read-only and
write-only stream, which cannot be used for intermediate computations). While space on
external storage is by definition not as constrained as memory space, in the case of massive
inputs requiring large hard drives, expanding them even by a factor O(logn) is not reasonable.
To the best of our knowledge, while it has sometimes been implicitely limited to 1 or O(1),
this measure of complexity has never been studied before for potential trade-offs with space
or time.

We then study two problems, Reverse and Sort, in the model of input/output streaming
algorithms. Both problems consists in copying the content of the input stream to the output
stream, in reverse order for the first problem, and in sorted order for the second one. Because
of its importance in real applications, Sort has been extensively studied in many contexts.
However, there is still a lot to say about this problem in face of new models of computation
that massive data arise. Reverse can be seen as the simplest instance of Sort. It is natural to
study its complexity since we forbid any reverse pass on streams. Moreover, any algorithm
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for Reverse gives a way to implement each of the efficient bidirectional (and single stream)
algorithms of [14, 13, 6] in our model, thus giving another example of a speed-up with
multiple streams.

Our results. In Section 3, we give tight bounds for the complexity of Reverse. We
provide deterministic algorithms that are optimal even against randomized ones. Using
communication complexity to prove lower bounds with multiple streams is inherently difficult
as soon as there are multiple passes on both. Indeed, it is possible to copy one stream on
the other one, and since heads move separately, the algorithm can access at any part of
the second stream while processing the first one. In the read-only/write-only model, we
instead skip communication complexity and prove directly with information theory that a
p-pass algorithm needs space Ω(n/p) (Theorem 3). In the read-only/read-write model, we
similarly show that any p-pass algorithm needs space Ω(n/p2) (Theorem 10). We provide an
algorithm achieving that bound by copying large (unreversed) blocks from the input, and then
placing correctly one element from each of the blocks during each pass (Theorem 8). Similar
results hold in the read-write/write-only model (Theorems 9 and 12). Last, we consider
the read-write/read-write model and give a O(logn)-pass algorithm with polylogarithmic
memory space (Theorem 13). All our algorithms presented make extensive use of the ability
to only write part of a stream during a pass. In the more restrictive W-Stream model where
this is not possible, as shown by [17], a p-pass algorithm requires memory Ω(n/p).

In Section 4, we consider problem Sort. Even with two streams only, it appears to have
a tight bound, as the algorithm by Chen and Yap [5] matches the lower bound proved by
Grohe, Hernich and Scwheikardt [8]. However, Chen and Yap’s algorithm was not designed
with expansion in mind: it works by replicating the input n times, thus using O(n2) cells on
the input and output streams. In this context, linear expansion of the input is not reasonable.
We therefore give two algorithms with two streams that improve on it. The first one is
deterministic. Similarly to the former algorithm, it is based on Merge Sort, but has expansion
O(logn) instead of Ω(n). It also uses O(logn) passes and space O(logn) (Theorem 14). The
second one is randomized and based on Quick Sort. It has expansion O(1), O(logn) passes
and memory O(logn) (Theorem 15).

2 Preliminaries

In streaming algorithms (see [16] for an introduction), a pass on a string w ∈ Σn, for some
finite alphabet Σ, means that w is given as a stream w[1], w[2], . . . , w[n], which arrives
sequentially, i.e., letter by letter in this order. Depending on the model, w may or may
not be modified. For simplicity, we always assume |Σ| = O(n), except when explicitly
stated. Otherwise, one should transpose our algorithms such that the letters are also read
sequentially, say bit by bit. We now fix in the rest of the paper such a finite alphabet Σ
equipped with a total order.

We consider input/output streaming algorithms with two data streams X and Y . Stream
X initially contains the input, and stream Y is initially empty and will contain the output
at the end of the execution of the algorithm. We denote by X[i] the i-th cell of stream X,
and similarly for Y . The size of a stream is the number of its cells containing some data.
Our algorithms have also access to a random access memory M , usually of sublinear size in
the input size.

We then parameterize such algorithms by the operations allowed on the input stream X

(read-only or read-write), on the output stream Y (write-only or read-write), the number of
passes, the bit-size of the memoryM and the expansion of the streams with regard to the size



4 Unidirectional Input/Output Streaming Complexity of Reversal and Sorting

of the input. Whenever we mention the memory of an algorithm, we mean a random-access
memory.

I Definition 1 (Input/Output streaming algorithm). Let I be either RO or RW, and let O be
either WO or RW. Then a p(n)-pass I/O streaming algorithm with space s(n) is an algorithm
that, given w ∈ Σn as a stream X, produces its output on an initially empty stream Y and
such that:

It performs p(n) sequential passes in total on X and Y ;
It maintains a memory M of size at most s(n) bits while processing X,Y ;
If I is RO, X cannot be modified;
If O is WO, Y cannot be read and each cell of Y can be written only once.

Moreover, the algorithm has expansion λ(n) if streams X,Y have length (in number of cells)
at most λ(n)× n during its execution, for all input w ∈ Σn.

Observe that we do not mention any running time in our definition. Indeed, all our lower
bounds will be stated independently of it. Moreover, all our algorithms process each letter
from each stream in polylogarithmic time. They also have also polylogarithmic preprocessing
and postprocessing times.

A usual way to get an algorithm with expansion > 1 consists in annotating streams with
a larger alphabet Σ′, while keeping (artificially) the same number of annotated cells. In that
case, one can simulate one annotated cell using (log |Σ′|)/log |Σ| non-annotated cells.

For simplicity, we assume further that the input length n is always given to the algorithm
in advance. Nonetheless, all our algorithms can be adapted to the case in which n is unknown
until the end of a pass. Moreover, this assumption only makes our lower bounds stronger.

We will use the two usual notions of randomized computing.
Monte Carlo: An algorithm computes a function f on Σn with error ε ≤ 1/3 if for all inputs

w ∈ Σn, it outputs f(x) with probability at least 1− ε.
Las Vegas: An algorithm computes a function f on Σn with failure ε ≤ 1/2 if for all inputs

w ∈ Σn, it outputs f(x) with probability at least 1− ε, otherwise it gives no output.

The two functions we study in this paper in term of streaming complexity are now
formally defined.

I Definition 2 (Reverse and Sort). For w = w[1]w[2] . . . w[n] ∈ Σn, let us define Reverse(w)
as w[n]w[n − 1] . . . w[1]. When Σ has a total order, also define Sort(w) as the sorted
permutation of w.

For simplicity when proving lower bounds, for the proofs of Theorems 3, 10 and 12,
instead of considering algorithms for Reverse writing Reverse(X) on Y with passes from left
to right, we will have them write X on Y with passes from right to left, which is equivalent
with a relabeling of Y . The algorithms presented for upper bounds, however, read better in
the model where we write Reverse(X) on Y using a pass from left tor right.

When we describe a streaming algorithm using pseudo-code, a ‘For’ loop will always
correspond to a single pass on each stream, except when explicitly mentioned otherwise.
Most algorithms will consist of a ‘While’ loop including a constant number of ‘For’ loops, i.e.
passes. Therefore the number of iterations of the ‘While’ loop will give us the number of
passes.

Throughout the paper, we always give randomized lower bounds. While communication
complexity arguments fail in the context of mutliple streams, we use information theory
arguments. They have recently been proved to be a powerful tool for proving lower bounds
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in communication complexity, and therefore for streaming algorithms. Here we not only use
them directly, but also there is no direct interpretation in term of communication complexity.

Let us remind now the notions of entropy H and mutual information I. Let X,Y, Z be
three random variables. Then :

H(X) = −Ex←X log Pr(X = x),

H(X|Y = y) = −Ex←X log Pr(X = x|Y = y),
H(X|Y ) = Ey←Y H(X|Y = y),

I(X : Y |Z) = H(X|Z)−H(X|Y, Z).
The entropy and the mutual information are non negative and satisfy I(X : Y |Z) = I(Y :

X|Z). For 0 ≤ ε ≤ 1, we denote by H(ε) the entropy of the Bernoulli variable that takes
value 1 with probability ε, and 0 with probability 1− ε.

3 Reversal with two streams

3.1 Complexity in the Read-only/Write-only model
When Σ = {0, 1}, the naive algorithm, that copies at each pass s bits of the input in memory
and then to the output in reverse order, requires memory space s = n/p when performing p
passes. When processing each stream for the first time, it is in fact obvious that Y [i] cannot
be written until X[n− i+ 1] has been read. In particular, for p = 2 we have s ≥ n for any
algorithm. With multiple passes on each stream, the proof gets more technical especially
since the point where the streams cross, i.e. where we can write on the second stream what
was read on the first one during the current pass depends on the pass, the input and the
randomness. However the s ≥ O(n/p) bound still applies for all p, when the error probability
of the algorithm is O(1/p).

Observe that a constant error probability can be reduced to O(1/p) using O(log p) parallel
repetitions, leading to an O(log p) factor in the size of the memory space.

I Theorem 3. Let 0 ≤ ε ≤ 1/10. Every p-pass randomized RO/WO algorithm for Reverse
on {0, 1}n with error ε requires space Ω(n/p).

Expansion is not mentionned in this theorem as it does not make sense on streams that
are not read-write: the algorithm either cannot modify the stream if it is read-only, or has
no use for the extra data if it is write-only.

Before proving Theorem 3, we begin with two useful facts.

I Fact 4. Let X be uniformly distributed over {0, 1}n, and let J be some random variable
on {0, 1, . . . , n} that may depend on X. Then :

H(X[1, J ]|J) ≤ E(J) and H(X[1, J ]|X[J + 1, n]) ≥ E(J)−H(J).

Similarly,
H(X[J + 1, n]|J) ≤ n− E(J) and H(X[J + 1, n]|X[1, J ]) ≥ n− E(J)−H(J).

Proof. H(X[1, J ]|J) ≤ E(J) and H(X[J + 1, n]|J) ≤ n− E(J) are direct. The second part
uses the first one as follows:

H(X[1, J ]|X[J + 1, n]) = H(X|J,X[J + 1, n])−H(X[J + 1, n]|J,X[J + 1, n])
= H(X|J)−H(X[J + 1, n]|J)
≥ H(X)−H(J)− n+ E(J) = E(J)−H(J).

J
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I Fact 5 (Data processing inequality). Let X,Y, Z,R be random variables such that R is
independent from X,Y, Z. Then for every function f

H(X|Y,Z) ≤ H(f(X,R)|Y, Z) and I(X : Y |Z) ≥ I(f(X,R) : Y |Z).

Note that the previous property is usually stated with no variable R, then f is defined as a
probabilistic function.

Proof of Theorem 3. In this proof, we use the equivalent model of the algorithm copying
X (and not Reverse(X)) on Y , but processing Y only with passes from right to left. This
means that the two heads start on opposite ends and meet once each pass.

Consider a p-pass randomized RO/WO algorithm for Reverse on {0, 1}n with error ε and
space s ≥ logn. For simplicity, we assume that passes are synchronized : whenever a pass
on one stream ends, the head on the other stream ends its own pass, and then eventually
moves back to its original position. This costs us at most a factor 2 in the number of passes.

Let the input stream X be uniformly distributed in {0, 1}n. For each pass 1 ≤ t ≤ p,
let Zt ∈ {0, 1,⊥}n be the reverse of the data written on the output stream Y : if nothing
is written at pass t and index i, then Zt[i] = ⊥. This model corresponds to writing the
same string on the output stream as on the input stream, but going in different directions,
an makes the notations simpler as we want X[i] = Zt[i]. Note that because the algorithm
cannot overwrite a letter, for each i there is at most one t such that Zt[i] 6= ⊥. Last, let Lt
be the index where the reading head and the writing head meet during pass t. Since passes
are synchronized, Lt is unique (but possibly depends on the input and random choices). For
1 ≤ i ≤ n, 1 ≤ t ≤ p, let M t

i be the state of the memory after the algorithm reads X[i] on
pass t.

For 1 ≤ t ≤ p, since s bounds the size of memory, we have :

s ≥ I(X[1, Lt] : M t
Lt |X[Lt + 1, n])) and s ≥ I(X[Lt + 1, n] : M t+1

n |X[1, Lt])).

Using the definition of mutual information, we get the following inequalities:

s ≥ H(X[1, Lt]|X[Lt + 1, n])−H(X[1, Lt]|M t
Lt , X[Lt + 1, n]),

s ≥ H(X[Lt + 1, n]|X[1, Lt])−H(X[Lt + 1, n]|M t−1
n , X[1, Lt]).

We define the following probabilities : qti(l) = Pr(Zt[i] 6= ⊥|Lt = l), qti = Pr(Zt[i] 6= ⊥),
εti(l) = Pr(Zt[i] 6= ⊥, Zt[i] 6= X[i]|Lt = l) and εti = Pr(Zt[i] 6= ⊥, Zt[i] 6= X[i]). By definition,
they also satisfy εti = El∼Lt(εti(l)) and qti = El∼Lt(qti(l)). Note that by hypothesis1 and
because there is no rewriting,

∑p
t=1 ε

t
i ≤ Pr(∃t, Zt[i] 6= ⊥, Zt[i] 6= X[i]) ≤ ε. Lemmas 6 and 7

give us these inequalities:

2s ≥ n−
n∑
i=1

H(X[i]|Zt[i], Lt)−O(logn),

H(X[i]|Zt[i], Lt) ≤ 1− qti
(
1−H(εti/qti

)
).

Combining them yields :

2s ≥
n∑
i=1

qti
(
1−H

(
(εti/qti)

))
−O(logn).

1 Here we only need the hypothesis that each bit of Y is wrong with probability at most ε, and not the
stronger hypothesis that Y 6= Reverse(X) with probability at most ε.
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Let αi =
∑p
t=1 q

t
i . Then αi = Pr[Y [i] 6= ⊥] satisfies αi ≥ 1 − ε by hypothesis. Now

summing over all passes leads to 2ps ≥
∑n
i=1 αi

∑p
t=1(qti/αi)(1−H(εti/qti))−O(p logn).

The concavity of H gives us
∑p
t=1(qti/αi)H(εti/qti) ≤ H(ε/(1− ε)). This means, replacing

αi and εti by their upper bounds, that 2ps ≥ n(1− ε)(1−H(ε/(1− ε)))−O(p logn). Since
Theorem 3 has ε ≤ 0.1 as an hypothesis, our algorithm verifies ps ≥ Ω(n). J

I Lemma 6. Assuming the hypotheses of Theorem 3, at any given pass t,

2s ≥ n−
n∑
i=1

H(X[i]|Zt[i], L)−O(logn).

Proof. In this proof, we write Z[i] for Zt[i] since there is generally no ambiguity. We similarly
omit the t on other notations.

The data processing inequality (Fact 5) gives us the following inequality :
H(X[1, L]|ML, X[L+ 1, n], L) ≤ H(X[1, L]|Z[1, L], L). We can rewrite this as

H(X[1, L]|ML, X[L+ 1, n], L) ≤ El∼L(H(X[1, l]|Z[1, l], L = l)).

Using the chain rule and removing conditioning, we get

H(X[1, L]|ML, X[L+ 1, n], L) ≤ El∼L(
l∑
i=1

H(X[i]|Z[i], L = l)).

Similarly,

H(X[L+ 1, n]|M t−1
n , X[1, L], L) ≤ El∼L(

l∑
i=1

H(X[i]|Z[i], L = l)).

Using that both ML (where ML = M t
Lt) and M t−1

n are of size at most s bits, we get

2s ≥ I(X[1, L] : M t
Lt |X[L+ 1, n]) + I(X[L+ 1, n] : M t−1

n |X[1, L]).

Then we conclude by combining the above inequalities and using Fact 4 as follows:

2s ≥ E(L)−H(L) + n− E(L)−H(L)
−H(X[1, L]|M t

L, X[L+ 1, n])−H(X[L+ 1, n]|M t−1
n , X[1, L])

≥ n− El∼L

(
l∑
i=1

H(X[i]|Z[i], L = l) +
n∑

i=l+1
H(X[i]|Z[i], L = l)

)
−O(logn)

= n−
n∑
i=1

H(X[i]|Z[i], L)−O(logn).

J

I Lemma 7. Assuming the hypotheses of Theorem 3, for any pass t,
H(X[i]|Zt[i], Lt) ≤ 1− qti(1−H(εti/qti))
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Proof. As above, we omit the t in the proof, as there is no ambiguity.
The statement has some similarities with Fano’s inequality. Due to the specificities of

our context, we have to revisit its proof as follows. First we write

H(X[i]|Z[i], L) ≤ El∼L(H(X[i]|Z[i], L = l))
≤ El∼L(qi(l)H(X[i]|Z[i], L = l, Z[i] 6= ⊥)

+(1− qi(l))H(X[i]|L = l, Z[i] = ⊥)

≤ El∼L
(
qi(l)H

(
εi(l)
qi(l)

)
+ 1− qi(l)

)
= 1− qi + El∼L

(
qi(l)H

(
εi(l)
qi(l)

))
. (1)

By replacing the entropy with its definition, we can see that for any 1 ≥ q ≥ ε > 0, we
have qH

(
ε
q

)
= H(q− ε, ε, 1− q)−H(q), where H(x, y, z) is the entropy of a random variable

R in {0, 1, 2} with Pr(R = 0) = x, Pr(R = 1) = y and Pr(R = 2) = z. Let Ri be such that
Ri = 0 if X[i] = Z[i], Ri = 2 if Z[i] = ⊥ and Ri = 1 otherwise. Note that (Z[i] = ⊥) is a
function of Ri. Therefore:

El∼L
(
qi(l)H

(
εi(l)
qi(l)

))
= El∼L(H(Ri|L = l)−H((Z[i] = ⊥)|L = l))

= H(Ri|L)−H((Z[i] = ⊥)|L)
= H(Ri)−H((Z[i] = ⊥)) + I((Z[i] = ⊥)|L)− I(Ri|L).

By the data processing inequality, I((Z[i] = ⊥) : L) ≤ I(Ri : L), so

El∼L(qi(l)H(εi(l)/qi(l)))) ≤ qiH(εi/qi)).

Combining this with inequality 1 gives us the lemma. J

3.2 Complexity of Read-only/Read-write and Read-Write/Write-Only
In this section, we prove tight bounds in the Read-only/Read-Write and Read-Write/Write-
Only model. These models are more complex than the previous one since an algorithm may
now modify Y [i] or X[i] several times, and use that as additional memory.

Algorithm. As a subroutine we use Algorithm 1, which performs O(
√
n) passes and

uses space O(log |Σ|). It works by copying blocks of size O(
√
n) from the input stream to

the output stream without reversing them (otherwise there would not be enough space in
the memory), but putting them in the correct order pairwise. In addition, during each pass
on the output, it moves one element from each block already copied to the correct place.
Since blocks have as many elements as there are passes left after they are copied, the output
stream is in the correct order at the end of the execution .

I Theorem 8. There is a deterministic algorithm such that, given n and p ≤
√
n, it is a

p-pass RO/RW streaming algorithm for Reverse on Σn with space O(logn+ (n log |Σ|)/p2)
and expansion 1.

Proof. We will prove that Algorithm 1 satisfies the theorem when p = 2
√
n. For the

general case, the algorithm treats groups of m = 4n/p2 letters as though they were just one
letter of the new alphabet Σm, and then runs Algorithm 1. This uses spaces O(log(n/m) +
(n/m)(log |Σm|)/p2) = O(logn+ (n log |Σ|)/p2).
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Algorithm 1 RO/RW streaming algorithm for Reverse

1 p←
√

2n, t← 1, i1 ← p;
2 While {t ≤ p}
3 If t > 1 then (R, l)← (Y [n− it], n− it)
4 If it < n then
5 Y [n− it − (p− t), n− it]← X[it − (p− t), it] // Order is unchanged
6 it+1 ← it + p− t
7 For m = t− 1 to 1
8 Put R in the right place Y [l′] // l′ computed from l,m, p, n

9 (R, l)← (Y [l′], l′)
10 t← t+ 1

We now prove the theorem for p = 2
√
n. First, observe that every element of the input is

copied on the output, as
∑p
t=1(p− t) = p(p+ 1)/2 = n+

√
n ≥ n.

Let 1 ≤ t < p. The subword X[it − (p − t) − 1, it] is initially copied at line 5 on
Y [n − it − (p − t) − 1, n − it]. Therefore only Y [n − it] is correctly placed. Let Bt be
{n− it− (p− t), n− it−1} = {n− it+1 +1, n− it−1}. Then Bt denotes the indices (on Y ) of
elements copied during the t-th iteration of the While loop that are incorrectly placed. For each
l ∈ Bt, the correct place for Y [l] is in {n−it+1, n−it+p−t} = {n−it+1, n−(it−1+1)} = Bt−1,
where by convention B0 is defined with i0 = 0. Therefore, in the (t+ 1)-th iteration of the
while loop, the first Y [l] we place correctly goes from l = n− it+1 + 1 = n− it − (p− t) ∈ Bt
to some l′ ∈ Bt−1. Then recursively the previous value of Y [l′] goes in Bt−2, and so on until
we reach B0 where nothing was written initially.

Thus, the For loop places correctly one element of each of Bt−1, Bt−2, . . . , B1. Observe
that Bm has at most p−m elements incorrectly placed. Moreover, there are (p−m) remaining
iterations of the While loop after Bm is written. Therfore all elements are places correctly
when Algorithm 1 ends.

Now we prove that Algorithm 1 has the claimed complexity. It only starts a new pass
when t increases, at each execution of the While loop at line 2. Indeed, each execution of
line 8 can be performed within the current pass since Y [l] moves forward to a new index in
Bm−1 as explained before. Therefore Algorithm 1 runs in p passes. Since it keeps at most
two elements in memory at any time, and only needs to keep track of the current position, n,
p, t and m, it uses O(logn+ log |Σ|) memory. J

I Theorem 9. There is a deterministic algorithm such that, given n and p ≤
√
n, it is a

p-pass RW/WO streaming algorithm for Reverse on Σn with space O(logn+ (n log |Σ|)/p2)
and expansion 1.

We omit the proof of this theorem, as the algorithm is extremely similar to the one used
in the Read-Only/Read-Write model. The main difference is that the For loop that moves
one element of each block to its correct place is applied before a block is copied on Y and
not after like in Algorithm 1. Similarly, the new algorithm starts with blocks of size s and
ends with size Θ(

√
n/s) instead of having blocks of decreasing size.

Lower bound.We employ techniques similar to the ones we used in the proof of Theo-
rem 3. However, here we will not consider individual cells on the stream but instead blocks
of size k =

√
ns, where s is the memory space. This allows us to easily bound the amount of

information each block receives.

I Theorem 10. Let 0 < ε ≤ 1/3. Every p-pass λ-expansion RO/RW streaming algorithm
for Reverse on {0, 1}n with error ε requires space Ω(n/p2).
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Proof. Consider a p-pass λ-expansion randomized RO/RW algorithm for Reverse on {0, 1}n
with error ε and space s, with s ≥ logn. Like with Theorem 3, we consider the model where
we want Y = X, but Y is processed from right to left.

As in the proof of Theorem 3, we assume passes are synchronized at the cost of a factor
at most 2 in p. We also keep similar notations : X is the input stream uniformly distributed
in {0, 1}n, and for each 1 ≤ t ≤ p, Y t ∈ {0, 1,⊥}n is the data currently on output stream Y

at pass t. Unlike with Zt in the previous section, this includes the data previously written,
as in this model we can read it and modify it. Let 1 ≤ k ≤ n be some parameter. We now
think on X,Y t as sequences of k blocks of size n/k, and consider each block as a symbol.
If λ > 1, then everything written on the output stream (the only one that can grow) after
the n-th bit is considered to be part of the Y tk . For instance Xi denotes the i-th block of
X, which is of size n/k bits. We write X−i for X without its i-th block, and X>i (resp.
X<i) for the last (k − i) blocks of X (resp. the first (i− 1) blocks). For each 1 ≤ t ≤ p, let
Lt ∈ {0, . . . , k − 1} be the block where the input head and the output head meet during the
t-th pass. Since passes are synchronised, Lt is unique and is the only block where both heads
can be simultaneously during the t-th pass. Let M t

i be the memory state as the output head
enters the i-th block during t-th pass.

Consider a pass t and a block i. We would like to have an upper bound on the amount
of mutual information between Y ti and Xi that is gained during pass t (with regards to
information known at pass t−1). Let ∆t

i,j = I(Xi : Y ti |Lt = j,X−i)−I(Xi : Y t−1
i |Lt = j,X−i)

for some i and j. Of course, if i = j, without looking inside the block structure we only
have the trivial bound ∆t

i,i ≤ H(Xi) = n/k. It is however easier to bound other blocks.
Assume without loss of generality that i < j. We use the data processing inequality
I(f(A) : B|C) ≤ I(A : B|C) with Y ti as a function of M t

i and Y t−1
i . This gives us

∆t
i,j ≤ I(Xi : X>i,M

t
i , Y

t−1
i |Lt = j,X−i)− I(Xi : Y t−1

i |Lt = j,X−i).

We can remove X>i which is contained in the conditioning. Applying the chain rule, we
cancel out the second term and are left with

∆t
i,j ≤ I(Xi : M t

i |Lt = j,X−i, Y
t−1
i ) ≤ H(M t

i ) ≤ s.

The same holds if j < i instead. If j = i, then ∆t
i,j ≤ n/k because H(Xi) = n/k.

We fix j, sum over i and get
∑k−1
i=0 ∆t

i,j ≤ n/k + ks. The expectation over j ∼ Lt is

k−1∑
i=0

I(Xi : Y ti |Lt, X−i)− I(Xi : Y t−1
i |Lt, X−i) ≤ n/k + ks.

From Fact 11, we get the following inequalities:

I(Xi : Y ti |Lt, X−i) ≥ I(Xi : Y ti |X−i)−H(Lt),

I(Xi : Y t−1
i |Lt, X−i) ≤ I(Xi : Y t−1

i |X−i) + H(Lt).

Therefore,
k−1∑
i=0

I(Xi : Y ti |X−i)− I(Xi : Y t−1
i |X−i) ≤ n/k + ks+ k log k.

Summing over t yields

k−1∑
i=0

I(Xi : Y pi |X−i) ≤ p(n/k + ks+ k log k).
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By hypothesis s ≥ logn, ε ≤ 1/3 and I(Xi : Y pi |X−i) ≥ (1−H(ε))n/k. If k =
√
n/s, then

s = Ω(n/p2). J

I Fact 11. Let A, B, C, D be random variables. Then

I(A : B|D)−H(C|D) ≤ I(A : B|C,D) ≤ I(A : B|D) + H(C|D).

I Theorem 12. Let 0 < ε ≤ 1/3. Every p-pass λ-expansion RW/WO streaming algorithm
for Reverse on {0, 1}n with error ε requires space Ω(n/p2).

Proof of Theorem 12. Consider a p-pass λ-expansion randomized RW/WO algorithm for
Reverse on {0, 1}n with error ε and space s, with s ≥ logn. As before, we consider the model
where the algorithm writes X on Y , using passes from right to left. This prrof is similar to
the proof of Theorem 10.

We proceed as before: we assume passes are synchronized at the cost of a factor at most 2
in p. We also keep similar notations : X is the input stream uniformly distributed in {0, 1}n,
and for each 1 ≤ t ≤ p, Xt ∈ {0, 1}n is the content of the input stream and Y t ∈ {0, 1,⊥}n is
the content of the output stream Y at pass t. Let 1 ≤ k ≤ n be some parameter. As before,
whe think of X,Xt, Y t as sequences of k blocks of size n/k, and Xi denotes the i-th block
of X. If λ > 1, then everithing written on the inpu stream after the n-th bit is considered
part of Xt

k. We write X−i, X>i and X<i as before. We also define X≤ti as the (t+ 1)-uple
(Xi, X

1
i , . . . , X

t
i ), i.e. the history of the i-th block until pass t.

As in prevoius proofs, for each 1 ≤ t ≤ p, let Lt ∈ {0, . . . , k − 1} be the block where the
input head and the output head meet during the t-th pass. Lt is unique and is the only block
where both heads can be simultaneously during the t-th pass. Let M t

i be the memory state
as the output head enters the i-th block during t-th pass.

Consider a pass t and a block i. As with Theorem 10, we would like to have an upper
bound on the amount of mutual information between Y ti and Xi that is gained during pass t,
assuming Lt 6= i. Let ∆t

i,j = I(Xi : Y ti |Lt = j,X≤t−1
−i )− I(Xi : Y t−1

i |Lt = j,X≤t−1
−i ) for some

j > i. By the data processing inequality, we have I(f(A) : B|C) ≤ I(A : B|C). Therefore,

∆t
i,j ≤ I(Xi : Xt−1

>i ,M
t
i , Y

t−1
i |Lt = j,X≤t−1

−i )− I(Xi : Y t−1
i |Lt = j,X≤t−1

−i ).

We can remove Xt−1
>i which is contained in the conditioning. Applying the chain rule, we

cancel out the second term and are left with

∆t
i,j ≤ I(Xi : M t

i |Lt = j,X≤t−1
−i , Y t−1

i ) ≤ H(M t
i ) ≤ s.

The same holds if j < i instead. If j = i, then ∆t
i,j ≤ n/k because H(Xi) = n/k.

We fix j, sum over i and get
∑k−1
i=0 ∆t

i,j ≤ n/k+ ks. As before, by taking the expectation
over j ∼ Lt and then using Fact 11, we can remove the condition Lt = j. This gives us

k−1∑
i=0

I(Xi : Y ti |X
≤t−1
−i )− I(Xi : Y t−1

i |X≤t−1
−i ) ≤ n/k + ks+ k log k.

We cannot sum over t yet because the conditionning X≤t−1
−i depends on t. However, because

Xt
−i is a function of Xt−1

−i , the memory state at the beginning of the pass and the memory
as the head on the input tape leaves the i-th block, applying Fact 11 again yields

I(Xi : Y ti |X
≤t
−i )− I(Xi : Y ti |X

≤t−1
−i ) ≤ H(Xt

−i|X
≤t−1
−i ) ≤ 2s.

This is a consequence of the output stream being write-only, which we had not used until
now.
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Algorithm 2 RW/RW streaming algorithm for Reverse

1 W0 ← X; W1 ← Y ; α← 0; // Rename the streams
2 k ← n; // Size of current blocks
3 While k > 1
4 k ← k/2
5 For i = 1 to n/2k − 1
6 W1−α[(2i+ 1)k + 1, (2i+ 2)k]←Wα[2ik + 1, (2i+ 1)k] // One pass
7 For i = 0 to n/2k − 1
8 W1−α[2ik + 1, (2i+ 1)k]←Wα[(2i+ 1)k + 1, (2i+ 2)k] // Another pass
9 α← 1− α; Erase W1−α; // Exchange the roles of the streams

10 Y ←Wα // Copy the final result on output tape

Therefore
∑k−1
i=0 I(Xi : Y ti |X

≤t−1
−i )− I(Xi : Y t−1

i |X≤t−1
−i ) ≤ n/k+ 3ks+ k log k. Summing

over t yields
k−1∑
i=0

I(Xi : Y pi |X−i) ≤ p(n/k + 3ks+ k log k).

By hypothesis s ≥ logn, ε ≤ 1/3 and I(Xi : Y pi |X−i) ≥ (1−H(ε))n/k. If k =
√
n/s, then

s = Ω(n/p2). J

Note that the proof still works if we relax the write-only model by allowing the algorithm
to rewrite over data that was previously written on the output stream.

3.3 Complexity of Read-write/Read-write
Algorithm 2 proceeds by dichotomy. For simplicity, we assume that n is a power of 2, but
the algorithm can easily be adapted while keeping λ = 1. At each step, it splits the input in
two, copies one half to its correct place on the stream, then makes another pass to copy the
other half, effectively exchanging them.

I Theorem 13. Algorithm 2 is a deterministic O(logn)-passes RW/RW streaming algorithm
for Reverse on Σn with space O(logn) and expansion 1.

Proof. Since the algorithm can read and write on both tapes, they perform very similar
roles. We rename the input stream W0 and the output stream W1. By a simple recursion,
we see that whenever a block W1−α[tk, (t + 1)k] is moved, it is moved in the place that
Reverse(W1−α[tk, (t+ 1)k]) will occupy. Therefore, the algorithm is correct.

Now we prove the bounds on s and p. Algorithm 2 never needs to remember a value,
only the current index and current pass, so s = O(logn). Since the length of blocks copied is
divided by 2 at each execution of line 4, it ends after a logarithmic number of executions of
the While loop. Each iteration of the While loop requires two passes, one for each of the two
For loops (lines 5 and 7). Therefore the total number of passes is in O(logn). J

4 Sorting with two streams

Sort is generally more complex than Reverse. Even in the RW/RW model, we are not able to
present a deterministic algorithm as efficient as Algorithm 2 for Reverse. With three streams,
the problem becomes easy since we can Merge Sort two streams, and write the result of each
step on the third one.
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Algorithm 3 RW/RW streaming algorithm implementing Merge Sort

1 W0 ← X; W1 ← Y ; α← 0;
2 t← 1; k ← 1 // Size of the sorted blocks
3 Expand the input : each element has a label of size logn.
4 While k < n

5 For i = 1 to n/2k {Copy Bt2i on W1−α}
6 For i = 1 to n/2k {For each Wα[j] ∈ Bt2i−1 ∪Bt2i
7 {Wα[j]← index of Wα[j] in Bt+1

i }}
8 For i = 1 to n/2k {Copy Bt2i at the end of Wα after Bt2i−1}
9 For i = 1 to n/2k {For each Wα[j] ∈ Bt2i−1

10 {Write Wα[j] at its position on W1−α}}
11 For i = 1 to n/2k {For each Wα[j] ∈ Bt2i
12 {Write Wα[j] at its position on W1−α}}
13 α← 1− α; Erase W1−α; t← t+ 1; k ← 2k;
14 Y ←Wα

4.1 Merge Sort
We begin with an algorithm inspired from [5]. The algorithm works as a Merge Sort. We call
Bti the i-th sorted block at the t-th iteration of the While loop, consisting of the sorted values
of X[2ti+ 1, 2t(i+ 1)]. Since there is no third stream to write on when two blocks Bt2i−1 and
Bt2i are merged into Bt+1

i , we label each element with its position in the new block. Then
both halves are copied on the same stream again so that they can be merged with the help
of the labels. This improves the expansion of [5] from n to logn. However it is somewhat
unsatisfying because when Σ is of constant size, our algorithm still has Ω(logn) expansion.

I Theorem 14. Algorithm 3 is a deterministic O(logn)-pass RW/RW streaming algorithm
for Sort on Σn with space O(logn) and expansion O((logn)/log |Σ|).

Proof. Since it is an implementation of the Merge Sort algorithm, Algorithm 3 is correct.
Each iteration of the While loop corresponds to five passes on each tape, and therefore the
total number of passes is in O(logn). Since the algorithm only needs to remember the position
of the heads, current elements and the counters k, t, it only uses memory O(logn). Finally,
since the label for each element is at most n, we only use space logn on the stream to write
it, and therefore the expansion is at most (log |Σ|+ logn)/log |Σ| = O((logn)/log |Σ|). J

4.2 Quick Sort
With a Quick Sort algorithm instead of a Merge Sort, we only need to store the current pivot
(of size at most logn), without labeling elements. However, Quick Sort comes with its own
issues: the expected number of executions of the While loop is O(logn), but unless we can
select a good pivot it is Ω(n) in the worst case. For this reason, we use a randomized Las
vegas algorithm.

A block in Algorithm 4 is a set of elements that are still pairwise unsorted, i.e. elements
that have the same relative positions to all pivots so far. The block Bti is the i-th lower one
during the t-th iteration of the While loop, and P ti is its pivot. The block Bt+1

2i−1 consists of
all elements in Bti lower than P ti and all elements equal P ti with a lower index. The block
Bt+1

2i is the complementary. Algorithm 4 marks the borders of blocks with the symbol ].
Algorithm 4 selects each pivot P ti at random among the elements of Bti . While it may

not do so uniformly with only one pass because |Bti | is unknown, it has an upper bound
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Algorithm 4 RW/RW streaming algorithm implementing Quick Sort

1 W0 ← X; W1 ← Y ; α← 0;
2 t← 1; K ← 1 // Number of unsorted blocks
3 While K > 0
4 Abort if the total number of passes is Ω((logn)/ε)
5 Expand W0 adding O(K) space for ] and pivots
6 For i = 1 to K

7 Find P ti at random
8 W1−α[i]← P ti
9 Replace P ti with a ⊥ on Wα

10 For i = 1 to K

11 Copy W1−α[i] = P ti at the start of Bti on Wα

12 For i = 1 to K

13 Write all elements in Bt+1
2i−1 on W1−α

14 Write ]Pi] on W1−α.
15 Leave space for the rest of Bt+1

2i
16 For i = 1 to K

17 Write all elements in Bt+1
2i in the space left on W1−α

18 α← 1− α; Erase W1−α; t← t+ 1
19 K ← new number of unsorted blocks // using an additional pass
20 Y ←Wα

k ≥ |Bti |. Algorithm 4 selects l ∈ {1, . . . , k} uniformly at random, then picks li the remainder
modulo 2dlog |Bt

i |e of l. This can be computed in one pass with O(logn) space by updating
li as the lower bound on |Bti | grows. It uses P ti = Bti [li]. P ti is selected uniformly at
random from a subset of size at least half of Bti , which guarantees that with high probability
min(|Bt+1

2i−1|, |Bt2i|) = Ω(|Bti |).

I Theorem 15. For all 0 < ε ≤ 1/2, Algorithm 4 is a randomized O((logn)/ε)-pass RW/RW
Las Vegas streaming algorithm for Σn with failure ε, space O(logn) and expansion O(1).

Proof. Algorithm 4 is an implementation of the Quick Sort algorithm, and is therefore
correct. Its correctness does not depend on the quality of the pivots. The bound on the
memory and the expansion are direct. While it uses additional symbols ⊥ and ], they can
be easily replaced by an encoding with symbols of Σ appearing in the input with only O(1)
expansion. Because for each i and t, with high probability min(|Bt+1

2i−1|, |Bt2i|) = Ω(|Bti |),
with high probability Algorithm 4 terminates in O(logn) passes. J

Open problems

The first open problem is whether our lower bounds still hold if multiple rewrites are allowed
in the read-only/write-only model.

Another one is whether there exists a deterministic O(logn)-pass RW/RW streaming
algorithm for Sort with space O(logn) and expansion O(1). We can derandomize Algorithm 4
using any deterministic algorithm that finds a good approximation of the median. The best
algorithm we obtained that way has O(α−1 logn) passes, O(nα) memory and O(1) expansion,
for any α > 0. We conjecture that there is no such algorithm and that having constant
expansion algorithm for Sort requires a tradeoff in number of passes, memory space, number
of streams or determinism.

Last, combining the algorithm from Theorem 8 with the results in [14], we obtain
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a O(
√
n/ logn)-pass RO/RW streaming algorithm with space O((logn)2) for recognizing

well-parenthesized expressions with two parentheses types. We do not know if this is optimal.
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