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1. Introduction

In the paradigm of property testing one would like to decide whether an object has a global property by
performing random local checks. The goal is to distinguish with sufficient confidence the objects which
satisfy the property from those objects that are far from having the property. In this sense, property
testing is a notion of approximation for the corresponding decision problem. Property testers, with a
slightly different objective, were first considered for programs under the name of self-testers. Following
the pioneering approach of Blum, Kannan, Luby and Rubinfeld [4, 5], self-testers were constructed
for programs purportedly computing functions with some algebraic properties such as linear functions,
polynomial functions, and functions satisfying some functional equations [5, 25, 26]. The notion in its
full generality was defined by Goldreich, Goldwasser and Ron and successfully applied among others to
graph properties [10, 12]. For surveys on property testing see [11, 23, 18, 8].

Quantum computing (for surveys see e.g. [24, 1, 22, 21]) is an extremely active research area, where
a growing trend is to cast quantum algorithms in a group theoretical setting. In this setting, we are given
a finite group G and, besides the group operations, we also have at our disposal a function f mapping
G into a finite set. The function f can be queried via an oracle. The complexity of an algorithm is
measured by the number of queries (i.e. evaluations of the function f ), and also by the overall running
time counting one query as one computational step. We say that an algorithm is query efficient (resp.
efficient) if its query complexity (resp. overall time complexity) is polynomial in the logarithm of the
order ofG. The most important unifying problem of group theory for the purpose of quantum algorithms
has turned out to be the HIDDEN SUBGROUP PROBLEM (HSP), which can be cast in the following broad
terms: Let H be a subgroup of G such that f is constant on each left coset of H and distinct on different
left cosets. We say that f hides the subgroup H . The task is to determine the hidden subgroup H .

While no classical algorithm can solve this problem with polynomial query complexity, the biggest
success of quantum computing until now is that it can be solved by a quantum algorithm efficiently
whenever G is Abelian. We will refer to this algorithm as the standard algorithm for the HSP. The main
tool for this solution is Fourier sampling based on the (approximate) quantum Fourier transform for
Abelian groups which can be efficiently implemented quantumly [17]. Simon’s xor-mask finding [29],
Shor’s factorization and discrete logarithm finding algorithms [28], and Kitaev’s algorithm [17] for the
Abelian stabilizer problem are all special cases of this general solution. Fourier sampling was also
successfully used to solve the closely related HIDDEN TRANSLATION PROBLEM (HTP). Here we are
given two injective functions f0 and f1 from an Abelian group G to some finite set such that, for some
group element u, the equality f0(x+ u) = f1(x) holds for every x. The task is to find the translation u.
Indeed, the HTP is an instance of the HSP in the semi-direct product Go Z2 where the hiding function
is f(x, b) = fb(x). In that group f hides the subgroup H = {(0, 0), (u, 1)}. Ettinger and Høyer [7]
have shown that the HTP can be solved in cyclic groups G = Zn by a two-step procedure: an efficient
quantum algorithm followed by an exponential classical stage without further queries. They achieved
this by applying Fourier sampling in the Abelian direct product group G×Z2. Friedl, Ivanyos, Magniez,
Santha and Sen [9] have shown that HTP can be solved by an efficient quantum algorithm in some groups
of fixed exponent, for instance when G = Znp for any fixed prime number p. This gives a quantum
polynomial time algorithm for the HSP in G o Z2 using the quantum reduction of HSP to HTP [7]. In
strong opposition to these positive results, a natural generalization of the HSP has exponential quantum
query complexity even in Abelian groups. In this generalization, the function f may not be distinct on
different cosets. Indeed, the unordered database search problem can be reduced to the decision problem
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whether a function on a cyclic group has a non-trivial period or not.
Two different extensions of property testing were studied in the quantum context. The first approach

consists in testing quantum devices by classical procedures. Mayers and Yao [19] have designed tests for
deciding if a photon source is perfect. These tests guarantee that if a source passes them, it is adequate for
the security of the Bennett-Brassard [2] quantum key distribution protocol. Dam, Magniez, Mosca and
Santha [6] considered the design of testers for quantum gates. They showed the possibility of classically
testing quantum processes and they provided the first family of classical tests allowing one to estimate
the reliability of quantum gates. In a subsequent paper byMagniez, Mayers, Mosca and Ollivier [20],
both results were generalized for testing quantum circuits in polynomial time.

The second approach considers testing deterministic functions by a quantum procedure. Quantum
testing of deterministic function families was introduced by Buhrman, Fortnow, Newman, and Röhrig [3],
and they have constructed efficient quantum testers for several properties. One of their nicest
contributions is that they have considered the possibility that quantum testing of periodicity might be
easier than the corresponding decision problem. Indeed, they succeeded in giving a polynomial time
quantum tester for periodic functions over Zn2 . They have also proved that any classical tester requires
exponential time for this task. Independently and earlier, while working on the extension of the HSP to
periodic functions over Z which may be many-to-one in each period, Hales and Hallgren [15] have given
the essential ingredients for constructing a polynomial time quantum tester for periodic functions over
the cyclic group Zn. But contrarily to [3], their result is not stated in the testing context.

In this work, we construct efficient or query efficient quantum testers for two hidden group properties,
that is, existential properties over groups whose decision problems have exponential quantum query
complexity. We also introduce a new technique in the analysis of quantum testers.

Our main contribution is a generalization of the periodicity property studied in [15, 3]. For any finite
group G and any normal subgroup K, a function f satisfies the property LARGER-PERIOD(K) if there
exists a normal subgroup H > K for which f is H-periodic (i.e. f(xh) = f(x) for all x ∈ G and
h ∈ H). For this property, we give an efficient tester whenever G is Abelian (Theorem 3.1). This result
generalizes the previous periodicity testers in three aspects. First, we work in any finite Abelian group
G, while previously only G = Zn [15] and G = Zn2 [3] were considered. Second, the property we
test is parametrized by some known normal subgroup K, while previously only the case K = {0} was
considered. Third, our query complexity is only linear in the inverse of the distance parameter, whereas
the previous works have a quadratic dependence. Our result implies that the period finding algorithm
of [15] has, in fact, query complexity linear in the inverse of the distance parameter, as opposed to only
quadratic dependence proved in that paper. These improvements are possible due to our more transparent
analysis. We refine the standard method of classical testing, which consists in showing that a function
f that passes the test can be corrected into another function g that has the desired property, and which
is close to f . The novelty of our approach is that here the correction is not done directly; it involves an
intermediate correction via a probabilistic function.

The main technical ingredient of the periodicity test in Abelian groups is efficient Fourier sampling.
This procedure remains a powerful tool also in non-Abelian groups [16, 13]. Unfortunately, currently no
efficient implementation is known for it in general groups. Therefore, when dealing with non-Abelian
groups, our aim is to construct query efficient testers. We construct query efficient testers, with query
complexity linear in the inverse of the distance parameter, for two properties. First, we show that the
tester used for LARGER-PERIOD(K) in Abelian groups yields a query efficient tester when G is any
finite group and K any normal subgroup (Theorem 3.2). Second, we study in any finite group G the
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property COMMON-COSET-RANGE(k, t) (for short CCR(k, t)). Let f, g be two functions from G to
a finite set S. By definition, (f, g) satisfies CCR(k, t) if f and g have identical ranges within each coset
for a normal subgroup H�G of size at most k, and which is the normal closure of a subgroup generated
by at most t elements. For an Abelian group G with exponent k, CCR(k, 1) can be thought of as a
generalization of the hidden translation property. The heart of the tester for CCR(k, t) is again Fourier
sampling applied in the direct product group G × Z2. Our tester is query efficient in any group if k is
polylogarithmic in the size of the group (Theorem 5.1).

Different lower bounds can be proven on the query complexity of CCR(k, t). One observes easily
that unordered database search can be reduced to CCR(2, 1) in Zn2 , and therefore CCR(2, 1) is quantumly
exponentially hard to decide. Moreover, we show that classical testers also require an exponential number
of queries for this problem (Theorem 6.1). We show this by adapting the techniques of [3], who proved
the analogous result for classical testers for periodicity.

Independently from our work, Lisa Hales has also obtained in her thesis [14] polynomial time
quantum testers for periodic functions over any finite Abelian group, although her results, just as those
of [15], are not stated explicitly in the testing context. Her proof technique is also closely related to that
of [15], and the query complexity of her tester remains quadratic in the inverse of the distance parameter.
She pointed out to us that our periodicity tester can be generalized to the integers. For the sake of
completeness, with her permission, we include here in Section 4 this efficient periodicity tester over the
integers Z. We present a complete correctness proof for this tester (Theorem 4.1) by combining Hales’s
ideas with our earlier periodicity testing results about finite Abelian groups.

2. Preliminaries

2.1. Fourier sampling over Abelian groups

For a finite set D, let the uniform superposition over D be |D〉 = 1√
|D|

∑
x∈D |x〉, and for a function

f from D to a finite set S, let the uniform superposition of f be |f〉 = 1√
|D|

∑
x∈D |x〉|f(x)〉. For two

functions f, g from D to S, their distance is dist(f, g) = |{x ∈ D : f(x) 6= g(x)}|/|D|. The following
proposition describes the relation between the distance of two functions and the distance between their
uniform superpositions. In this paper, ‖·‖ denotes the `2-norm and ‖·‖1 denotes the `1-norm of a vector.

Proposition 2.1. For functions f, g defined on the same finite set, dist(f, g) = 1
2 ‖|f〉 − |g〉‖

2 .

Let G be a finite Abelian group and H ≤ G a subgroup. The coset of x ∈ G with respect to H is
denoted by x+H . We use the notation<X> for the subgroup generated by a subsetX ofG. We identify
with G the set Ĝ of characters of G, via some fixed isomorphism y 7→ χy. The orthogonal of H ≤ G is

defined as H⊥ = {y ∈ G : ∀h ∈ H,χy(h) = 1}, and we set |H⊥(x)〉 =
√
|H|
|G|
∑

y∈H⊥ χy(x)|y〉. The
quantum Fourier transform over G, QFTG, is the unitary transformation defined as follows: For every
x ∈ G, QFTG|x〉 = 1√

|G|

∑
y∈G χy(x)|y〉. The main property about QFTG that we use is that it maps

the uniform superposition on the coset x + H to the uniform superposition on H⊥, with appropriate
phases.

Proposition 2.2. Let G be a finite Abelian group, x ∈ G and H ≤ G. Then |x+H〉 QFTG−−−−→ |H⊥(x)〉.
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The following well known quantum Fourier sampling algorithm will be used as a building block in
our quantum testers. In the algorithm, f : G→ S is given by a quantum oracle.

Fourier samplingf (G)
1. Create zero-state |0〉G|0〉S .

2. Create the superposition 1√
|G|

∑
x∈G |x〉G in the first register.

3. Query function f .

4. Apply QFTG on the first register.

5. Observe and then output the first register.

The above algorithm is actually the main ingredient for solving the HSP on Abelian groups with hiding
function f .

2.2. Property testing

Let D and S be two finite sets and let C be a family of functions from D to S. Let F ⊆ C be the sub-
family of functions of interest, that is, the set of functions possessing the desired property. In the testing
problem, one is interested in distinguishing functions f : D → S, given by an oracle, which belong to
F , from functions which are far from every function in F .

Definition 2.1. (δ-tester)
Let F ⊆ C and 0 ≤ δ < 1. A quantum (resp. probabilistic) δ-tester for F on C is a quantum (resp.
probabilistic) oracle Turing machine T such that, for every f ∈ C,

1. if f ∈ F then Pr[T f accepts] = 1,
2. if dist(f,F) > δ then Pr[T f rejects] ≥ 2/3,

where the probabilities are taken over the observation results (resp. the coin tosses) of T .

By our definition, a tester always accepts functions having the property F . We may also consider
testers with two-sided error, where this condition is relaxed, and one requires only that the tester accept
functions from F with probability at least 2/3. Of course, the choice of the success probability 2/3 is
arbitrary, and can be replaced by γ for any constant 1/2 < γ < 1.

3. Periodicity in finite groups

In this section, we design quantum testers for testing periodicity of functions from a finite group G to
a finite set S. For a normal subgroup H � G, a function f : G → S is H-periodic if for all x ∈ G
and h ∈ H , f(xh) = f(x). Notice that our definition describes formally right H-periodicity, but this
coincides with left H-periodicity since H is normal. The set of H-periodic functions is denoted by
Per(H). For a known normal subgroup H , testing if f ∈ Per(H) can be easily done classically by
sampling random elements x ∈ G and h ∈ H and verifying that f(xh) = f(x), as can be seen from the
following proposition.
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Proposition 3.1. Let G be a finite group, H � G and f : G → S a function. Let η =
Prx∈G,h∈H [f(xh) 6= f(x)]. Then, η/2 ≤ dist(f,Per(H)) ≤ 2η.

On the other hand, testing if a function has a non-trivial period is classically hard even in Zn2 [3].
The main result of this section is that we can test query efficiently by a quantum algorithm an even more
general property: Does a function have a strictly larger period than a known normal subgroup K � G?
Indeed, we test the family

LARGER-PERIOD(K) = {f : G → S | ∃H � G, H > K and f is H-periodic}.

Moreover when G is Abelian, our tester is efficient.
For the sake of clarity we first present the result for Abelian groups. This enables us to highlight the

new technique that we use. The standard way to ensure that the functions the tester accepts with high
probability are close to functions having the desired property, is based on a direct correction process. This
process has to produce a corrected function which has the desired property and is close to the original
function. This is the approach taken by [15, 3, 14]. The novelty of our approach is that the correction
is not done directly; it involves an intermediate corrected probabilistic function. This two-step process
makes a more refined and cleaner analysis possible. We prove that our tester works in any finite group,
and moreover, the query complexity of our algorithm turns out to be linear in the inverse of the distance
parameter, unlike the quadratic dependence of the other works.

3.1. Finite Abelian case

In this subsection, we give our algorithm for testing periodicity in finite Abelian groups. Theorem 3.1
below states that this algorithm is efficient. The algorithm assumes that G has an efficient exact quantum
Fourier transform. When G only has an efficient approximate quantum Fourier transform, the algorithm
has two-sided error. Efficient implementations of approximate quantum Fourier transforms exist in every
finite Abelian group [17].

Test Larger periodf (G,K, δ)
1. N ← 4 log(|G|)/δ.

2. For i = 1, . . . , N do yi ← Fourier samplingf (G).

3. Accept iff <yi>1≤i≤N < K⊥.

Theorem 3.1. For a finite set S, finite Abelian group G, subgroup K ≤ G, and 0 < δ < 1, Test Larger
period(G,K, δ) is a δ-tester for LARGER-PERIOD(K) on the family of all functions from G to S, with
O(log(|G|)/δ) query complexity and (log(|G|)/δ)O(1) time complexity.

Let S be a finite set and G a finite Abelian group. We describe now the ingredients of our two-step
correction process. First, we generalize the notion of uniform superposition of a function to uniform
superposition of a probabilistic function. By definition, a probabilistic function is a mapping µ : x 7→ µx
from the domain G to probability distributions on S. For every x ∈ G, define the unit `1-norm vector
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|µx〉 =
∑

s∈S µx(s)|s〉. Then the uniform superposition of µ is defined as |µ〉 = 1√
|G|

∑
x∈G |x〉|µx〉.

Notice that |µ〉 has unit `2-norm when µ is a (deterministic) function, otherwise its `2-norm is smaller.
A function f : G→ S and a subgroup H ≤ G naturally define an H-periodic probabilistic function

µf,H , where µf,Hx (s) = |f−1(s)∩(x+H)|
|H| . The value µf,Hx (s) is the proportion of elements in the coset

x+H where f takes the value s. Observe that when f isH-periodic |µf,H〉 = |f〉, and so
∥∥|µf,H〉∥∥ = 1,

otherwise
∥∥|µf,H〉∥∥ < 1.

First, we give the connection between the probability that Fourier sampling outputs an element
outside H⊥, and the distance between |f〉 and |µf,H〉.

Lemma 3.1.
∥∥|f〉 − |µf,H〉∥∥2 = Pr[Fourier samplingf (G) outputs y 6∈ H⊥].

Proof:
Since y 6∈ H⊥ iff y ∈ {0}⊥ −H⊥, the probability term is∥∥∥∥∥ 1√

|G|

∑
x∈G
|{0}⊥(x)〉|f(x)〉 − 1√

|G||H|

∑
x∈G
|H⊥(x)〉|f(x)〉

∥∥∥∥∥
2

.

We apply the inverse quantum Fourier transform QFT−1
G , which is `2-norm preserving, to the first

register in the above expression. The probability becomes
∥∥∥∥|f〉 − 1√

|G||H|

∑
x∈G |x+H〉|f(x)〉

∥∥∥∥2

,

using Proposition 2.2. Changing the variables, the second term inside the norm is

1√
|G|

∑
x∈G
|x〉 1
|H|

∑
h∈H
|f(x− h)〉 =

1√
|G|

∑
x∈G
|x〉 1
|H|

∑
h∈H
|f(x+ h)〉,

where the equality holds because H is a subgroup of G. We conclude by observing that, by definition of
µf,H , 1

|H|
∑

h∈H |f(x+ h)〉 =
∑

s∈S µ
f,H
x (s)|s〉 = |µf,Hx 〉. ut

Second, we give the connection between dist(f,Per(H)) and the distance between |f〉 and |µf,H〉.

Lemma 3.2. dist(f,Per(H)) ≤ 2
∥∥|f〉 − |µf,H〉∥∥2

.

Proof:
It will be useful to rewrite |f〉 as a probabilistic function 1√

|G|

∑
x∈G |x〉

∑
s∈S δ

f
x(s)|s〉, where

δfx(s) = 1 if f(x) = s and 0 otherwise. Let us define the H-periodic function g : G → S by
g(x) = Majh∈H f(x+ h), where ties are decided arbitrarily. In fact, g is the correction of f with respect
to H-periodicity. Proposition 2.1 and the H-periodicity of g imply dist(f,Per(H)) ≤ 1

2 ‖|f〉 − |g〉‖
2.

We will show that
∥∥|g〉 − |µf,H〉∥∥ ≤ ∥∥|f〉 − |µf,H〉∥∥. This will allow us to prove the desired statement

using the triangle inequality. Observe that for any function h : G→ S, we have∥∥∥|h〉 − |µf,H〉∥∥∥2
=

1
|G|

∑
x∈G

∑
s∈S
|δhx(s)− µf,Hx (s)|2. (1)
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Moreover for every x ∈ G, one can establish∑
s∈S
|δgx(s)− µf,Hx (s)|2 = |1− µf,Hx (g(x))|2 +

∑
s 6=g(x)

(µf,Hx (s))2

= 1 +
∑
s∈S

(µf,Hx (s))2 − 2µf,Hx (g(x))

≤ 1 +
∑
s∈S

(µf,Hx (s))2 − 2µf,Hx (f(x))

=
∑
s∈S
|δfx(s)− µf,Hx (s)|2,

(2)

where the inequality follows from µf,Hx (f(x)) ≤ µf,Hx (g(x)), which in turn follows immediately from
the definition of g.

From (1) and (2) we get that
∥∥|g〉 − |µf,H〉∥∥ ≤ ∥∥|f〉 − |µf,H〉∥∥, which completes the proof. ut

Lemmas 3.1 and 3.2 together can be interpreted as the robustness [25, 26] in the quantum context [6]
of the property that Fourier samplingf (G) outputs only y ∈ H⊥: if f does not satisfy exactly the
property but with error probability less than δ, then f is 2δ-close to a function that satisfies exactly the
property. Using this fact, we can now prove Theorem 3.1.

Proof:
If f ∈ LARGER-PERIOD(K), that is f is H-periodic for some H > K, then the quantum state before
the observation of Fourier samplingf (G) is

(QFTG ⊗ I)

(
1√
|G|

∑
x∈G
|x〉|f(x)〉

)

= (QFTG ⊗ I)

(
1√
|G||H|

∑
x∈G
|x+H〉|f(x)〉

)

=
1√
|G||H|

∑
x∈G
|H⊥(x)〉|f(x)〉.

Above, I denotes the |S| × |S| identity matrix. Therefore, the procedure Fourier samplingf (G) only
outputs elements in H⊥. Since H⊥ < K⊥, the test always accepts.

Let f be now δ-far from the family LARGER-PERIOD(K). Then for every H > K,
dist(f,Per(H)) > δ, and by Lemmas 3.1 and 3.2, Pr[Fourier samplingf (G) outputs y 6∈ H⊥] > δ/2.
Using these inequalities, we can upper bound the acceptance probability of the test as follows.

Pr[<yi>1≤i≤N < K⊥]
= Pr[∃H > K,<yi>1≤i≤N ≤ H⊥]
= Pr[∃x ∈ G−K, yi ∈ <K,x>⊥ for 1 ≤ i ≤ N ]

≤ |G| ·
(

Max
H>K

{
Pr[Fourier samplingf (G) outputs y ∈ H⊥]

})N
< |G|(1− δ/2)N ≤ 1/3.

ut
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3.2. Finite general case

We now give our algorithm for testing periodicity in general finite groups. Our main tool continues
to be the quantum Fourier transform (over a general finite group). Our notation and techniques are
similar to those in [16, 13]. We start with a few definitions. For any d × d matrix M , define
|M〉 =

√
d
∑

1≤i,j≤dMi,j |M, i, j〉. Let G be any finite group and let Ĝ be a complete set of finite
dimensional inequivalent irreducible unitary representations of G. Thus, for any ρ ∈ Ĝ of dimension
dρ and x ∈ G, |ρ(x)〉 =

√
dρ
∑

1≤i,j≤dρ(ρ(x))i,j |ρ, i, j〉. The quantum Fourier transform over G is
the unitary transformation defined as follows: For every x ∈ G, QFTG|x〉 = 1√

|G|

∑
ρ∈ bG |ρ(x)〉. For

any H � G set H⊥ = {ρ ∈ Ĝ : ∀h ∈ H, ρ(h) = Idρ}, where Idρ is the dρ × dρ identity matrix. Let

|H⊥(x)〉 =
√
|H|
|G|
∑

ρ∈H⊥ |ρ(x)〉.

Proposition 3.2. Let G be a finite group, x ∈ G and H �G. Then |xH〉 QFTG−−−−→ |H⊥(x)〉.

Proof:
We first prove that when H is normal, the matrix L =

∑
h∈H ρ(h) is |H| · Idρ if ρ ∈ H⊥, and 0

otherwise. By definition ofH⊥, the condition ρ ∈ H⊥ implies ρ(h) = Idρ for every h ∈ H , which gives
the first part of the above. Now suppose that ρ 6∈ H⊥. Observe that since H is normal, L commutes with
ρ(x) for every x ∈ G. Therefore according to Schur’s lemma (see for instance [27, Chap. 2, Prop. 4]),
L = λ · Idρ for some λ ∈ C. Since ρ 6∈ H⊥, we can pick some h ∈ H such that ρ(h) 6= Idρ ; then
applying ρ(h) · L = L gives a contradiction if λ 6= 0. This proves the second part of the above.

We now complete the proof of the proposition as follows.

QFTG|xH〉 =
1√
|H|

∑
h∈H

QFTG|xh〉 =
1√
|H||G|

∑
h∈H

∑
ρ∈ bG
|ρ(xh)〉

=
1√
|H||G|

∑
ρ∈ bG
|
∑
h∈H

ρ(xh)〉 =
1√
|H||G|

∑
ρ∈ bG
|ρ(x) · L〉

=

√
|H|
|G|

∑
ρ∈H⊥

|ρ(x)〉 = |H⊥(x)〉,

where the penultimate equality follows from the above property of the matrix L. ut

Test Larger periodf (G,K, δ)
1. N ← 4 log(|G|)/δ.

2. For i = 1, . . . , N do ρi ← Fourier samplingf (G).

3. Accept iff ∩1≤i≤N ker ρi > K.

In the above algorithm, Fourier samplingf (G) is as before, except that we only observe the
representation ρ, and not the indices i, j. Thus, the output of Fourier samplingf (G) is an element
of Ĝ. K is assumed to be a normal subgroup of G. For any ρ ∈ Ĝ, ker ρ denotes its kernel.
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We now prove the robustness of the property that Fourier samplingf (G) outputs only ρ ∈ H⊥,
for any finite group G, normal subgroup H and H-periodic function f . This robustness corresponds to
Lemmas 3.1 and 3.2 of the Abelian case.

Lemma 3.3. Let f : G→ S and H �G. Then

dist(f,Per(H)) ≤ 2 · Pr[Fourier samplingf (G) outputs ρ 6∈ H⊥].

Proof:
The proof has the structure of the Abelian case (see Lemmas 3.1 and 3.2). Define |µf,H〉 in the same
way. Observe that Lemma 3.2 is true in a general finite group. The proof of Lemma 3.1 for the general
case follows the one for the Abelian case. The only difference is that we have to use Proposition 3.2
instead of Proposition 2.2. ut

Our second theorem states that Test Larger period is a query efficient tester for
LARGER-PERIOD(K) for any finite group G.

Theorem 3.2. For a finite set S, finite group G, normal subgroup K �G, and 0 < δ < 1, Test Larger
period(G,K, δ) is a δ-tester for LARGER-PERIOD(K) on the family of all functions from G to S, with
O(log(|G|)/δ) query complexity.

Proof:
The proof is similar to that of the Abelian case. Note that, while upper bounding the acceptance
probability of the test when f is δ-far from LARGER-PERIOD(K), one has to consider only those
normal subgroups H of the form H = Normal-closure(<K,x>), where x ranges over G−K. ut

4. Periodicity on Z

We address here the problem of periodicity testing when the group is finitely generated Abelian, but
possibly infinite. For Z, it is still possible to test if a function is periodic. The proof involves Fourier
sampling methods of [15] and the following lemma which was communicated to us by Hales.

Lemma 4.1. Let G be a finite Abelian group, f : G → S a function and δ > 0. Set N =
4(log|G|)2/δ. For i = 1, . . . , N , let yi = Fourier samplingf (G) and set Y = <yi>1≤i≤N . Then
Pr[f is δ-close to Per(Y ⊥)] ≥ 2/3.

Proof:
Let E be the complementary event dist(f,Per(Y ⊥)) > δ. Then E is realized exactly when there is a
subgroup H ≤ G such that dist(f,Per(H)) > δ and H⊥ = Y . Therefore

Pr[E] ≤
∑
H≤G

Pr[dist(f,Per(H)) > δ and H⊥ = Y ]

≤
∑

H≤G,dist(f,Per(H))>δ

(Pr[y1 ∈ H⊥])N .

The number of subgroups ofG is at most |G|log |G|, and since by Lemmas 3.1 and 3.2 the probability that
y1 is inH⊥ is at most 1−δ/2, the probability Pr[E] is upper bounded by |G|log |G|(1−δ/2)N ≤ 1/3. ut
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For the sake of clarity, we now restrict ourselves to functions defined over the natural numbers N.
For any positive integer T , we identify the set {0, . . . , T − 1} with ZT in the usual way. We recast Test
Larger period(G,K, δ) in the arithmetic formalism when G = ZT and K = <p0> ≤ G, for some p0

dividing T .

Test Dividing periodf (T, p0, δ)
1. N ← 4 log(T )/δ.

2. For i = 1, . . . , N do yi ← Fourier samplingf (ZT ) and
compute the reduced fraction ai

bi
of yiT .

3. p← lcm{bi : 1 ≤ i ≤ N}.

4. Accept iff p divides T and is less than p0.

Then Lemma 4.1 can be also rewritten as follows.

Corollary 4.1. Let T ≥ 1 be an integer, f : ZT → S a function and δ > 0. Set N = 4(log T )2/δ.
For i = 1, . . . , N let yi = Fourier samplingf (ZT ), ai

bi
be the reduced fraction of yi

T , and set
p = lcm{bi : 1 ≤ i ≤ N}. Then Pr[f is δ-close to Per(<p>)] ≥ 2/3.

We want to test periodicity in the family of functions defined on N. To make the problem finite, we
fix an upper bound on the period. Then, a function f : {0, . . . , T −1} → S is q-periodic, for 1 ≤ q < T ,
if f(x + aq) = f(x), for every x, a ∈ N such that x + aq < T . The problem we now want to test is if
there exists a period less than some given number t. More precisely, we define for integers 2 ≤ t ≤ T ,

INT-PERIOD(T, t) = {f : {0, . . . , T − 1} → S | ∃q : 1 ≤ q < t and f is q-periodic}.

Here we do not require that q divides T since we do not have any finite group structure.

Test Integer periodf (T, t, δ)
1. N ← Ω((log T )2/δ).

2. For i = 1, . . . , N do yi ← Fourier samplingf (ZT ), and
use the continued fractions method to round yi

T to the nearest
fraction ai

bi
with bi < t.

3. p← lcm{bi : 1 ≤ i ≤ N}.

4. If p ≥ t, reject.

5. Tp ← bT/pcp.

6. M ← Ω(1/δ).

7. For i = 1, . . . ,M let ai, xi ∈R ZTp .

8. Accept iff 1
M |{i : f(xi + aip mod Tp) 6= f(xi)}| < δ

3 .
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Theorem 4.1. For a finite set S, 0 < δ < 1, and integers 2 ≤ t ≤ T such that T/(log T )4 =
Ω((t log t/δ)2), Test Integer period(T, t, δ) is a δ-tester with two-sided error for INT-PERIOD(T, t)
on the family of functions from {0, . . . , T − 1} to S, with O((log T )2/δ) query complexity and
(log T/δ)O(1) time complexity.

Proof:
First suppose that f is δ-far from INT-PERIOD(T, t). In Step 4 if p ≥ t, we reject. If p < t,
then f is (15δ/16)-far from Per(<p>) in the group ZTp . Indeed dist(f, INT-PERIOD(T, t)) ≤
dist(f |{0,...,Tp−1},Per(<p>)) + t/T , where the latter term is upper bounded by δ/16. Thus, from
Proposition 3.1 and Chernoff bounds, Step 8 accepts with probability less than 1/3.

Now suppose that f ∈ INT-PERIOD(T, t), and let q be the period of f , then 1 ≤ q < t.
Define Tq = bT/qcq. Let D (resp. D′) denote the distribution on b1 after Step 2 of Test Dividing
periodf (Tq, q, δ) (resp. Test Integer periodf (T, t, δ)). Then from [14, Chapter 5, Lemma 3], we
get that ‖D −D′‖1 ≤ O(t log t/

√
T ) = O(1/N). Therefore the total variation distance between the

corresponding distributions of (b1, . . . , bN ), that is
∥∥D⊗N −D′⊗N∥∥

1
, is an arbitrarily small constant.

Thus, with probability a constant arbitrarily close to 1, p | q and, by Corollary 4.1, f is (δ/16)-close to
Per(<p>) in the group ZTq . When these events indeed occur, by an argument similar to the one used
in the above paragraph, f is also (δ/8)-close to Per(<p>) in the group ZTp . From Proposition 3.1 and
Chernoff bounds, Step 8 accepts with probability arbitrarily close to 1. Thus, the overall acceptance
probability of Test Integer periodf (T, t, δ) is at least 2/3. ut

5. Common Coset Range

In this section, G denotes a finite group and S a finite set. Let f0, f1 be functions from G to S. For a
normal subgroup H �G, we say that f0 and f1 are H-similar if on all cosets of H the ranges of f0 and
f1 are the same, that is, the multiset equality f0(xH) = f1(xH) holds for every x ∈ G. Consider the
function f : G × Z2 → S, where by definition f(x, b) = fb(x). We will use f for (f0, f1) when it is
convenient in the coming discussion. We denote by Range(H) the set of functions f such that f0 and
f1 are H-similar. We say that H is t-generated, for some positive integer t, if it is the normal closure of
a subgroup generated by at most t elements. The aim of this section is to establish that for any positive
integers k and t, the family COMMON-COSET-RANGE(k, t) (for short CCR(k, t)), defined as

CCR(k, t) = {f : G × Z2 → S | ∃H � G, |H| ≤ k,H is t-generated, f0 and f1 are H-similar},

can be tested by the following quantum test. Note that a subgroup of size k is always generated by at
most log k elements, therefore we always assume that t ≤ log k. In the testing algorithm, we assume
that we have a quantum oracle for the function f : G× Z2 → S.
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Test Common coset rangef (G, k, t, δ)
1. N ← 2kt log(|G|)/δ.

2. For i = 1, . . . , N do (ρi, bi)← Fourier samplingf (G× Z2).

3. Accept iff
∃H �G, |H| ≤ k,H is t-generated and ∀i (bi = 1 =⇒ ρi 6∈ H⊥).

We first prove the robustness of the property that when Fourier samplingf (G× Z2) outputs (ρ, 1),
where G is any finite group, H �G and f ∈ Range(H), then ρ is not in H⊥.

Lemma 5.1. Let S be a finite set and G a finite group. Let f : G × Z2 → S and H � G. Then
dist(f,Range(H)) ≤ |H| · Pr[Fourier samplingf (G× Z2) outputs (ρ, 1) such that ρ ∈ H⊥].

Proof:
We use the notations of Section 3.1 for f0 and f1. We define |f,H〉 = 1√

2
(|µf0,H〉 − |µf1,H〉), and the

multiplicity functions mfb,H
x = |H| · µfb,Hx .

First, we prove that dist(f,Range(H)) ≤ ‖|f,H〉‖2 · |H|/2. For this, we define a function
g1 : G → S, the correction of f1. The definition is done according to the cosets of H in G. For
every x ∈ G and s ∈ S, the function g1 remains identical to f1 in Min{mf0,H

x (s),mf1,H
x (s)} elements

of xH , and the value of g1 at those elements is s; at the remaining elements of xH , the values of
g1 are defined so as to make the multisets f0(xH) and g1(xH) equal. If we define g0 = f0 then
clearly g = (g0, g1) : G × Z2 → S is in Range(H) and dist(f, g) = dist(f1, g1)/2. Since in
every coset xH , f1 and g1 have different values in

∑
s∈S |m

f0,H
x (s) −mf1,H

x (s)|/2 elements, we have
dist(f, g) = 1

4|G|
∑

x∈G/H
∑

s∈S |m
f0,H
x (s)−mf1,H

x (s)|. The right hand side becomes ‖|f,H〉‖2 · |H|/2
if we replace the terms |mf0,H

x (s)−mf1,H
x (s)| by their respective squared values. This can only increase

the right hand side since the values mfb,H
x (s) are integers. Thus, dist(f, g) ≤ ‖|f,H〉‖2 · |H|/2.

We now prove that ‖|f,H〉‖2 = 2 · Pr[Fourier samplingf (G × Z2) outputs (ρ, 1) such that ρ ∈

H⊥]. The probability term is
∥∥∥∥ 1

2
√
|H||G|

∑
x∈G |H⊥(x)〉|1〉(|f0(x)〉 − |f1(x)〉)

∥∥∥∥2

. We apply the

inverse quantum Fourier transform QFT−1
G , which is `2-norm preserving, to the first register in the

above expression. Using Proposition 3.2 and the fact that H is a subgroup of G, the probability

becomes
∥∥∥∥ 1

2|H|
√
|G|

∑
x∈G

∑
h∈H |x〉|1〉(|f0(xh)〉 − |f1(xh)〉)

∥∥∥∥2

. Now one can conclude the above

statement and hence the lemma, since by definition of µfb,H , the equality 1
|H|
∑

h∈H |fb(xh)〉 =∑
s∈S µ

fb,H
x (s)|s〉 = |µfb,Hx 〉 holds. ut

Our next theorem implies that CCR(k, t) is query efficiently testable when k is polynomial in log|G|.

Theorem 5.1. For any finite set S, finite group G, integers k ≥ 1, 1 ≤ t ≤ log k, and 0 < δ < 1, Test
Common coset range(G, k, t, δ) is a δ-tester for CCR(k, t) on the family of all functions from G× Z2

to S, with O(kt log(|G|)/δ) query complexity.
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Proof:
First consider the case f ∈ CCR(k, t), that is f is in Range(H) for some H � G, |H| ≤ k and H is
t-generated. From the proof of Lemma 5.1, we see that whenever Fourier samplingf (G× Z2) outputs
an element (ρ, 1), then ρ 6∈ H⊥. Thus the test always accepts.

Now, let f : G → S be δ-far from CCR(k, t) and let H be a t-generated
normal subgroup of size at most k. Then, dist(f,Range(H)) > δ and by Lemma 5.1,
Pr[Fourier samplingf outputs (ρ, 1) such that ρ ∈ H⊥] > δ/|H| ≥ δ/k. Using these inequalities,
we can upper bound the acceptance probability of the test, which is

Pr[∃H �G, |H| ≤ k,H is t-generated ∀i (bi = 1 =⇒ ρi 6∈ H⊥)]

= Pr

[
∃u1, . . . ut ∈ G, Normal-closure(<u1, . . . ut>) = H, |H| ≤ k

and ∀i (bi = 1 =⇒ ρi 6∈ H⊥)

]

≤ |G|t
 Max

H�G,|H|≤k,
H is t-generated

{
Pr

[
Fourier samplingf outputs (ρ, b),

and (b = 1 =⇒ ρ 6∈ H⊥)

]}N

< |G|t(1− δ/k)N ≤ 1/3.

ut

6. A classical lower bound

Let G be any finite Abelian group with exponent k. In this section, we study the property CCR(k, 1).
We already know from Theorem 5.1 that this problem has a query efficient quantum tester if k =
(log|G|)O(1). We now prove an exponential lower bound on the classical testing query complexity of
this problem, even for constant k. Recall that the exponent of a group G is the smallest integer m such
that xm = 1 for every element x ∈ G. We prove our lower bound by adapting the proof of Theorem 4.2
of Buhrman et al. [3]. We use Yao’s minimax principle. We construct two probability distributions D′1
andD′2 on the set of pairs of functions (f0, f1), f0, f1 : G→ S, where S is a finite set of size |S| = |G|3.
Let D′1 be the uniform distribution on pairs of injective functions (f0, f1) such that f1(x) = f0(x + u)
for some element u ∈ G and all x ∈ G. Thus, f0 and f1 are <u>-similar, and |<u>| ≤ k. Let D′2
be the uniform distribution on pairs of injective functions (f0, f1) such that the ranges f0(G) and f1(G)
are disjoint. Thus, D′1 is supported on positive instances of CCR(k, 1), and D′2 is supported on negative
instances of CCR(k, 1) which are 1/2-distant from positive instances.

As in [3], instead of working with D′1, D
′
2, we shall work with distributions D1 and D2 on pairs of

functions (f0, f1), approximating distributions D′1 and D′2 respectively. D1 is obtained by choosing
f0 : G → S and u ∈ G independently and uniformly at random, and setting f1 : G → S to
be f1(x) = f0(x + u) for all x ∈ G. Since the probability that f0 is not injective is at most(|G|

2

)
/|G|3 = O(1/|G|), we get that ‖D1 −D′1‖1 = O(1/|G|). D2 is obtained by choosing f0 : G→ S

and f1 : G → S independently and uniformly at random. The probability that at least one of f0, f1

is not injective is O(1/|G|). The probability that their ranges f0(G) and f1(G) are not disjoint is also
O(1/|G|). Thus, ‖D2 −D′2‖1 = O(1/|G|).

By applying the proof technique of Theorem 4.2 of [3] for distributionsD1, D2, we get the following
theorem.
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Theorem 6.1. Let G be a finite Abelian group and let k be the exponent of G. For testing CCR(k, 1) on
G, any classical randomized bounded error query algorithm on G requires Ω(

√
|G|) queries.
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