
Approximate Satisfiability and Equivalence∗

Eldar Fischer† Frédéric Magniez‡ Michel de Rougemont§

Abstract

Inspired by Property Testing, we relax the classical sat-
isfiability U |= F between a finite structure U of a class K
and a formula F , to a notion of ε-satisfiability U |=ε F ,
and the classical equivalence F1 ≡ F2 between two formu-
las F1 and F2, to ε-equivalence F1 ≡ε F2 for ε > 0. We
consider the class of strings and trees with the edit distance
with moves, and show that these approximate notions can
be efficiently decided.

We use a statistical embedding of words (resp. trees)
into �1, which generalizes the original Parikh mapping, ob-
tained by sampling O(f(ε)) finite samples of the words
(resp. trees). We give a tester for equality and member-
ship in any regular language, in time independent of the
size of the structure. Using our geometrical embedding, we
can also test the equivalence between two regular proper-
ties on words, defined by Monadic Second Order formulas.
Our equivalence tester has polynomial time complexity in
the size of the automaton (or regular expression), for a fixed
ε, whereas the exact version of the equivalence problem is
PSPACE-complete.

Last, we extend the geometric embedding, and hence
the tester algorithms, to infinite regular languages and
to context-free languages. For context-free languages,
the equivalence tester has an exponential time complexity,
whereas the exact version is undecidable.

1 Introduction

Let K be a class of finite structures with a distance dist
between structures. In the classical setting, satisfiability is
the decision problem whether U |= F for a structure U ∈ K
and a formula F , and equivalence is the decision problem
F1 ≡ F2, i.e. whether U |= F1 iff U |= F2 for all U ∈ K,

∗Work supported in part by grants ACI-SI: VERA and AlgoQP of the
French Ministry of research, and by an Israel Science Foundation grant
number 55/03

†Faculty of Computer Science, Technion – Israel institute of technol-
ogy, Haifa 32000, Israel, eldar@cs.technion.ac.il

‡CNRS–LRI, Université Paris–Sud, France, magniez@lri.fr
§LRI & Université Paris II, France, mdr@lri.fr

for two formulas F1 and F2. Equivalence is typically very
hard as a function of the size of the formulas, and in some
cases undecidable. For any ε > 0, two structures are ε-close
if their normalized distance is at most ε, and otherwise they
are ε-far. We introduce the notions U |=ε F and F1 ≡ε F2

based on Property Testing. U |=ε F if there exists a U ′ ε-
close to U such that U ′ |= F , otherwise U �|=ε F . F1 ≡ε F2

if all but finitely many structures that satisfy U |= F1 satisfy
also U |=ε F2, and conversely.

An ε-tester for a property P defined by a formula F on
K, is a randomized algorithm which takes a finite structure
U ∈ K of size n as input, and distinguishes with high prob-
ability between U |= F and U �|=ε F . A property P is
testable if there exists a randomized algorithm A such that,
for every ε > 0 as input, A(ε) is an ε-tester of P whose
time complexity only depends on ε, i.e. is independent of
the size n. An equivalence tester for a logic L is an algo-
rithm that can distinguish between F1 ≡ F2 and F1 �≡ε F2,
for any two formulas F1, F2 ∈ L.

We consider the class of strings and trees with a specific
distance, and show that these approximate notions can be
efficiently decided for important properties. These decision
methods are robust, in the sense that they are adaptable to
noisy inputs. They are well adapted to environments such
as XML data on the Web represented by unranked labelled
trees or Genomics data represented by strings.

Property testing of regular languages was first consid-
ered in [2] for the Hamming distance, and then extended
to languages recognizable by bounded width read-once
branching programs [16], where the Hamming distance be-
tween two words is the minimal number of character substi-
tutions required to transform one word into the other. The
edit distance between two words (resp. trees) is the minimal
number of insertions, deletions and substitutions of a letter
(resp. node) required to transform one word (resp. tree)
into the other. The edit distance with moves considers one
additional operation: Moving one arbitrary substring (resp.
subtree) to another position in one step. Our results depend
on this last specific distance and in particular do not apply
to the edit distance without moves.

We develop a statistical embedding of words (into �1)
which has similarities with the Parikh mapping [17]. Based
on this embedding, we develop an ε-tester (Theorem 3.1)

1

for the equality between two words whose complexity is
|Σ|O(1/ε), where |Σ| is the alphabet size. Our tester is also
tolerant, that is it is not only an ε-tester, but it also accepts
with high probability words that are ε2-close. The notion
of tolerance, initially present in self-testing, was firstly not
considered in property testing. Recently, coming back to
this notion, a relation between tolerant property testing and
weak approximation was pointed out in [18]. Based on this
observation and our tolerant tester, we directly get an ap-
proximation algorithm for the normalized edit distance with
moves between two words (Corollary 3.2), whose com-
plexity is |Σ|O(1/ε). To our knowledge this is the first such
approximation algorithm whose complexity is independent
of the size n.

Computing the edit distance with moves is NP-hard [21]
but can be approximated within an Õ(lnn) factor only in
near linear time [10]. It has been used in [13] for testing
regular languages, where the tester is more efficient and
simpler than the one of [2], and can be generalized to tree
regular languages. We note that the edit distance without
moves, whose value always lies between the Hamming dis-
tance (for which there is a trivial tolerant tester) and the edit
distance with moves (for which we prove the existence of a
tolerant tester), is in itself hard for tolerant testing [3].

Then we extend our embedding to languages. This
leads us to an approximate geometrical description of reg-
ular languages by finite unions of polytopes, which is ro-
bust (Theorem 3.2). Discretizing this representation gives
us a new ε-tester (Theorem 3.3) for regular languages
whose query complexity is |Σ|O(1/ε) and time complexity
is 2|Σ|O(1/ε)

. Whereas the complexity of previous testers for
regular languages depended (exponentially) on the number
of states m of the corresponding automaton (whether it is
deterministic or non-deterministic), here the tester construc-
tion requires time m|Σ|O(1/ε)

, which is polynomial in m for
a fixed ε. In addition, the automaton here is only used in a
preprocessing step to build the tester, which is independent
of the size of the input.

Using again discretization, we construct an ε-
equivalence tester (Theorem 3.4) for nondeterministic
finite automata in deterministic polynomial time, that
is m|Σ|O(1/ε)

(where the exact decision version of this
problem is PSPACE-complete by [22]). We then extend
this result to the ε-equivalence testing of Büchi automata
(Theorem 3.5) (after generalizing our definitions to deal
also with languages of infinite words), and a deterministic
exponential time algorithm for the ε-equivalence testing
of context-free grammars (Theorem 3.6) (for which the
exact decision version is not even recursively computable).
Equivalence testers decide if MSO (Monadic second-order)
formulas on strings are ε-equivalent. Approximate Model-
Checking could generalize this approach to other Logics in
the future, when exact Model-Checking remains infeasible.

Last we consider 2-ranked ordered trees, but our results
generalize to any ranked trees. When trees are interpreted
as graphs, their edit distance with moves is closely related
to the minimal number of edges one has to add or remove
in order to get one tree from the other. This distance was
highly used in the context of property testing in bounded-
degree graphs [12]. We define a compression of trees by a
relabeling of the tree. Basically, all small subtrees are re-
moved and encoded into the labels of their ancestor nodes.
Such a compression removes a large fraction of 2-degree
nodes, and can therefore be used to encode any ranked tree
T into a word w(T). Since our �1-embedding of w(T) can
be approximately sampled from samples on T , some of our
previous results on words can be extended to trees. Then
the tree isomorphism problem is testable (Theorem 4.1).
This is unlike the context of dense graphs where there is a
negative result [1]. In addition, regular tree languages have
an (ε4, O(ε))-tolerant tester (Theorem 4.2) whose query

complexity is |Σ|O(1/ε5) and time complexity is 2|Σ|O(1/ε5)
.

Again, as opposed to previous testers for tree regular lan-
guages [13], here the automaton is only used in a prepro-
cessing step to build the tester, in time exponential in the
tree automaton size for fixed ε.

2 Preliminaries

Let K be a class of finite structures U , such as words
or trees. A property P is a subset of K. A formula F in
the language of K is defined in some Logic such as First-
Order Logic or Monadic Second-Order Logic, and we use
the logical characterization of regular properties of words
(resp. trees) by Monadic Second Order Logic. We say that
U ∈ K satisfies P , or U |= P , when U ∈ P . When
P is defined by a formula F , we extend this notation to F .
Instead of properties, we may speak of classes or languages,
and in particular, regular languages of words and trees.

2.1 Distances on Words and Trees

An elementary operation on a word w is either an inser-
tion, a deletion or a substitution of a letter, or the move of a
subword of w into another position. The edit distance with
moves dist(w,w′) between w and w′ is the minimal number
of elementary operations performed on w to obtain w′.

The above distance is extended to trees by generalizing
the elementary operations. An elementary operation (see
Figure 1) on an unranked ordered tree T is either an inser-
tion or a deletion of a node [23], the substitution of a label,
or the move of an entire subtree [13]. More precisely, a
move (u, v, i) moves in one step u (and the corresponding
subtree rooted at u) to be the i-th successor of v, shifting all
the j successors of v for j ≥ i by one. As a consequence,
the new parent of u is now v. When trees are specified to

be r-ranked, we will restrict ourselves only to deletions and
moves that gives a r-ranked tree.

v

u
i j i 1 j+1

1 j i+1

Insertion (u, ,v,i,j)

Move (u,v,2)v

u u

v

Figure 1. Elementary operations on trees.

2.2 Approximate Satisfiability and Equivalence

We define the notion of approximate satisfiability as in
property testing [11]. Let K be a class of finite structures
U with a distance dist between structures. Since property
testing is an approximate notion of verification for dense
instances, or equivalently for normalized distances, we first
define a suitable notion of closeness for any distance dist.
We say that U,U ′ ∈ K are ε-close if their distance is at
most ε × M , where M is a normalization factor, that is the
maximum of dist(V, V ′) when V and V ′ range over K and
have respectively same sizes as U and U ′. They are ε-far
if they are not ε-close. For words and trees, M is set to
be the maximal size of the respective structures, since this
is always the order of the maximum distance. (For dense
graphs, M is the square of the maximal size of the respec-
tive structures.)

Definition 2.1. Let P be a property on K. A structure U ∈
K ε-satisfies P , or U |=ε P for short, if U is ε-close to
some U ′ ∈ K such that U ′ |= P .

When P is defined by a formula F we extend this nota-
tion to F . Note that U �|=ε P means that U is ε-far from
every U ′ such that U ′ |= P .

Definition 2.2 (Tester [11]). Let ε > 0. An ε-tester for a
property P ⊆ K is a randomized algorithm A such that,
for any structure U ∈ K as input:
(1) If U |= P , then A accepts with probability at least 2/3;
(2) If U �|=ε P , then A rejects with probability at least 2/3.

If in addition the algorithm is guaranteed to always ac-
cept if U ∈ P , then we call it a one-sided error ε-tester.
When (1) is amended as follows for some 0 < ε0 < ε:
(1’) If U |=ε0 P , then A accepts with prob. at least 2/3;
then we say that the tester is a (tolerant) (ε0, ε)-
tester [18]. Approximation algorithms are related to tol-
erant testers [18]. Let α, β : R → R and f : K → R. An

(α, β)-approximation of f is a randomized algorithm that,
for any input x, outputs a value z such that Pr[α(f(x)) ≤
z ≤ β(f(x))] ≥ 2/3.

A query to a structure U depends on the model for ac-
cessing the structure. For a word w, a query is asking for
the value of w[i], for some i. For a tree T , a query is ask-
ing for the value of the label of i, for some i, and poten-
tially for the index of its parent and its j-th successor, for
some j. We also assume that the algorithm may query the
input size. The query complexity is the number of queries
made to the structure. The time complexity is the usual def-
inition, where we assume that the following operations are
performed in constant time: arithmetic operations, a uni-
form random choice of an integer from any finite range not
larger than the input size, and a query to the input.

Definition 2.3. A property P ⊆ K is testable, if there exists
a randomized algorithm A such that, for every real ε > 0
as input, A(ε) is an ε-tester of P , and the query and time
complexities of the algorithm A depend only on ε.

We extend these definitions to any formula F that defines
P . We then introduce the new notion of equivalence testing
for two properties P1 and P2 and in particular when the
properties are definable by two formulas F1 and F2 over a
logic L.

Definition 2.4. Let ε > 0. Let F1 and F2 be two formulas
on K. Then F1 is ε-equivalent to F2, or F1 ≡ε F2 for short,
if all but finitely many structures U ∈ K that satisfy U |=
F1 satisfy also U |=ε F2, and conversely.

Definition 2.5 (Equivalence tester). Let ε > 0. A (deter-
ministic) ε-equivalence tester for L is a (deterministic) al-
gorithm A such that, given as input F1, F2 ∈ L:
(1) If F1 ≡ F2, then A accepts;
(2) If F1 �≡ε F2, then A rejects.

The probabilistic version would require modifying the
above conditions, to hold for A with probability 2/3.

3 Words

We will define several statistics over words and study
their robustness [19, 20] and soundness. Robustness means
that far words have far statistics, and soundness means that
close words have close statistics. Despite the difficulty of
computing the edit distance with moves, one can efficiently
approximate the statistics of a word. This will directly give
us a tolerant tester and then an approximation algorithm for
the normalized edit distance with moves.

We will first study the robustness of our first statistics,
the block statistics. Then we will extend the robustness to
the uniform statistics, which have the advantage of being
also sound. Last we will see how to use these statistics to ef-
ficiently decide approximate satisfiability and equivalence.

3.1 Statistical Embeddings

Let k be an integer and ε = 1/k. For a word w over a
finite alphabet Σ, we will define and study statistics of sub-
words of k consecutive letters of w for different probability
distributions.

In this section, w and w′ are two words of size n
over Σ, such that k divides n. We implicitly decompose
any word w into consecutive subwords of size k, w =
w[1]bw[2]b . . . w[εn]b, where w[i]b ∈ Σk is the i-th block
letter of w. The block statistics b-stat(w) is the statistics of
the block letters of w, that is, for every u ∈ Σk, the value
b-stat(w)[u] is equal to the probability that for a uniformly
random choice of j ∈ {1, . . . , n/k} we get w[j]b = u.

The block distribution of w is the uniform distribution
on block letters w[1]b, . . . , w[εn]b (with some possible rep-
etitions). Let X be the random vector of size |Σ|k whose
coordinates are 0 except the u-coordinate which is 1, for a
randomly chosen u according to the block distribution of w.
The expectation of X satisfies E(X) = b-stat(w).

We want to construct statistics that are both robust and
sound. Since the block statistics will appear to be non ro-
bust, we define other statistics using variants of the block
distribution. The uniform distribution u-stat(w) corre-
sponds to a uniform and random choice of a subword of
size k of w. This is very much related to the previous work
of [8], where the subwords of length k were referred to by
the term “shingles”.

For example, for binary words, if k = 2 (and so ε = 0.5),
there are 4 possible subwords of length 2, which we take
in lexicographic order. For the binary word w = 000111,
b-stat(w) = (1/3, 1/3, 0, 1/3), whereas u-stat(w) =
(2/5, 1/5, 0, 2/5), as there are 2 blocks 00, 1 block 01, no
block 10 and 2 blocks 11 among the possible 5 blocks.

The block uniform distribution, defined below, will be
a link between block and uniform distributions. To de-
fine the block uniform distribution bu-stat(w) we first par-
tition w into bigger consecutive blocks of size K, where
K =
 ε3n

8 ln(|Σ|)|Σ|2/ε �. To simplify, we assume that k di-
vides (K − k − 1), that n is divisible by K, and that

n = Ω((ln|Σ|)|Σ|2/ε

ε5). We call the new blocks the big blocks.
Now bu-stat(w) is defined by the following two-step proce-
dure: First, in every big block choose uniformly a random
0 ≤ t ≤ k − 1, and delete the first t letters and the last
k − 1 − t letters; then take uniformly a random block letter
in the remaining subword of the original word.

In order to construct an efficient algorithms based on
those statistics, we need to efficiently approximate them.
For this, we state a more general result that implies the
approximability of our statistics. There are several meth-
ods which can be used to obtain a Chernoff-Hoeffding type
bound on vectors. In our simple case, the use of Chernoff-
Hoeffding bound together with a direct union bound is poly-

nomially tight using an argument similar to the one of [4].

Lemma 3.1. Let f be a function from {1, . . . ,M} to R
D,

such that f(x) has non-negative coordinates and has unit
�1-norm, for every x. Let {Y1, . . . , YN} be random vari-
ables over {1, . . . ,M} independently distributed accord-
ing to the same probabilistic distribution d. Then for ev-
ery t > 0, Pr

[|Ed(f(Y)) − 1
N

∑N
i=1 f(Yi)| ≥ D × t

] ≤
D × 2e−2Nt2 .

Proof. Let μ = Ed(f(Y)) and μ̂N = 1
N

∑N
i=1 f(Yi). For

each coordinate u ∈ {1, . . . , D}, Pr[|μ[u] − μ̂N [u]| ≥
t] ≤ 2e−2Nt2 , by the Chernoff-Hoeffding bound for the
random variables Xi = f(Yi)[u] which are between 0 and
1 and whose expectation is μ[u]. We conclude using a union
bound.

As a corollary we can approximate both block and uni-
form statistics using a number of samples independent of n.
The variables Yi denote the position of the selected block
letters u of w, and Xi denote the corresponding vectors of
size |Σ|k whose u-coordinate is one and others are zero.
Let stat denote either b-stat or u-stat. Then we define
ŝtatN (w) def= 1

N

∑
i=1,...,N Xi.

Corollary 3.1. There exists N ∈ O((ln|Σ|)|Σ|2/ε

ε3) for which
Pr[|stat(w) − ŝtatN (w)| ≥ ε] ≤ 1

3 , where stat denotes
either b-stat or u-stat.

3.2 Robustness and Soundness

Note that b-stat(w) = b-stat(w′) iff w′ can be obtained
by a permutation of the block letters of w (since w and w′

have same size). This can be extended when the equality
is only approximate, by relating the distance between two
words to the �1-distance of their respective block statistics.

Lemma 3.2 (Robustness). dist(w,w′) ≤ (1
2 |b-stat(w) −

b-stat(w′)| + ε) × n.

Proof. If b-stat(w) = b-stat(w′), the distance dist(w,w′)
is at most εn as we only need to move εn block letters.
Otherwise, we will construct a word w′′ from w such that
b-stat(w′′) = b-stat(w′), using at most n

2 |b-stat(w) −
b-stat(w′)| substitutions. Applying the triangle inequality
and the previous case, we obtain the desired result.

Collect in X+ the positions i of block letters w[i]b
such that b-stat(w)[w[i]b] > b-stat(w′)[w[i]b], and
in X− the positions j such that b-stat(w)[w′[j]b] <
b-stat(w′)[w′[j]b]. Note that X+ and X− have the same
cardinality, which is n

2k |b-stat(w) − b-stat(w′)|. Initially
we let w′′ = w. Until X+ �= ∅ repeat the following: take
any i ∈ X+ and j ∈ X−; replace in w′′ the letters of
w′′[i]b = w[i]b with those of w′[j]b (using at most k substi-
tutions); remove i from X+ and j from X−. The resulting
word w′′ satisfies the required conditions.

We now prove that u-stat is both robust and sound,
which leads to an estimator of the distance for far away in-
stances, whereas b-stat is only robust. For instance, the
words (01)n and (10)n are 1

2n -close, whereas for an even k
their block statistics are Ω(1)-far. The proof of the robust-
ness of u-stat will use in an intermediate step the robustness
of the block uniform statistics bu-stat. For the soundness of
u-stat, the proof is much simpler.

Lemma 3.3 (Soundness). Let n = Ω(1
ε). If dist(w,w′) ≤

ε2n then |u-stat(w) − u-stat(w′)| ≤ 6.1ε.

Proof. First, remember that there are at most n−k+1 sub-
words of size k in w. Assume that dist(w,w′) = 1. In case
of a simple edit operation (insertion, deletion, substitution)
on a letter, |u-stat(w) − u-stat(w′)| ≤ 2 × k

n−k+1 . For a
move operation, if w = ABCD and w′ = ACBD where
a subword B has been moved, there are three border areas
where we may choose a word of length k in w which does
not exist in w′. Conversely, there are similar borders in w′.
For each border, there are k − 1 possible subwords that in-
tersect it, hence |u-stat(w) − u-stat(w′)| ≤ 2 × 3(k−1)

n−k+1 .
If dist(w,w′) ≤ ε2n and n = Ω(1

ε), then by the triangle
inequality |u-stat(w′) − u-stat(w′)| ≤ ε2n × 6.1k

n = 6.1ε,
since k = 1

ε .

We now show that the robustness for b-stat(w) im-
plies the robustness for bu-stat(w), which then will imply
the robustness for u-stat(w). For a big block Bi, where
i = 1, . . . , n

K , we denote by vi,ti
the subword of Bi af-

ter deleting the first ti letters and the last k − 1 − ti let-
ters of Bi. Let v be the concatenations of the words vi,ti .
Then by the definition of bu-stat(w) we have bu-stat(w) =
K
n

∑n/K
i=1 Eti=0,...,k−1(b-stat(vi,ti

)) = Ev(b-stat(v)).
Intuitively one would like to use this equation directly

for extending the robustness of b-stat to bu-stat. However,
this will not work since one would need to use a triangle in-
equality in the wrong direction. Instead we use a more elab-
orate proof using a Chernoff-Hoeffding bound argument.

Lemma 3.4. There exists a word v obtained from w af-
ter deleting O((ln|Σ|)|Σ|2/ε

ε4) letters, so that |bu-stat(w) −
b-stat(v)| ≤ ε

2 .

Proof. Fix a coordinate u ∈ Σk. For every i = 1, . . . , n
K ,

let Xi be the random variable Xi
def= b-stat(vi,ti

)[u], where
ti is chosen uniformly in {0, . . . , k − 1}. We denote by
v the random word obtained from the concatenation of the
words vi,ti . Note that v is obtained from w after deleting

(k − 1) × n
K = O((ln|Σ|)|Σ|2/ε

ε4) letters.
The variables (Xi)i are independent random variables

such that 0 ≤ Xi ≤ 1 and Ev(b-stat(v)[u]) =
K
n

∑
i E(Xi) = bu-stat(w)[u]. By the Chernoff-Hoeffding

bound we then get that, for any t ≥ 0, Pr
[|bu-stat(w)[u]−

b-stat(v)[u]| ≥ t
] ≤ 2e−2(

n
K)t2 .

We repeat the same argument for every u-coordinate, and
using a union bound, we conclude that: Pr

[|bu-stat(w) −
b-stat(v)| ≥ |Σ|k × t

] ≤ |Σ|k × 2e−2(
n
K)t2 . If we set

t = ε
2|Σ|k = 1

2k|Σ|k , and use the definition of K, we con-
clude that there exists with non-zero probability a word v
that satisfies the required property about the statistics, com-
pleting the proof.

Combining the robustness of block statistics, the pre-
vious lemma, and the next lemma, which easily relates
bu-stat to u-stat, we get our robustness lemma.

Lemma 3.5. |bu-stat(w) − u-stat(w)| = O((ln|Σ|)|Σ|2/ε

ε4n).

Lemma 3.6 (Robustness). Let n = Ω((ln|Σ|)|Σ|2/ε

ε5). If
dist(w,w′) ≥ 5εn then |u-statk(w)−u-statk(w′)| ≥ 6.5ε.

Using the Soundness and Robustness Lemmas, we can
construct a one-sided error tester for the equality of two
words which is also (ε2, 5ε)-tolerant:
Uniform Tester(w,w′, ε):
Let N = Θ((ln|Σ|)|Σ|2/ε

ε3), and k = 1
ε

Compute û-statN (w) and û-statN (w′) using the same N uni-
formly random indices in {1, . . . , n − k + 1}
Accept if |û-statN (w) − û-statN (w′)| ≤ 6.25ε
Reject otherwise

Theorem 3.1. For any ε > 0, and two words w,w′ of the
same size of order Ω((ln|Σ|)|Σ|2/ε

ε5), the above test:
(1) accepts if w = w′ with probability 1;
(2) accepts if w and w′ are ε2-close with prob. at least 2/3;
(3) rejects if w and w′ are 5ε-far with prob. at least 2/3.
Moreover its query and time complexities are in
O((ln|Σ|)|Σ|2/ε

ε4).

From this (ε2, 5ε)-tolerant tester, one can derive an
(ε2, 5ε)-approximation algorithm of the distance following
the approach of [18].

Corollary 3.2. There exists an (ε2, 5ε)-approximation al-
gorithm for computing the normalized distance ε =
dist(w,w′)/|w| between every words w,w′ of the same size

in Ω(ln(|Σ|/ε)|Σ|2/ε

ε4), and with query and time complexities

in O((ln(|Σ|/ε))|Σ|2/ε

ε4).

3.3 Geometric Embedding of a Language

3.3.1 General Observations

We want to use the notion of block statistics in order to ef-
ficiently characterize a language. We choose this statistics
vector for the sake of clarity of the explanation since it is

the simplest to manipulate. Nonetheless, this work can be
extended to the uniform statistic, leading to tolerant testers,
by following a more complex approach that will appear in a
future journal version.

Using the previous section, we can embed a word w into
its block statistics b-stat(w) ∈ R|Σ|1/ε

. This characteriza-
tion is approximately one-to-one from Lemma 3.2 if the size
of the words is fixed. This means that given unlimited com-
putational power we could test any language with a constant
number of queries, by first precomputing the statistics of all
possible words of length n in that language.

However, the block statistics do not characterize words
of different lengths, as b-stat(w0) = b-stat(wt

0) for every
positive integer t, if w0 is any word whose size is a multiple
of k. This means that the set of block statistics b-stat(w) of
all the elements w ∈ L is not a good characterization of a
general language L. For instance, the word w3×2s−1

0 is (1−
1/k2s−1

)-far from the language {w2t

0 : t ≥ 1}, for every
positive integer s. Moreover, it is not hard to construct using
the appropriate powers a language whose testing algorithm
requires arbitrarily intensive computations.

To construct a test that works for all n using only one pre-
processing stage, one might consider only block statistics of
loops of a language (as provided by an appropriate pump-
ing lemma). This makes sense when any word of a language
can be decomposed into loops up to a few remaining letters.
Regular languages have this property, and context-free lan-
guages also share it when any permutation between block
letters is allowed (see Section 3.6).

3.3.2 Regular Languages on strings

We fix a finite alphabet Σ, and an automaton A (possibly
non-deterministic) on Σ with a set of states Q of size m,
that recognizes a regular language L. Let k be a positive
integer and ε = 1

k . We consider only words whose size is
divisible by k, as any word of length n of L, for n large
enough, is close to such a word. Define Ak, the k-th power
of A, as the automaton on Σk with set of states Q such that
the transitions of Ak are exactly all sequences of k consec-
utive transitions of A. Then A and Ak recognize the same
words. In the general case, one can modify Ak such that
Ak recognizes the language of words of L where the last
(|w| − k
 |w|

k �) letters are deleted.
We will characterize L by the block statistics of its loops

on the block alphabet. We remark that the statistics of the
Ak-loops basically only depend on L and k (the proof is
omitted due to the lack of space).

Definition 3.1. A word v over Σk is an Ak-loop if there
exist two words u, w over Σk and an accepting path of Ak

for uvw, such that the state of the automaton after reading
u (following the above accepting path) is identical to the

state after reading uv.
A finite set of Ak-loops is Ak-compatible if all the loops can
occur one after the other (in any order) in one accepting
path of Ak.

We define the geometric embedding of L by the union of
convex hulls of every compatible set of loops.

Definition 3.2. Let H be the union of
Convex-Hull(b-stat(v1), . . . , b-stat(vt)) when v1, . . . , vt

range over Ak-compatible loops, for every t ≥ 0.

This definition is motivated by a standard result on finite
automata: one can rearrange any word of a regular language
into a sequence of small compatible loops. We formulate
this fact in our context.

Proposition 3.1. Let w ∈ L. Then there exists a permuta-
tion of the block letters of w into w′ = vu1u2 . . . ul, such
that |v|b, |u1|b, . . . , |ul|b ≤ m and {u1, u2, . . . , ul} is an
Ak-compatible set of Ak-loops (not necessarily distinct).

A consequence together with Caratheodory’s theorem is
that one can equivalently define H when the loop sizes and
the number of compatible loops are bounded. Recall that
even if this new characterization explicitly depends on Ak

(that is on A and ε), the set H only depends on L and ε.

Proposition 3.2. H equals the union of
Convex-Hull(b-stat(v1), . . . , b-stat(vt)) when v1, . . . , vt

range over Ak-compatible loops such that |vi|b ≤ m and
t = |Σ|1/ε + 1.

Another consequence of this proposition is that if a
word w belongs to L, then it has to satisfy approximately
b-stat(w) ∈ H (Lemma 3.7). This can be understood
as an approximate Parikh classification of regular lan-
guages, whereas the original Parikh characterization was for
context-free languages [17]. The converse is also approxi-
mately true (Theorem 3.2).

As an example, let L = (010)∗0∗ and k = 2. Let s1 =
b-stat((010)2) = (1/3, 1/3, 1/3, 0), s2 = b-stat(00) =
(1, 0, 0, 0), then HL = Convex-Hull(s1, s2).

Lemma 3.7. For every w ∈ L there exists w′, so that
0 ≤ |w| − |w′| ≤ m

ε , dist(w,w′) ≤ m
ε , |b-stat(w) −

b-stat(w′)| ≤ 2m
ε|w| , and b-stat(w′) ∈ H.

Lemma 3.8. For every X ∈ H and every n there exists
w ∈ L, such that 0 ≤ |w| − n ≤ (|Σ|1/ε + 3) 2m

ε and
|X − b-stat(w)| ≤ (|Σ|1/ε + 2) 3m

εn .

Proof. Let X ∈ H, that is X =
∑l

i=1 λi b-stat(ui),
where l = |Σ|k + 1, |ui|b ≤ m, 0 ≤ λi ≤ 1 and∑

i λi = 1. Fix any integer n. We choose non-negative
integers (ri)i=1,2,...,l that respectively approximate λi

εn
|ui|b ,

that is satisfy 0 ≤ |ri − λi
εn

|ui|b | ≤ 1, and such that

0 ≤ ∑
i ri|ui|b − εn ≤ m. It is always possible to sat-

isfy this last condition due to the degree of freedom on
the choices of ri and the upper bound |ui|b ≤ m: We let
j ≥ 0 be the minimum integer so that

∑j
i=1λi

εn
|ui|b �|ui|b+∑l

i=j+1
λi
εn

|ui|b �|ui|b ≥ 0, and set ri = λi
εn

|ui|b � for i ≤ j

and ri =
λi
εn

|ui|b � for i > j.
Define the word w′ = ur1

1 ur2
2 . . . url

l . Then its block
length is close to εn: 0 ≤ |w′|b − εn ≤ m. Moreover its
block statistics satisfies

|b-stat(w′) − X|

=

∣∣∣∣∣
∑

i

(
ri

|ui|b
|w′|b − λi

)
b-stat(ui)

∣∣∣∣∣ ≤
∑

i

|ri
|ui|b
|w′|b − λi|

≤
∑

i

|ri
|ui|b
|w′|b − ri

|ui|b
εn | +

∑
i

|ri
|ui|b
εn − λi|

≤
∑

i

ri|ui|b × | 1
|w′|b − 1

εn | +
∑

i

m
εn

≤ (m + εn) × (1
εn − 1

m+εn) + l m
εn = m

εn + l m
εn .

Using Ak-compatibility, we can get a word of L from w′

by inserting few block letters. Let v0ui1v1ui2v2 . . . uil
vl ∈

L be the witness of the Ak-compatibility of the loops
u1, . . . , ul, such that |vj |b ≤ m for every j, and where
(i1, . . . , il) is a permutation of (1, . . . , l). Then w =
v0u

ri1
i1

v1u
ri2
i2

v2 . . . u
ril
il

vl ∈ L by construction. Moreover
0 ≤ |w|b−|w′|b ≤ (l+1)m, and |b-stat(w′)−b-stat(w)| ≤
2(l+1)m

εn , so we conclude.

Theorem 3.2. Let w ∈ Σn and X ∈ H be such that
|b-stat(w) − X| ≤ δ. Then

dist(w,L) ≤
(

δ
2 +

(
1 + O(m|Σ|1/ε

ε2n)
)
ε
)
n.

3.3.3 Construction of H
One of the remaining tasks is to efficiently construct H for
a given automaton A with m states. One could try to enu-
merate all Ak-loops of size at most m over Σk. This is not
efficient enough due to the possible large number of loops,
O(|Σ|km). Nevertheless, since we only care about block
statistics of compatible loops one can enumerate them us-
ing a standard reduction to matrix multiplication over the
appropriate algebra. The complexity is then just polyno-
mial in the number of possible corresponding block statis-
tics,

(m+|Σ|k
|Σ|k

)
= O(m|Σ|k), since a block statistics of a

word v of size at most m over Σk basically corresponds to
a partition of m into |Σ|k parts.

Lemma 3.9. Given A and ε, a set H of (|Σ|1/ε + 1)-tuples
of vectors can be computed in time m|Σ|O(1/ε)

such that
|H| ≤ m|Σ|O(1/ε)

and H =
⋃

S∈H Convex-Hull(S).

For a regular language, the set H is a subset of the unit
ball of R|Σ|k for the �1-norm. Let us consider the grid
Gε = {0, ε

|Σ|k , 2ε
|Σ|k , . . . , 1}|Σ|k of the cube [0, 1]|Σ|k with

step ε
|Σ|k . Let Hε be the set of points of Gε that are at

distance at most ε
2 from H (for the �1-distance). Since

|Gε| = (k|Σ|k +1)|Σ|k = 2|Σ|O(1/ε)
, then |Hε| = 2|Σ|O(1/ε)

.
Moreover, one can easily construct it from H .

Proposition 3.3. Given A and ε, the set Hε can be com-
puted in time m|Σ|O(1/ε)

.

3.4 Property and Equivalence Testers

Theorem 3.3. For every real ε > 0 and regular language L
over a finite alphabet Σ, there exists an ε-tester for L whose
query complexity is in O((ln|Σ|)|Σ|2/ε

ε4) and whose time com-
plexity is in 2|Σ|O(1/ε)

.
Moreover, given an automaton with m states that recognizes
L, the tester can be constructed in time m|Σ|O(1/ε)

.

Proof. We fix ε > 0, and automaton A with m states that
recognizes L. We construct a 3ε-tester for L whose correct-
ness directly follows from the previous section. Let w be a
word given as input. We assume that |w|/(m|Σ|1/ε

ε2) is large
enough, otherwise we just run the automaton on w.

The tester is in two steps: a preprocessing step and the
testing step itself. Given A and ε, one can compute Hε

in time m|Σ|O(1/ε)
from Proposition 3.3. Now the test-

ing part consists of computing an estimation b̂-statN (w) of

b-stat(w) as in Corollary 3.1, where N = Θ((ln|Σ|)|Σ|2/ε

ε3),

using O((ln|Σ|)|Σ|2/ε

ε4) queries to w. If b̂-statN (w) is at dis-
tance at most 2ε from Hε, the tester accepts, and otherwise
it rejects.

Theorem 3.4. There exists a deterministic algorithm T
such that, for every ε > 0 as input, T (ε) is an ε-equivalence
tester for automata over a finite alphabet Σ. Moreover the
running time complexity of T is in m|Σ|O(1/ε)

, where m is
the input automata size.

Proof. Fix ε > 0. The algorithm simply computes the re-
spective discrete approximations HA,ε/2 and HB,ε/2 of HA

and HB corresponding to the automata A and B. If they are
equal, the tester accepts, and otherwise it rejects. The cor-
rectness proof, omitted here, essentially follows from the
previous section.

3.5 Infinite Regular Languages

We now consider an application to infinite words over
a finite alphabet Σ. In this section, all words are infinite

unless we explicitly state otherwise. A Büchi automaton
is a finite automaton A on which the notion of acceptance
has been modified as follows. For a word w ∈ Σω over
Σ and a corresponding (infinite) path in A, we denote by
InfA(w) the set of states of A which are reached infinitely
many times by the path. We say that w is accepted by A
if there exists a path for w such that InfA(w) contains an
accepting state of A. We say that A recognizes the language
of accepted infinite words. Such languages are called ω-
regular languages.

For every integer n, we denote by wn the prefix of w
of size n. Two words w,w′ are ε-close if the superior
limit limn→∞ dist(w|n , w′

|n)/n is at most ε. Last, the block
statistics b-stat(w) of w is the set of accumulation points of
the sequence (b-stat(w|n))n.

By adapting our geometric embedding for this distance,
an equivalence tester for two Büchi automata follows from
the one previously defined for regular languages (over finite
words). In this tester, we modify the Definition 3.2 of H, by
simply restricting ourselves to the loops of (strongly) con-
nected components of the accepting states of Ak (we could
also extend Theorem 3.3 to lasso words as in [9]).

Definition 3.3. For every connected component C of Ak,
let HC be the convex hull of the vector set {b-stat(w) :
w is a loop in C s.t. |w|b ≤ m}. We denote by H′ the union⋃

C HC where C ranges over all connected components of
Ak that contain an accepting state and are reachable from
an initial state.

Theorem 3.4 is then valid for nondeterministic Büchi au-
tomata, with H′ taking the place of H.

Theorem 3.5. There exists a deterministic algorithm T
such that, for every ε > 0 as input, T (ε) is an ε-equivalence
tester for Büchi automata over a finite alphabet Σ. More-
over the running time complexity of T is in m|Σ|O(1/ε)

,
where m is the input automata size.

This result has a direct application for the Logic LTL,
Linear Time Logic. A classical construction associates a
Büchi automaton to an LTL formula, whose size can be ex-
ponential in the size of the formula. When exact Model
Checking is infeasible, we can use our approximate Equiv-
alence tester with a fixed small parameter ε.

3.6 Context-Free Languages

We can construct an exponential time test and an equiva-
lence tester for context-free languages, given by their gram-
mar, or by their push-down automaton (the two represen-
tations are polynomially equivalent so we can switch back
and forth between them as convenient). In comparison, the
exact decision problem of whether two context-free gram-
mars define the same language is not decidable.

The proof uses the original Parikh theorem about spectra
of context-free languages, that provides a formula defining
a semi-linear set on the letter counts of all possible words.
The exponential blow-up in the grammar size comes from
this step. From the spectrum one can calculate the set H that
approximates the block-statistics of all large enough words,
and then construct an appropriate Hε.

Therefore we can design string testers for a context-free
language (which are not possible for the usual edit distance
without moves, as the counter example in [2] works for the
edit distance as well as the Hamming distance), in analogy
to Theorem 3.3. We explicitly state the equivalence testa-
bility for context-free grammars we get as in Theorem 3.4
.

Theorem 3.6. There exists a deterministic algorithm T
such that, for every ε > 0 as input, T (ε) is an ε-equivalence
tester for context-free grammars over a finite alphabet Σ.
Moreover the running time complexity of T is exponential
in m|Σ|O(1/ε)

, where m is the input grammars size.

We note a corollary for regular expressions with squar-
ing. Although they recognize only regular languages,
their (exact) equivalence problem is EXPSPACE-complete
by [15], so the exponential time algorithm given here can be
considered as a slight improvement. Applying the previous
theorem, we can obtain an equivalence tester.

4 Trees

To simplify the discussion we will consider only 2-
ranked labeled ordered, trees but our results can be extended
to any ranked trees. Let Σ be the finite label alphabet. The
size of a tree is the number of its nodes, which we will de-
note by n. The degree of a node is the number of its succes-
sors. Let k be an integer and ε = 1/k.

We define the k-compression of a tree T , which basi-
cally consists of removing every node whose subtree has
size ≤ k, and encoding the removed subtrees into the labels
of their ancestor nodes. This compression leads naturally to
a word w(T) that encodes T such that u-stat(w(T)) can be
approximately sampled from samples on T . Then some of
our previous results on words can be extended to trees.

Word embedding

#

k Compression

Figure 2. k-compression and word embedding.

4.1 Compression

Initial labels are named simple labels. We introduce new
tree labels for leaves l whose purpose is to encode a subtree
from l. We also interpret a simple label on a leaf as a tree
label. A mixed label is an ordered pair of a simple label
and a tree label, whose tree label encodes the subtree of the
corresponding successor. Notice that an internal node might
have either a simple label or a mixed label. Such a labeled
tree encodes T when expanding the tree labels (from leaves
and from the tree components of mixed labels) leads to the
initial tree T .

The size of a simple label is 1. The size of a tree label is
the size of the tree that it encodes. The size of a mixed label
is the sum of the sizes of its labels, that is 1 plus the size of
its tree label part.

Definition 4.1. Let T be a tree and k ≥ 1 be an integer. The
k-compression Tk of T is the tree encoding of T such that
each tree label has the minimal possible value in [k, 2k−1].

The k-tree alphabet (denoted Σ(k)), is the set of any pos-
sible labels that come from a k-compression, that is when
tree labels encode trees of size in [k, 2k − 1]. Therefore
|Σ(k)| = |Σ|O(k). The new label of a node v can be com-
puted using O(k) queries to T by the following procedure
that either computes its label on Tk, or rejects if v is not
anymore in Tk.
Encode(T, v, k)
If the subtree from v in T has size < k then Reject
Let u1 and u2 be the successors of v (or u1 = u2 if v has only
one successor)
If the subtrees from u1 and u2 in T have both size < k then
return v and the encoding of the subtree from v in T

If no subtree from u1 and u2 in T has size < k then return v and
the simple label of v

If only the subtree from u1 (resp. u2) in T has size < k then
return v, and the pair of the simple label of v and the tree label
of the subtree from u1 (resp. u2, but with opposite order) in T

In fact the k-compression of a tree T is almost a word,
the number of remaining 2-degree nodes in Tk are small.

Lemma 4.1. Tk has at most εn 2-degree nodes.

Proof. In this proof the labels are the ones of Tk. Only
nodes with simple labels can have degree 2 in Tk. More-
over, a node has degree 2 in Tk iff it has degree 2 in T and
has a simple label. To every 2-degree node of Tk we will
associate a distinct part of T of size ≥ k. Then the lemma
follows since Tk has ≤ n nodes.

The construction is bottom-up. We start with the tree
T ′ = T and continue until there are no more 2-degree nodes
in T ′ with simple labels. We will maintain the following
invariant of T ′, which T initially satisfies by assumption:

(*): Every 2-degree node of T ′ with a simple label (in Tk)
has two successors whose subtrees in T ′ have size ≥ k.

The iteration procedure is now described. Let v be a low-
est node of T ′ with degree 2 and a simple label. By Property
(*), the node v has two successors u1 and u2 whose subtrees
in T ′ have size ≥ k. We remove from T ′ the remaining sub-
tree of u1. Therefore v has now degree 1 in T ′. Moreover
since the subtree from u2 is still in T ′, we guaranty that the
new T ′ still satisfies Property (*).

4.2 Word Embedding

From Lemma 4.1 we show that any tree T is 3ε-close to
another tree T ′, such that T ′

k has no 2-degree nodes and is
2ε-close to Tk. First let us fix a new symbol #. To construct
T ′

k, we recursively eliminate each 2-degree node v with a
simple label and successors (u1, u2), by moving u2 to the
rightmost leaf l of the subtree of u1 in Tk and by changing
the tree label σ of l to a mixed label (σ,#); equivalently on
T we insert a new node u with label # between l and its
parent, the left successor of u is l, its right sucessor is u2.

Then we define w(T) as the word over the k-tree alpha-
bet which enumerates the labels of T ′

k from its root. w(T)
is also the enumeration of the labels of Tk obtaining by a
DFS from its root, where at most εn tree labels t have been
modified to mixed labels (t, #).

We will perform the uniform statistics on w(T) in or-
der to apply the results of previous sections on words.
Since each letter of w(T) might encode a tree of size up
to O(1/ε) we need to apply an ε2-tester on words, in order
to get an O(ε)-tester on trees. An important fact is that
u-stat(w(T)) (with block-size k2) can be approximately
sampled with additive error ε2 by O(1/ε6) samples on Tk.
Statistics(T, k)
(*) Take a random v in T while Encode(T, v, k) rejects
Let i = 1 and u1 = v; and iterate k2 − 1 the following

If ui has at least one successor in Tk let be v the left one
If ui has no successor then

Using a backtracking of depth k4 in Tk, Search the first 2-
degree node v in Tk such that ui is on the left subtree of v

If the search fails then go back to Step (*)
Let i = i + 1 and ui = v

Outputs the labels of u1u2 . . . ui using Encode(T, ·, k)

Lemma 4.2. Statistics(T, 1/ε) outputs a probabilistic
distribution which is at �1-distance at most ε2 from
u-stat(w(T)) (with block-size 1/ε2). Moreover, its expected
query and time complexities are in O(1/ε6).

Proof. Statistics(T, 1/ε) connects all but ε4n leaves of Tk

as in T ′
k because of the backtracking. This means that only

an ε2 fraction of subwords is missing from w(T). Then we
can conclude.

First our equality tester for words can be applied to trees
as an isomorphism tester since any elementary operation on
w(T) corresponds to O(1) elementary operations on T .

Theorem 4.1. The tree isomorphism problem is tolerantly
(ε4, O(ε))-testable with query and time complexities in
|Σ|O(1/ε5).

Then our regular language tester can also be extended
since we also get that an automaton on trees T of size m cor-
responds to a push-down automaton on words w(T) whose
number of states and stack alphabet have both size m.

Theorem 4.2. For every real ε > 0 and 2-tree regular
language L over a finite alphabet Σ, there exists a toler-
ant (ε4, O(ε))-tester for L whose query complexity is in

|Σ|O(1/ε5) and whose time complexity is in 2|Σ|O(1/ε5)
.

Moreover, given a 2-tree automaton with m states that rec-
ognizes L, the tester can be constructed in time exponential

in m|Σ|O(1/ε5)
.

Proof. The push-down automaton basically reads the tree
as a word from the bottom up using the tree alphabet with a
few modifications. When a label (t, #) is read, the current
state is pushed on the stack and the state goes to an accessi-
ble state from reading t with an initial state, as a leaf. Then
the symbol of the stack can be pulled while reading a sim-
ple label which corresponds to a branching between a previ-
ously evaluated branch of the tree and the current one.

For the equivalence problem, there already exists a deter-
ministic exponential time algorithm for the exact version of
the problem. Therefore it seems that our current approach
does not reduce the complexity. However, in the previous
construction, if L is a tree language such that the number
of # symbols in w(T) for T ∈ L is constant, then the set
of w(T) is regular. It is the case for the binary encoding
for regular unranked tree of constant depth. We can then
apply the equivalence tester for regular languages of words,
and test the equivalence between such classes of tree lan-
guages in polynomial time. The general case remains an
open problem.

References

[1] N. Alon, E. Fischer, M. Krivelevich, and M. Szegedy. Effi-
cient testing of large graphs. Combinatorica, 20(4):451–476,
2000.

[2] N. Alon, M. Krivelevich, I. Newman, and M. Szegedy. Regu-
lar languages are testable with a constant number of queries.
SIAM J. Comp., 30(6):1842–1862, 2000.

[3] T. Batu, F. Ergun, J. Kilian, A. Magen, S. Raskhodnikova,
R. Rubinfeld, and R. Sami. A sublinear algorithm for weakly
approximating edit distance. In Proc. STOC, pp. 316–324,
2003.

[4] T. Batu, L. Fortnow, R. Rubinfeld, W. Smith, and P. White.
Testing that distributions are close. In Proc. FOCS, pp. 259–
269, 2000.

[5] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting
with applications to numerical problems. J. Comp. Syst. Sci.,
47(3):549–595, 1993.

[6] M. Blum and S. Kannan. Designing programs that check
their work. J. ACM, 42(1):269–291, 1995.

[7] N. Blum and R. Koch. Greibach normal form transformation
revisited. Information and Computation, 150(1):112–118,
1999.

[8] A. Broder. On the resemblance and containment of docu-
ments. In Proc. Compression and Complexity of Sequences,
pages 21–30, 1997.

[9] H. Chockler and O. Kupferman. ω-regular languages are
testable with a constant number of queries. Theor. Comp.
Sci., 329:71–92, 2002.

[10] G. Cormode and S. Muthukrishnan. The string edit distance
matching problem with moves. In Proc. SODA, pp. 667–676,
2002.

[11] O. Goldreich, S. Goldwasser, and D. Ron. Property testing
and its connection to learning and approximation. J. ACM,
45(4):653–750, 1998.

[12] O. Goldreich, and D. Ron. Property Testing in Bounded De-
gree Graphs. Algorithmica, 32(2): 302–343, 2002.

[13] F. Magniez and M. de Rougemont. Property testing of regu-
lar tree languages. In Proc. ICALP, pp. 932–944, 2004.

[14] W. Masek and M. Paterson. A faster algorithm for computing
string edit distance. J. Comp. Syst. Sci., 20(1):18–31, 1980.

[15] A. Meyer and L. Stockmeyer. The equivalence problem
for regular expressions with squaring requires exponential
space. In Proc. FOCS, pp. 125–129, 1972.

[16] I. Newman. Testing membership in languages that
have small width branching programs. SIAM J. Comp.,
3142(5):1557–1570, 2002.

[17] R. Parikh. On context-free languages. J. ACM, 13(4):570–
581, 1966.

[18] M. Parnas, D. Ron, and R. Rubinfeld. Tolerant property test-
ing and distance approximation. TR04-010, ECCC, 2004.

[19] R. Rubinfeld. On the robustness of functional equations.
SIAM J. Comp., 28(6):1972–1997, 1999.

[20] R. Rubinfeld and M. Sudan. Robust characterizations of
polynomials with applications to program testing. SIAM J.
Comp., 25(2):23–32, 1996.

[21] D. Shapira and J. Storer. Edit distance with move operations.
In Proc. Symp. Combinatorial Pattern Matching, pp. 85–98,
2002.

[22] L. Stockmeyer and A. Meyer. Word problems requiring ex-
ponential time. In Proc. STOC, pp. 1–9, 1973.

[23] K. C. Tai. The tree-to-tree correction problem. J. ACM,
26:422–433, 1979.

