
Deterministic Even-Cycle Detection in Broadcast CONGEST ∗

Pierre Fraigniaud1, Maël Luce1, Frédéric Magniez1, and Ioan Todinca2

1 Université Paris Cité, CNRS, IRIF, Paris, France
2 Université d’Orléans, INSA-Centre Val de Loire, LIFO, Orléans, France

Abstract

We show that, for every k ≥ 2, C2k-freeness can be decided in O(n1−1/k) rounds in the Broadcast
CONGEST model, by a deterministic algorithm. This (deterministic) round-complexity is optimal for
k = 2 up to logarithmic factors thanks to the lower bound for C4-freeness by Drucker et al. [PODC
2014], which holds even for randomized algorithms. Moreover it matches the round-complexity of the best
known randomized algorithms by Censor-Hillel et al. [DISC 2020] for k ∈ {3, 4, 5}, and by Fraigniaud et
al. [PODC 2024] for k ≥ 6. Our algorithm uses parallel BFS-explorations with deterministic selections of
the set of paths that are forwarded at each round, in a way similar to what was done for the detection of
odd-length cycles, by Korhonen and Rybicki [OPODIS 2017]. However, the key element in the design and
analysis of our algorithm is a new combinatorial result bounding the “local density” of graphs without
2k-cycles, which we believe is interesting on its own.

1 Introduction

In the context of distributed computing in networks, deciding H-freeness for a given (connected) graph H
has attracted a lot of attention in the standard CONGEST model (see, e.g., the survey [?]). Indeed, this
problem is inherently local, and thus the main concern is measuring the amount of information that must
be exchanged between the nodes for solving it. Recall that the CONGEST model [?] assumes n processing
nodes connected as an n-node graph G = (V,E). Computation proceeds as a sequence of rounds. During
each round, every node can send an O(log n)-bit message to each of its neighbors, receive the messages sent
by its neighbors, and perform some individual computation. In the broadcast version of the model, which
is the one used in this paper, it is required that, at each round, each node sends the same message to all
its neighbors. An algorithm decides H-freeness if, for every graph G, the following holds: If G contains a
subgraph isomorphic to H then at least one node rejects, otherwise all nodes accept.

For every k ≥ 3, let Ck denotes the k-node cycle. It is known that, for every k ≥ 2, there exists
a deterministic algorithm deciding C2k+1-freeness in O(n) rounds [?], which is optimal up to logarithmic
factors. It is however possible to decide the presence of even-size cycles in a sub-linear number of rounds.
In particular, there exists a deterministic algorithm deciding C4-freeness in O(

√
n) rounds [?], which is

optimal up to logarithmic factors, even for randomized algorithms. For every k > 2, there exist randomized
algorithms deciding C2k-freeness in O(n1−1/k) rounds [?, ?]. The algorithms in [?], based on the “local
threshold” technique, apply to 2 ≤ k ≤ 5, whereas the algorithms in [?], based on the “global threshold”
technique, apply to all k ≥ 2.

All aforementioned randomized algorithms are 1-sided, i.e., if G contains a 2k-cycle, then the probability
that at least one node rejects is at least 2/3, but if G does not contain a 2k-cycle, then the probability
that all nodes accept is 1. Of course, the error probability of these algorithms can be made as small as

∗Research supported in part by the European QuantERA project QOPT (ERA-NET Cofund 2022-25), the French ANR
projects DUCAT (ANR-20-CE48-0006), the French PEPR integrated project EPiQ (ANR-22-PETQ-0007), and the QuanTEdu-
France project (22-CMAS-0001).

1

desired by mere repetition. Yet, it may still be the case that G contains a 2k-cycle that is not detected,
even if this occurs with arbitrarily small probability. This raises the question of whether C2k-freeness can
be decided by a deterministic algorithm (which would thus provide absolute success) without increasing the
round complexity. This is the case for all odd cycles of length ≥ 5, and for 4-cycles [?, ?]. We show that
this holds for all even cycles as well, by establishing the following result.

Theorem 1. For every k ≥ 2, there is a deterministic algorithm solving C2k-freeness in O(n1−1/k) rounds
in the Broadcast CONGEST model.

Our deterministic algorithm solving C2k-freeness in O(n1−1/k) rounds is generic, parameterized by k. For
k = 2, i.e., for C4-freeness, our algorithm coincides with the one in [?]. In fact, our algorithm can be viewed
as a generalisation of the latter. As for the algorithms in [?, ?], they distinguish the case of light cycles, i.e.,
2k-cycles containing solely nodes with degree smaller than n1/k, from the case of heavy cycles, i.e., 2k-cycles
containing at least one node with degree at least n1/k. Light cycles can be easily detected deterministically
by flooding, in O(n1−1/k) rounds [?, ?], and the main issue is to show that heavy cycles can also be detected
deterministically in O(n1−1/k) rounds. We show that this is indeed possible.

Our algorithm (for detecting heavy cycles) relies on combining the Representative Lemma by Monien
[?], with a new “Density Theorem”. In a nutshell, the Representative Lemma can be used to show that,
as already observed in [?, ?], for each source node v, it is not necessary for intermediate nodes to forward
all prefixes of paths with extremity v for eventually finding one path forming a cycle containing v, but
forwarding a constant number of prefixes suffices. Our density theorem is used to show that, if a node v has
to forward ω(n1−1/k) prefixes of paths in total (i.e., corresponding to ω(n1−1/k) source nodes v), then there
must exist a 2k-cycle in the graph G. More precisely, our theorem states the following.

Theorem 2. Let G = (V,E) be an n-node graph. For every v ∈ V , and every integer ℓ ≥ 1, let Rℓ(v) ⊆ V
be the set of nodes that are reachable from v by a simple path of length exactly ℓ. For every integer k ≥ 2, if
there exist v ∈ V and ℓ ∈ {1, . . . , k − 1} such that∑

u∈Rℓ(v)

deg(u) > 6 · (2k)ℓ · n,

then there is a 2k-cycle in G.

Combining the Representative Lemma by Monien [?] with our density theorem, our algorithm for heavy
2k-cycles boils down to flooding the network for k steps with path-prefixes originated at all heavy nodes v,
under the following simple condition: at every step ℓ ∈ {1, . . . , k}, if a node u has to forward prefixes coming
from more than 6 · (2k)ℓ · n1−1/k heavy nodes then u rejects.

If flooding is completed without any rejection then the Representative Lemma guarantees that a 2k-
cycle will be detected if any. Instead, if flooding aborts at some rejecting nodes, then the density theorem
guarantees that this rejection is legitimate as there must exist a 2k-cycle.

2 Model and Preliminary Results

This section recalls the standard (Broadcast) CONGEST model, and takes benefit of the 4-cycle detection
algorithm in [?] for introducing the reader with some of the techniques that will be reused throughout the
paper. This is particularly the case of the Representative Lemma by Monien [?], which is the basis for
implementing a filtering technique enabling to bound the congestion of cycle-detection algorithms.

2.1 The Broadcast CONGEST Model

The CONGEST model [?] assumes n ≥ 1 processing nodes connected by a network modeled as an arbitrary
n-node graph G = (V,E). (All graphs are supposed to be connected and simple, i.e., no multiple edges nor
self-loops.) Each node v in G has an identifier id(v) taken from a polynomial range of identifiers, and thus

2

encoded on O(log n) bits. Each identifier is supposed to be unique in the network. Computation proceeds
as a sequence of synchronous rounds. All nodes start synchronously, at round 1. At each round, every node
v can (1) send an O(log n)-bit message to each of its neighbors in G, i.e., to each node u ∈ N(v), (2) receive
the messages sent by its neighbors, and (3) perform some individual computation. No limit is placed on the
amount of computation that each node performs at each round. Initially, every node v knows its identifier
id(v) and the size n of the graph it belongs to. No other information about the graph are provided to the
nodes. All nodes perform the same algorithm, but the behavior of the nodes may vary along the course of
execution of that algorithm, depending on the information acquired by them in each round (including their
IDs).

The Broadcast CONGEST model is a restricted variant of the CONGEST model which requires each node
to send the same O(log n) bit message to all its neighbors, at every round. (Of course, the messages sent by
a same node v at two different rounds may be different.)

2.2 Deciding C4-Freeness

The optimal (deterministic) algorithm for detecting 4-cycles in [?] can be artificially rewritten as Algorithm 1.
Let us say that a node v is light if its degree satisfies deg(v) ≤

√
2n, and is heavy otherwise.

Phase 1 in Algorithm 1 is aiming at finding light 4-cycles, i.e., 4-cycles containing only light nodes.
The for-loop of Instruction 5 consumes at most

√
2n rounds, as it involves light nodes only, i.e., the light

node v has at most
√
2n neighbors, and thus at most

√
2n light neighbors. If a light 4-cycle is detected at

Instruction 8, then v rejects appropriately.
Phase 2 is aiming at finding heavy 4-cycles, that is, 4-cycles containing at least one heavy node. The for-

loop of Instruction 17 also consumes at most
√
2n rounds, merely because it is performed only if |heavy(v)| ≤√

2n. The main observation is that it is legal for a node v to reject if |heavy(v)| >
√
2n. This is due to the

following simple fact.

Lemma 1. For every n-node graph G = (V,E), if there exists v ∈ V such that the inequality
∑

u∈N(v) deg(u) >
2n holds, then G contains a 4-cycle.

Thanks to Lemma 1, since |heavy(v)| >
√
2n implies that

∑
u∈N(v) deg(u) > 2n, we get that G contains

a 4-cycle, and thus it is indeed legal for v to reject at Instruction 15.
Our generic algorithm for detecting 2k-cycles for every k ≥ 2 follows the general idea of Algorithm 1 in

the sense that:

1. it is also split into two phases, one for light cycles (i.e., containing only nodes with degree smaller than
n1/k), and one for heavy cycles (i.e., containing at least one node with degree at least n1/k), and

2. it also utilises a threshold as in Instruction 14, which is tuned depending on k.

In both phases, paths are broadcast among the nodes in the networks. That is, every node v participating
in the broadcast sends its identifiers to its neighbors, which concatenate their identifiers, and forward the
resulting 1-edge path to their neighbors. After r rounds of such a process, every node u receives a set of
paths, each of the form (id(w0), . . . , id(wr−1)), concatenates its identifier to each of these paths, and forwards
the resulting set of paths, each of the form (id(w0), . . . , id(wr−1), id(u)) to all its neighbors. In itself, such
a process would however create huge congestion. Indeed, the number of paths circulating in the networks
would grow exponentially. Nevertheless, reducing drastically the number of paths can be achieved thanks
to a simple application of the Representative Lemma by Monien [?], as it was done in, e.g., [?, ?], which is
explained a bit further in the text. Before that, let us quickly eliminate the study of so-called light cycles,
for which broadcast works without filtering.

2.3 Detection of Light 2k-Cycles

For every k ≥ 2, the detection of light 2k-cycles, i.e. of 2k-cycles containing only nodes of degree at most
n1/k, can be done in a straightforward manner in O(n1−1/k) rounds. It is indeed sufficient to consider the

3

Algorithm 1 Algorithm executed by every node v ∈ V for deciding C4-freeness in G = (V,E)

1: send (id(v),deg(v)) to all neighbors
2: Phase 1: Looking for light 4-cycles
3: if deg(v) ≤

√
2n then

4: light(v)← {u ∈ N(v) | deg(u) ≤
√
2n}

5: for u ∈ light(v) do
6: send id(u) to all neighbors;
7: end for
8: if v has received id(w) /∈ {id(v), id(u), id(u′)} from u ̸= u′ in light(v) then
9: output(reject), and terminate

10: end if
11: end if
12: Phase 2: Looking for heavy 4-cycles
13: heavy(v)← {u ∈ N(v) | deg(u) >

√
2n}

14: if |heavy(v)| >
√
2n then

15: output(reject)
16: else
17: for u ∈ heavy(v) do
18: send id(u) to all neighbors;
19: end for
20: if v has received id(w) /∈ {id(v), id(u), id(u′)} from u ̸= u′ in N(v) then
21: output(reject)
22: else
23: output(accept)
24: end if
25: end if

subgraph Glight of the input graph G induced by the light nodes of G. The detection proceeds by looking
for all 2k-cycles Glight passing through v, for all nodes v ∈ V (Glight) in parallel.

Specifically, the algorithm proceeds by flooding, during k phases. At the first phase (which lasts one
round), every v ∈ V (Glight) forms the path P = (v) consisting of the single node v, and sends it to all
its neighbors in Glight. At every phase p ≥ 2, for every node v ∈ V (Glight), and for every simple path
P = (u1, . . . , up−1) received by v during Phase p− 1, if v /∈ {u1, . . . , up−1}, then v appends its identifier to
P for forming the path P ′ = (u1, . . . , up−1, v), which is forwarded to all of v’s neighbors in Glight.

After k phases, if a node v has received a simple path P = (u1, . . . , uk) from a neighbor uk, and a simple
path P ′ = (u′

1, . . . , u
′
k) from a neighbor u′

k, with u1 = u′
1, P ∩ P ′ = {u1}, and v /∈ P ∪ P ′, then v rejects.

Otherwise v accepts. We show that this simple flooding algorithm detects light 2k-cycles in O(n1−1/k) rounds.

Lemma 2. For every k ≥ 2, there is a deterministic algorithm running in O(n1−1/k) rounds in n-node
graphs under the Broadcast CONGEST model such that, for every graph G, if G contains a light 2k-cycle
(i.e., a cycle containing only nodes of degree smaller than n1/k) then at least one node rejects, otherwise all
nodes accept.

Proof. We analyze the simple flooding algorithm described above. Whenever a node rejects, this is because
it has received a simple path P = (u1, . . . , uk) from uk, and a simple path P ′ = (u′

1, . . . , u
′
k) from u′

k,
with u1 = u′

1, P ∩ P ′ = {u1}, and v /∈ P ∪ P ′, which implies that (u1, . . . , uk, v, u
′
k, . . . , u

′
2) is a 2k-cycle,

i.e., there is indeed a light 2k-cycle in G. Conversely, let (w1, . . . , w2k) be a light 2k-cycle. The two paths
P = (w1, . . . , wk) and P ′ = (w1, w2k, . . . , wk+1) will be received by node wk+1 after k phases, leading node
wk+1 to reject, as desired.

For the round-complexity, it is sufficient to notice that, by definition, Glight has maximum degree at most
n1/k. It follows that, for every v ∈ V (Glight), and for every p ∈ {0, . . . , k − 1}, the number of simple paths

4

of length p with one extremity equal to v is at most np/k. As a consequence, the round complexity of the
flooding algorithm is

k−1∑
p=0

(p+ 1) · np/k ≤ k2 · n(k−1)/k = k2 · n1−1/k = O(n1−1/k),

as claimed.

The main difficulty is detecting heavy cycles, that is, cycles containing at least one node of degree at
least n1/k. Among other techniques, one needs the filtered flooding techniques, explained in the next section.

2.4 Filtered Flooding

2.4.1 Representative Lemma

Monien [?] defines a representative of a family of subsets of a ground set S as follows (for S = [n] =
{1, . . . , n}).

Definition 1. For every integer n ≥ 1, every family A ⊆ 2[n] of subsets of [n], and every q ∈ [n], a family
of sets B ⊆ A is a q-reprentative of A if, for every set X ⊆ [n] of size |X| ≤ q, the following holds:

∃A ∈ A | A ∩X = ∅ ⇐⇒ ∃B ∈ B | B ∩X = ∅.

Note that it follows directly from the definition that the representativity property is transitive, which
is important as our algorithm for C2k-freeness will perform several nested iterations of computing a q-
representative set.

Fact 1. For every n ≥ 1, C ⊆ B ⊆ A ⊆ 2[n], and q ∈ [n], if B is q-representative for A, and C is
q-representative for B, then C is q-representative for A.

The following lemma says that if the sets in the family A have bounded size p, then there exists a
q-representative of A with bounded size.

Lemma 3 (Monien [?]). For every integer n ≥ 1, every (p, q) ∈ [n] × [n] such that p + q ≤ n, and every
family A ⊆ 2[n] of subsets of [n], if |A| ≤ p for all A ∈ A, then there exists a q-representative family B ⊆ A
of A such that

|B| ≤
(
p+ q

p

)
.

To get a flavor of this lemma, observe that if p + q = n and A = {A ⊆ [n], |A| = p}, then the bound of
Lemma 3 is tight.

2.4.2 Application to Cycle Detection

The Representative Lemma is particularly useful in the context of 2k-cycle detection for limiting congestion.
Indeed, let us assume that one is questioning whether there is a 2k-cycle in the n-node graph G = (V,E)
containing a given node v ∈ V . One way to proceed is to let v broadcast its identifier for k rounds. That
is, at step p = 0, v sends id(v) to all its neighbors. Then, at step p = 1, every neighbor u ∈ N(v) appends
its identifier to encode the 1-edge path (v, u), and forwards this path to all its neighbors. More generally,
if the flooding process is not filtered, then, at step p ∈ {1, . . . , k − 1}, a node u receiving a simple path
P = (v0, . . . , vp−1) with v0 = v appends u to P whenever u /∈ {v0, . . . , vp−1}, and forwards the resulting
augmented path to all its neighbors. At the end of step k − 1, if a node u has received two simple paths
P = (v0, . . . , vk−1) and P ′ = (v′0, . . . , v

′
k−1) with v0 = v′0 = v, u /∈ P ∪ P ′, and P ∩ P ′ = {v}, then u has

detected a 2k-cycle containing v.

5

The absence of filtering in the above process may result in an exponential increase of the number of paths
to be forwarded by an intermediate node u. This can be avoided using Lemma 3 by the following filtering
process. Let us assume that, at step p ∈ {1, . . . , k − 1}, a node u receives a collection A of p-node simple
paths, all with extremity v. Each path can be viewed as a set of p nodes, i.e., a subset of the n-node set V
with cardinality p. Let q = 2k − p. Lemma 3 says that there exists B ⊆ A of cardinality |B| ≤

(
2k
p

)
such

that, for every simple path X = (u0, . . . , u2k−p−1) from u0 = u to u2k−p−1 ∈ N(v), if there exists a path
A ∈ A that does not intersect with X, i.e., such that A ∪ X is a 2k-cycle containing v, then there exists
a path B ∈ B that does not intersect with X, i.e., such that B ∪ X is also a 2k-cycle containing v. The
filtering process consists for node u to forward the family B, after concatenating itself to every path in it,
instead of A. By the filtering technique, we have the following.

Fact 2. Each intermediate node u forwards at most
(
2k
p

)
paths of size p + 1 and of extremity v at each

round p ∈ {0, . . . , k − 1}.

Hence, the number of paths forwarded by a node u is constant for a fixed k. As a consequence, we get
the following.

Fact 3. For every k ≥ 2, every n-node graph G = (V,E), and every v ∈ V , checking whether there is a

2k-path in G containing v takes at most
∑k−1

p=0(p+1)
(
2k
p

)
< k22k rounds in the Broadcast CONGEST model.

3 Deterministic Even-Cycle Detection

This section is dedicated to the proof of Theorem 1 assuming that the density theorem holds (cf. Theorem 2).
The density theorem will be established in the next section. We start here by describing our algorithm for
deciding C2k-freeness, and then we proceed to the proof of Theorem 1.

3.1 Algorithm Description

Algorithm 2 provides a synthetic description of our algorithm for the detection of 2k-cycles. As Algorithm 1,
it is split into two phases, one aiming at detecting light 2k-cycles, and one aiming at detecting heavy 2k-
cycles, where a 2k-cycle is light if it contains only nodes of degree smaller than n1/k, and it is heavy otherwise.
The second phase, that is, the detection of heavy cycles, uses the filtering techniques (see Instruction 29)
based on Lemma 3, and detailed in Section 2.4.2. The detection of light cycles has already been described
and analyzed in Section 2.3, and this section focuses on Phase 2, i.e., the detection of heavy cycles, starting
at Instruction 18.

In Algorithm 2, every node v of a graph G = (V,E) maintains a collection of local variables. The set
heavy(v) contains all heavy neighbors of v in G, thanks to Instruction 1. For every w ∈ V , the set Q(w, v)
contains a collection of simple paths with extremities v and w. At the beginning of ℓ-th iteration of the
for-loop of Instruction 23, Q(w, v) contains paths of length exactly ℓ, which are eventually updated at the
end of the ℓ-th iteration (cf. Instruction 35) to paths of length ℓ+ 1. At each iteration, the set W (v) is the
set of nodes w such that there is at least one path from w to v in Q(w, v), i.e., Q(w, v) is not empty.

The main point in Algorithm 2 is the test performed at Instruction 25, which stipulates that if W (v)
is too big, i.e., if v is connected to too many (heavy) nodes w by a path of length ℓ at iteration ℓ, then
v rejects. If v does not reject, then it carries on the flooding of path-prefixes, by applying filtering for
preserving the fact that, for each w ∈ W (v), |P(w, v)| ≤

(
2k
ℓ+1

)
at every iteration (cf. Fact 2). At the end

of each iteration ℓ of the for-loop of Instruction 23, node v appends id(v) to each path received during that
iteration (see Instruction 35). That is, node v appends id(v) to each path P ∈ P(w, u) not containing v, for
all neighbors u ∈ N(v), and it resets Q(w, v) accordingly.

Finally, if node v has received two paths P and P ′ of length k, both in Q(w, v) for some w ∈ V , i.e.,
both with extremities v and w, such that the concatenation of P and P ′ forms a 2k-cycle, then v rejects.

6

Algorithm 2 Algorithm run by every node v ∈ V for deciding C2k-freeness in G = (V,E)

1: send (id(v),deg(v)) to all neighbors
2: Phase 1: Looking for light 2k-cycles
3: if deg(v) < n1/k then
4: send P = (id(v)) to all neighbors
5: for i = 1 to k − 1 do
6: receive paths sent by neighbors
7: let P be the set of received paths (not containing v)
8: for P ∈ P do
9: P ← (P, v)

10: send P to neighbors
11: end for
12: end for
13: receive paths sent by neighbors, and let P be the received set of paths
14: if ∃P, P ′ ∈ P of same origin u such that v /∈ P ∪ P ′ and P ∩ P ′ = {u} then
15: output(reject) and terminate
16: end if
17: end if
18: Phase 2: Looking for heavy 2k-cycles
19: heavy(v)← {u ∈ N(v) | deg(u) ≥ n1/k}
20: for w ∈ V do
21: if w ∈ heavy(v) then Q(w, v)← {(id(w), id(v))} else Q(w, v)← ∅
22: end for
23: for ℓ = 1 to k − 1 do
24: W (v)← {w ∈ V | Q(w, v) ̸= ∅};
25: if |W (v)| > 6 · (2k)ℓ · n1−1/k then
26: output(reject) and terminate
27: else
28: for w ∈W (v) do
29: P(w, v)← filtering applied to Q(w, v)
30: for P ∈ P(w, v) do
31: send P to neighbors
32: end for
33: end for
34: for w ∈ V do
35: Q(w, v)← {(P, v) | P ∈ P(w, u) ∧ u ∈ N(v) ∧ v /∈ P}
36: end for
37: end if
38: end for
39: if ∃w ∈ V,∃P, P ′ ∈ Q(w, v) | P ∪ P ′ = C2k then
40: output(reject)
41: else
42: output(accept)
43: end if

7

3.2 Proof of Theorem 1

In absence of the threshold condition at Instruction 25, Algorithm 2 merely consists of building longer and
longer paths between v and some nodes w ∈ V , such that if there exists v and w for which there exists two
paths P and P ′ of length k between v and w that are internally disjoint, that is if P ∪P ′ form a 2k-cycle, v
will detect that fact, and reject accordingly. as already discussed before, the filtering of Instruction 29 does
not prevent the algorithm to find such paths, if any. The main issue is that Algorithm 2 stops at iteration ℓ
whenever |W (v)| > 6 · (2k)ℓ · n1−1/k. Let us show that stopping under this condition is fine, as it implies the
existence of a 2k-cycle.

Let us assume that there exists a node v such that, at iteration ℓ ∈ {1, . . . , k − 1} of the for-loop of
Instruction 23, |W (v)| > 6 · (2k)ℓ · n1−1/k. At iteration ℓ, W (v) is the set of heavy nodes w such that there
is a simple path of length exactly ℓ starting at w and ending at v. Using the notation of Theorem 2, let
Rℓ(v) ⊆ V be the set of nodes that are reachable from v by a simple path of length exactly ℓ. We have
W (v) ⊆ Rℓ(v). It follows that∑

w∈Rℓ(v)

deg(w) ≥
∑

w∈W (v)

deg(w) ≥ |W (v)| · n1/k > 6 · (2k)ℓ · n1−1/k · n1/k = 6 · (2k)ℓ · n. (1)

By Theorem 2, G contains a 2k-cycle, and thus node v rejects rightfully.
It remains to show that the round complexity of Algorithm 2 is O(n1−1/k). Phase 1, dedicated to the

search of light 2k-cycles, takes this many rounds, as established in Lemma 2. Let us show that Phase 2,
dedicated to the search of heavy 2k-cycles, has the same complexity. By Fact 3, for every node v and every
heavy node w, the final set Q(w, v) at iteration ℓ = k − 1 at Instruction 35 is built after at most k · 22k
rounds. By the threshold condition of Instruction 25, the number of families P(w, v) to be transmitted by v
is at most 6 · (2k)ℓ · n1−1/k. So, in total, Phase 2 of Algorithm 2 performs in k · 22k · 6 · (2k)ℓ · n1−1/k rounds,
that is O(n1−1/k) rounds for a fixed k. This completes the proof of Theorem 1 (under the assumption that
Theorem 2 holds).

4 Proof of Density Theorem

4.1 General Construction

This section is dedicated to the proof of Theorem 2. Let G = (V,E) be an n-node graph. Let k ≥ 2,
ℓ ∈ {1, . . . , k− 1}, and v ∈ V . Let R(v) be the set of nodes of G that are reachable from v by a simple path
of length exactly ℓ, and let us assume that∑

w∈R(v)

deg(w) > 6 · (2k)ℓ · n.

Our goal is to show that there is a 2k-cycle in G. In the following, we fix

τ = 6 · (2k)ℓ. (2)

Let F be the set of edges incident to at least one node in R(v). Let Fint ⊆ F be the set of edges whose
both extremities are in R(v), and let Fext = F ∖ Fint.

Lemma 4 (S. Burr [?]). Every m-edge graph contains a bipartite subgraph with at least m/2 edges.

Thanks to Lemma 4, there exists a bipartite subgraph of the graph G[Fint] induced by Fint with at least
|Fint|/2 edges. Let F ′

int ⊆ Fint be the set of edges of this bipartite graph, hence |F ′
int| ≥ |Fint|/2. Let H be

the bipartite graph defined as the subgraph of G induced by F ′
int if |F ′

int| ≥ |Fext|, or as the subgraph of G
induced by Fext otherwise. That is,

H =

{
G[F ′

int] if |F ′
int| ≥ |Fext|

G[Fext] otherwise.

8

Let (X,Y) be the partition of the vertices of H, with

X ⊆ R(v).

Note that some nodes in Y may also belong to R(v). H satisfies the following.

Fact 4. H = (X,Y,EH) is a bipartite subgraph of G with at least 1
6 τ n edges.

Proof. We have
|F | = |Fext|+ |Fint| ≤ |Fext|+ 2|F ′

int| ≤ 3|EH |.

Since
2|F | ≥

∑
w∈R(v)

deg(w) > τ · n,

the claim follows.

To prove the existence of a 2k-cycle in G, we will prove that there exist three simple paths P , P ′, and
P ′′ in G such that:

• P is of length λ for some λ ∈ {1, . . . , ℓ} connecting a node x ∈ X to some node u ∈ V .

• P ′ is a path in H of length 2k− 2λ− 1 connecting x to a node y ∈ Y . Note that, since H is bipartite,
P ′ alternates between nodes in X and nodes in Y .

• P ′′ is a path of length λ+ 1 connecting y to u.

Moreover, our construction will guarantee that P , P ′ and P ′′ are internally disjoint, in the sense that
P ∩P ′ = {x}, P ∩P ′′ = {u}, and P ′∩P ′′ = {y}. This is sufficient for establishing Theorem 2 as P ∪P ′∪P ′′

is a 2k-cycle in G. To exhibit these three paths, let us introduce some notations.

4.2 The Sets In and Out.

For every u ∈ V , and every i ∈ {0, . . . , ℓ}, let us denote by Qi(u) the set of simple paths of length exactly i
with one extremity equal to u, and the other extremity equal to some node in X.

For every u ∈ V , and i ∈ {0, . . . , ℓ}, we define the two sets ini(u) and outi(u) as subsets of edges from
H. Intuitively, the set outi(u) can be viewed as a set of edges that u sends to its neighbors at round i in a
(virtual) distributed protocol that broadcasts sets of edges of H throughout the network G, and ini(u) can
be viewed as a set of edges that u receives from its neighbors at round i of this protocol. For every u ∈ V ,
let

out0(u) =

{
EH(u) if u ∈ X

∅ otherwise
(3)

In the equation above, EH(u) denotes the set of edges incident to u in H. That is, out0(u) can be viewed as
the initialization of the aforementioned (virtual) broadcast protocol, i.e., initially, every node in X sends all
its incident edges to its neighbors in G. Now, let us define the sets ini(u) and outi(u) for every u ∈ V and
i ≥ 1, where, again, ini(u) can be viewed as the set of edges received by u at round i (which were sent by
u’s neighbors at round i − 1), and outi(u) can be viewed as the set of edges forwarded by u at round i. A
key point is that u does not forward all the received edges, but a carefully chosen subset of these edges.

Formally, for every u ∈ V and every i ∈ {1, . . . , ℓ}, let

ini(u) =
⋃

{w∈N(u) | ∃P∈Qi−1(w), (P,u)∈Qi(u)}

outi−1(w). (4)

That is, ini(u) merges all edges from sets outi−1(w) for all neighbors w of u such that at least one path in
Qi−1(w) can be extended into a path in Qi(u) (see Figure 1).

9

 ini(u) = outi−1(w) ∪ outi−1(w′)

 outi−1(w′)
 outi−1(w)

 outi−1(w′ ′)

 X

 P P′

 u

 w′

 w

 w′ ′

 ini(y, u) = EH(y) ∩ ini(u)

 x x′

 Y y
 EH(y)

Figure 1: Construction of the set ini(u) from the sets outi−1(w), w ∈ N(u). In the figure, ini(u) = outi−1(w)∪
outi−1(w

′) because there is a simple path P (resp., P ′) of length i− 1 from w (resp., w′) to X that can be
extended to a simple path of length i from u to X. For every y ∈ Y , ini(y, u) = EH(y) ∩ ini(u).

To define outi(u), we refine the definition of the sets ini(u) and outi(u) by considering the subsets of
edges incident to each node w ∈ X ∪ Y (see Figure 2). For every i ∈ {1, . . . , ℓ}, for every node w of H, i.e.,
for every w ∈ X ∪ Y , and every u ∈ V , let

ini(w, u) = EH(w) ∩ ini(u). (5)

For every vertex u ∈ V , and every i ∈ {1, . . . , ℓ}, we construct the edge-set outi(u) by defining, for each
y ∈ Y , a subset outi(y, u) of outi(u) containing edges of outi(u) incident to y. First, for every y ∈ Y and
u ∈ V , we set

out0(y, u) = EH(y) ∩ out0(u) =

{
{y, u} if {y, u} ∈ EH

∅ otherwise

For every u ∈ V and i ∈ {1, . . . , ℓ}, and for every y ∈ Y , we set

|ini(y, u)| < (2k)i =⇒ outi(y, u) = ini(y, u). (6)

The definition of outi(y, u) when |ini(y, u)| ≥ (2k)i requires more care. Let H
(u)
i be the subgraph of H

induced by all edges in ∪y∈Y ini(y, u) where one keeps only the large sets ini(y, u), that is,

H
(u)
i = G

 ⋃
{y∈Y : |ini(y,u)|≥(2k)i}

ini(y, u)

 . (7)

Note that, by construction, every edge e ∈ ini(u) = ∪y∈Y ini(y, u) is either in H
(u)
i , or in the set outi(y, u)

where y ∈ Y is incident to e.

We are now going to update H
(u)
i iteratively, by repeating the following sequence of “peeling” operations

as long as they can be applied, i.e., as long as vertices can be removed. This sequence of operations bears
similarities with the computation of the k-core of a graph, but the vertices of the partitions X and Y of H
are here treated separately.

10

outi(u) = ∪y∈Y outi(y, u)
u

w′

w

w′ ′

outi(u)

outi(y, u) =
ini(y, u) if | ini(y, u) | < (2k)i

EH(u)
i

(y) if | ini(y, u) | ≥ (2k)i and y is removed by peeling

Ø otherwise

Figure 2: Construction of the set outi(u) = ∪y∈Y outi(y, u) from the sets ini(y, u), y ∈ Y .

The peeling process applied to H
(u)
i

Repeat until no nodes can be removed:

1. Remove from H
(u)
i all vertices x ∈ X of degree smaller than k, along with their incident

edges in H
(u)
i , and update the degree of each vertex in H

(u)
i accordingly;

2. Remove from H
(u)
i all vertices y ∈ Y of degree smaller than k, along with their incident edges

in H
(u)
i , and update the degree of each vertex in H

(u)
i accordingly;

3. For every y ∈ Y , we set

y removed at Instruction 2 =⇒ outi(y, u) = E
H

(u)
i

(y); (8)

That is, outi(y, u) is defined as the set of edges incident to y that were removed from H
(u)
i

together with y at this iteration.

For any triple i ≥ 1, u ∈ V , and y ∈ Y satisfying |ini(y, u)| ≥ (2k)i, if the value of outi(y, u) has not been
set in the above process, then it is set to outi(y, u) = ∅. That is, for every y ∈ Y ,

Eqs. (6) and (8) do not apply =⇒ outi(y, u) = ∅.

Finally, we set

outi(u) =
⋃
y∈Y

outi(y, u). (9)

Note that, for every i ≥ 1, u ∈ V , and y ∈ Y , we have

outi(y, u) = EH(y) ∩ outi(u).

This equality is extended to define, for every triple i ≥ 1, u ∈ V , and x ∈ X,

outi(x, u) = EH(x) ∩ outi(u).

4.3 Core Graphs.

The graph resulting from the above iterated process of edge- and vertex-removal from H
(u)
i is denoted by

Corei(u). The core graphs play an important role in our proof. Indeed, we will show (see Lemma 6) that if
Corei(u) is non-empty for some i ≥ 1 and u ∈ V , then G contains a 2k-cycle. The density theorem will then
follow from the fact (established in Lemma 7) that there exists i and u such that Corei(u) is non-empty.

11

Before proving Lemmas 6 and 7, let us establish a collection of statements for helping understanding the
construction above. The fact below illustrates why one can view the sets outi(u) and ini(u) as produced by
a (virtual) protocol broadcasting edges of H throughout the network G.

Fact 5. For every simple path (u0, . . . , uℓ) in G with u0 ∈ X, we have that, for every i ∈ {1, . . . , ℓ},

outi−1(ui−1) ⊆ ini(ui).

Proof. By definition of sets Qi, we have that, for every 1 < i ≤ ℓ,

(u0, . . . , ui−1) ∈ Qi−1(ui−1), and (u0, . . . , ui−1, ui) ∈ Qi(ui).

Then by definition of ini(ui) (cf. Eq. (4)), it follows that outi−1(ui−1) ⊆ ini(ui).

Lemma 5. For every i ∈ {0, . . . , ℓ}, u ∈ V , and e = {x, y} ∈ ini(u) with x ∈ X and y ∈ Y , there is a simple
path (u0, . . . , ui) in G such that u0 = x, ui = u, and e ∈ ∩i−1

j=0outj(y, uj).

Proof. Let ui = u. We show the following statement by induction on j = i down to j = 1. There is a simple
path

(Pj−1, uj , . . . , ui) ∈ Qi(ui)

such that Pj−1 ∈ Qj−1(uj−1) for some node uj−1 ∈ N(uj), and e ∈ outj−1(uj−1).

• The base case is j = i. By definition of ini(ui) (cf. Eq. (4)), there exists (Pi−1, ui) ∈ Qi(ui) such that
Pi−1 ∈ Qi−1(ui−1) for some ui−1 ∈ N(ui), and e ∈ outi−1(ui−1). Furthermore, by definition of Qi(ui),
we have ui /∈ Pi−1.

• For the induction case, let us assume that the claim is true for j + 1 where j ∈ {1, . . . , i − 1}. By
induction, e ∈ outj(uj), and, by construction of outj(uj), it also holds that e ∈ inj(uj). This follows

directly from Eq. (6), or from Eq. (8) after having noticed that, thanks to Eq. (7), E(H
(u)
i) ⊆ ini(u).

Using Eq. (4) as in the base case, all points in the claim are satisfied.

Applying the claim for j = 1, we get that there exists a path (P0, u1, . . . , ui) such that P0 ∈ Q0(u0) for some

node u0 ∈ N(u1), e ∈
⋂i−1

j=0 outj(uj), and uj /∈ {u0, . . . , uj−1} for all j ∈ {1, . . . , i}. The latter ensures that
the path (u0, . . . , ui) is simple. Using the definition of the set Qj for j = 0, it follows that P0 = (u0) = (x).

Moreover, since e is incident to y, and since e ∈
⋂i−1

j=0 outj(uj), we get e ∈
⋂i−1

j=0 outj(y, uj).

Fact 6. For all i ∈ {1, . . . , ℓ} and u ∈ V , every node y ∈ Y ∩ Corei(u) satisfies |ini(y, u)| ≥ (2k)i.

Proof. The claim follows directly from Eq. (7), and the fact that Corei(u) ⊆ H
(u)
i .

Fact 7. For all i ∈ {1, . . . , ℓ} and u ∈ V , every node w ∈ Corei(u) is of degree at least k in the graph
Corei(u).

Proof. The claim follows directly from the fact that, in the construction of Corei(u), all nodes w ∈ X ∪ Y
with degree smaller than k are removed (cf. Steps 1 and 2 in the peeling).

Fact 8. For every i ∈ {1, . . . , ℓ}, y ∈ Y , and u ∈ V , we have |outi(y, u)| < (2k)i.

Proof. The claim follows from the construction of set outi(y, u). If the set was constructed by Eq. (6) then
outi(y, u) = ini(y, u), and its size is smaller than (2k)i. If the set outi(y, u) was constructed by Eq. (8) then

it contains edges adjacent to y in H
(u)
i that were removed, precisely because the current degree of y was

smaller than k. The remaining case is outi(y, u) = ∅ for which the claim holds trivially.

Fact 9. For every i ∈ {1, . . . , ℓ}, u ∈ V , and x ∈ X, we have

|ini(x, u)| ≤ |outi(x, u)|+ degCorei(u)(x) + k − 1.

12

Proof. Let us consider an edge e = {x, y} ∈ ini(x, u) with x ∈ X and y ∈ Y . By Eq. (5), we have e ∈ ini(y, u).
The edge e satisfies one and only one of the following four cases.

1. e joins outi(y, u) by applying Eq. (6);

2. e is removed from H
(u)
i along with vertex x ∈ X (cf. Step 1 in the peeling);

3. e is removed from H
(u)
i along with vertex y ∈ Y (cf. Step 2 in the peeling) — the edge e is then added

to outi(y, u) according to Eq. (8);

4. e is never removed from H
(u)
i — in this case, e belongs to Corei(u);

In the first and third cases, we have e ∈ outi(u) thanks to Eq. (9), and thus e ∈ outi(x, u). The second case
applies to at most k−1 edges from ini(x, u). Finally, at most degCorei(u)(x) edges satisfy the fourth case.

We are now ready to establish one of the two main arguments in the proof of our density theorem.

Lemma 6. If there exist i ∈ {1, . . . , ℓ} and u ∈ V such that Corei(u) ̸= ∅ then there is a 2k-cycle in G.

Proof. We construct the aforementioned paths P, P ′, and P ′′ whose union forms a 2k-cycle (see Figure 3).
Note that, as a subgraph of ini(u), which is itself a subgraph of the bipartite graph H, Corei(u) is also
bipartite. Its two parts are merely X ∩ V (Corei(u)) and Y ∩ V (Corei(u)). Let e = {x, y} be an edge of
Corei(u) such that x ∈ X and y ∈ Y . By Lemma 5, there exists a simple path

P = (u0, . . . , ui)

such that u0 = x, ui = u, and

{x, y} ∈
i−1⋂
j=0

outj(y, uj).

xk−i

X YH = (X, Y, EH)

x
y {x, y} ∈ Corei(u)

u

u1

u2

ui−1

y1x1

yk−i

xk−i−1
path P

path in P′ Corei(u)

u′ 1

u′ 2

u′ i−1

path P′ ′

y2

Figure 3: Construction of the paths P, P ′, and P ′′ in the proof of Lemma 6

13

We aim at constructing a path P ′ in Corei(u) that starts at x0 = x, and ends at some node yk−i, of
length 2(k − i) − 1. We build this path iteratively, by increasing its length. For the base case, note that
x ∈ X ∩ Corei(u), and thus, by Fact 7, we get that

degCorei(u)(x) ≥ k > ℓ ≥ i.

It follows that there exists
y1 ∈ NCorei(u)(x)∖ {u1, . . . , ui}.

The node y1 belongs to Y , and the path P ′ is initialized to P ′
1 = (x0, y1) = (x, y1). For the induction step,

let us assume that a path
P ′
j = (x0, y1, x1, . . . , yj−1, xj−1, yj)

has been constructed, with x0 = x and 1 ≤ j < k − i. As yj ∈ Y ∩ Corei(u), and since, by Fact 7,

degCorei(u)(yj) ≥ k > i+ j,

we get that there exists
xj ∈ NCorei(u)(yj)∖ {u1, . . . , ui, x0, x1, . . . , xj−1}.

We have xj ∈ X. The path P ′
j can thus be extended into the path Q′

j = (x0, y1, x1 . . . , yj , xj). Moreover, as
xj ∈ X ∩ Corei(u) and

degCorei(u)(xj) ≥ k > i+ j,

we get that there exists
yj+1 ∈ NCorei(u)(xj)∖ {u1, . . . , ui, y1, . . . , yj}.

We have yj+1 ∈ Y . The path Q′
j can thus be extended into the path

P ′
j+1 = (x0, y1, x1, . . . , yj , xj , yj+1).

We can proceed with the construction until we get a path

P ′ = P ′
k−i = (x0, y1, x1, . . . , yk−i−1, xk−i−1, yk−i)

of length 2(k − i)− 1, as desired.
We now aim at extending P ∪ P ′ into a 2k-cycle, by constructing a simple path P ′′ starting at yk−i and

ending at u that does not intersect P ∪ P ′. For this purpose, let us consider the set of edges:

A =
⋃

w∈P∪P ′

i−1⋃
j=1

outj(yk−i, w).

Together, P and P ′ contain exactly 2k − i vertices. By Fact 8, we have that, for every j ∈ {1, . . . , i− 1},

|outj(yk−i, w)| ≤ (2k)j ,

from which it follows that
|

⋃
w∈P∪P ′

outj(yk−i, w)| ≤ (2k − i)(2k)j .

Therefore,

|A| ≤ (2k − i) ·
i−1∑
j=1

(2k)j .

Let us now consider the set Xbad of vertices in P ∪ P ′ that are also in X, i.e.,

Xbad =
(
X ∩ {u1, . . . , ui}

)
∪ {x0, . . . , xk−i−1}.

14

We have |Xbad| ≤ k, and thus

|A|+ |Xbad| ≤ (2k − i) ·
i−1∑
j=1

(2k)j + k

= (2k − i) ·
i−1∑
j=0

(2k)j − (2k − i) + k

= (2k − i) · (2k)
i − 1

2k − 1
− k + i

≤ ((2k)i − 1)− k + i

< (2k)i.

Since yk−i ∈ Corei(u), it follows from Fact 6 that |ini(yk−i, u)| ≥ (2k)i. As a consequence,

|A|+ |Xbad| < |ini(yk−i, u)|.

Therefore, there exists xk−i ∈ Nini(u)(yk−i) such that xk−i /∈ P ∪ P ′, and, for every j ∈ {1, . . . , i − 1} and
every w ∈ P ∪ P ′,

{yk−i, xk−i} /∈ outj(w).

By Lemma 5, there exists a path P ′′ = (u′
0, . . . , u

′
i) such that u′

0 = xk−i, u′
i = u, and, for every j ∈

{1, . . . , i− 1},
{yk−i, xk−i} ∈ outj(u

′
j).

Thus P ′′ does not intersect P ′, and it intersects P only at u = ui. Therefore, the union of the three paths

P ∪ P ′ ∪ P ′′ = (u, ui−1, . . . , u1, x0, y1, x1, . . . , xk−i−1, yk−i, xk−i, u
′
1, . . . , u

′
i−1)

forms a 2k-cycle, which concludes the proof.

Lemma 7. There exists i ∈ {1, . . . , ℓ− 1} and u ∈ V such that Corei(u) ̸= ∅.

Proof. The proof goes by contradiction. Let us assume that, for every i ∈ {1, . . . , ℓ−1} and every u ∈ V , we
have Corei(u) = ∅. We are going to show that this implies |EH | < τn/6, contradicting Fact 4 (recall that τ
was defined in Equation 2). Let x ∈ X ⊆ R(v). By definition of R(v), there exists a simple path (u0, . . . , uℓ)
of length ℓ between uℓ = v and u0 = x in G. By definition, Q0(x) = (x), and out0(x, x) = EH(x). For
establishing the contradiction, let us revisit the recursive construction of the sets outi(x, ui) for i = 1 to ℓ.
By Fact 5, for all i ∈ {1, . . . , ℓ}, we have |ini(x, ui)| ≥ |outi−1(x, ui−1)|. Thus, since Corei(u) = ∅, Fact 9
yields that

|outi(x, ui)| ≥ |ini(x, ui)| − (k − 1) ≥ |outi−1(x, ui−1)| − (k − 1).

Therefore, we get that, for every x ∈ X and i ∈ {1, . . . , ℓ},

|outi(x, ui)| ≥ |out0(x, x)| − i(k − 1) = |EH(x)| − i(k − 1).

15

As X is one of the two parts of the bipartite graph H, Fact 8 implies that

|EH | =
∑
x∈X

|EH(x)|

≤
∑
x∈X

(
|outℓ(x, u)|+ ℓ(k − 1)

)
= |outℓ(u)|+

∑
x∈X

ℓ(k − 1)

=
∑
y∈Y

|outℓ(y, u)|+ ℓ(k − 1) · |X|

< (2k)ℓ · |Y |+ ℓ(k − 1) · |X|
< (2k)ℓ · (|Y |+ |X|)
≤ (2k)ℓ · n

=
τ

6
· n

The latter inequality is the desired contradiction.

Proof of Theorem 2. By Lemma 7, there exists i ∈ {1, . . . , ℓ − 1} and u ∈ V such that Corei(u) ̸= ∅. The
existence of a 2k-cycle can then be concluded with Lemma 6.

5 Conclusion

We have proved that, for every k ≥ 2, there exists a deterministic distributed algorithm that decides whether
the input graph G is C2k-free in O(n1−1/k) rounds under the CONGEST model. This result is based on a
new result in graph theory, which essentially states that when some form of “local density” exceeds a certain
threshold (that depends on k) in a graph, that graph must contain a 2k-cycle.

We point out that our deterministic algorithm for C2k-freeness can be used to solve the same problem in
the Quantum CONGEST model in Õ(n1/2−1/2k) rounds, following the same approach as in [?]. Informally, the
approach consists in three steps : (1) apply the “diameter reduction” technique of [?], which allows to reduce
the problem to graphs of polylogarithmic diameter, (2) operate a “congestion reduction” on Algorithm 2 to
make it work in a constant number of CONGEST rounds, at the cost of reducing the probability for cycle
detection to Θ(n−1+1/k), and (3) eventually use an “amplification technique” based on quantum Grover
search to obtain a constant probability of detecting a C2k, if exists, in Õ(n1/2−1/2k) rounds. The same round
complexity was already attained in [?], but the new algorithm is considerably simpler.

Note that the constant 6 ·(2k)ℓ in our density theorem is not tight, at least for some values of k and ℓ. For
instance, for k = 2, and ℓ = 1, our theorem states that if there exists v ∈ V such that

∑
u∈N(v) deg(u) > 24·n,

then there is a 4-cycle in G whereas, in fact, there is a 4-cycle in G already when
∑

u∈N(v) deg(u) > 2 · n.
We let as an open problem the determination, for every k ≥ 2 and ℓ ∈ {1, . . . , k − 1}, of the smallest value
τ = τ(k, ℓ) such that the existence of a node v for which

∑
u∈Rℓ(v)

deg(u) > τ · n implies the existence of a
2k-cycle.

Arguably one of the main open problems in the field of distributed subgraph detection under the CON-
GEST model is whether O(n1−1/k) is the best round-complexity that can be achieved for 2k-cycle detection,
whether it be by deterministic or randomized algorithms, up to polylogarithmic factors. It is known to be the
case for k = 2, i.e., the round-complexity of C4-freeness is Ω̃(

√
n), but it is open for k > 2. In other words,

is it true that, for every k ≥ 2, C2k-freeness cannot be decided under the CONGEST model in õ(n1−1/k)
rounds?

16

References

17

	Introduction
	Model and Preliminary Results
	The Broadcast CONGEST Model
	Deciding C4-Freeness
	Detection of Light 2k-Cycles
	Filtered Flooding
	Representative Lemma
	Application to Cycle Detection

	Deterministic Even-Cycle Detection
	Algorithm Description
	Proof of Theorem 1

	Proof of Density Theorem
	General Construction
	The Sets In and Out.
	Core Graphs.

	Conclusion

