
Improved bounds for testing Dyck languages

Eldar Fischer1, Frédéric Magniez2, and Tatiana Starikovskaya3

1Technion - Israel Institute of Technology, Israel, eldar@cs.technion.ac.il
2CNRS, IRIF, Univ Paris Diderot, France, magniez@irif.fr

3IRIF, Univ Paris Diderot, France, tat.starikovskaya@gmail.com

Abstract

In this paper we consider the problem of deciding membership in Dyck languages, a funda-
mental family of context-free languages, comprised of well-balanced strings of parentheses. In
this problem we are given a string of length n in the alphabet of parentheses of m types and
must decide if it is well-balanced. We consider this problem in the property testing setting,
where one would like to make the decision while querying as few characters of the input as
possible.

Property testing of strings for Dyck language membership for m = 1, with a number of
queries independent of the input size n, was provided in [Alon, Krivelevich, Newman and
Szegedy, SICOMP 2001]. Property testing of strings for Dyck language membership for m ≥ 2
was first investigated in [Parnas, Ron and Rubinfeld, RSA 2003]. They showed an upper bound
and a lower bound for distinguishing strings belonging to the language from strings that are far
(in terms of the Hamming distance) from the language, which are respectively (up to polyloga-
rithmic factors) the 2/3 power and the 1/11 power of the input size n.

Here we improve the power of n in both bounds. For the upper bound, we introduce a
recursion technique, that together with a refinement of the methods in the original work provides
a test for any power of n larger than 2/5. For the lower bound, we introduce a new problem
called Truestring Equivalence, which is easily reducible to the 2-type Dyck language property
testing problem. For this new problem, we show a lower bound of n to the power of 1/5.

1 Introduction

1.1 Background

Initially identified as one of the ingredients for the proof of the PCP theorem [3], property testing
is nowadays one of the successful paradigms of computation for handling massive data sets. In
property testing one would like to decide whether an input has a global property by performing
only few local checks. The goal is to distinguish with sufficient confidence the inputs which satisfy
the property from those that are far from satisfying it. In this sense, property testing is a notion
of approximation for the corresponding decision problem. Property testers, under the name of
self-testers and with a slightly different objective, were first considered for programs computing
functions with some algebraic properties [6, 7, 22, 21]. The notion in its full generality was defined
by Goldreich, Goldwasser and Ron, and successfully applied to topics including testing properties
of graphs [16, 17], monotonicity [15], group and field operations [12], geometrical objects [10],
formal languages [1], and probability distributions [5]. The setting of property testing has also
been addressed for quantum computers, see [19] for a survey.

Formally, property testers have random access to their input in the query model. They can read
the input, one piece at a time, by submitting a query with the selected index. Ideally, property
testers should perform a number of queries that depends only on the approximation parameter (and
not on the input length n), but also an algorithm making a number of queries that is sublinear
in n (for every fixed approximation parameter) is considered a legitimate property test. Whereas
the complexity of formal language membership is quite well-understood, both in term of space and
time complexity (see for instance [25]), even on parallel architectures [11] and in the streaming
model [18], very little is known in the context of property testing, except when both models of
streaming and property testing are combined [9, 14].

The study of property testers for formal languages was initiated by Alon et al. [1] under the
Hamming distance. In this context, two strings of length n are ε-far if the Hamming distance
between them is larger than εn. An ε-tester for a language L must distinguish, with probability at
least 2/3, the strings that are in L from those that are ε-far from L, using as few queries as possible.
Alon et al. showed that regular languages, as well as the Dyck language D1 of well-parenthesized
expressions with a single type of parentheses, can be ε-tested with a number of queries independent
of the input size n. However, by the work of [20] the query complexity of an ε-tester for Dyck
languages Dm with m ≥ 2 types of parentheses is between Ω(n1/11) and Õ(n2/3), and by [1] it
becomes linear, even for one type of parentheses, when one-sided error is required. When the
distance allows sufficient modifications of the input, such as moves of arbitrarily large factors, it
has been shown that any context-free language is testable with a constant number of queries [13].

1.2 Motivation and our results

Dyck languages are not only some of the simplest context free languages, but they are also universal
in some sense, since any context-free language can be expressed as an intersection of a regular
language withDm, for some integerm and up to some homomorphic map (Chomsky-Schützenberger
representation theorem [4]). Moreover, Dyck languages have been used in many real life applications
over the years, and some of their extensions, such as visibly pushdown languages or nested strings [2],
are heavily used to handle semi-structured documents such as massive databases, or to capture
safety properties of programs from their execution traces.

Motivated by the new applications and the prevalence of massive data, there is a renewed interest
in studying the complexity of testing membership in context free languages and in particular in

1

Dyck languages. As an illustration, we mention some of the recent works pioneered by Saha for
estimating the edit distance of a string to a Dyck language [23] and to context free languages [24, 8].

In this paper we revisit the complexity of property testing for Dyck languages Dm, with m ≥ 2,
and improve the previously known upper and lower bounds (respectively Õ(n2/3) and Ω(n1/11)),
significantly narrowing the gap between the two. Our contribution is twofold:

1. Our first main result consists of a new property testing algorithm for Dyck languages. In
particular, we show that for any m ≥ 2 and for any constant δ, ε > 0 there is an ε-tester with
complexity Õ(n2/5+δ), up to some polylogarithmic factors (Corollary 3.4).

2. Our second main result is an improved lower bound of Ω(n1/5) (Corollary 5.2) for some
constant ε. To show this, we introduce a new methodology which can potentially simplify
further establishments of lower bounds in property testing.

1.3 Overview of the paper

New algorithms. In order to improve the previously known algorithms, we introduce two recur-
sion techniques, that together with a refinement of the methods from previous works provide a better
complexity. We start with an easy reduction from Dm-membership testing to Dm-consistency
testing (Section 2, Lemma 2.4), where the later problem simply asks if the input string is (close
to) a substring of a member of Dm. The reduction is built upon the tester for D1-membership
of [1], and was implicit in the analysis of the tester of [20]. Next, in Section 3, we show an al-
gorithm for Dm-consistency testing. The algorithm (Algorithm 2) partitions the input string
into non-overlapping blocks. Note that if the input string is Dm-consistent, each of the blocks is
Dm-consistent as well. A natural part of the algorithm therefore consists of selecting several blocks
at random and testing if they are Dm-consistent. Instead of querying all characters of the selected
blocks as in [20], we design a careful analysis allowing a recursive call here (Theorem 3.3).

Inter-block matching. We call the parentheses of a block that must be matched with parentheses
in a different block excess. The crucial part of the algorithm consists of checking that the excess
parentheses of the blocks can be matched correctly. In Section 2.3 we construct a dependency graph
in order to identify candidate pairs of blocks having many matching excess parentheses between
them. This graph is an approximation of the matching graph introduced in [20] and it can be
computed efficiently (Algorithm 1). We provide a new property of this graph in the context of Dm-
consistency testing. Namely, the total weight of its edges accounts for almost all excess parentheses
of the blocks that are not excess in the input string (Lemma 2.12). Once such a candidate pair
of blocks has been identified, we (approximately) locate their substrings containing the excess
parentheses that are required to match. We now need to check whether the excess parentheses
of one substring can be matched with the excess parentheses of the second substring. This task
is performed by an external algorithm (Algorithm 3), which is itself recursive. We call this task
Substring ε-matching.

Substring ε-matching. Our solution for Substring ε-matching exploits a new methodology
that combines a recursive approach and the birthday paradox. In order to recurse, we would like
to divide each substring into smaller subblocks, and recurse on a random pair of the subblocks that
contain matching parentheses. However, since we could only locate the substrings approximately,
it is hard to identify efficiently the pairs of subblocks to be tested. We overcome this technical
hurdle by trying to guess the real borders and testing each of our guesses. Potentially, this can be
very expensive in terms of query complexity. To avoid this, our solution uses the birthday paradox.
The idea is not to query a separate subset of subblocks for each pair of tested substrings, but to
query a square root number of subblocks from both substrings and then re-use them to test each

2

of our guesses. In the end, we show that Algorithm 3 solves Substring ε-matching on n-length
substrings with query complexity O(n

1
2

+δ), for any constant 0 < δ ≤ 1/2 (Theorem 3.2).

New lower bound and methodology. For the improved lower bound (Corollary 5.2), we first
introduce a new problem called Truestring equivalence (see Section 2), that highlights one
particular aspect of testing Dyck languages. In this problem we must decide if two given binary
strings with dummy characters “�” are equal after deleting all “�” characters. The “�” characters
hide the indexes of the meaningful bits, just as the indexes of excess parentheses are hidden in
a parenthesized expression. After a quick reduction from Truestring equivalence to Dm-
membership (Lemma 2.5), we proceed to prove a bound for Truestring equivalence using the
traditional Yao’s method (Theorem 5.1) in Section 5. Namely, we produce a distribution DP over
inputs satisfying Truestring equivalence, and a distribution DN over inputs that are (mostly)
far from satisfying Truestring equivalence (Lemma 5.4), and then show that any (possibly
adaptive) deterministic algorithm will have only a small difference in its acceptance probability
when it is fed either an input drawn according to DP or one drawn according to DN (Lemma 5.5).

A new methodology. To facilitate the analysis of the behavior of a deterministic algorithm A
when fed an input drawn according to either distribution, we introduce a new methodology, which
could potentially simplify further establishments of lower bounds in property testing.

First, we move to a probabilistic analysis of the resulting distributions over transcripts, AP
and AN . Second, we bound the distance between the two distributions by introducing a third
distribution. We construct this third distribution AB over the domain of all possible algorithm
transcripts as well as an additional “wild” symbol ⊥. When the wild symbol is drawn, one can
think of it as representing the case where the algorithm manages to obtain an untypical amount of
information about the input.

We then show that AB underlies the other two distributions, meaning that the transcript
probabilities of AB bound from below those of both AP and AN (Lemma 5.10), while still retaining
only a small probability for the wild symbol ⊥ (Lemma 5.12). Next, we establish that the total
variation distance between AB to each of the other two distributions is simply upper bounded by
the probability to output the wild symbol ⊥ (Lemma 5.7). This means that the two distributions
over transcripts are close to each other, and hence the acceptance probabilities cannot differ by
much (since the acceptance of A is a deterministic function of its transcript).

2 Preliminaries

2.1 Basic definitions and some reductions

Hereafter n will denote the input size, and Õ(f(n)) stands for O(f(n) · polylog n). The distance
between two strings T, T ′ of length n is the Hamming distance, that is the number of indexes in
which they differ. We say that T, T ′ are ε-close when their distance is at most εn, and that they
are ε-far otherwise.

Definition 2.1 (ε-Tester). Let L be a language over a constant-size alphabet. A randomized algo-
rithm A is an ε-tester for L with bounded error η ≥ 0, if A accepts all inputs T ∈ L with probability
at least 1− η, and rejects all inputs T that are ε-far from all members of L with probability at least
1− η.

Usually, the notion of property testing is studied in the context of query complexity. In this
model, the algorithm is given the size of the input, but not the input string itself: the algorithm

3

can only access the string by querying it locally, one character at a time. The query complexity of
the algorithm is defined as the number of performed queries. In this work we study the worst case
query complexity of the algorithms and disregard other notions of space and time complexity.

The Dyck language Dm is the language of strings of properly balanced parentheses of m types.
For example, a string “(0(1)1)0” is in D2, while “(0(1)0)0” and “(0(1)1(0” are not. A string S is
Dm-consistent, if it is a substring of a string S′ ∈ Dm. We now define the three main problems that
we will consider, and state some reductions between them. The notion of ε-testing is implicitly
extended to those problems by considering the respective languages they define.

Dm-membership(n)
Input: String of even length n on an alphabet of parentheses of m types
Output: Decide if it is in Dm

Dm-consistency(n)
Input: String of length n on an alphabet of parentheses of m types
Output: Decide if it is Dm-consistent

The last problem is defined in a slightly different but related context. Given a string w ∈
{0, 1, �}∗, its truestring T (w) is the subsequence resulting from deleting all � characters. Two
strings w and v are called truestring equivalent if T (w) = T (v).

Truestring equivalence(n)
Input: Two strings of length n over alphabet {0, 1, �}
Output: Decide if they are truestring equivalent

We will need a tester for D1-membership by Alon et al. [1].

Lemma 2.2 ([1]). There is an ε-tester for D1-membership(n) with bounded error 1/6 and query
complexity O(ε−2 log(1/ε)).

Definition 2.3 ([20]). For a string S on the alphabet of parentheses of m types, let µ(S) be a string
obtained from S by removing the types of the parentheses.

Let k and ` be the smallest integers such that (kµ(S))` ∈ D1. We call e1(S) = k the excess
number of closing parentheses in S, and e0(S) = ` the excess number of opening parentheses in S.

If S is a substring of the input string T , its excess numbers indicate how many parentheses
cannot be matched with other parentheses in S and must be matched with parentheses outside S.
Such parentheses are called excess parentheses of S.

For example, if S = “)0(1)1)0(1)1”, then µ(S) is “)())()”, e1(S) = 2 and e0(S) = 0, and the excess
parentheses are the first and the fourth ones. Let n0(S′) be the number of opening parentheses in
a substring S′ of S, and n1(S′′) be the number of closing parentheses in a substring S′′ of S. It is
not hard to see that the following equations hold, where we assume that the empty prefix and the
empty suffix are included:

e1(S) = max
S′−prefix of S

(
n1(S′)− n0(S′)

)
, and e0(S) = max

S′′−suffix of S

(
n0(S′′)− n1(S′′)

)
(1)

We can now state our reductions.

Lemma 2.4. Given an ε-tester A for Dm-consistency(n) with bounded error 1/6, one can design
an Θ(ε)-tester B for Dm-membership(n) with bounded error 1/3 and query complexity equal to
that of A with an additional term of O(ε−2 log(1/ε)).

4

Proof. Our tester for Dm-membership(n) on T consists of two steps: first, we apply the tester for
D1-membership(n) of Lemma 2.2 on µ(T), and then the tester A. Observe that T is in Dm if and
only if µ(T) is in D1 and T is Dm-consistent, and therefore if T is in Dm it will be accepted with
probability at least 2/3.

We now prove by contrapositive that when T is 4ε-far from Dm then either µ(T) is ε-far from
D1 or T is ε-far from any Dm-consistent string. Suppose that µ(T) is ε-close to D1 and T is ε-close
to a Dm-consistent string. First note that since µ(T) is ε-close to D1, then T contains at most
2εn excess parentheses. Indeed, if T contains more than 2εn excess parentheses, then we have to
modify at least εn of them to obtain a string T̃ such that µ(T̃) ∈ D1, a contradiction. Since T is
ε-close to a Dm-consistent string, we can modify ≤ εn characters in it so that the resulting string
T ′ is Dm-consistent. By modifying ≤ εn characters of T we change its excess numbers by at most
εn (see Equation 1). Therefore, the number of excess parentheses in T ′ is at most 3εn. It must be
even as well. We change the first half of excess parentheses to “(0”, and the second half to “)0”,
obtaining a string in Dm.

Lemma 2.5. Given an ε-tester A for D2-membership(4n), one can design an Θ(ε)-tester B for
Truestring equivalence(n) with the same query complexity.

Proof. Let w, v ∈ {0, 1, �}n. Define w′ from w where we replace “0” by “(0(0”, “1” by “(1(1”, and
“�” by “(0)0”, and v′ from v where we replace “0” by “)0)0”, “1” by “)1)1”, and “�” by “(0)0”.
We perform the reduction of a pair (w, v) to a string of parentheses u by concatenating w′ and the
reverse of v′. It is clear that this maps a pair of truestring equivalent strings to a 4n-length string
in D2, as well as that a query to u can be simulated using a single query to w or v.

We now show that if u is ε-close to D2, then (w, v) is O(ε)-close to a pair of truestring equivalent
strings. It suffices to show that we can delete O(εn) characters of T (w) and T (v) so that the
resulting strings are equal, because we can simulate a deletion from T (w) or T (v) by replacing the
corresponding character of w or v with “�”. By definition, there is a string ũ ∈ D2 such that the
Hamming distance between u and ũ is k ≤ ε · (4n). Moreover, there is a perfect matching on the
parentheses of ũ such that each two matched parentheses ũ[i], ũ[j] are of the same type and |i−j+1|
is even. We now mark some characters of ũ. Namely, we mark each character ũ[i] 6= u[i] and its
matching parenthesis. Also, if ũ[i] was marked and u[i−1, i] or u[i, i+1] was obtained by replacing
a “�” character with the sequence “(0)0” in w or v, we mark ũ[i− 1] or ũ[i+ 1] respectively, as well
as its matching parenthesis in ũ (some such characters might have been already marked before).
Finally, we mark all untouched pairs of “(0)0” corresponding to “�” characters.

Consider a character of T (w) or T (v) and the corresponding sequence ũ[i, i+1]. If both ũ[i] and
ũ[i+ 1] are marked, we delete the character. In total, we delete O(k) = O(εn) non-“�” characters.
To show that the resulting strings are equal, note that the set of unmarked characters of ũ is
comprised of matching parentheses (because each time we marked a pair of matching parentheses),
and contains only those characters where u and ũ agree. Moreover, each unmarked character ũ[i],
i ≤ 2n, is an opening parenthesis that matches some unmarked closing parenthesis ũ[j], j > 2n,
where |j − i+ 1| is even.

2.2 Excess parentheses preprocessing

Parnas et al. [20] showed that it suffices to query Õ(n2/3/ε2) indexes of the input string T to compute
the excess numbers of any substring of T of length ≥ n2/3 with precision εn2/3. Below we show a
new approach that will allow us to approximate excess numbers of any substring independent of
its length, which is important for our recursive tester. From Equation 1 it follows that to estimate

5

the excess numbers it suffices to estimate the number of opening and closing parentheses in each
prefix and suffix of S.

Lemma 2.6. By querying Õ(x2/∆2) indexes of a string S′ of length x ≤ n, there is an algorithm
computing the number of opening or closing parentheses in any substring S of S′ with precision ∆
correctly with probability at least 1− 1/n3.

Proof. We query a subset of (2x2 log n)/∆2 indexes of S′ uniformly at random. For each substring S′

of length≤ ∆ we can output ∆ as an approximation of the number of opening or closing parentheses.
Consider now any substring S of S′ of length y ·∆, where 1 < y ≤ x/∆. By Chebyshev’s inequality,
it contains ≥ y · (x log n/∆) queried indexes with probability ≥ 1/2. We repeat this step log(2n3)
times to amplify the probability. As a corollary, S will contain ≥ y · (x log n/∆) queried indexes
with probability ≥ 1− 1/2n3. We divide the samples into log n subsets of size y · (x/∆). Consider
one such subset of indexes p1, . . . , py·(x/∆). Setting Xi = 1 if S[pi] is an opening parenthesis and

Xi = 0 otherwise, for X =
∑y·(x/∆)

i=1 Xi we have E[X] = n0 · y·(x/∆)
y·∆ . By the additive Chernoff

bound we then obtain

Pr

[
|X − n0 ·

y · (x/∆)

y ·∆
| ≥

√
y · (x/∆)

]
≤ 2e−2 < 1/3

Dividing the inequality under the probability by x/∆2 we obtain

Pr

[
|X · (∆2/x)− n0| ≥

√
y · (x/∆)

x/∆2

]
≤ 2e−2 < 1/3

Since

√
y·(x/∆)

x/∆2 ≤ ∆ (recall that y ≤ x/∆), we obtain that n̂0 = X ·(∆2/x) is a ∆-approximation

of n0 with probability > 2/3. We amplify the probability by taking the median of the values
computed over all subsets of indexes.

Lemma 2.7. By querying Õ(x2/∆2) random indexes of a string S′ of length x ≤ n, there is an
algorithm computing the excess numbers of any substring S of S′ with precision ∆ correctly with
probability at least 1− 1/n3.

Proof. The lemma follows immediately from Equation 1 and Lemma 2.6 for ∆ = ∆/2.

2.3 Matching graph

Let us first remind the notion of a matching graph introduced by Parnas et al. [20]. Let k, ` be the
excess numbers of T , i.e. the smallest integers such that T ′ = (k µ(S))` ∈ D1. Since T ′ ∈ D1, there
is a unique perfect matching on its characters. Let b = n4/5. We divide T into non-overlapping
blocks of length b (the last block may be shorter).

Definition 2.8 (Matching graph). The matching graph G = (V,E) of T is a weighted graph where
V is a set of the blocks of T . If w(i, j) parentheses in block i match parentheses in block j, then the
two blocks i, j are connected by an edge (i, j) of weight w(i, j).

In other words, the matching graph tells if the blocks i, j contain matching parentheses, and
also the number of such parentheses. Compared to the definition given in [20], we changed the size
of the blocks, which will allow us to use recursion and to improve the upper bound. This change
does not affect the properties of the matching graph stated in [20].

6

Remark 2.9 ([20]). The matching graph G is planar and therefore has at most 3n/b edges.

We say that blocks i and j are neighbours if there is an edge between them. Let Ti,j be the
substring of T containing blocks i-th to j-th inclusively.

Lemma 2.10 ([20]). Let i 6= j be two blocks of T and define σ(i, j) = min{e0(Ti,i), e1(Ti+1,j)} −
e1(Ti+1,j−1). The following is true: (a) If σ(i, j) > 0, then i, j are neighbours; (b) If i, j are
neighbours, w(i, j) = σ(i, j).

We will compute the matching graph approximately using Algorithm 1. It relies on the ap-
proximation of excess parentheses with precision εb from Lemma 2.7. We call the resulting output
graph the approximate matching graph Ĝ.

Algorithm 1 Approximate matching graph Ĝ

Input: string T of size n
1. Divide T into non-overlapping blocks of length b = n4/5

2. Run the excess parentheses preprocessing for precision εb (Lemma 2.7)

3. For each i, j ∈ {1, . . . , n/b}, i 6= j:

(a) Get ê0(Ti,i), ê1(Ti+1,j), and ê1(Ti+1,j−1)

(b) Compute σ̂(i, j) = min{ê0(Ti,i), ê1(Ti+1,j)} − ê1(Ti+1,j−1)

4. Construct the weighted graph Ĝ = (V, Ê) where V is a set of blocks of T and Ê is the set of
edges (i, j) such that σ̂(i, j) > 8εb, with respective weights ŵ(i, j) = σ̂(i, j)

The approximate matching graph satisfies the following property.

Lemma 2.11 ([20]). With probability at least 1 − 1/n, the approximate matching graph Ĝ is a
subgraph of the matching graph G, and every vertex in Ĝ has degree O(1/ε).

We also show a new property that will be essential for the analysis of our Dm-consistency tester.
For this, define a locally excess parenthesis to be an excess parenthesis of some block of T which
is not excess in T . We will show that the total weight of the edges of the approximate matching
graph accounts for almost all locally excess parentheses.

Lemma 2.12. ∑
(i,j)∈Ê:i<j

ŵ(i, j) ≥ 1

2

i=n/b∑
i=1

(e0(Ti,i) + e1(Ti,i))− (e0(T) + e1(T))−O(εn).

Proof. Consider an edge (i, j) of weight w(i, j) ≥ 9εb. We then have σ(i, j) ≥ 9εb. Consequently
σ̂(i, j) > 8εb, which implies that (i, j) ∈ Ê. In other words, (i, j) is an edge of Ĝ as well. By
Remark 2.9, the total weight of edges (i, j) ∈ E such that w(i, j) < 9εb is at most 3(n/b)·9εb = 27εn.
Therefore,∑

(i,j)∈Ê:i<j

ŵ(i, j) =
∑

(i,j)∈Ê:i<j

σ̂(i, j) ≥
∑

(i,j)∈Ê:i<j

σ(i, j)−O(εn) =
∑

(i,j)∈E:i<j

w(i, j)−O(εn)

Since T contains e0(T) + e1(T) excess parentheses, we have that

∑
(i,j)∈E:i<j

w(i, j) ≥ 1

2

i=n/b∑
i=1

e0(Ti,i) + e1(Ti,i)

− (e0(T) + e1(T))

Combining the two inequalities we obtain the claim.

7

3 A tester for Dm-consistency

Let T be the input string partitioned into non-overlapping blocks of length b = n4/5 (except for
the last block that may be shorter). Our Dm-consistency test consists of two steps: first we check
that the excess parentheses of the blocks can be matched correctly, and then (recursively) check
that the blocks are Dm-consistent. The structure of the test repeats the structure of the test by
Parnas et al. [20], in particular, both tests are based on the notion of approximate matching graph.
However, our test uses new and much more sophisticated techniques, which finally gives us a better
bound.

Algorithm 2 Dm-consistency(n, k)

Input: string T of length n
1. If k = 0, run the deterministic Dm-consistency 0-tester, and stop

2. Divide T into non-overlapping blocks of length b = n4/5

3. Inter-block matching:

(a) Compute the approximate matching graph Ĝ for the blocks using Algorithm 1

(b) Select ε−1 log n blocks uniformly at random and for each find all of its O(1/ε) neighbours
in Ĝ

(c) For each selected block i and for each of its neighbours j:

i. Find (approximately) the smallest substring S1 of block i that contains all excess
opening parentheses that match in block j, and the smallest substring S2 of block j
that contains all excess closing parentheses that match in block i (see Section 3.1)

ii. Check that S1, S2 ε-match using Substring ε-matching(b) (Theorem 3.2)

4. Dm-consistency of the blocks:

(a) Select 4ε−1 log n blocks uniformly at random

(b) Run the Dm-consistency(b, k − 1) test twice for each of the selected blocks

Algorithm 2 shows the main steps of our new tester Dm-consistency(n, k). In Step 3 we call
a subroutine Substring ε-matching(x). It must accept S1 if almost all excess parentheses in it
can be matched in S2. Formally,

Definition 3.1 (sequentially match, ε-match). Consider two substrings S1, S2 of T of maximal
length x. We say that the excess opening parentheses of S1 can be matched sequentially in S2

if there is a perfect matching between the excess opening parentheses of S1 and a (continuous)
subrange of excess closing parentheses of S2 such that any two matched parentheses T [i], T [j] have
the same type and the distance between them, defined as |j − i+ 1|, is even.

We say that S1, S2 ε-match if all but at most 7εx leftmost and 5εx rightmost excess opening
parentheses of S1 can be matched sequentially in S2 .

Substring ε-matching(x)
Input: Two substrings S1, S2 of T of maximal size x
Output: Accept if they ε-match; Reject if at most e0(S1)− 30εx excess opening paren-
theses of S1 can be matched sequentially in S2.

The choice of constants is important for the analysis of Dm-consistency(n, k). In Section 4 we
show the following theorem by using recursion.

8

Theorem 3.2. For every constant 0 < δ ≤ 1/2 there is an algorithm for Substring ε-

matching(x) with query complexity Õ(ε(2δ)(1/ log 3/4)−2+4x1/2+δ) and bounded error 1/n2.

In Section 3.1 we give a detailed description of Algorithm 2, Step 3 (inter-block matching), and
then in Section 3.2 prove the following theorem.

Theorem 3.3. For any 0 < δ < 1/2, Dm-consistency(n, 5) (Algorithm 2) is an ε-tester for

Dm-consistency(n) with query complexity Õ(ε(2δ)(1/ log 3/4)−2+2n2/5+4/5·δ) and bounded error 1/6.

This theorem immediately implies a new tester for Dm-membership via Lemma 2.4.

Corollary 3.4. For any 0 < δ < 1/2 there is an ε-tester for Dm-membership(n) with query

complexity Õ(ε(2δ)(1/ log 3/4)−2+2n2/5+4/5·δ).

3.1 Inter-block matching

In this section we give a detailed description and analyse Step 3 of the Dm-consistency(n, k)
algorithm (inter-block matching). We start by running the excess parentheses preprocessing
(Lemma 2.7) and computing the approximate matching graph for the blocks. Next, we select
ε−1 log n blocks uniformly at random and for each find all of its O(1/ε) neighbours in the approxi-
mate matching graph.

Consider one of the selected blocks, i and its neighbour j. Assume i < j, the other case
is symmetrical. Let [p, q] be the smallest interval of indexes in the block i containing all excess
opening parentheses that match in the block j, and [r, s] the smallest interval of indexes in the
block j containing all excess closing parentheses that match in block i. Unfortunately, we cannot
compute the precise values of p, q, r, s, but we can compute their approximate values p̂, q̂, r̂, ŝ (see
Figure 1). We run the Substring ε-matching algorithm (Theorem 3.2) on T [p̂, q̂] and T [r̂, ŝ].
If the algorithm confirms that the substrings ε-match, we accept i and j, and otherwise we reject
them. The inter-block matching accepts T if and only if all tested block pairs are accepted.

Block i

p̂ p q q̂

((((((((
6

(
6

)
6

)
6

Block j

r̂ r s ŝ

(
6

(
6

(
6

)
6

)
6

)
6

)))))))). . .

Ti+1,j−1

Figure 1: Blocks i and j, and intervals [p̂, q̂] and [r̂, ŝ]. Black parentheses are excess parentheses of the blocks
i and j, red parentheses (also marked by crosses 6) are excess in T [p̂, q̂] and T [r̂, ŝ], but not in the blocks
i, j (they will be matched with the red parentheses just outside of the intervals.)

We now explain how we approximate p, q, r, s. Recall that ŵ(i, j) > 8εb is the approximate
weight of the edge (i, j) and ê0(S), ê1(S) are the excess numbers of opening / closing parentheses
in a substring S of T computed with precision εb. We compute p̂, q̂, r̂, ŝ in the following way:

1. Let q̂ be the rightmost index in block i such that ê0(T [q̂, ib]) ≥ ê1(Ti+1,j−1) − 2εb and
ê1(T [q̂, ib]) ≤ εb;

2. Let p̂ be the rightmost index in block i such that ê0(T [p̂, q̂]) ≥ ŵ(i, j) + 6εb (if there is none,
we put p̂ = (i− 1)b+ 1);

3. Let r̂ be the leftmost index in block j such that ê1(T [(j−1)b+ 1, r̂]) ≥ ê0(Ti+1,j−1)−2εb and
ê0(T [(j − 1)b+ 1, r̂]) ≤ εb;

9

4. Let ŝ be the leftmost index in block j such that ê1(T [r̂, ŝ]) ≥ ŵ(i, j) + 6εb (if there is none,
we put ŝ = jb).

Since ŵ(i, j) = σ̂(i, j) = min{ê0(Ti,i), ê1(Ti+1,j)}− ê1(Ti+1,j−1) > 8εb, indexes q̂ and r̂ always exist.

Correctness of inter-block matching. We now show that if T is Dm-consistent, inter-block
matching will accept it with high probability, and that if T is accepted, then almost all locally
excess parentheses of T can be matched correctly. Recall that a parenthesis of T is called locally
excess if it is excess for some block of T , but not for T itself.

Lemma 3.5. If T is Dm-consistent, it is accepted by inter-block matching with probability > 1−1/n.

Proof. We will show that if T is Dm-consistent, then for every pair of neighbours i, j in Ĝ the
substrings T [p̂, q̂] and T [r̂, ŝ] defined as above ε-match. From Theorem 3.2 and the union bound it
will immediately follow that T is accepted with probability > 1− 1/n.

We need to show that all but at most 7εb leftmost and at most 5εb rightmost excess opening
parentheses in T [p̂, q̂] can be sequentially matched in T [r̂, ŝ]. By definition, all excess parentheses of
T [p, q] can be sequentially matched in T [r, s]. T [r̂, ŝ] contains T [r, s] as a subinterval, and therefore
it suffices to show that T [p̂, q̂] has at most 5εb extra excess opening parentheses on the right and
at most 7εb extra excess opening parentheses on the left compared to T [p, q].

If T is Dm-consistent, all excess closing parentheses in Ti+1,j−1 must match in T [q + 1, ib].
Therefore, T [q, ib] must contain e1(Ti+1,j−1) excess opening parentheses. From the definition it
follows that T [q̂, ib] contains at least e1(Ti+1,j−1) − 3εb parentheses. It means that T [p̂, q̂] has at
most 3εb extra excess opening parentheses on the right that must be matched in Ti+1,j−1. There
also can be at most 2εb extra excess opening parentheses that were not excess in the block i but
became excess in T [p̂, q̂] (see Figure 1). In total, there will be at most 5εb extra excess opening
parentheses on the right.

Consider now the rightmost excess opening parenthesis of T [p̂, q̂] that matches in block j.
Starting from it, there must be w(i, j) more excess opening parentheses that also match in block j.
We defined p̂ to be the rightmost index in block i such that ê0(T [p̂, q̂]) ≥ ŵ(i, j) + 6εb. It follows
that ê0(T [p̂+1, q̂]) < ŵ(i, j)+6εb < w(i, j)+7εb or that e0(T [p̂, q̂]) ≤ w(i, j)+7εb, which concludes
the proof.

Lemma 3.6. If T is accepted with probability > 1/n, then there is a matching on its locally excess
parentheses such that: (a) Any two matched parentheses have the same type and the distance between
them is even; (b) There are at most O(εn) unmatched locally excess parentheses.

Proof. By Lemma 2.7, excess preprocessing is correct for all substrings of T with probability >
1− 1/2n. We can therefore assume that both assumptions (T is accepted, excess preprocessing is
correct) hold with probability > 1/2n.

The fraction of blocks i, which have a neighbour j in Ĝ such that the substring matching test
accepts with probability < 1/n2 if executed on i, j, is at most ε (otherwise we would select one of
them with probability ≥ 1− 1/n2). Let R be a set of all such blocks. We thus obtain that∑

(i,j)∈Ê:i 6=j,i∈R

σ̂(i, j) = O(εn)

Consider now any three blocks i1 < i2 < j (the case j < i1 < i2 is analogous.) such that both i1
and i2 are neighbours of j in Ĝ. Suppose that both i1, j and i2, j are accepted by the Substring
ε-matching algorithm with probability > 1/n2. Theorem 3.2 implies that there is a subsequence

10

of locally excess opening parentheses of block i1 of length ≥ σ(i1, j) − 30εb that can be matched
with a subsequence π1 of locally excess closing parentheses of block j, and a subsequence of locally
excess opening parentheses of block i2 ≥ σ(i1, j) − 30εb that can be matched with a subsequence
π2 of locally excess closing parentheses of block j. The matchings satisfy property (a); moreover,
assuming that the excess numbers of all substrings of T were computed correctly with precision εb,
the subsequences π1 and π2 overlap by ≤ 12εb excess parentheses. The latter follows from the
definition of p̂, q̂, r̂, ŝ. Indeed, the number of excess closing parentheses between (j − 1)b and the
last parenthesis of π2 is at most ê0(Ti2+1,j−1)+ ŵ(i2, j)+7εb ≤ e0(Ti2+1,j−1)+σ(i2, j)+9 ·εb, where
σ(i2, j) = min{e0(Ti2,i2), e1(Ti2+1,j)}−e1(Ti2+1,j−1) ≤ e0(Ti2,i2)−e1(Ti2+1,j−1). On the other hand,
the number of excess closing parentheses between (j− 1)b and the first parenthesis of π1 is at least
e0(Ti1,j−1) − 3εb. Note that e0(Ti1,j−1) ≥ e0(Ti2,i2) − e1(Ti2+1,j−1) + e0(Ti2+1,j−1). Therefore, the
two subsequences overlap by at most 12εb excess parentheses.

From above it follows that the total number of locally excess parentheses in the matched sub-
sequences is

∑
(i,j)∈Ê:i<j σ̂(i, j)−O(εn). Moreover, each two subsequences overlap by at most 12εb

parentheses. Since by Lemma 2.11 Ĝ is a subgraph of G, that is planar and therefore has at most
3n/b edges, the total lengths of overlaps is O(εn). Therefore, we will be able to match at least∑

(i,j)∈Ê:i<j σ̂(i, j)−O(εn) locally excess parentheses. The claim follows from Lemma 2.12.

Complexity of inter-block matching. To compute the approximate matching graph we
need Õ(ε−2n2/5) queries. The substring matching test is called Õ(ε−2 log n) times, and takes

Õ(ε(2δ)1/ log 3/4−2+4b1/2+δ) queries for a fixed constant 0 < δ < 1/2. Since b = n4/5, we finally obtain

that inter-block matching can be implemented to have complexity Õ(ε(2δ)1/ log 3/4−2+2n2/5+4/5·δ) for
any 0 < δ < 1/2.

3.2 Recursion (proof of Theorem 3.3)

We are now ready to prove Theorem 3.3 that claims that Dm-consistency(n, 5) test is an ε-tester

for Dm-consistency(n) with complexity Õ(ε(2δ)1/ log 3/4−2+2n2/5+4/5·δ).
We start by analysing the complexity of the test. The pseudocode of the test (see Algorithm 2)

directly implies that if Dm-consistency(n, k − 1) test has query complexity f(n, ε), then Dm-

consistency(n, k) test has query complexity Õ(ε−1f(n4/5, ε) + ε(2δ)1/ log 3/4−2+2n2/5+4/5·δ), where
0 < δ < 1/2 is a constant in the complexity of Substring ε-matching (Theorem 3.2). Recall
that for the base case k = 0, the Dm-consistency(n, 0) test is the trivial deterministic 0-tester
for Dm-consistency with query complexity f(n, ε) = n. Therefore after applying the recursive step

five times, we obtain a test with complexity Õ(ε(2δ)1/ log 3/4−2+2n2/5+4/5·δ).

Correctness. We now show that the Dm-consistency(n, 5) test is an ε-tester for Dm-
consistency(n) with bounded error 1/6. By the definition, we need to show that if T is Dm-
consistent, the test will accept it with probability > 1− 1/6, and if T is accepted with probability
> 1/6, T is C · ε-close to Dm-consistent for some constant C > 0.

We start with the first part of the claim. Suppose that if T is Dm-consistent, then it is accepted
by the Dm-consistency(n, k−1) test with probability > 1−α. By the union bound and Lemma 4.2
it then follows that Dm-consistency(n, k) test will accept T with probability > 1−α2 ·ε−1 log n−
1/n (the test can err either in the inter-block matching, or in one of the ε−1 log n calls to Dm-
consistency(n, k − 1)). Since for k = 0 the error probability α = 0, we obtain that the error
probability for k = 5 is less than 1/6.

11

We now show the second part of the claim by induction on k. Suppose that the following is true:
If the Dm-consistency(n, k− 1) test accepts T with probability > 1/6, then it is Ck−1 · ε-close to
Dm-consistent for some constant Ck−1 > 0. We will now show that if the Dm-consistency(n, k)
test accepts T with probability > 1/6, then it is Ck · ε-close to Dm-consistent for some constant
Ck > 0. This will conclude the proof of Theorem 3.3. We do this in three steps as described below:
First, we show how to make all the blocks Dm-consistent, secondly, we show that we can match
almost all locally excess parentheses in the resulting string, and finally, we show how to modify the
remaining locally excess parentheses so that we can match them as well.

Step 1 - Making all blocks Dm-consistent. Since the Dm-consistency(n, k) test ac-
cepts T with probability > 1/6, at most ε-fraction of the blocks can be accepted by the Dm-
consistency(n, k − 1) test with probability ≤ 1/6. Indeed, if there were more than ε-fraction of
such blocks, one of them would be selected with probability > 1 − 1/n. Recall that we run the
Dm-consistency(n, k−1) test on this block twice (Algorithm 2, Step 4(b)) . It means that it will
be accepted by the test with probability ≤ 1/36. By the union bound we obtain that in this case T
would be accepted with probability < 1/6, a contradiction. It follows that at least a (1−ε)-fraction
of the blocks would be accepted by the Dm-consistency(n, k − 1) test with probability > 1/6,
and by our assumption they are Ck−1 · ε-close to Dm-consistent.

We now explain how we modify the blocks to make them Dm-consistent. First we consider all
blocks that are Ck−1 · ε-far from Dm-consistent. For every such block B, there is a unique perfect
matching on the non-excess parentheses. If a pair of matched non-excess parentheses have different
types, we modify one of them accordingly. Note that this procedure does not change the set of
excess parentheses of such blocks. In total, we modify at most εn/2 parentheses (up to b/2 in each
such block). We now consider the blocks that are Ck−1 · ε-close to Dm-consistent. By definition
we can make each such block Dm-consistent by modifying ≤ Ck−1 · εb parentheses in it. In total,
we modify at most Ck−1 · εn parentheses. We denote the resulting string by T ′. From Equation 1
we immediately obtain the following observation, that will be important for further analysis.

Observation 3.7. After modifying ≤ Ck−1 · εb characters of a block, the set of excess open-
ing/closing parentheses in it can change by at most 2Ck−1 · εb parentheses.

We finally obtain that the sets of excess parentheses of T and T ′ differ by at most 2Ck−1 · εn
parentheses.

Step 2 - Partial matching of locally excess parentheses. We now build a matching on the
locally excess parentheses of T ′. We first consider the initial non-modified string T . The inter-
block matching test must accept T with probability > 1/6 and therefore by Lemma 4.2 there is a
matching on locally excess parentheses of T such that: (a) Any two matched parentheses have the
same type and the distance between them is even; (b) There are at most O(εn) unmatched locally
excess parentheses. We now consider an induced matching on excess parentheses of T ′. Namely, we
match two locally excess parentheses of T ′ if they are matched in T and if they were not modified
during the first step. From Lemma 3.6 it follows that T ′ will contain at most O(εn) non-matched
locally excess parentheses.

Step 3 - Modifying non-matched excess parentheses. The string T ′ is now composed
of four types of consecutive substrings: (a) Substrings that belong to Dm; (b) Locally excess
parentheses in one block that are matched with locally excess parentheses in another block; (c) At
most O(εn) locally excess parentheses that are not matched (see Step 2); and (d) At most O(εn)

12

excess parentheses of T ′ that are not excess parentheses of T (see Step 1); (e) Excess parentheses
of T .

Let T ′′ be the string obtained from T ′ by removing all substrings of type (a). Note that by
removing such substrings we do not change the parity of the distance between any two matched
excess parentheses. We show how to modify T ′′ in a recursive way. Let t′, t′′ be two matched
substrings of excess parentheses such that between them there is only one substring τ of parentheses
of types (c) or (d). It follows that S′′ = p′t′τt′′p′′ for some strings p′ and p′′. The length of τ is
even. We replace it with an arbitrary string in Dm, and then remove t′τt′′ from S′′ and continue
recursively. In the end we will obtain a set of excess parentheses of T . This concludes the proof of
Theorem 3.3.

4 Algorithm for Substring ε-matching

In this section we show an algorithm for Substring ε-matching with bounded error 1/3 and

query complexity Õ(ε2δ1/log 3/4−2+4x1/2+δ). Theorem 3.2 will immediately follow, as we can repeat
the algorithm a logarithmic number of times to boost the probability.

4.1 Algorithm for Substring ε-matching with bounded error 1/3

Recall that the algorithm receives as an input two substrings S1, S2 of T of length at most x, and
must accept S1, S2 if they ε-match, and reject if at most e0(S1)− 30εx excess opening parentheses
of S1 can be sequentially matched in S2. The algorithm consists of three recursive procedures:
Procedures QueryLeft(x, ε, k) and QueryRight(x, ε, k) query a subset of characters of strings
S1 and S2, and the third procedure, MakeDecision(x, ε, k) accepts or rejects (S1, S2) using the
queried characters. We give the pseudocode of our solution in Algorithm 3.

Algorithm 3 Substring ε-matching

Input: Two substrings S1, S2 of a string T of length ≤ x
1. k := dlog3/4 2δe
2. Run QueryLeft(x, ε, k) for S1

3. Run QueryRight(x, ε, k) for S2

4. MakeDecision(x, ε, k)

We now describe each procedure in turn.

Procedures QueryLeft(x, ε, k) and QueryRight(x, ε, k). Let x′ = x3/4 and ε′ = ε/30. Proce-
dure QueryLeft(x, ε, k) starts by running the excess numbers preprocessing on S1 for precision
(ε′)2x′. Next, it partitions S1 into non-overlapping blocks starting from the right. If the approx-
imate number of excess parentheses in S1 is less than 10ε′x′, the partitioning of S1 is defined to
contain a single block equal to S1 itself. Otherwise, it must satisfy the following two properties: (1)
The approximate number of excess opening parentheses in the m rightmost blocks of S1 is between
(10m−ε′) ·ε′x′ and (10m+ε′) ·ε′x′; and (2) The approximate number of excess closing parentheses
in these blocks is at most (ε′)2x′. (Note that such a partitioning always exists because, for example,
we can choose the m-th block to be the substring bounded by the 10(m− 1)-th and 10m-th excess
parentheses. The procedure might choose another partitioning, but this shows that it will have at
least one possible choice.) We call blocks of length ≤ x′ dense. Finally, the procedure deletes the
leftmost and the rightmost blocks of S1.

13

Procedure 1 QueryLeft(x, ε, k)

Input: Substring S1 of T of length ≤ x
Output: Partitioning of S1, a sequence L = {Lt} of subsets of dense blocks, queried characters

1. If k = 0, query all characters of S1

2. x′ := x3/4, ε′ := ε/30

3. Run excess numbers preprocessing for S1 with precision (ε′)2x′

4. Partition S1 into blocks containing approximately 10ε′x′ excess opening parentheses, and then
delete the leftmost and the rightmost blocks

5. Select a sequence L = {Lt} of Θ̃(ε−1) random subsets of dense blocks of S1 of size
Θ̃((ε′)−1

√
x/x′)

6. Run QueryLeft(x′, 2(ε′)2, k − 1) for each selected block Θ(log(x · ε−1 log x)) times

Let A, B, and C be positive constants to be defined later. The procedure selects A · ε−1 log x
random subsets Lt of dense blocks of S1, where each subset has size B·(ε′)−1

√
x/x′ log(x·ε−1 log x).

For each selected dense block B the procedure runs QueryLeft(x′, 2(ε′)2, k − 1) independently
C · log(x · ε−1 log x) times over B. The pseudocode is given in Procedure 1.

Similar to above, procedure QueryRight(x, ε, k) starts by running the excess numbers prepro-
cessing on S2 for precision (ε′)2x′. For technical reasons that will become clear later, we consider
not just one partitioning of S2, but a number of them. Namely, we consider a separate partitioning
for each shift τ = (ε′)2x′, 2(ε′)2x′, . . . , 12 · εx′ (in total, we have 12ε/(ε′)2 = 12 · 30/ε′ shifts). For
each m ≥ 0 the approximate number of excess closing parentheses in the (m+ 1) leftmost blocks of
the partitioning must be between τ + (10m− ε′) · ε′x′ and τ + (10m+ ε′) · ε′x′, and the approximate
number of excess opening parentheses must be at most (ε′)2x′.

Procedure 2 QueryRight(x, ε, k)

Input: Substring S2 of T of length ≤ x
Output: Partitionings of S2, sequences R(τ) = {Rt(τ)} of subsets of dense blocks, queried charac-
ters

1. If k = 0, query all characters of S2

2. x′ := x3/4, ε′ := ε/30

3. Run excess numbers preprocessing for S2 with precision (ε′)2x′

4. For each shift τ ∈ {(ε′)2x, 2(ε′)2x, . . . , 12εx}:
(a) Partition S2 into blocks containing approximately 10ε′x′ excess closing parentheses, ex-

cept for the first block containing approximately τ excess closing parentheses

(b) Select a sequence R(τ) = {Rt(τ)} of Θ̃(ε−1) sets of dense blocks of S2 of size
Θ̃((ε′)−1

√
x/x′)

(c) Run QueryRight(x′, 2(ε′)2, k − 1) for each selected block Θ(log(x · ε−1 log x)) times

For the partitioning of S2 corresponding to a shift τ , the procedure selects A · ε−1 log x random
subsets Rt(τ) of dense blocks of S2 of size B · (ε′)−1

√
x/x′ log(x · ε−1 log x) each. For each selected

dense block B the procedure runs QueryRight(x′, 2(ε′)2, k−1) independently C · log(x ·ε−1 log x)
times. The pseudocode is given in Procedure 2.

14

Procedure MakeDecision(ε, x, k). We finally explain how we use the queried indexes to test
S1 and S2. If k = 0, QueryLeft(ε, x, k) and QueryRight(ε, x, k) know all characters of S1

and S2 and we can use a naive deterministic algorithm to decide whether S1 and S2 ε-match. If
ê0(S1) < 10εx, we always accept S1 and S2.

Suppose now that k > 0 and ê0(S1) ≥ 10εx. For each partitioning of S2 we consider all possible
substrings X that start at some block border. We process each of them in turn and accept (S1, S2)
if at least one of the substrings X is accepted. If the difference between the approximate number
of excess opening parentheses in S1, ê0(S1), and excess closing parentheses in X, ê1(X) is larger
than 4(ε′)2x′, X is rejected, and otherwise we continue to the next step. X is tested in A · ε−1 log x
iterations, and we accept X if and only if it is accepted at each iteration. Suppose that X starts
at a block border of a partitioning for a shift τ . We enumerate the blocks in S1 from right to left
and the blocks in X from left to right. At iteration t = 1, 2, . . . ,A · ε−1 log x we find a rank m such
that the m-th block B1 of S1 is in the subset Lt, and the m-th block B2 of S2 is in Rt(τ). Finally,
we run the MakeDecision(x′, 2(ε′)2, k − 1) procedure on (B1, B2) independently C · log(x · ε−1)
times; and if the blocks are rejected for the majority of iterations, reject X. (See Procedure 3.)

Procedure 3 MakeDecision(x, ε, k)

Input: Substrings S1, S2 of a string T of length ≤ x; outputs of QueryLeft(x, ε, k) run on S1 and
of QueryRight(x, ε, k) run on S2

1. If k = 0, use the trivial algorithm to decide whether S1 and S2 ε-match

2. x′ := x3/4, ε′ := ε/30

3. If ê0(S1) < 10εx, accept S1, S2

4. For each partition of S2 and for each substring X starting at the partition’s block border:

(a) If |ê0(S1)− ê1(X)| > 4(ε′)2x′, reject X

(b) Find Θ(ε−1 log x) pairs of dense blocks of S1 and X that have equal ranks using sets Lt
and Rt(τ). For each such pair (B1, B2):

i. Run MakeDecision(x′, 2(ε′)2, k − 1) on (B1, B2) Θ(log(ε−1x log x)) times
ii. If (B1, B2) is rejected for the majority of iterations, reject X

(c) Accept (S1, S2) if X is not rejected

4.2 Analysis (proof of Theorem 3.2)

We now show complexity and correctness of the algorithm.

Lemma 4.1. The query complexity of Algorithm 3 is Õ(ε(2δ)1/ log 3/4−2+4x1/2+δ).

Proof. Since the algorithm queries S1 and S2 only during the procedures QueryLeft(x, ε, k)
and QueryRight(x, ε, k), it suffices to estimate their query complexity. Let us first analyse
one recursive step. The description of the procedures implies that if the query complexities of
QueryLeft(x, ε, k − 1) and QueryRight(x, ε, k − 1) are bounded by f(x, ε), then the sum of
query complexities of the procedures is Õ(ε−4√x + f(x3/4, 2(ε/30)2) · ε−3x1/8 log2 ε−1x). There-
fore, if f(x, ε) = Õ(εyx1/2+z), then the sum of query complexities of QueryLeft(x, ε, k) and
QueryRight(x, ε, k) is Õ(ε2y−4x1/2+3/4·z) (we use log2 ε−1 < ε−1 and omit all log x < log n terms).
After r iterations the degree of x becomes 1/2+(3/4)r ·y, and the degree of ε becomes 2r(z−4)+4.

Recall that the query complexity of the trivial algorithm for k = 0 is f(x, ε) = x = εyx1/2+z,
where y = 0 and z = 1/2. Therefore, after r = log3/4 2δ recursive steps we obtain an algorithm

with query complexity Õ(ε(2δ)1/ log 3/4−2+4x1/2+δ).

15

We now show that Algorithm 3 has bounded error 1/3.

Lemma 4.2. If S1, S2 ε-match, Algorithm 3 accepts them with probability > 2/3.

Proof. We will show that if MakeDecision(ε, x, k−1) accepts ε-matching strings with probability
> 2/3, then MakeDecision(ε, x, k) accepts ε-matching strings with probability > 2/3 as well. The
claim will then follow by induction, as MakeDecision(ε, x, 0) (the trivial algorithm) accepts ε-
matching strings with probability 1.

By the definition of ε-matching, all but at most 7εx leftmost and 5εx rightmost excess opening
parentheses of S1 can be sequentially matched in S2. Assume that all excess numbers are approxi-
mated correctly, which is true with probability > 1− 1/2n and consider a subsequence π of excess
opening parentheses in S1 that contains all excess opening parentheses of S1 except for those that
belong to its leftmost and rightmost blocks. We rank the parentheses in π from right to left. Let
p be the leftmost excess parenthesis in S2 matched with a parenthesis of π. We rank the excess
closing parentheses of S2 from left to right, starting from p. Across all partitions of S2, take the
rightmost block border preceding p and let X be a substring of S2 starting at it. We will show that
X is accepted by the algorithm with probability > 2/3, from which the claim follows. Note that
the number of excess parentheses of S2 between the left-endpoint of X and p is at most 3(ε′)2x′.

Recall that MakeDecision(x, ε, k) finds a subset of dense (that is, of length ≤ x′) blocks of
S1 and X that have equal ranks and runs MakeDecision(x′, 2(ε′)2, k− 1) on them independently
C · log(x · ε−1) times. Consider the m-th block B1 of S1 (with the rightmost block deleted) and the
m-th block B2 of X. We will show that all but at most 14(ε′)2x′ leftmost and 10(ε′)2x′ rightmost
excess parentheses of B1 can be sequentially matched in B2, which means that B1, B2 2(ε′)2-match.
The rank of the rightmost excess opening parenthesis in B1 is at least (10m− 2ε′)ε′x′. The rank of
the leftmost excess opening parenthesis in B1 is at most (10(m+1)+2ε′)ε′x′. Also, B1 can end with
at most 2(ε′)2x′ excess opening parentheses that are not excess parentheses of S1. The rank of the
leftmost excess closing parenthesis in B2 is at most (10m+2ε′)ε′x′. The rank of the rightmost excess
closing parenthesis in B2 is at least (10(m+ 1)− 5ε′)ε′x′. Consequently, all but at most 7(ε′)2x′ <
14(ε′)2x′ leftmost excess parentheses and 6(ε′)2x′ < 10(ε′)2x rightmost excess parentheses of x
can be matched in B2 as required. By our assumption, MakeDecision(x′, 2(ε′)2, k − 1) accepts
(B1, B2) with probability > 2/3, and therefore we can select the constant C so that B1 and B2 are
accepted with probability at least 1− 1/(6Aε−1 log x). From the union bound it follows that all of
the A ·ε−1 log x pairs of blocks for which we run the recursive call will be accepted with probability
at least 1− 1/6, and consequently S1 and X will be accepted with probability > 2/3.

We now show by contrapositive that if at most e0(S1)− 30εx excess opening parentheses of S1

can be matched sequentially in S2, S1 and S2 will be rejected with probability > 2/3. We start with
an auxiliary lemma. Recall that at each iteration t the procedure MakeDecision(x, ε, k) considers
a block partitioning of S2 with some shift τ and chooses a subset Lt of blocks of S1 and a subset
Rt(τ) of blocks of the partition of S2. Using these two subsets, it tests S1 and each substring X of
S2 that starts at a block border of the partition of S2. We rank the blocks in X from left to right.
Blocks of S1 are ranked in the reverse order, from right to left. Intuitively, two blocks of S1 and
X have equal ranks if they contain many parentheses that must be matched, and therefore we can
recurse on them. Below we show that Lt and Rt(τ) contain such blocks with high probability.

Lemma 4.3. Assume that the excess numbers preprocessing for S1 and S2 did not error and that
ê0(S1) ≥ 10εx. For all t and for all substrings X of S2 that are not rejected at Step 4(b) of
MakeDecision(x, ε, k), the subsets Lt and Rt(τ) contain a pair of dense blocks with equal ranks
with probability > 1− 1/9x2.

16

Proof. Let D be the set of ranks m of blocks such that both the m-th block of S1 and the m-th
block of X are dense. From the assumption of the lemma we have e0(S1) ≥ 9εx and since X
is not rejected at Step 4(b), e1(X) > 9εx as well. Therefore, the total number of all blocks in
S1 or X is at least 9εx/11ε′x′. The total number of non-dense blocks in both strings is at most
2x/x′ = 22ε′x/11ε′x′ < εx/11ε′x′. Therefore, |D| ≥ 8εx/11ε′x′. On the other hand, the total
number of blocks (and, in particular, dense blocks) in S1 and X is at most x/8ε′x′. It follows that
|D| ≤ x/8ε′x′.

Recall that both Lt and Rt(τ) have size B · (ε′)−1
√
x/x′ log(ε−1x log x). We view the sets as

B · log(ε−1x log x) experiments during which we select two subsets of D. Note that each dense
block is selected with probability at least ((ε′)−1

√
x/x′)/(x/8ε′x′) ≥ 8/

√
x/x′. Therefore, the

expectation of the size of the selected subsets of D is at least 8|D|/
√
x/x′. From the lower bound

on |D| it follows that the latter is at least 2
√
|D|, and therefore the size of the selected subsets is

at least
√
|D| with probability > 3/4 (this is a rough bound which is sufficient for our purposes).

Recall that the Birthday paradox claims that any two subsets of D of size
√
|D| sampled uniformly

without replacement contain equal elements with probability > 1/2. Therefore, in each experiment
there is a pair of dense blocks with equal ranks with probability > 1/4. Since we repeat the
experiments B · log(ε−1x log x) times, the probability that at least one of them is successful is at
least 1− 1/(9A · ε−1x2 log x) for a sufficiently large constant B. By the union bound over all t the
lemma holds with probability > 1− 1/9x2.

Lemma 4.4. If less than e0(S1)−30εx excess opening parentheses of S1 can be matched sequentially
in S2, then Algorithm 3 rejects S1 and S2 with probability > 2/3.

Proof. We show the claim by induction on k. Suppose that MakeDecision(ε, x, k − 1) rejects
with probability > 2/3 if run on two strings B1, B2 such that less than e0(B1) − 30εx excess
opening parentheses of B1 can be matched sequentially in B2. We will show it implies that
MakeDecision(x, ε, k) will reject S1, S2 with probability > 2/3. The lemma then follows, as
the base case (k = 0) obviously holds.

Consider some substring X of S2. We call a block of S1 of rank m bad (with respect to X) if we
cannot match more than 60(ε′)2x′ excess opening parentheses of it in the m-th block of X. Suppose
that at most ε/3-fraction of blocks of S1 are bad. We show that in this case we can match more
than e0(S1)− 30εx excess opening parentheses of S1 in X. Indeed, the total number of non-dense
blocks of S1 is at most x/x′ and hence the total number of excess parentheses in non-dense blocks
is at most 12ε′x = 12εx/30 < εx/2. Consider the set of dense blocks of S1. The leftmost and the
rightmost blocks of S1 can be dense but contain at most 24εx excess opening parentheses. By our
assumption, among the remaining blocks there is at most ε/3-fraction of bad blocks. Therefore, the
number of excess parentheses in such blocks is at most (x/8ε′x′) ·(ε/3) ·12ε′x′ ≤ εx/2. On the other
hand, we can match all but 60(ε′)2x′ excess opening parentheses in each of the remaining blocks, or
at most 60(ε′)2x/8 = 5εx/2 parentheses in total. Therefore, the total number of unmatched excess
parentheses is less than 30εx as claimed.

It therefore suffices to show that if S1 contains more than ε/3-fraction of bad blocks for each
substring X of S2, then it will be rejected with probability > 2/3. Equivalently, we can show that
the probability to accept S1 and S2 is at most 1/3. We can accept the strings either because we
made an error while approximating the excess numbers (which can happen with probability < 1/9)
or because S1 and some substring X of S2 are erroneously accepted. Since the length of S2 is at
most x, it has at most x2/2 substrings. We will show that each of them is accepted with probability
< 2/9x2. The claim will follow by the union bound. From Lemma 4.3 it follows that we will find
A · ε−1 log x pairs of dense blocks with equal ranks with probability at least 1 − 1/9x2. Since at

17

least ε/3-fraction of the blocks of S1 is bad with respect to X, we can select the constant A so that
at least one of the bad blocks is selected with probability > 1− 1/18x2. Finally, we can select the
constant C so that the bad block is rejected by a recursive call to MakeDecision(ε, x, k − 1) with
probability > 1− 1/18x, which concludes the proof.

Note that we might need different values of C for this lemma and Lemma 4.2. We take the
maximum of the values to ensure both lemmas.

5 Lower bounds for Truestring equivalence and Dm-membership

In this section we prove the following lower bound for testing truestring equivalence.

Theorem 5.1. Testing truestring equivalence requires at least Ω(n1/5) queries.

Since the Truestring equivalence(n) problem can be reduced to the Dm-membership(4n)
problem by Lemma 2.5, we immediately obtain a similar lower bound for testing Dm-membership.

Corollary 5.2. Testing Dm-membership requires at least Ω(n1/5) queries.

Let us now introduce several important notions. Recall that for a string w ∈ {0, 1, �}∗, its
truestring T (w) is the subsequence resulting from deleting all “�” characters. Given a string
u ∈ {0, 1}n and a set U ∈

(
2n
n

)
, we denote by S(u, U) the unique string w ∈ {0, 1, �}2n for which

U = {i : w[i] = “ � ”} and u = T (w).

Definition 5.3 (Positive and negative distributions). We let u ∈ {0, 1}n be chosen uniformly at
random (every u[i] independently), and let u′ ∈ {0, 1}n be the string resulting from replacing u[i]
with another uniformly and independently random member of {0, 1} for every 2n/5 < i < 3n/5.
Let U ∈

(
2n
n

)
be a random set defined by choosing independently and uniformly whether i ∈ U and

2n+1− i 6∈ U or i 6∈ U and 2n+1− i ∈ U , for each 1 ≤ i ≤ n. Let U ′ ∈
(

2n
n

)
be a second set chosen

independently using the same distribution as that used for the choice of U . For the distribution
DP , we set w = S(u, U) and w′ = S(u, U ′). For the distribution DN , we set w = S(u, U) and
w′ = S(u′, U ′).

Lemma 5.4. DP is supported over string pairs that are truestring equivalent, while DN with prob-
ability 1− o(1) produces a pair that is 1/200-far from truestring equivalence.

Proof. The first part of the statement is immediate. The second part follows from the fact that
two strings of length n/5 drawn uniformly and independently at random will have an edit distance

between them of at least n/50. For this one considers all
(n/5
n/100

)2
= o(216n/100) possible ways of

deleting n/100 characters from the first string and n/100 characters from the second string. For
every such possibility the probability for the remaining strings to match is Θ(2−19n/100). A union
bound concludes the argument.

For the rest of the section, we prove the next lemma, which, by Yao’s argument, implies Theo-
rem 5.1.

Lemma 5.5. Any deterministic algorithm making o(n1/5) queries will have acceptance probabilities
for DP and DN that differ by o(1).

From now on we fix a deterministic adaptive algorithm (basically a decision tree) A with
q = o(n1/5) queries. We additionally assume that when w[i] is queried, w[2n+ 1− i] is immediately
queried as well, and the same for w′[i] and w′[2n + 1 − i] (this at most doubles the number of

18

queries). When the algorithm runs on an input (pair of strings) (w,w′), we say that the transcript
of A(w,w′) of A is the string of size q comprised of the answers to the queries made by A. Since the
algorithm is deterministic, A(w,w′) is fully determined by the algorithm A and the input (w,w′).
Also, the accept/reject answer of the algorithm A depends only on A(w,w′) (so if A(w,w′) = A(u,u′)

then the answer must be the same for both inputs).
Let AP be the distribution over strings of length q obtained by choosing (w,w′) ∼ DP and then

taking A(w,w′). We define analogously the distribution AN using DN . By the above discussion, it
is enough to show that the variation distance between AP and AN is o(1). Before we proceed, we
need more definitions.

Definition 5.6 (True index). Given a string w and 1 ≤ i ≤ 2n for which w[i] 6= “ � ”, the true
index tw(i) is defined by |{j ≤ i : w[j] 6= “ � ”}|. In other words, it is the index j such that w[i]
determines (T (w))[j].

We will define below a third distribution AB, over the set {0, 1, �}q ∪ {⊥}, where “⊥” is a new
special symbol. We say that AB underlies a distribution C over {0, 1, �}q, if for every u ∈ {0, 1, �}q
we have PrAB [u] ≤ PrC [u]. The specific distribution we define will be designed to underlie both AP
and AN . The reason we do this is the following.

Lemma 5.7. If AB underlies a distribution C over {0, 1, �}q, then the variation distance between
them (defining PrC [⊥] = 0) is PrAB [⊥].

Proof. For any two distributions µ and ν over a set S, their distance 1
2

∑
s∈S |Prµ[s] − Prν [s]| is

also equal to
∑
{s∈S:Prµ[s]>Prν [s]}(Prµ[s] − Prν [s]). In our case, s = “⊥” is the only place where

PrAB [s] > PrC [s].

We now define AB. Let Q ⊂ [1, 2n] be a set of queries that A makes to w, and Q′ ⊂ [1, 2n] to
w′ a set of queries that A makes to w′.

Definition 5.8 (Match). Two indexes i ∈ Q, i′ ∈ Q′ are called matching if tw(i) =
tw′(i

′)Additionaly, i = i′ = 0 are called matching by definition.

Definition 5.9 (Underlying distribution). AB is defined by the following process. We run A over
an input (w,w′) ∼ DP . Let Q be the set of indexes in [1, 2n] queried from w, and Q′ be the set of
indexes in [1, 2n] queried from w′. At all times we maintain a set I ⊆ Q ∪ {0} of indexes that are
matching with any of the indexes in Q′, and a set I ′ ⊆ Q′ ∪{0} that are matching with any indexes
in Q, initializing I = I ′ = {0} (recall that 0, 0 are matching by definition). If at any time a new
index i is added to I, where no ı̂ ∈ I satisfies |i − ı̂| ≤ 100n4/5, then instead of A(w,w′) in the end
we produce “⊥”. Similarly we produce “⊥” if at any time a new index i′ is added to I ′, where no
ı̂′ ∈ I ′ satisfies |i′ − ı̂′| ≤ 100n4/5.

Additionally, if there is an index 1 ≤ i < n/2 such that 2n/5 ≤ tw(i) ≤ 3n/5 or an index
1 ≤ i′ < n/2 such that 2n/5 ≤ tw′(i′) ≤ 3n/5, then we produce “⊥” without running A at all.

Lemma 5.10. AB underlies both AP and AN .

Proof. AB underlies AP by definition, because it was defined by running the process that produces
AP , with the exception of changing the outcome to “⊥” under some circumstances.

Let us now show that AB underlies AN . Suppose that no condition of producing “⊥” was

satisfied and that n is large enough (so that q < n1/5

500). Since both I and I ′ contain 0 and have

size q < n1/5

500 , we have that I, I ′ do not contain indexes larger than n/2. It follows that there
is no index i ∈ I such that 2n/5 ≤ tw(i) ≤ 3n/5 and that there is no index i′ ∈ I ′ such that

19

2n/5 ≤ tw′(i
′) ≤ 3n/5. Under such circumstances, the answers to the queries in Q ∪ Q′ have the

same probabilities for both AP and AN (any query whose true index in the respective string is
between 2n/5 and 3n/5 would get an independently chosen value either way).

On the way to prove that “⊥” is a low-probability outcome, we use the following technical
lemma that is immediate from Stirling’s formula.

Lemma 5.11. If X1, . . . , Xm are independent random variables with values chosen uniformly from
{0, 1}, then for m large enough and any j we have Pr[

∑m
i=1Xi = j] ≤ 1/

√
m.

Lemma 5.12. For q = o(n1/5) we have PrAB [⊥] = o(1).

Proof. We follow the process of running A over an input chosen according to DP . We will bound
the probability of “⊥” being produced due to a far away index entering I or I ′. Afterward we can
union-bound it with the event of producing “⊥” due to w or w′ not satisfying the condition about
tw(i) and tw′(i), which is also an o(1) event by an immediate Chernoff-type inequality (it requires
that the number of “�” symbols between indexes 1 and n/2 is far from its expected value, for either
w or w′).

Suppose that we are at a stage r of A, which queries indexes i and 2n+1− i of w, i ∈ [1, n] (the
case where we query w′ is analogous). By definition of DP , exactly one of w[i] and w[2n + 1 − i]
is equal to “�”. We will show that i triggers the condition for producing “⊥” (“⊥”-condition for
short) with probability o(1/n1/5), given that it has not been triggered at an earlier stage.

Let QL (resp., QR) be the subset of queries in Q that are lesser (resp., greater) than i. Let us
first assume that QR is empty (later we will get rid of this assumption). The probability to trigger
the “⊥”-condition at the stage r for the first time is then equal to the probability of triggering the
“⊥”-condition at the stage r conditioned on the event that none of the queries in QL triggered it.
Let us show that this probability is o(n1/5).

Let IL = I ∩ [1, i− 1] ⊆ QL, and let iL = max(IL). Since i triggers the condition for producing
“⊥”, it must be that i− iL > 100n4/5. The value tw(i), conditioned on the answers to the queries
in QL, depends on the sum of at least 100n4/5 − r > 50n4/5 independent random variables chosen
uniformly from {0, 1}, where each variable corresponds to a previously unqueried index k ∈ [iL, i]
and indicates whether w[k] = “ � ”. By Lemma 5.11, for any true index j of a query in Q′, the

probability of tw(i) = j is bounded by 1/
√

50n4/5. Since at the stage r the set Q′ contains at most
r = o(n1/5) queries, and therefore the set of the corresponding true indexes has size o(n1/5), the
probability of triggering the “⊥”-condition at the stage r, conditioned on the event that none of
the queries in QL triggered it, is o(1/n1/5).

To get rid of the assumption that QR is empty, we first define IR = I ∩ [i + 1, 2n] ⊆ QR, and
note that we can still safely assume that IR is empty. Assuming otherwise, we consider the stage
r′ < r where IR (with respect to the current i) first became non-empty, and noting that IL is never
empty (it contains 0), we see that “⊥” was already triggered at stage r′. Therefore we can assume
that IR is empty, which means that we now condition the probability of tw(i) = j also on the event
of I not containing indexes larger than i. We can now prove by induction that at each stage r,
where i > iL + 100n4/5 (so “⊥” can be triggered) and IR = ∅ (since “⊥” has not been triggered

before), the conditional probability of tw(i) = j (for any j) is bounded by 2/
√

50n4/5, which still
implies an o(1/n1/5) probability for “⊥” being triggered at the stage r. This happens since we

condition an event with probability bounded by 1/
√

50n4/5 on an event with probability at least
1− o(r/n1/5) = 1− o(1).

Having the o(1/n1/5) bound for each of the q stages, we immediately obtain PrAB [⊥] = o(1) by
the union bound.

20

Proof of Lemma 5.5. Given an algorithm A making q = o(n1/5) queries, by Lemma 5.7 and
Lemma 5.12, the distribution AB is of distance o(1) to any distribution that it underlies. Since by
Lemma 5.10 it underlies both AP and AN , it is of distance o(1) from both of them, and hence they
have distance o(1) from each other.

References

[1] N. Alon, M. Krivelevich, I. Newman, and M. Szegedy. Regular languages are testable with a
constant number of queries. SIAM Journal on Computing, 30(6):1842–1862, 2001.

[2] R. Alur and P. Madhusudan. Adding nesting structure to words. J. ACM, 56(3):16:1–16:43,
May 2009.

[3] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and the hardness
of approximation problems. J. ACM, 45(3):501–555, May 1998.

[4] J.-M. Autebert, J. Berstel, and L. Boasson. Context-free languages and pushdown automata.
In Handbook of Formal Languages: Volume 1 Word, Language, Grammar, pages 111–174.
Springer Berlin Heidelberg, 1997.

[5] T. Batu, L. Fortnow, R. Rubinfeld, W.D. Smith, and P. White. Testing closeness of discrete
distributions. J. ACM, 60(1):4:1–4:25, February 2013.

[6] M. Blum and S. Kannan. Designing programs that check their work. J. ACM, 42(1):269–291,
1995.

[7] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications to numerical
problems. Journal of Computer and System Sciences, 47(3):549–595, 1993.

[8] K. Bringmann, F. Grandoni, B. Saha, and V.V. Williams. Truly sub-cubic algorithms for
language edit distance and RNA-folding via fast bounded-difference min-plus product. In
Proc. of the IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS 2016),
pages 375–384, 2016.

[9] M. Chu, S. Kannan, and A. McGregor. Checking and spot-checking the correctness of priority
queues, 2007.

[10] A. Czumaj, C. Sohler, and M. Ziegler. Property testing in computational geometry. In Proc.
of the 8th Annual European Symposium on Algorithms (ESA 2000), pages 155–166, 2000.

[11] P.W. Dymond and W.L. Ruzzo. Parallel RAMs with owned global memory and deterministic
context-free language recognition. J. ACM, 47(1):16–45, January 2000.

[12] F. Ergün, S. Kannan, S. R. Kumar, R. Rubinfeld, and M. Viswanathan. Spot-checkers. Journal
of Computer and System Sciences, 60(3):717 – 751, 2000.

[13] E. Fischer, F. Magniez, and M. de Rougemont. Approximate satisfiability and equivalence.
SIAM Journal on Computing, 39(6):2251–2281, 2010.

[14] N. François, F. Magniez, M. de Rougemont, and O. Serre. Streaming property testing of visibly
pushdown languages. In Proc. of the 24th Annual European Symposium on Algorithms (ESA
2016), pages 43:1–43:17, 2016.

21

[15] O. Goldreich, S. Goldwasser, E. Lehman, D. Ron, and A. Samorodnitsky. Testing monotonicity.
Combinatorica, 20(3):301–337, Mar 2000.

[16] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning and
approximation. J. ACM, 45(4):653–750, July 1998.

[17] O. Goldreich and D. Ron. Property testing in bounded degree graphs. Algorithmica, 32(2):302–
343, Feb 2002.

[18] F. Magniez, C. Mathieu, and A. Nayak. Recognizing well-parenthesized expressions in the
streaming model. SIAM Journal on Computing, 43(6):1880–1905, 2014.

[19] A. Montanaro and R. de Wolf. A survey of quantum property testing. Graduate Surveys,
7:1–81, 2016.

[20] M. Parnas, D. Ron, and R. Rubinfeld. Testing membership in parenthesis languages. Random
Structures & Algorithms, 22(1):98–138, 2003.

[21] R. Rubinfeld. On the robustness of functional equations. SIAM Journal on Computing,
28(6):1972–1997, 1999.

[22] R. Rubinfeld and M. Sudan. Robust characterizations of polynomials with applications to
program testing. SIAM Journal on Computing, 25(2):252–271, 1996.

[23] B. Saha. The Dyck language edit distance problem in near-linear time. In Proc. of the IEEE
55th Annual Symposium on Foundations of Computer Science (FOCS 2014), pages 611–620,
2014.

[24] B. Saha. Language edit distance and maximum likelihood parsing of stochastic grammars:
Faster algorithms and connection to fundamental graph problems. In 2015 IEEE 56th Annual
Symposium on Foundations of Computer Science, pages 118–135, 2015.

[25] B. von Braunmühl, S. Cook, K. Mehlhorn, and R. Verbeek. The recognition of deterministic
CFLs in small time and space. Information and Control, 56(1):34 – 51, 1983.

22

