
Streaming Property Testing of Visibly Pushdown
Languages*

Nathanaël François†1, Frédéric Magniez‡2, Michel de Rougemont§3, and
Olivier Serre¶2

1 Fakultät für Informatik, TU Dortmund, Germany
2 CNRS, IRIF, Univ Paris Diderot, Sorbonne Paris-Cité, France
3 University of Paris II and IRIF, CNRS, France

Abstract
In the context of formal language recognition, we demonstrate the superiority of streaming property testers
against streaming algorithms and property testers, when they are not combined. Initiated by Feigenbaum
et al., a streaming property tester is a streaming algorithm recognizing a language under the property
testing approximation: it must distinguish inputs of the language from those that are Á-far from it, while
using the smallest possible memory (rather than limiting its number of input queries). Our main result is
a streaming Á-property tester for visibly pushdown languages (VPL) with memory space poly((log n)/Á).

Our construction is done in three streps. First, we simulate a visibly pushdown automaton in one
pass using a stack of small height but whose items can be of linear size. In a second step, those items
are replaced by small sketches. Those sketches rely on a notion of suffix-sampling we introduce. This
sampling is the key idea for taking benefit of both streaming algorithms and property testers in the third
step. Indeed, the last step relies on a (non-streaming) property tester for weighted regular languages based
on a previous tester by Alon et al. This tester can directly be used for streaming testing special cases of
instances of VPL that are already hard for both streaming algorithms and property testers. We then use it
to decide the correctness of completed items, given their sketches, before removing them from the stack.

Keywords and phrases Streaming Algorithm, Property Testing, Visibly Pushdown Languages

1 Introduction

We focus on streams representing data with both a linear ordering and a hierarchically nested matching
of items. Data with such dual linear-hierarchical structure arise in various context, e.g. in semi-
structured data management when handling HTML/XML documents or in program analysis when
considering executions of recursive programs. Regular languages, as recognised by finite state
automata, revealed a natural and successful tool to express properties of streams but lack the ability to
handle the hierarchical structure. Context-free languages easily capture the latter but turn out to be
too expressive hence, quickly lead to intractable complexity. In contrast, visibly pushdown languages
(VPL) [6] while encompassing regular languages, enjoy most of its good properties and permit to
handle data with both a linear and a hierarchical structure. In the context of semi-structured documents,
they are closely related with regular languages of unranked trees as captured by hedge automata:
indeed, a well-known result [3] states that, when the tree is given by its depth-first traversal, such
automata correspond to visibly pushdown automata (VPA) (see e.g. [19] for an overview on automata
and logic for unranked trees). In databases, this word encoding of XML document is known as SAX

* Partially supported by the French ANR projects ANR-12-BS02-005 (RDAM) and ANR-14-CE25-0017 (AGREG)
† nathanael.francois@tu-dortmund.de
‡ frederic.magniez@cnrs.fr
§ mdr@liafa.univ-paris-diderot.fr
¶ Olivier.Serre@cnrs.fr

© Nathanaël François, Frédéric Magniez, Michel de Rougemont and Olivier Serre;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor and Bill Editors; pp. 1–25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Streaming Property Testing of Visibly Pushdown Languages

representation: the document is a linear sequence of text characters, along with a hierarchically nested
matching of open-tags with closing tags. Numerous popular subclasses of XML documents (e.g.

those satisfying a given DTD specifications) are subclasses of VPL. In program analysis, VPA permit
to capture natural properties of execution traces of recursive finite-state programs. For such programs,
desirable specifications are expressed on the call-stack (e.g. “a module A should be invoked only if
the module B belongs to the call-stack”): such properties can be expressed in the temporal logic of
calls and returns (CaRet) [5, 4] that itself is captured by VPA. Hence, the analysis of execution traces
boils down to check membership in a VPL. Therefore, the study of VPL is central to understand
how massive semi-structured data (e.g. large semi-structured documents or execution traces) can be
analyzed by sublinear algorithms, such as streaming algorithms and property testers.

Historically, VPL got several names such as input-driven languages or, more recently, languages
of nested words. Intuitively, a VPA is a pushdown automaton whose actions on stack (push, pop
or nothing) are solely decided by the currently read symbol. As a consequence, symbols can be
partitioned into three groups: push, pop and neutral symbols. The complexity of VPL recognition has
been addressed in various computational models. The first results go back to the design of logarithmic
space algorithms [11] as well as NC1-circuits [13]. Later on, other models motivated by the context of
massive data were considered, such as streaming algorithms and property testers (described below).

Streaming algorithms (see e.g. [23]) have only a sequential access to their input, on which they
can perform a single pass, or sometimes a small number of additional passes. The size of their
internal (random access) memory is the crucial complexity parameter, which should be sublinear in
the input size, and even polylogarithmic if possible. The area of streaming algorithms has experienced
tremendous growth in many applications since the late 1990s. The analysis of Internet traffic [2],
in which traffic logs are queried, was one of their first applications. Nowadays, they have found
applications with big data, notably to test graphs properties, and more recently in language recognition
on very large inputs. The streaming complexity of language recognition has been firstly considered
for languages that arise in the context of memory checking [8, 12], of databases [29, 28], and later on
for formal languages [21, 7]. However, even for simple VPL, any randomized streaming algorithm
with p passes requires memory �(n/p), where n is the input size [18].

As opposed to streaming algorithms, (standard) property testers [9, 10, 16] have random access to
their input but in the query model. They must query each piece of the input they need to access. They
should sample only a sublinear fraction of their input, and ideally make a constant number of queries.
In order to make the task of verification possible, decision problems need to be approximated as
follows. Given a distance on words, an Á-tester for a language L distinguishes with high probability
the words in L from those Á-far from L, using as few queries as possible. Property testing of regular
languages was first considered for the Hamming distance [1]. When the distance allows sufficient
modifications of the input, such as moves of arbitrarily large factors, it has been shown that any
context-free language becomes testable with a constant number of queries [20, 15]. However, for more
realistic distances, property testers for simple languages require a large number of queries, especially
if they have one-sided error only. For example the complexity of an Á-tester for well-parenthesized
expressions with two types of parentheses is between �(n1/11) and O(n2/3) [26], and it becomes
linear, even for one type of parentheses, if we require one-sided error [1]. The difficulty of testing
regular tree languages was also addressed when the tester can directly query the tree structure [24, 25].

Faced by the intrinsic hardness of VPL in both streaming and property testing, we study the
complexity of streaming property testers of formal languages, a model of algorithms combining both
approaches. Such testers were historically introduced for testing specific problems (groupedness) [14]
relevant for network data. They were later studied in the context of testing the insert/extract-sequence
of a priority-queue structure [12]. We extend these studies to classes of problems. A streaming prop-
erty tester is a streaming algorithm recognizing a language under the property testing approximation:

N. François, F. Magniez, M. de Rougemont and O. Serre 3

it must distinguish inputs of the language from those that are Á-far from it, while using the smallest
possible memory (rather than limiting its number of input queries). Such an algorithm can simulate
any standard non-adaptive property tester. Moreover, we will see that, using its full scan of the input,
it can construct better sketches than in the query model.

In this paper, we consider a natural notion of distance for VPL, the balanced-edit distance, which
refines the edit distance on balanced words (where for each push symbol there is a matching pop
symbol at the same height of the stack, and conversely). It can be interpreted as the edit distance on
trees when trees are encoded as balanced words. Neutral symbols can be deleted/inserted, but any
push symbol can only be deleted/inserted together with its matching pop symbol. Since our distance
is larger than the standard edit distance, our testers are also valid for the edit distance.

In Section 3, we first design an exact algorithm that maintains a small stack but whose items
can be of linear size as opposed to the standard simulation of a pushdown automaton which usually
has a stack of possible linear size but with constant size items. In our algorithm, stack items are
prefixes of some peaks (which we call unfinished peaks), where a peak is a balanced factor whose
push symbols appear all before the first pop symbol. Our algorithm compresses an unfinished peak
u = u+v≠ when it is followed by a long enough sequence. More precisely, the compression applies
to the peak v+v≠ obtained by disregarding part of the prefix of push sequence u+. Those peaks are
then inductively replaced, and therefore compressed, by the state-transition relation they define on the
given automaton. The relation is then considered as a single symbol whose weight is the size of the
peak it represents. In addition, to maintain a stack of logarithmic depth, one of the crucial properties
of our algorithm (Proposition 5) is rewriting the input word as a peak formed by potentially a linear
number of intermediate peaks, but with only a logarithmic number of nested peaks.

In Section 4, for the case of a single peak, we show how to sketch the current unfinished peak of
our algorithm. The simplicity of those instances will let us highlight our first idea. Moreover, they
are already expressive enough in order to demonstrate the superiority of streaming testers against
streaming algorithms and property testers, when they are not combined. We first reduce the problem
of streaming testing such instances to the problem of testing regular languages in the standard model
of property testing (Theorem 15). Since our reduction induces weights on the letters of the new input
word, we need a tester for weighted regular languages (Theorem 26). Such a property tester has
previously been devised in [25] extending constructions for unweighted regular languages [1, 24].
However, we consider a slightly simpler construction that could be of independent interest. As a
consequence we get a streaming property tester with polylogarithmic memory for recognizing peak
instances of any given VPL (Theorem 16), a task already hard for streaming algorithms and property
testers (Fact 7).

In Section 5, we construct our main tester for a VPL L given by some VPA. For this we introduce
a more involved notion of sketches made of a polylogarithmic number of samples. They are based
on a new notion of suffix sampling (Definition 17). This sampling consists in a decomposition of
the string into an increasing sequence of suffixes, whose weights increase geometrically. Such a
decomposition can be computed online on a data stream, and one can maintain samples in each
suffix of the decomposition using a standard reservoir sampling. This suffix decomposition will
allow us to simulate an appropriate sampling on the peaks we compress, even if we do not yet
know where they start. Our sampling can be used to perform an approximate computation of the
compressed relation by our new property tester of weighted regular languages which we also used
for single peaks. We first establish a result of stability which basically states that we can assume
that our algorithm knows in advance where the peak it will compress starts (Lemma 22). Then we
prove the robustness of our algorithm: words that are Á-far from L are rejected with high probability
(Lemma 24). As a consequence, we get a one-pass streaming Á-tester for L with one-sided error
÷ and memory space O(m523m2(log n)6(log 1/÷)/Á4), where m is the number of states of a VPA

4 Streaming Property Testing of Visibly Pushdown Languages

Algorithm 1 Reservoir Sampling

1 Input: Data stream u, Integer t > 1 standing for the number of samples
2 Data structure:
3 ‡ Ω 0 // Current weight of the processed stream

4 S Ω empty multiset // Multiset of sampled letters

5 Code:
6 a Ω Next(u), ‡ Ω |a|
7 S Ω t copies of a
8 While u not finished
9 a Ω Next(u), ‡ Ω ‡ + |a|

10 For each b œ S
11 Replace b by a with probability |a|/‡
12 Output S

recognizing L (Theorem 20).

2 Definitions and Preliminaries

Let Nú be the set of positive integers, and for any n œ Nú, let [n] = {1, 2, . . . , n}. A t-subset of a
set S is any subset of S of size t. For a finite alphabet � we denote the set of finite words over �
by �ú. We denote by u · v (or simply uv) the word obtained by concatenating u and v. For a word
u = u(1)u(2) · · · u(n), we call n the length of u, and u(i) the ith letter in u. A factor of u is a word
u[i, j] = u(i)u(i + 1) · · · u(j) with 1 Æ i Æ j Æ n. When we mention letters and factors of u we
implicitly also mention their positions in u. We say that v is a sub-factor of vÕ, denoted v Æ vÕ, if
v = u[i, j] and vÕ = u[iÕ, jÕ] with [i, j] ™ [iÕ, jÕ]. Similarly we say that v = vÕ if [i, j] = [iÕ, jÕ]. If
i Æ iÕ Æ j Æ jÕ we say that the overlap of v and vÕ is u[iÕ, j]. If v is a sub-factor of vÕ then the
overlap of v and vÕ is v. Given two multisets of factors S and SÕ, we say that S Æ SÕ if for each
factor v œ S there is a corresponding factor vÕ œ SÕ such that v Æ vÕ.

2.1 Weighted Words and Sampling

A weight function on a word u with n letters is a function ⁄ : [n] æ Nú on the letters of u, whose
value ⁄(i) is called the weight of u(i). A weighted word over � is a pair (u, ⁄) where u œ �ú and
⁄ is a weight function on u. We define |u(i)| = ⁄(i) and |u[i, j]| = ⁄(i) + ⁄(i + 1) + . . . + ⁄(j).
The length of (u, ⁄) is the length of u. For simplicity, we will denote by u the weighted word (u, ⁄).
Weighted letters will be used to substitute factors of same weights.

Our algorithms will be based on sampling of small factors according to their weights. We
introduce a very specific notion adapted to our setting. For a weighted word u, we denote by k-factor

sampling on u the sampling over factors u[i, i + l] with probability |u(i)|/|u|, where l Ø 0 is the
smallest integer such that |u[i, i + l]| Ø k if it exists, otherwise l is such that i + l is the last letter
of u. More generally, we call k-factor such a factor. For the special case of k = 1, we call this
sampling a letter sampling on u. In fact the general case k > 1 simply reduces to k = 1. Indeed,
simply observe that k-factor sampling can be obtained from letter sampling by sampling on the first
letters of the factors and online completing any sampled letter to produce its associated k-factor.
Therefore, from now on, we only focus how to perform letter samplings, that we implicitly extend to
samplings on k-factors when required. In particular, without further constraints, a letter sampling can
be implemented using a standard reservoir sampling (see Algorithm 1).

Even if our algorithm will require several samples from a k-factor sampling, we will often only

N. François, F. Magniez, M. de Rougemont and O. Serre 5

be able to simulate this sampling by sampling either larger factors, more factors, or both. Let W1
be a sampler producing a random multiset S1 of factors of some given weighted word u. Then W2
over-samples W1 if it produces a random multiset S2 of factors of u such that for each factor v of u,
we have Pr(÷vÕ œ S2 such that v is a factor of vÕ) Ø Pr(÷vÕ œ S1 such that v is a factor of vÕ).

2.2 Finite State Automata and Visibly Pushdown Automata

A finite state automaton is a tuple of the form A = (Q, �, Qin, Qf , �) where Q is a finite set of
control states, � is a finite input alphabet, Qin ™ Q is a subset of initial states, Qf ™ Q is a subset
of final states and � ™ Q ◊ � ◊ Q is a transition relation. We write p

u≠æq, to mean that there is
a sequence of transitions in A from p to q while processing u, and we call (p, q) a u-transitions. A
word u is accepted if qin

u≠æqf for some qin œ Qin and qf œ Qf . The language L(A) of A is the
set of words accepted by A, and we refer to such a language as a regular language. For �Õ ™ �,
the �Õ

-diameter (or simply diameter when �Õ = �) of A is the maximum over all possible pairs
(p, q) œ Q2 of min{|u| : p

u≠æq and u œ �Õú}, whenever this minimum is not over an empty set. We

say that A is �Õ
-closed, when p

u≠æq for some u œ �ú if and only if p
uÕ

≠æq for some uÕ œ �Õú.
A pushdown alphabet is a triple È�+, �-, �=Í that comprises three disjoint finite alphabets: �+ is

a finite set of push symbols, �- is a finite set of pop symbols, and �= is a finite set of neutral symbols.
For any such triple, let � = �+ fi �- fi �=. Intuitively, a visibly pushdown automaton [27] over
È�+, �-, �=Í is a pushdown automaton restricted so that it pushes onto the stack only on reading a
push, it pops the stack only on reading a pop, and it does not modify the stack on reading a neutral
symbol. Up to coding, this notion is similar to the one of input driven pushdown automata [22] and
of nested word automata [6].

I Definition 1. A visibly pushdown automaton (VPA) over È�+, �-, �=Í is a tuple A =
(Q, �, �, Qin, Qf , �) where Q is a finite set of states, Qin ™ Q is a set of initial states, Qf ™ Q is a
set of final states, � is a finite stack alphabet, and � ™ (Q ◊ �+ ◊ Q ◊ �) fi (Q ◊ �- ◊ � ◊ Q) fi
(Q ◊ �= ◊ Q) is the transition relation.

To represent stacks we use a special bottom-of-stack symbol ‹ that is not in �. A configuration

of a VPA A is a pair (‡, q), where q œ Q and ‡ œ ‹ · �ú. For a œ �, there is an a-transition from a
configuration (‡, q) to (‡Õ, qÕ), denoted (‡, q) a≠æ(‡Õ, qÕ), in the following cases:

If a is a push symbol, then ‡Õ = ‡“ for some (q, a, qÕ, “) œ �, and we write q
a≠æ(qÕ, push(“)).

If a is a pop symbol, then ‡ = ‡Õ“ for some (q, a, “, qÕ) œ �, and we write (q, pop(“)) a≠æqÕ.
If a is a neutral symbol, then ‡ = ‡Õ and (q, a, qÕ) œ �, and we write q

a≠æqÕ.
For a finite word u = a1 · · · an œ �ú, if (‡i≠1, qi≠1) ai≠æ(‡i, qi) for every 1 Æ i Æ n, we also
write (‡0, q0) u≠æ(‡n, qn). The word u is accepted by a VPA if there is (p, q) œ Qin ◊ Qf such that
(‹, p) u≠æ(‹, q). The language L(A) of A is the set of words accepted by A, and we refer to such a
language as a visibly pushdown language (VPL).

At each step, the height of the stack is pre-determined by the prefix of u read so far. The height

height(u) of u œ �ú is the difference between the number of its push symbols and of its pop
symbols. A word u is balanced if height(u) = 0 and height(u[1, i]) Ø 0 for all i. We also say that a
push symbol u(i) matches a pop symbol u(j) if height(u[i, j]) = 0 and height(u[i, k]) > 0 for all
i < k < j. By extension, the height of u(i) is height(u[1, i ≠ 1]) when u(i) is a push symbol, and
height(u[1, i]) otherwise.

For all balanced words u, the property (‡, p) u≠æ(‡, q) does not depend on ‡, therefore we simply
write p

u≠æq, and say that (p, q) is a u-transition. We also define similarly to finite automata the
�Õ

-diameter of A (or simply diameter) and the notion A being �Õ
-closed on balanced words only.

6 Streaming Property Testing of Visibly Pushdown Languages

Our model is inherently restricted to input words having no prefix of negative stack height, and
we defined acceptance with an empty stack. This implies that only balanced words can be accepted.
From now on, we assume that the input is balanced as verifying this in a streaming context is easy.

2.3 Streaming Property Testers

Assume we have, for any Á > 0, a criterion to declare that an input u is Á-far from a language L. An
Á-tester for L accepts all inputs in L with probability 1 and rejects with high probability all inputs
Á-far from L. Two-sided error testers have also been studied but in this paper we stay with the notion
of one-sided testers, that we adapt in the context of streaming algorithm as in [14].

I Definition 2. Let Á > 0 and let L be a language. A streaming Á-tester for L with one-sided error
÷ and memory s(n) is a randomized algorithm A such that, for any input u of length n given as a
data stream:

If u œ L, then A accepts with probability 1;
If u is Á-far from L, then A rejects with probability at least 1 ≠ ÷;
A processes u within a single sequential pass while maintaining a memory space of O(s(n)) bits.

Even if we only focus on the space complexity of streaming testers, all our streaming testers have
polylogarithmic (in n/Á) time per processing letter.

For a distance d between words, we say that a word u is Á-far from a language L if d(u, v) > Á|u|
for every v œ L, i.e. the Á-neighbourhood of u does not intersect L. Hence, any distance on words
leads to a notion of streaming property tester. Remark that any Á-tester for some distance d1 turns out
to be also a (cÁ)-tester for any other distance d2 such that d2 Æ cd1, where c > 0 is some constant.

2.4 Balanced/Standard Edit Distance

The usual distance between words in property testing is the Hamming distance. In this work, we
consider an easier distance to manipulate in property testing but still relevant for most applications,
which is the edit distance, that we adapt to weighted words.

Given a word u, we define two possible edit operations: the deletion of a letter in position i with
corresponding cost |u(i)|, and its converse operation, the insertion where we also select a weight for
the new u(i). Note that, for simplicity, we drop the usual substitution operation, leading to a possible
multiplicative factor of 2 in the resulting distance. This is not an issue when designing streaming
property testers as observed above. The (standard) edit distance dist(u, v) between two weighted
words u and v is defined as the minimum total cost of a sequence of edit operations changing u to v.
All letters that have not been inserted nor deleted must keep the same weight. For a restricted set of
letters �Õ, we define dist�Õ(u, v) when insertions are restricted to letters in �Õ.

We will also consider a restricted version of this distance for balanced words, motivated by our
study of VPL. Similarly, balanced-edit operations can be deletions or insertions of letters, but each
deletion of a push symbol (resp. pop symbol) requires the deletion of the matching pop symbol (resp.
push symbol). Similarly for insertions: if a push (resp. pop) symbol is inserted, then a matching pop
(resp. push) symbol must also be inserted simultaneously. The cost of these operations is the weight
of the affected letters, as with the edit operations. We define the balanced-edit distance bdist(u, v)
between two balanced words as the total cost of a sequence of balanced-edit operations changing u to
v. Similarly to dist�Õ(u, v) we define bdist�Õ(u, v). We omit �Õ when �Õ = �.

When dealing with a visibly pushdown language, we will always use the balanced-edit distance,
whereas we will use the standard-edit distance for regular languages. Note that since balanced-edit
distance is larger than the standard edit distance, our testers will also be valid for that distance.

N. François, F. Magniez, M. de Rougemont and O. Serre 7

3 Exact Algorithm

Fix a VPA A recognizing some VPL L on � = �+ fi �- fi �=. In this section, we design an exact
streaming algorithm that decides whether an input belongs to L. Algorithm 2 maintains a stack
of small height but whose items can be of linear size. In Section 5, we replace stack items by
appropriated small sketches

3.1 Notations and Algorithm Description
Call a peak a sequence of push symbols followed by an equal number of pop symbols, with possibly
intermediate neutral symbols, i.e. an element of the language � =

t
jØ0((�=)ú · �+)j · (�=)ú · (�- ·

(�=)ú)j . One can compress any peak v œ � by the set Rv = {(p, q) : p
v≠æq} of the v-transitions,

and consider Rv as a new neutral symbol with weight |v|. In fact, for the purpose of the analysis of
our algorithm, we augment neutral symbols by many more relations for which A remains �-closed.
Indeed, we allow any relation R of any weight such that, when (p, q) œ R, there is a v œ � such that
p

v≠æq, but that v could be different for every (p, q) œ R. For the rest of the paper, they will be the
only symbols with weight potentially larger than 1.

I Definition 3. Let �Q be �= augmented by all letters ‘R’ encoding a relation R ™ Q ◊ Q such
that for every (p, q) œ R there is a balanced word u œ �ú with p

u≠æq. In addition we allow any
weight |R| Ø 1 for those letters. Let �Q be � where �= is replaced by �Q.

We then write p
R≠æq whenever (p, q) œ R, and extend A and L accordingly. Of course, our notion of

distance will be solely based on the initial alphabet �. If R1, R2 ™ Q ◊ Q are two relations on Q we
define their composition R1 ¶ R2 to be {(x, z) | ÷y s.t. (x, y) œ R1 and (y, z) œ R2}.

A general balanced input instance u will consist of many nested peaks. However, we will
recursively replace each factor v œ �Q by Rv with weight |v|.

Denote by Prefix(�Q) the language of prefixes of words in �Q. While processing the prefix
u[1, i] of the data stream u, Algorithm 2 maintains a suffix u0 œ Prefix(�Q) of u[1, i], that is an
unfinished peak, with some simplifications of factors v in �Q by their corresponding relation Rv.
Therefore u0 consists of a sequence of push symbols and neutral symbols possibly followed by a
sequence of pop symbols and neutral symbols. The algorithm also maintains a subset R

temp

™ Q ◊ Q

that is the set of transitions for the maximal prefix of u[1, i] in �Q. When the stream is over, the set
R

temp

is used to decide whether u œ L or not.
When a push symbol a comes after a pop sequence, u0 · a is no longer in Prefix(�Q) hence,

Algorithm 2 puts u0 on the stack of unfinished peaks (see lines 10 to 11 and Figure 1a) and u0 is reset
to a. In other situations, it adds a to u0. In case u0 becomes a word in �Q (see lines 13 to 17 and
Figure 1b), Algorithm 2 computes the set of u0-transitions Ru0 œ �Q, and adds Ru0 to the previous
unfinished peak that is retrieved on top of the stack and becomes the current unfinished peak; in the
special case where the stack is empty it simply updates R

temp

by taking its composition with Ru0 .

3.2 Algorithm Analysis
We now introduce the quantity Depth(v) for each factor v constructed in Algorithm 2. It quantifies
the number of processed nested peaks in v as follows:

I Definition 4. For each factor constructed in Algorithm 2, Depth is defined dynamically by
Depth(a) = 0 when a œ �, Depth(v) = maxi Depth(v(i)) and Depth(Rv) = Depth(v) + 1.

In order to bound the size of the stack, Algorithm 2 considers the maximal balanced suffix v2
of the topmost element v1 · v2 of the stack and, whenever |u0| Ø |v2|/2, it computes the relation

8 Streaming Property Testing of Visibly Pushdown Languages

Rest of Stack Top of Stack u0 a

æ

Rest of Stack Top of
Stack

u0

(a) Illustration of lines 10 to 11 from Algorithm 2

Rest of Stack Top of Stack u0

æ

Stack new u0

Rformer u0

(b) Illustration of lines 13 to 17 from Algorithm 2

Rest of Stack Top of Stack u0

v2v1

æ

Stack new u0

Rv2v1 former u0

(c) Illustration of lines 18 to 20 from Algorithm 2

Figure 1 Illustration of Algorithm 2.

N. François, F. Magniez, M. de Rougemont and O. Serre 9

Algorithm 2 Exact Tester for a VPL

1 Input: Balanced data stream u
2 Data structure:
3 Stack Ω empty stack // Stack of items v with v œ Prefix(�Q)

4 u0 Ω ÿ // u0 œ Prefix(�Q) is a suffix of the processed part u[1, i] of u
5 // with possibly some factors v œ �Q replaced by Rv

6 R
temp

Ω {(p, p)}pœQ // Set of transitions for the max. prefix of u[1, i] in �Q

7 Code:
8 While u not finished
9 a Ω Next(u) //Read and process a new symbol a

10 If a œ �+ and u0 has a letter in �- // u0 · a ”œ Prefix(�Q)

11 Push u0 on Stack, u0 Ω a
12 Else u0 Ω u0 · a
13 If u0 is balanced // u0 œ �Q: compression

14 Compute Ru0 the set of u0-transitions
15 If Stack = ÿ, then R

temp

Ω R
temp

¶ Ru0, u0 Ω ÿ
16 // where ¶ denotes the composition of relations

17 Else Pop v from Stack, u0 Ω v · Ru0

18 Let (v1 · v2) Ω top(Stack) s.t. v2 is maximal and balanced // v2 œ �Q

19 If |u0| Ø |v2|/2 // u0 is big enough and v2 can be replaced by Rv2

20 Compute Rv2 the v2-transitions, Pop v from Stack, u0 Ω (v1 · Rv2) · u0
21 If (Qin ◊ Qf) fl R

temp

”= ÿ, Accept; Else Reject // R
temp

= Ru

Rv2 and continues with a bigger current peak starting with v1 (see lines 18 to 20 and Figure 1c).
A consequence of this compression is that the elements in the stack have geometrically decreasing
weight and therefore the height of the stack used by Algorithm 2 is logarithmic in the length of the
input stream. This can be proved by a direct inspection of Algorithm 2.

I Proposition 5. Algorithm 2 accepts exactly when u œ L, while maintaining a stack of at most

log |u| items.

We state that Algorithm 2, when processing an input u of length n, considers at most O(log n)
nested peaks, that is Depth(v) = O(log n) for all factors constructed in Algorithm 2.

I Lemma 6. Let v be the factor used to compute Rv at line either 14 or 20 of Algorithm 2. Then

|v(i)| Æ 2|v|/3, for all i. Moreover, for any factor w constructed by Algorithm 2 it holds that

Depth(w) = O(log |w|).

Proof. One only has to consider letters in �Q. Hence, let Rw belongs to v for some w: either w was
simplified into Rw at line 14 or at line 20 of Algorithm 2.

Let us first assume that it was done at line 20. Therefore, there is some vÕ œ Prefix(�Q) to the
right of w with total weight greater than |w|/2 = |Rw|/2. This factor vÕ is entirely contained within
v: indeed, when Rw is computed v includes vÕ. Therefore |Rw| Æ 2|v|/3.

If Rw comes from line 14, then w = u0 and this u0 is balanced and compressed. We claim that
at the previous round the test in line 19 failed, that is |u0| ≠ 1 Æ |v2|/2 where v2 is the maximal
balanced suffix of top(Stack). Indeed, when performing the sequence of actions following a positive
test in line 19, the number of unmatched push symbols in the new u0 is augmented at least by 1 from
the previous u0: hence, it cannot be equal to 1 as the elements in the stack have unmatched push
symbols and therefore in the next round u0 cannot be balanced. Therefore one has |u0| ≠ 1 Æ |v2|/2.
Now when Rw = Ru0 is created, it is contains in a factor that also contains v2 and at least one
unmatched push symbols before v2. Hence, |Rw| Æ 2|v|/3.

10 Streaming Property Testing of Visibly Pushdown Languages

Finally, the fact that for any factor w constructed by Algorithm 2, Depth(w) = O(log |w|) derives
from the fact that if Depth(w) = k, then |w| Ø (3/2)k. This can in turn be shown by induction on
the depth. Obviously any factor will have weight at least 1. Let us assume all factors of depth k

have weight at least (3/2)k, and let w(i) be a letter such that Depth(w(i)) = k + 1. By definition,
w(i) = Rv for some factor v with Depth(v) = k. This means v contains at least one letter v(j) of
depth k. By our induction hypothesis, |v(j)| Ø (3/2)k, and therefore |w(i)| = |v| Ø (3/2)|v(j)| Ø
(3/2)k+1. J

4 The Special Case Of Peaks

We now consider restricted instances consisting of a single peak. For these instances, Algorithm 2
never uses its stack but u0 can be of linear size. We show how to replace u0 by a small random sketch
in order to get a streaming property tester using polylogarithmic memory. In Section 5, this notion of
sketch will be later extended to obtain our final streaming property tester for general instances.

4.1 Hard Peak Instances

Peaks are already hard for both streaming algorithms and property testers. Indeed, consider the
language Disj ™ � over alphabet � = {0, 1, 0, 1, a} and defined as the union of all languages
aú ·x(1)·aú ·. . .·x(j)·aú ·y(j)·aú ·. . .·y(1)·aú, where j Ø 1, x, y œ {0, 1}j , and x(i)y(i) ”= 1 for all i.

Then Disj can be recognized by a VPA with 3 states, �+ = {0, 1}, �- = {0, 1} and �= = {a}.
However, the following fact states its hardness for both models. The hardness for non-approximation
streaming algorithms comes for a standard reduction to Set-Disjointness. The hardness for property
testing algorithms is a corollary of a similar result due to [26] for parenthesis languages with two
types of parentheses.

I Fact 7. Any randomized p-pass streaming algorithm for Disj requires memory space �(n/p),

where n is the input length. Moreover, any (non-streaming) (2≠6)-tester for Disj requires to query

�(n1/11/ log n) letters of the input word.

Proof. We start with the hardness for exact streaming algorithms using a reduction to Set-
Disjointness. The Set-Disjointness problem is defined as follows. Two players have respectively
x and y from {0, 1}n and they decide whether there is some i œ [n] such that x(i) = y(i) = 1.
The randomized communication complexity of this problem is well known: �(n) bits need to be
exchanged between the two players. In addition, the problem is highly connected to our language
Disj, but in the communication setting, just like if one player has got the push sequence, and the
second one the pop sequence, without any neutral symbols a. Indeed, given a p-pass streaming
algorithm with memory s(n) for Disj, the two players can solve Set-Disjointness using O(p ◊ s(n))
bits of communications. First they simulate a stream, whose first part correspond to the push sequence
generated from x, and the second part to the pop sequence generated from y. Then, they simply
simulate the streaming algorithm on each part of the stream they control, and send the current memory
state when the algorithm changes from one part of the stream to the other one. Thus we get that
s(n) = �(n/p).

We now prove hardness of testing Disj in the query model, and for that we use a result from [26].
Let PAR be the language of those well-parenthesized words on the alphabet {(, [,],), a}, where a is a
neutral symbol, that additionally belong to �. It is known from [26] (Theorem 2) that any (2≠6)-tester
for PAR in the query model for Hamming distance requires �(n1/11/log n) queries.

We claim that PAR can be reduced to Disj: for that it suffices to replace (by 01,) by
01, [by 10,] by 10, and a by aa. For instance the word (a(aa[a])a]a /œ PAR becomes

N. François, F. Magniez, M. de Rougemont and O. Serre 11

01aa01aaaa10aa1001aa10aa. This word is indeed not in Disj as x(2) = y(2) = 1. The pre-
vious reduction is a valid reduction in the sense that instances in (resp. not in) PAR are mapped to
instances in (resp. not in) Disj, and that any query in PAR can be simulated by two queries in the Disj.
Indeed, to simulate a query to position 2i ≠ 1 (resp. 2i) in DISJ one simply queries position i in PAR;
this is for that reason that we mapped a to aa.

Hence, it means that the lower bound from from [26] also applies to Disj for Hamming distance.
Now, to conclude that it also applies to balanced edit distance, it suffices to remark the following two
things: (1) any tester for the balanced edit distance is also a tester for the edit distance; (2) the results
of [26] remain valid for edit distance. The latter comes from the fact that the Hamming distance and
the edit distance of any word u to PAR are identical. Indeed, one can first remark that there is no need
to insert a to bring a word to PAR. Then, if a sequence of (parenthesis) insertions brings some word u

inside PAR, then the same sequence where any insertion of a parenthesis is replaced by the deletion
of the matching parenthesis also brings u to PAR with the same cost. Hence, one can safely assume
that only deletions are performed in the edit sequence. Now, noting that any deletion can similarly be
replaced by a substitution of the character being deleted with a we obtain from any optimal sequence
for the edit distance a sequence (of same cost) that only uses substitutions thus we get the announced
property. J

Surprisingly, for every Á > 0, we will show that languages of the form L fl �, where L is a VPL,
become easy to Á-test by streaming algorithms. This is mainly because, given their full access to the
input, streaming algorithms can perform an input sampling which makes the property testing task
easy, using only a single pass and few memory.

4.2 Slicing Automaton

Observe that Algorithm 2 will never use the stack in the case of a single peak. After Algorithm 2 has
processed the i-th letter of the data stream, u0 contains u[1, i] where the eventual initial sequence of
neutral symbols has been removed. We will show how to compute Ru0 at line 14 using a standard
finite state automaton without any stack.

Indeed, for every VPL L, one can construct a regular language ‚L such that testing whether
u œ L fl � is equivalent to test whether some other word ‚u belongs to ‚L. For this, let I be a special
symbol not in �= encoding the relation set {(p, p) : p œ Q}. For a word v œ �l

=, write [v, I] for
the word (v(1), I) · (v(2), I) · · · (v(l), I), and similarly [I, v]. Consider a weighted word of the form
u =

1 rj
i=1 vi · ai

2
· vj+1 ·

1 r1
i=j bi · wi

2
, where ai œ �+, bi œ �-, and vi, wi œ �ú

=. Then the

slicing of u (see Figure 2) is the word ‚u over the alphabet ‚� = (�+ ◊ �-) fi (�= ◊ {I}) fi ({I} ◊ �=)
defined by ‚u =

1 rj
i=1[vi, I] · [I, wi] · (ai, bi)

2
· [vj+1, I].

I Definition 8. Let A = (Q, �, �, Qin, Qf , �) be a VPA. The slicing of A is the finite automaton
‚A = (‚Q, ‚�, ‰Qin, „Qf , ‚�) where ‚Q = Q ◊ Q, ‰Qin = Qin ◊ Qf , „Qf = {(p, p) : p œ Q}, and the

transitions ‚� are:
1. (p, q)(a,b)≠æ(pÕ, qÕ) when p

a≠æ(pÕ, push(“)) and (qÕ, pop(“)) b≠æq are both transitions of �.

2. (p, q)(c,I)≠æ(pÕ, q), resp. (p, q)(I,c)≠æ(p, qÕ), when p
c≠æpÕ, resp. q

c≠æqÕ, is a transition of �.

This construction will be later used in Section 5 for weighted languages. In that case, we define
the weight of a letter in ‚u by |(a, b)| = |a| + |b|, with the convention that |I| = 0. Moreover, we write
„�Q for the alphabet obtained similarly to ‚� using �Q instead of �=. Note that the slicing automaton
‚A defined on „�Q is ‚�-closed and has ‚�-diameter at most 2m2 where m = |Q|. Indeed, the slicing

automaton has m2 states and every letter in ‚� has weight at most 2, hence the shortest path from two
states (when exists) has weight at most 2m2. In particular, it directly implies the following.

12 Streaming Property Testing of Visibly Pushdown Languages

u = v1 w1a1 · · · aivi vi+1 · · · ahvh+1 b1· · ·bi wiwi+1· · ·bh

•

•

•

•

•

•

•

•

•

•

•

p

pÕ qÕ

q

qin qf

r

p a
i

≠æ(p Õ, push(“)) (q
Õ , p

op
(“)

)
b i

≠æ
q

Run in the VPA A on u

•(r, r)

•(qin, qf)

•(p, q)

•(pÕ, qÕ)

(
a

i,
b i

)
(
v 1

(
1
)
,I

)
··

·
··

·(
a

h
,b

h
)

‚u
=

Run in the slicing automaton ‚A on ‚u

Figure 2 Slicing of a word u œ � and evolution of the stack height for u.

I Proposition 9. Let v œ � be s.t. (p, q) ‚v≠æ(pÕ, qÕ). There is w œ � s.t. |w| Æ 2m2
and

(p, q) ‚w≠æ(pÕ, qÕ).

I Lemma 10. If A is a VPA accepting L, then

‚A is an automaton accepting

‚L = {‚u : u œ L fl �}.

Proof. Because transitions on push symbols do not depend on the top of the stack, transitions in ‚�
correspond to slices that are valid for � (see Figure 2). Finally, ‰Qin ensures that a run for L must
start in Qin and end in Qf , and „Qf that a state at the top of the peak is consistent from both sides. J

4.3 Random Sketches
We are now ready to build a tester for Lfl�. To test a word u we use a property tester for the regular lan-
guage ‚L. Regular languages are known to be Á-testable for the Hamming distance with O((log 1/Á)/Á)
non-adaptive queries on the input word [1], that is queries that can all be made simultaneously. Those
queries define a small random sketch of u that can be sent to the tester for approximating Ru. Since
the Hamming distance is larger than the edit distance, those testers are also valid for the latter distance.
Observe also that, for v1, v2 œ �Q, we have bdist(v1, v2) Æ 2dist(‚v1, ‚v2). The only remaining
difficulty is to provide to the tester an appropriate sampling on ‚u while processing u.

We will proceed similarly for the general case in Section 5, but then we will have to consider
weighted words. Therefore we show how to sketch u in that general case already. Indeed, the tester
of [1] was simplified for the edit distance in [24], and later on adapted for weighted words in [25].
We consider here an alternative approach that we believe simpler, but slightly less efficient than the
tester of [25]. In particular, we introduce in Appendix A a new criterion, Ÿ-saturation, that permits to
significantly simplify the correctness proof of the tester compared to the one in [1] and in [25].

Our tester for weighted regular languages is based on k-factor sampling on ‚u that we will simulate
by an over-sampling built from a letter sampling on u, that is according to the weights of the letters of
u only. This new sampling can be easily performed given a stream of u using a standard reservoir
sampling.

Let u œ � and let u[i, i + k] be a factor that contains at least one push symbol. Call i1 (resp. i2)
the smallest (resp. largest) integer such that i1 Ø i (resp. i2 Æ i + k) and u(i1) (resp. u(i2)) is a
push symbol. Then the matching pop sequence of u[i, i + k] is defined as u[j1, j2] where u(j1) (resp.
u(j2)) is the matching pop symbol of u(i1) (resp. u(i2)).

N. François, F. Magniez, M. de Rougemont and O. Serre 13

u(i) u(i + k)
k + 1

u(j) u(jÕ)u(jÕ ≠ 2k)
2k + 1

k

Figure 3 The sampling Wk(u) from Definition 11: sample is in red.

I Definition 11. For a weighted word u œ �Q, denote by Wk(u) the sampling over subwords of u

constructed as follows (see Figure 3):
(1) Sample a factor u[i, i + k] of u with probability |u(i)|/|u|.
(2) If u(i) is before the first pop symbol of u, let u[j, jÕ] be the matching pop sequence of u[i, i + k],

extended by the first k neutral symbols after the last pop symbol, if any. Add u[max(j, jÕ≠2k), jÕ]
to the sample (hence, some matching pops of u[i, i+k] may not belong to u[max(j, jÕ ≠2k), jÕ]).

I Fact 12. There is a randomized streaming algorithm with memory O(k + log n) which, given k

and u as input, samples Wk(u).

Proof. (1) can easily be obtained using reservoir sampling. If the sampling enters the pop sequence
as the current candidate is part of the push sequence, then (2) can be done for that candidate, and
forgotten if the sampling eventually picks another one. That eventual candidate will not be part of the
push sequence, so we are done. J

I Lemma 13. Let u be a weighted word, and let k be such that 4k Æ |u|. Then 4k independent

copies of Wk(u) over-sample the k-factor sampling on ‚u.

Proof. Denote by „W the k-factor sampling on ‚u, and by W some 4k independent copies of Wk(u).
For any k-factor v of ‚u, we will show that the probability that ‚v is sampled by „W is at most the
probability that ‚v is a factor of an element sampled by W . For that, we distinguish the following three
cases:

‚v contains only letters in {I} ◊ �Q. Then the probability that ‚v is sampled by „W is equal to the
probability that it is sampled by Wk(u) in step (1).
‚v starts by a letter (a, b) in �+ ◊ �≠ or by a letter in �Q ◊ {I}. Then the probability that the u(i)
selected by Wk(u) is a is at least half of the probability that Wk(u) samples ‚v, as a (push,pop)
pair in ‚u has weight 2 while a push has weight 1 in u. Because ‚v is a k-factor, it is contained in
(u[i, i+k], u[jÕ ≠2k, jÕ]). Hence, the probability that ‚v is sampled by „W is at most the probability
that ‚v is a factor of an element sampled by Wk(u) in step (2).
‚v starts by a letter in {I} ◊ �Q but also contains letters outside of this set. Since |‚u| Ø |u|/2, we
get

Pr(Wk(u) samples ‚v) Ø 1/|u| and Pr(„W samples ‚v)Æk/|‚u| Æ 2k/|u|.

Thus the probability that one of the 4k samples of W has the factor ‚v is at least 1 ≠ (1 ≠ 1/|u|)4k.
As 1 ≠ (1 ≠ 1/|u|)4k Ø 1 ≠ 1

1+4k/|u| = 4k
|u|+4k Ø 2k/|u| when |u| Ø 4k, we conclude again that

the probability that ‚v is sampled by „W is at most the probability that ‚v is a factor of an element
sampled by Wk(u) in step (2).

14 Streaming Property Testing of Visibly Pushdown Languages

J

We can now give an analogue of the property tester for weighted regular languages in L fl �Q.
For that, we use the following notion of approximation.

I Definition 14. Let R ™ Q2. Then R (Á, �)-approximates a balanced word u œ (�+fi�-fi�Q)ú

on A, if for all p, q œ Q:
(1) If p

u≠æq, then (p, q) œ R;
(2) If (p, q) œ R, there is a word v such that dist�(u, v) Æ Á|u| and p

v≠æq.

Our tester is going to be robust enough in order to consider samples that do not exactly match the
peaks we want to compress.

I Theorem 15. Let A be a VPA with m Ø 2 states and �-diameter d Ø 2. Let Á > 0, ÷ > 0,

t = 2Á4dm3(log 1/÷)/ÁË, k = Á4dm/ÁË and T = 4kt. There is an algorithm that, given T random

subwords z1, . . . , zT of some weighted word v œ �Q, such that each zi comes from an independent

sampling Wk(v), outputs a set R ™ Q ◊ Q that (Á, �)-approximates v on A with bounded error ÷.

Let vÕ
be obtained from v by at most Á|v| balanced deletions. Then, the conclusion is still true if

the algorithm is given an independent Wk(vÕ) for each zi instead, except that R now provides a

(3Á, �)-approximation. Last, each sampling can be replaced by an over-sampling.

Proof. The argument uses as a subroutine the algorithm of Theorem 26 for ‚A, where A has been
extended to �Q. Recall that A is �-closed and its �-diameter is also the ‚�-diameter of ‚A. Also
observe that bdist�(u, v) Æ 2dist‚�(‚u, ‚v).

By Lemma 13, the T independent samplings Wk(v) provide us the sampling we need for
Theorem 26.

For the case where we do not have an exact k-factor sampling on v however, we need to
compensate for the prefix of v of size Á|v| that may not be included in the sampling. This introduces
potentially an additional error of weight 2Á|v| on the approximation R. J

As a consequence we get our first streaming tester for L fl �.

I Theorem 16. Let A be a VPA for L with m Ø 2 states, and let Á, ÷ > 0. Then there is a streaming

Á-tester for L fl � with one-sided error ÷ and memory space O((m8 log(1/÷)/Á2)(m3/Á + log n)),

where n is the input length.

Proof. We use Algorithm 2 where we replace the current factor u0 by T = 4kt independent
samplings Wk(u0). We know that such samplings can be computed using memory space O(k+log n)
by Fact 12. By Proposition 9, the slicing automaton has ‚�-diameter d at most 2m2. Therefore, from
Theorem 15, taking t = 4Á4dm3(log 1/÷)/ÁË and k = Á4dm/ÁË leads to the desired conclusion. J

5 Algorithm With Sketching

5.1 Sketching Using Suffix Samplings

We now describe the sketches used by our main algorithm. They are based on the generalization of
the random sketches described in Section 4.3. Moreover, they rely on a notion of suffix sampling, that
ensures a good letter sampling on each suffix of a data stream. Recall that the letter sampling on a
weighted word u samples a random letter u(i) (with its position) with probability |u(i)|/|u|.

Recall, as explained in the preliminaries, that we can easily derive from a letter sampling a
sampling on k-factors: this will permit us to use (–, t)-suffix sampling to sample k-factors.

N. François, F. Magniez, M. de Rougemont and O. Serre 15

u

us...

ul+1

ul...

u1
= u

Figure 4 An – suffix decomposition of u of size s. For every l, either |ul| Æ –|ul+1|, or ul
= a · ul+1

where a is a letter.

I Definition 17. Let u be a weighted word and let – > 1. An –-suffix decomposition of u of size s

(see Figure 4) is a sequence of suffixes (ul)1ÆlÆs of u such that: u1 = u, us is the last letter of u, and
for all l, ul+1 is a strict suffix of ul and if |ul| > –|ul+1| then ul = a · ul+1 where a is a single letter.
An (–, t)-suffix sampling on u of size s is an –-suffix decomposition of u of size s with t letter
samplings on each suffix of the decomposition.

We observe that (–, t)-suffix samplings can be either concatenated or compressed as stated below.

I Proposition 18. Given an (–, t)-suffix sampling Du on u of size su and another one Dv on v

of size sv, there is an algorithm Concatenate(Du, Dv) computing an (–, t)-suffix sampling on the

concatenated word u · v of size at most su + sv in time O(su).

Moreover, given an (–, t)-suffix sampling Du on u of size su, there is an algorithm Simplify(Du)
computing an (–, t)-suffix sampling on u of size at most 2Álog |u|/ log –Ë in time O(su).

Proof. We sketch those procedures. They are fully described in Algorithm 3. The correctness of
those procedures is immediate. For Concatenate, it suffices to do the following. For each suffix ul of
Du: (1) replace ul by ul · v; and (2) replace the i-th sampling of ul by the i-th sampling of v with
probability |v|/(|u| + |v|), for i = 1, . . . , t.

For Simplify, do the following. For each suffix ul of Du, from l = su (the smallest one) to
l = 1 (the largest one): (1) replace all suffixes ul≠1, ul≠2, . . . , um by the largest suffix um such that
|um| Æ –|ul|; and (2) suppress all samples from deleted suffixes. J

Using this proposition, one can easily design a streaming algorithm constructing online a suffix
decomposition of polylogarithmic size. Starting with an empty suffix-sampling S, simply concatenate
S with the next processed letter a of the stream, and then simplify it. We formalize this, together with
functions Concatenate and Simplify, in Algorithm 3.

I Lemma 19. Given a weighted word u as a data stream and a parameter – > 1,

Online-Suffix-Sampling in Algorithm 3 constructs an –-suffix sampling on u of size at most

1 + 2Álog |u|/ log –Ë.

One can then slightly modify Algorithm 3 so that within each suffix of the decomposition it simulates
t letter samplings in order to construct an (–, t)-suffix sampling.

5.2 Final Algorithm

Our final algorithm is a modification of Algorithm 2: in particular it approximates relations Rv (in the
spirit of Definition 14) by elements in �Q, instead of exactly computing them. Let us stress that even

16 Streaming Property Testing of Visibly Pushdown Languages

Algorithm 3 –-Suffix Sampling

1 Data structure:
2 // D, Du, Dv, D

temp

stacks of items (‡, b), one for each suffix

3 // of the decomposition where ‡ encodes the weight and b the t samples

4 Code:
5 Concatenate(Du, Dv)

6 D Ω Du

7 (c1, . . . , ct) Ω all t samples on v (the largest suffix in Dv)
8 For each (‡, b) œ D where b = (b1, . . . , bt)

9 Replace each bi by ci with probability |v|/(|v| + ‡)

10 Replace (‡, b) by (‡ + |v|, b)

11 Append Dv to the top of D
12 Return D
13 Simplify(Du)

14 D Ω Du

15 For each (‡, b) œ D from top to bottom
16 D

temp

Ω elements (·, c) œ D below (‡, b) with · Æ –‡
17 Replace D

temp

in D by the bottom most element of D
temp

18 Return D
19 Online-Suffix-Sampling
20 D Ω ÿ
21 While u not finished
22 a Ω Next(u)

23 Concatenate(D, a) where a encodes the suffix sampling (|a|, (a, . . . , a))

24 Simplify(D)

25 Return D

if some Rv is approximated by an R that does not correspond to any Ru, one has R œ �Q, which
means that for any (p, q) œ R, there is a balanced word u œ �ú depending on (p, q) with p

u≠æq.
To mimic Algorithm 2 we need to encode (compactly) each unfinished peak v of the stack and u0:

for that we use the data structure described in Data Structure 4. Our final algorithm, Algorithm 5,
is simply Algorithm 2 with this new data structure and corresponding adapted operations, where
ÁÕ = Á/(6 log n), T = 4608m422m2(log2 n)(log 1/÷)/Á2 and k = 24m2m2(log n)/Á.

The methods are described in Algorithm 5, where we implicitly assume that each letter processed
by the algorithm comes with its respective height and (exact or approximate) weight. They use
functions Concatenate and Simplify described in Proposition 18 (and in details in Algorithm 3),
while adapting them.

In the next section, we show that the samplings Svl are close enough to an (1+ÁÕ)-suffix sampling

Data Structure 4 Sketch for an unfinished peak

1 Parameters: real ÁÕ > 0, integers T Ø 1 and k Ø 1.
2 Data structure for a weighted word v œ Prefix(�Q)

3 Weights of v and of its first letter v(1)

4 Height of v(1)

5 Boolean indicating whether v contains a pop symbol
6 (1 + ÁÕ

)-suffix decomposition v1, . . . , vs of v encoded for every l = 1, . . . , s by
7 Estimates |vl|

low

and |vl|
high

of |vl|
8 T independent samplings Svl on k-factors of vl

// see details below

9 with corresponding weights and heights

N. François, F. Magniez, M. de Rougemont and O. Serre 17

Algorithm 5 Adaptation of Algorithm 2 using sketches

1 Run Algorithm 2 using Data structure 4 with the following adaptations:
2 Adaption of functions from Proposition 18
3 Concatenate(Du, Dv) with an exact estimate of |v| is modified s.t.
4 the replacement probability is now |v|/(|u|

high

+ |v|)
5 and |ul · v|z Ω |ul|z + |v|, for z = low, high

6 Simplify(Du) with – = 1 + ÁÕ has now relaxed condition |um|
high

Æ (1 + ÁÕ
)|ul|

low

.
7 Online-Suffix-Sampling is unchanged except for doing k-factor sampling.
8 Adaption of operations on factors used in Algorithm 2
9 Compute relation: Rv

10 Run the algorithm of Theorem 15 using samples in Dv

11 Decomposition: v1 · v2 Ω v
12 Find largest suffix vi in Dv s.t. vi œ Prefix(�Q) // i.e. s.t. vi

is in v2
13 Dv|v1 Ω suffixes (vl

)l<i with their samples
14 Dv2 Ω suffix vi with its samples and weight estimates // to compute Rv2

15 - (|vi|
high

, |vi|
low

) when vi≠1 and vi differ by a single letter (then vi
= v2)

16 - (|vi≠1|
high

, |vi|
low

) otherwise
17 Test: |u0| Ø |v2|/2 using |v2|

low

instead of |v2|
18 Concatenation: u0 Ω (v1 · Rv2) · u0
19 DvÕ Ω (Dv|v1 , Rv2) replacing each samples of Dv|v1 in v2 by Rv2

20 // The height of a sample determines whether it is in v2
21 Du0 Ω Simplify(Concatenate(DvÕ , Du0))

on vl. This lets us build an over-sampling of an (1 + ÁÕ)-suffix sampling. We also show that it only
requires a polylogarithmic number of samples. Then, we explain how to recursively apply the tester
from Theorem 15 (with ÁÕ) in order to obtain the compressions at line 14 and 20 while keeping a
cumulative error below Á. We now state our main result whose proof relies on Lemmas 22 and 24.

I Theorem 20. Let A be a VPA for L with m Ø 2 states, and let Á, ÷ > 0.

Then there is an Á-streaming algorithm for L with one-sided error ÷ and memory space

O(m523m2(log6 n)(log 1/÷)/Á4), where n is the input length.

Proof. We use Algorithm 5, which uses the tester from Theorem 15 for the compressions at lines 14
and 20 of Algorithm 2. We know from Lemma 24 that it is enough to choose ÁÕ = Á/(6 log n),
÷Õ = ÷/n, and Fact 21 gives us d = 2m2

. Therefore we need to sample k-factors from a (1 + ÁÕ, t)-
suffix sampling, where Theorem 15 gives us that t = 2304m422m2(log2 n)(log 1/÷)/Á2 and k =
24m2m2(log n)/Á. Lemma 22 tells us that using 2t samples from our algorithm is enough.

Because of the sampling variant we use, the size of each suffix decomposition is at most
144(log n)2/Á + O(log n) by Lemma 22. The samples in each element of the decomposition use
memory space k, and there are 2t of them. Furthermore, each element of the stack has its own sketch,
and the stack is of height at most log n. Multiplying all those together gives us the upper bound on
the memory space used by Algorithm 5. J

5.3 Final Analysis

As Algorithm 5 may fail at various steps, the relations it considers may not correspond to any word.
However, each relation R that it produces is still in �Q. Furthermore, the slicing automaton ‚A over
„�Q is ‚�-closed. Fact 21 below bounds the ‚�-diameter of ‚A (which is equal to the �-diameter of A)
by 2m2

. For simpler languages, as those coming from a DTD, this bound can be lowered to m.

I Fact 21. Let A be a VPA with m states. Then the �-diameter of A is at most 2m2
.

18 Streaming Property Testing of Visibly Pushdown Languages

Proof. A similar statement is well known for any context-free grammar given in Chomsky normal
form. Let N be the number of non-terminal symbols used in the grammar. If the grammar produces
one balanced word from some non-terminal symbol, then it can also produce one whose length is
at most 2N from the same non-terminal symbol. This is proved using a pumping argument on the
derivation tree. We refer the reader to the textbook [17].

Now, in the setting of visibly pushdown languages one needs to transform A into a context-free
grammar in Chomsky normal form. For that, consider first an intermediate grammar whose non-
terminal symbols are all the Xpq where p and q are states from A: such a non-terminal symbol will
produce exactly those words u such that p

u≠æq, hence our initial symbol will be those of the form
Xq0qf where q0 is an initial state and qf is a final state. The rewriting rules are the following ones:

Xpp æ Á

Xpq æ XprXrq for any state r

Xpq æ aXpÕqÕb whenever one has in the automaton p
a≠æ(pÕ, push(“)) and (qÕ, pop(“)) a≠æq for

some push symbol a, pop symbol b and stack letter “.
Xpq æ aXpÕq whenever one has in the automaton p

a≠æpÕ for some neutral symbol a.
Xpq æ XpqÕa whenever one has in the automaton qÕ a≠æq for some neutral symbol a.

Obviously, this grammar generates language L(A).
As we are here interested only in the length of the balanced words produced by the grammar,

we can replace any terminal symbol by a dummy symbol ˘. Now, once this is done we can put
the grammar into Chomsky normal form by using an extra non-terminal symbol (call it X˘ as it is
used to produce the ˘ terminal). As we have m2 + 1 non-terminal in the resulting grammar we are
almost done. To get to the tight bound announced in the statement, one simply removes the extra
non-terminal symbol X˘ and reasons on the length of the derivation directly. J

We first show that the decomposition, weights and sampling we maintain are close enough to an
(1 + ÁÕ)-suffix sampling with the correct weights. Recall that ÁÕ = Á/(6 log n).

I Lemma 22 (Stability lemma). Let v be an unfinished peak with W1, W2 two of the T samplings

maintained by Algorithm 5. Then (W1, W2) over-samples an (1 + ÁÕ)-suffix sampling on v, and the

decomposition has size at most 144(log |v|)(log n)/Á + O(log n).

Before proving the stability lemma, we first prove that Algorithm 5 maintains a strucutre that is
not too far from (1 + ÁÕ)-suffix sampling.

I Proposition 23. Let v be an unfinished peak, and let v1, . . . , vs
be the suffix decomposition

maintained by the algorithm. The following is true:

(1) v1, . . . , vs
is a valid (1 + ÁÕ)-suffix decomposition of v.

(2) For each letter a of every vl
, and for every sample s, Pr[Svl = a] Ø |a|/|vl|

high

.

(3) Each vl
satisfies |vl|

high

≠ |vl|
low

Æ 2ÁÕ|vl|
low

/3.

Proof. Property (1) is guaranteed by the (modified) Simplify function used in Algorithm 5, which
preserves even more suffixes than the original algorithm.

Properties (2) and (3) are proven by induction on the last letter read by Algorithm 5. Both are true
when no symbol has been read yet.

We start with property (2). Let us first consider the case where we concatenate after the last
letter was read. Then for all vl, the (modified) Concatenate function ensures Svl becomes a with
probability 1/|vl|

high

. Otherwise, Svl remains unchanged and by induction Svl = b with probability
at least (1 ≠ 1/|vl|

high

)|b|/(|vl|
high

≠ 1) = |b|/|vl|
high

, for each other letter b of vl.
The other case is that some Rv2 is computed at line 20 of Algorithm 2. In this case, v is equal to

some (v1 · Rv2) · u0 concatenation. For each suffix (v1 · v2)l in D(v1·v2) containing Rv2 , we proceed

N. François, F. Magniez, M. de Rougemont and O. Serre 19

in the same way with the Concatenate function, replacing any sample in v2 with Rv2 . Now consider
vi

2 the largest suffix of D(v1·v2) contained in v2, and vl = Rv2 · u0. We use the fact that Concatenate
looks at |vl|

high

Ø |u0|+ |Rv2 | for replacing samples. This means that we choose Rv2 as a sample for
vl with probability (|vl|

high

≠ |u0|)/|vl|
high

Ø |Rv2 |/|vl|
high

, and therefore the property is verified.
We now prove property (3). If vl has just been created, it contains only one letter of weight 1, and

obviously |vl|
low

= |vl|
high

= |vl|. In addition, unless some Rv2 has been computed at line 20 of
Algorithm 2 when the last letter was read, then |vl| is only augmented by some exactly known |a| or
|u0| compared to the previous step. Therefore the difference |vl|

high

≠ |vl|
low

does not change, and by
induction it remains smaller than 2ÁÕ|vl|

low

/3 which can only increase. Now consider Rv2 computed
at line 20 and vl = Rv2 ·u0. We again consider vi

2 for the largest suffix in the decomposition of v1 ·v2
that is contained within v2, as used in Algorithm 5, and vi≠1

2 is the suffix immediately preceding vi
2

in that decomposition.
If |vi≠1

2 |
high

> (1 + ÁÕ)|vi
2|

low

, then from the Simplify function, the difference between those
two suffixes cannot be more than one letter, and then vi

2 = v2. Therefore, we have |Rv2 · u0|
high

=
|v2|

high

+ |u0| and |Rv2 · u0|
low

= |v2|
low

+ |u0|. We conclude by induction on |v2|.
We end with the case |vi≠1

2 |
high

Æ (1+ÁÕ)|vi
2|

low

. By definition, |Rv2 ·u0|
high

= |vi≠1
2 |

high

+|u0|
and |Rv2 · u0|

low

= |vi
2|

low

+ |u0|. Therefore the difference |vl|
high

≠ |vl|
low

is at most ÁÕ|vi
2|

low

.
Since the test at line 19 of Algorithm 2 (modified by ALgorithm 5) was satisfied, we know that
|vi

2|
low

Æ 2|u0|, and finally ÁÕ|vi
2|

low

Æ 2ÁÕ(|vi
2|

low

+ |u0|)/3 Æ 2ÁÕ|vl|
low

/3, which concludes the
proof. J

We can now prove the stability lemma.

Proof of Lemma 22. The first property is a direct consequence of property (1) and (2) in Proposi-
tion 23, as in the proof of Lemma 13.

The second is a consequence of the (modified) Simplify used in Algorithm 5: D
temp

is defined as
the set of suffixes below with m < l such that |vm|

high

Æ (1 + ÁÕ)|vl|
low

. Because Simplify deletes
all but one elements from D

temp

, it follows that |vl≠2|
high

> (1 + ÁÕ)|vl|
low

. Now, from property (3)
of Proposition 23 we have that |vl|

low

Ø |vl|
high

≠ 2ÁÕ|vl|
low

/3 Ø (1 ≠ 2ÁÕ/3)|vl|
high

. Therefore we
have that |vl≠2|

high

> (1 + ÁÕ)(1 ≠ 2ÁÕ/3)|vl|
high

By successive applications, we obtain |vl≠6|
high

> (1 + ÁÕ)3(1 ≠ 2ÁÕ/3)3|vl|
high

. Now, as
|vl|

high

> |vl| and |vl| Ø |vl|
low

Ø (1 ≠ 2ÁÕ/3)|vl|
high

we have: |vl≠6|/(1 ≠ 2ÁÕ/3) > (1 + ÁÕ)3(1 ≠
2ÁÕ/3)3|vl|. Equivalently, |vl≠6| > (1 + ÁÕ)3(1 ≠ 2ÁÕ/3)4|vl|.

Thus, the size of the suffix decomposition is at most 6 log(1+ÁÕ)3(1≠2ÁÕ/3)4 |v| Æ 6 log |v|/ log(1+
ÁÕ/3 + O(ÁÕ2)) Æ 144(log |v|)(log n)/Á + O(log(n)). J

Using the tester from Theorem 15 for computing each R, we can then prove the robustness lemma.

I Lemma 24 (Robustness lemma). Let A be a VPA recognizing L and let u œ �n
. Let R

final

be the final value of R
temp

in Algorithm 5 If u œ L, then R
final

œ L; and if R
final

œ L, then

bdist�(u, L) Æ Án with probability at least 1 ≠ ÷.

Proof. One way is easy. A direct inspection reveals that each substitution of a factor w by a relation
R enlarges the set of possible w-transitions.Therefore R

final

œ L when u œ L.
For the other way, consider some word u such that R

final

œ L. Since the tester of Theorem 15 has
bounded error ÷Õ = ÷/n and was called at most than n times, none of the calls fails with probability
at least 1 ≠ ÷. From now on we assume that we are in this situation.

Let h = Depth(R
final

). We will inductively construct sequences u0 = u, . . . , uh = R
final

and
vh = R

final

, . . . , v0 such that for every 0 Æ l Æ h, ul, vl œ (�+ fi �≠ fi �Q)ú, bdist�(ul, vl) Æ
3(h ≠ l)ÁÕ|ul| and vl œ L. Furthermore, each word ul will be the word u with some substitutions of

20 Streaming Property Testing of Visibly Pushdown Languages

R
final

R

RÕ RÕÕ

Figure 5 Constructing the words u0, u1 and u2 as in Lemma 24 where Depth(R
final

) = 2

factors by relations R computed by the tester. Therefore, Depth(ul) is well defined and will satisfy
Depth(ul) = l. This will conclude the proof using that Depth(R

final

) Æ log3/2 n from Lemma 6.
This will give us bdist�(u, v0) Æ 6ÁÕn log n Æ Án.

We first define the sequence (ul)l (see Figure 5 for an illustration). Starting from u0 = u, let ul+1
be the word ul where some factors in �Q have been replaced by a (3ÁÕ, �)-approximation in �Q.
These correspond to all the approximations eventually performed by the algorithm that did not involve
a symbol already in �Q. Observe that after this collapse, the symbol is still a (3ÁÕ, �)-approximation.
In particular, uh = R

final

, ul œ (�+ fi �≠ fi �Q)ú and Depth(ul) = l by construction.
We now define the sequence (vl)l such that vl œ L. Each letter of vl will be annotated by an

accepting run of states for A. Set vh = R
final

with an accepting run from pin to qf for some
(pin, qf) œ R

final

fl (Qin ◊Qf). Consider now some level l < h. Then vl is simply vl+1 where some
letters R œ �Q in common with ul+1 are replaced by some factors in w œ (�Q)ú as explained in the
next paragraph. Those letters are the ones that are present in ul but not ul+1, and are still present in
vl+1 (i.e. they have not been further approximated down the chain from ul+1 to uh, or deleted by edit
operations moving up from vh to vl+1).

Let w œ (�Q)ú be one of those factors and R œ �Q its respective (3ÁÕ, �)-approximation. By
hypothesis R is still in vl+1 and corresponds to a transition (p, q) of the accepting run of vl+1. We

replace R by a factor wÕ such that p
wÕ

≠æq and bdist�(w, wÕ) Æ 3ÁÕ|w|, and annotate wÕ accordingly.
By construction, the resulting word vl satisfies vl œ L and bdist�(ul, vl) Æ 3(h ≠ l)ÁÕ|ul|. J

N. François, F. Magniez, M. de Rougemont and O. Serre 21

References

1 N. Alon, M. Krivelevich, I. Newman, and M. Szegedy. Regular languages are testable with a
constant number of queries. SIAM Journal on Computing, 30(6), 2000.

2 N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the frequency mo-
ments. Journal of Computer and System Sciences, 58(1):137–147, 1999.

3 R. Alur. Marrying words and trees. In Proc. of 26th ACM Symposium on Principles of Database

Systems, pages 233–242, 2007.
4 R. Alur, M. Arenas, P. Barceló, K. Etessami, N. Immerman, and L. Libkin. First-order and temporal

logics for nested words. In Proc. of 22nd IEEE Symposium on Logic in Computer Science, pages
151–160, 2007.

5 R. Alur, K. Etessami, and P. Madhusudan. A temporal logic of nested calls and returns. In Proc.

of 10th International Conference on Tools and Algorithms for the Construction and Analysis of

Systems, pages 467–481, 2004.
6 R. Alur and P. Madhusudan. Adding nesting structure to words. Journal of the ACM, 56(3), 2009.
7 A. Babu, N. Limaye, and G. Varma. Streaming algorithms for some problems in log-space. In Proc.

of 7th Conference on Theory and Applications of Models of Computation, pages 94–104, 2010.
8 M. Blum, W. Evans, P. Gemmell, S. Kannan, and M. Naor. Checking the correctness of memories.

Algorithmica, pages 90–99, 1995.
9 M. Blum and S. Kannan. Designing programs that check their work. Journal of the ACM,

42(1):269–291, 1995.
10 M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications to numerical prob-

lems. Journal of Computer and System Sciences, 47(3):549–595, 1993.
11 B. von Braunmühl and R. Verbeek. Input-driven languages are recognized in log n space. In Proc.

of 4th Conference on Fundamentals of Computation Theory, volume 158, pages 40–51, 1983.
12 M. Chu, S. Kannan, and A. McGregor. Checking and spot-checking the correctness of priority

queues. In Proc. of 34th International Colloquium on Automata, Languages and Programming,
pages 728–739, 2007.

13 P. Dymond. Input-driven languages are in log n depth. Information Processing Letters, 26(5):247–
250, 1988.

14 J. Feigenbaum, S. Kannan, M. Strauss, and M. Viswanathan. Testing and spot-checking of data
streams. Algorithmica, 34(1):67–80, 2002.

15 E. Fischer, F. Magniez, and M. de Rougemont. Approximate satisfiability and equivalence. SIAM

Journal on Computing, 39(6):2251–2281, 2010.
16 O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning and

approximation. In Proc. of 37th IEEE Symposium on Foundations of Computer Science, pages
339–348, 1996.

17 J. Hopcroft, R. Motwani, and J. Ullman. Introduction to Automata Theory, Languages, and Com-

putation (3rd Edition). Addison-Wesley, 2006.
18 C. Konrad and F. Magniez. Validating XML documents in the streaming model with external

memory. ACM Transactions on Database Systems, 38(4):27, 2013. Special issue of ICDT’12.
19 L. Libkin. Logics for unranked trees: An overview. Logical Methods in Computer Science, 2(3),

2006.
20 F. Magniez and M. de Rougemont. Property testing of regular tree languages. Algorithmica,

49(2):127–146, 2007.
21 F. Magniez, C. Mathieu, and A. Nayak. Recognizing well-parenthesized expressions in the stream-

ing model. SIAM Journal on Computing, 43(6):1880–1905, 2014.
22 K. Mehlorn. Pebbling mountain ranges and its application to dcfl-recognition. In Proc. of 7th

International Colloquium on Automata, Languages, and Programming, pages 422–435, 1980.
23 S. Muthukrishnan. Data streams: Algorithms and applications. Foundations and Trends in Theor-

etical Computer Science, 1(2):117–236, 2005.

22 Streaming Property Testing of Visibly Pushdown Languages

24 A. Ndione, A. Lemay, and J. Niehren. Approximate membership for regular languages modulo the
edit distance. Theoretical Computer Science, 487:37–49, 2013.

25 A. Ndione, A. Lemay, and J. Niehren. Sublinear DTD validity. In Proc. of 19th International

Conference on Language and Automata Theory and Applications, pages 739–751, 2015.
26 M. Parnas, D. Ron, and R. Rubinfeld. Testing membership in parenthesis languages. Random

Structures & Algorithms, 22(1):98–138, 2003.
27 A. Rajeev and P. Madhusudan. Visibly pushdown languages. In Proc. of 36th ACM Symposium on

Theory of Computing, pages 202–211, 2004.
28 L. Segoufin and C. Sirangelo. Constant-memory validation of streaming XML documents against

DTDs. In Proc. of 11th International Conference on Database Theory, pages 299–313, 2007.
29 L. Segoufin and V. Vianu. Validating streaming XML documents. In Proc. of 11th ACM Symposium

on Principles of Database Systems,, pages 53–64, 2002.

N. François, F. Magniez, M. de Rougemont and O. Serre 23

A A Tester for Weighted Regular Languages

We design a non-adaptive property tester for weighted regular languages that serves as a basic routine
of our main algorithm. Property testing of regular languages was first considered in [1] for the
Hamming distance and we adapt this tester to weighted words for the simple case of edit distance.
Such a property tester has been already constructed first for edit distance in [24], and later on for
weighted words in [25], with an approach based on [1].

In this work, we take an alternative approach that we believe simpler, but slightly less efficient
than the tester of [25]. We consider the graph of components of the automaton and focus on paths in
this graph; we however introduce a new criterion, Ÿ-saturation (for some parameter 0 < Ÿ Æ 1), that
permits to significantly simplify the correctness proof of the tester compared to the one in [1] and
in [25]. In particular Lemma 29 permits to design a non-adaptive tester for L and also to approximate
the action of u on A as follows.

I Definition 25. Let �Õ ™ � and R ™ Q ◊ Q. Then R (Á, �Õ)-approximates a word u on A (or

simply Á-approximates when �Õ = �), if for all p, q œ Q: (1) (p, q) œ R when p
u≠æq; (2) u is

(Á, �Õ)-close to some word v satisfying p
v≠æq when (p, q) œ R.

Our main contribution is the following one.

I Theorem 26. Let A be an automaton with m Ø 2 states and diameter d Ø 2. Let Á > 0, ÷ > 0,

t Ø 2Á2dm3(log 1/÷)/ÁË and k Ø Á2dm/ÁË. There is an algorithm that, given t random factors of

v1, . . . , vt of some weighted word u, such that each vi comes from an independent k-factor sampling

on u, outputs a set R ™ Q ◊ Q that Á-approximates u on A with one-sided error ÷.

This is still true with any combination of the following generalization:

The algorithm is given an over-sampling of each of factors vi instead.

When A is �Õ
-closed, and d is the �Õ

-diameter of A, then R also (Á, �Õ)-approximates u on A.

The rest of this section is devoted to the proof of Theorem 26 and therefore we fix a regular
language L recognized by some finite state automaton A on � with a set of states Q of size m Ø 2,
and a diameter d Ø 2. Define the directed graph GA on vertex set Q whose edges are pairs (p, q)
when p

a≠æq for some a œ �.
A component C of GA is a maximal subset (w.r.t. inclusion) of vertices of GA such that for every

p1, p2 in C one has a path in GA from p1 to p2. The graph of components GA of GA describes the
transition relation of A on components of GA: its vertices are the components and there is a directed
edge (C1, C2) if there is an edge of GA from a vertex in C1 toward a vertex in C2.

I Definition 27. Let C be a component of GA, let � = (C1, . . . , Cl) be a path in GA.
A word u is C-compatible if there are states p, q œ C such that p

u≠æq.
A word u is �-compatible if u can be partitioned into u = v1a1v2 . . . al≠1vl such that pi

vi≠æqi

and qi
ai≠æpi+1, where vi is a factor, ai a letter, and pi, qi œ Ci.

A sequence of factors (v1, . . . , vt) of a word u is �-compatible if they are factors of another
�-compatible word with the same relative order and same overlap.

Note that the above properties are easy to check. Indeed, C-compatibility is a reachability property
while the two others easily follow from C-compatibility checking.

We now give a criterion that characterizes those words u that are Á-far to every �-compatible
word. Note that it will not be used in the tester that we design in Theorem 26 for weighted regular
languages, but only in Lemma 29 which is the key tool to prove its correctness.

For a component C and a C-incompatible word v, let v1 · a be the shortest C-incompatible prefix
of v. We define and denote the C-cut of v as v = v1 · a · v2. When v1 is not the empty word, we say
that v1 is a C-factor and a is a C-separator for v1, otherwise we say that a is a strong C-separator.

24 Streaming Property Testing of Visibly Pushdown Languages

Fix a path � = (C1, . . . , Cl) in GA, a parameter 0 < Ÿ Æ 1, and consider a weighted word u.
We define a natural partition of u according to �, that we call the �-partition of u. For this, start
with the first component C = C1, and consider the C1-cut u1 · a · u2 of u. Next, we inductively
continue this process with either the suffix a · u2 if a is a C1-separator, or the suffix u2 if a is a strong
C1-separator. Based on some criterion defined below we will move from the current component Ci

to a next component Cj of �, where most often j = i + 1, until the full word u is processed. If we
reach j = l + 1, we say that u Ÿ-saturates � and the process stops. We now explain how we move
on in �. We stay within Ci as long as both the number of Ci-factors and the total weight of strong
Ci-separators are at most Ÿ|u| each. Then, we continue the decomposition with some fresh counting
and using a new component Cj selected as follows. One sets j = i + 1 except when the transition is
the consequence of a strong Ci-separator a of weight greater than Ÿ|u|, that we call a heavy strong

separator. In that case only, one lets j Ø i + 1, if exists, to be the minimal integer such that q
a≠æqÕ

with q œ Cj≠1 fi Cj and qÕ œ Cj , and j = l + 1 otherwise.

I Proposition 28. Let 0 < Ÿ Æ Á/(2dl). If u is Á-far to every �-compatible word, then u

Ÿ-saturates �.

Proof. The proof is by contraposition. For this we assume that u does not Ÿ-saturate � and we
correct u to a �-compatible word as follows.

First, we delete each strong separator of weight less that Ÿ|u|. Their total weight is at most 2lŸ|u|.
Because u does not saturate, each strong separator of weight larger than Ÿ|u| fits in the �-partition,
and does not need to be deleted.

We now have a sequence of consecutive Ci-factors and of heavy strong Ci-separators, for some
1 Æ i Æ l, in an order compatible with �. However, the word is not yet compatible with � since each
factor may end with a state different than the first state of the next factor. However, for each such pair
there is a path connecting them. We can therefore bridge all factors by inserting a factor of weight at
most d, the diameter of A.

The resulting word is then �-compatible by construction, and the total cost of the edit operations
is at most (2l + dl)Ÿ|u| Æ Á|u|, since d Ø 2. J

For a weighted word u, we remind that the k-factor sampling on u is defined in Section 2.1. The
following lemma is the key lemma for the tester for weighted regular languages.

I Lemma 29. Let u be a weighted word, let � = C1 . . . Cl be a path in GA. Let 0 < Ÿ Æ Á/(2dl)
and let W denote the Á2/ŸË-factor sampling on u. Then for every 0 < ÷ < 1 and t Ø 2l(log 1/÷)/Ÿ,

the probability P (u, �) = Pr(v1,...,vt)≥W¢t [(v1, . . . , vt) is �-compatible] satisfies P (u, �) = 1
when u is �-compatible, and P (u, �) Æ ÷ when u is Á-far for from being �-compatible.

Proof. The first part of the theorem is immediate. For the second part, assume that u is Á-far from
any �-compatible word. For simplicity we assume that 2/Ÿ and Ÿ|u|/2 are integers. We first partition
u according to � and Ÿ. Then, Proposition 28 tells us that u Ÿ-saturates �. For each Ci, we have
three possible cases.

1. There are Ÿ|u| disjoint Ci-factors in u. Since they have total weight at most |u|, there are at least
Ÿ|u|/2 of them whose weight is at most 2/Ÿ each. Since each letter has weight at least 1, the
total weight of the first letters of each of those factors is at least Ÿ|u|/2. Therefore one of them
together with its Ci-separator is a sub-factor of some sampled factor vj with probability at least
1 ≠ (1 ≠ Ÿ/2)t.

2. The total weight of strong Ci-separators of u is at least Ÿ|u|. Therefore one of them is the first
letter of some sampled factor vj with probability at least 1 ≠ (1 ≠ Ÿ)t.

N. François, F. Magniez, M. de Rougemont and O. Serre 25

3. There is not any Ci-factor and any Ci-separator of u, because of a strong CiÕ -separator of weight
greater than Ÿ|u|, for some iÕ < i. This separator is the first letter of some sampled factor vj with
probability at least 1 ≠ (1 ≠ Ÿ)t.

By union bound, the probability that one of the above mentioned samples fails to occurs is at most
l(1 ≠ Ÿ)t Æ ÷. We assume now that they all occur, and we show that they form a �-incompatible
sequence. For each i, let wi be the above described sub-factors of those samples. Each wi appears in
u after wi≠1 or, in the case of a strong separator of heavy weight, wi = wi≠1. Moreover each factor
wi which is distinct from wi≠1 forces next factors to start from some component CiÕ with iÕ > i. As a
result (w1, . . . , wl) is not �-compatible, and as a consequence (v1, . . . , vt) neither, so the result. J

We can now conclude with the proof of Theorem 26.

Proof of Theorem 26. The algorithm is very simple:

1. Set R = ÿ
2. For all states p, q œ Q

a. Check if factors v1, . . . , vt could come from a word v such that p
v≠æq

// Step (a) is done using the graph GA of connected components of A
b. If yes, then add (p, q) to R

3. Return R

It is clear that this R contains every (p, q) such that p
u≠æq. Now for the converse, we will show

that, with bounded error ÷, the output set R only contains pairs (p, q) such that there exists a path
� = C1, . . . , Cl on GA such that p œ C1, q œ Cl, and u is �-compatible. In that case, there is an
Á-close word v satisfying p

v≠æq.
Indeed, using l Æ m and Lemma 29 with t, Ÿ = Á/(2dm) and ÷Õ = ÷/2m, the samples satisfy

P (u, �) Æ ÷/2m, when u is not �-compatible. Therefore, we can conclude using a union bound
argument on all possible paths on GA, which have cardinality at most 2m, that, with probability at
least 1 ≠ ÷, there is no � such that the samples are �-compatible but u is not �-compatible.

The structure of the tester is such that it has only more chances to reject a word that is not
�-compatible given an over-sampling as input instead. Words u such that p

u≠æq will always be
accepted no matter the amount and length of samples. Therefore the theorem still holds with an over
sampling.

Last, A being �Õ-closed ensures that the notions of compatibility and saturation remain unchanged.
Using the �Õ-diameter in Lemma 29 (and therefore in Proposition 28) let us use bridges in �Õú instead
of �ú with weight at most d. J

	Introduction
	Definitions and Preliminaries
	Weighted Words and Sampling
	Finite State Automata and Visibly Pushdown Automata
	Streaming Property Testers
	Balanced/Standard Edit Distance

	Exact Algorithm
	Notations and Algorithm Description
	Algorithm Analysis

	The Special Case Of Peaks
	Hard Peak Instances
	Slicing Automaton
	Random Sketches

	Algorithm With Sketching
	Sketching Using Suffix Samplings
	Final Algorithm
	Final Analysis

	A Tester for Weighted Regular Languages

