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Abstract. We construct efficient or query efficient quantum property
testers for two existential group properties which have exponential query
complexity both for their decision problem in the quantum and for their
testing problem in the classical model of computing. These are periodicity
in groups and the common coset range property of two functions having
identical ranges within each coset of some normal subgroup.

1 Introduction

In the paradigm of property testing one would like to decide whether an
object has a global property by performing random local checks. The goal is
to distinguish with sufficient confidence the objects which satisfy the property
from those objects that are far from having the property. In this sense, property
testing is a notion of approximation for the corresponding decision problem.
Property testers, with a slightly different objective, were first considered for
programs under the name of self-testers. Following the pioneering approach
of Blum, Kannan, Luby and Rubinfeld [3], self-testers were constructed for
programs purportedly computing functions with some algebraic properties
such as linear functions, polynomial functions, and functions satisfying some
functional equations [3, 14]. The notion in its full generality was defined by
Goldreich, Goldwasser and Ron and successfully applied among others to graph
properties [8]. For surveys on property testing see [6].

Quantum computing (for surveys see e.g. [13]) is an extremely active research
area, where a growing trend is to cast quantum algorithms in a group theoretical
setting. In this setting, we are given a finite group G and, besides the group
operations, we also have at our disposal a function f mapping G into a finite
set. The function f can be queried via an oracle. The complexity of an algorithm
is measured by the number of queries (i.e. evaluations of the function f), and also
by the overall running time counting one query as one computational step. We
say that an algorithm is query efficient (resp. efficient) if its query complexity
(resp. overall time complexity) is polynomial in the logarithm of the order of
G. The most important unifying problem of group theory for the purpose of
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quantum algorithms has turned out to be the Hidden Subgroup Problem
(HSP), which can be cast in the following broad terms: Let H be a subgroup
of G such that f is constant on each left coset of H and distinct on different
left cosets. We say that f hides the subgroup H. The task is to determine the
hidden subgroup H.

While no classical algorithm can solve this problem with polynomial query
complexity, the biggest success of quantum computing until now is that it can
be solved by a quantum algorithm efficiently whenever G is Abelian [15, 11]. We
will refer to this algorithm as the standard algorithm for the HSP. The main
tool for this solution is Fourier sampling based on the (approximate) quantum
Fourier transform for Abelian groups which can be efficiently implemented
quantumly [11]. In strong opposition to these positive results, a natural
generalization of the HSP has exponential quantum query complexity even in
Abelian groups. In this generalization, the function f may not be distinct on
different cosets. Indeed, the unordered database search problem can be reduced
to the decision problem whether a function on a cyclic group has a non-trivial
period or not.

Two different extensions of property testing were studied recently in the
quantum context. The first approach consists in testing quantum devices by
classical procedures. Mayers and Yao [12] have designed tests for deciding if a
photon source is perfect. These tests guarantee that if a source passes them, it is
adequate for the security of the Bennett-Brassard [1] quantum key distribution
protocol. Dam, Magniez, Mosca and Santha [4] considered the design of testers
for quantum gates. They showed the possibility of classically testing quantum
processes and they provided the first family of classical tests allowing one to
estimate the reliability of quantum gates.

The second approach considers testing deterministic functions by a quantum
procedure. Quantum testing of deterministic function families was introduced
by Buhrman, Fortnow, Newman, and Röhrig [2], and they have constructed
efficient quantum testers for several properties. One of their nicest contributions
is that they have considered the possibility that quantum testing of periodicity
might be easier than the corresponding decision problem. Indeed, they succeeded
in giving a polynomial time quantum tester for periodic functions over Zn

2 .
They have also proved that any classical tester requires exponential time for
this task. Independently and earlier, while working on the extension of the
HSP to periodic functions over Z which may be many-to-one in each period,
Hales and Hallgren [10] have given the essential ingredients for constructing a
polynomial time quantum tester for periodic functions over the cyclic group Zn.
But contrarily to [2], their result is not stated in the testing context.

In this work, we construct efficient or query efficient quantum testers for two
hidden group properties, that is, existential properties over groups whose decision
problems have exponential quantum query complexity. We also introduce a new
technique in the analysis of quantum testers.

Our main contribution is a generalization of the periodicity property studied
in [10, 2]. For any finite group G and any normal subgroup K, a function f



satisfies the property LARGER-PERIOD(K) if there exists a normal subgroup
H > K for which f is H-periodic (i.e. f(xh) = f(x) for all x ∈ G and h ∈ H). For
this property, we give an efficient tester whenever G is Abelian (Theorem 1).
This result generalizes the previous periodicity testers in three aspects. First,
we work in any finite Abelian group G, while previously only G = Zn [10]
and G = Zn

2 [2] were considered. Second, the property we test is parametrized
by some known normal subgroup K, while previously only the case K = {0}
was considered. Third, our query complexity is only linear in the inverse of the
distance parameter, whereas the previous works have a quadratic dependence.
Our result implies that the period finding algorithm of [10] has, in fact, query
complexity linear in the inverse of the distance parameter, as opposed to only
quadratic dependence proved in that paper.

The main technical ingredient of the periodicity test in Abelian groups is
efficient Fourier sampling. This procedure remains a powerful tool also in non-
Abelian groups. Unfortunately, currently no efficient implementation is known
for it in general groups. Therefore, when dealing with non-Abelian groups, our
aim is to construct query efficient testers. We construct query efficient testers,
with query complexity linear in the inverse of the distance parameter, for two
properties. First, we show that the tester used for LARGER-PERIOD(K) in
Abelian groups yields a query efficient tester when G is any finite group and
K any normal subgroup (Theorem 2). Second, we study in any finite group
G the property COMMON-COSET-RANGE(k, t) (for short CCR(k, t)), can be
thought of as a generalization of the hidden translation property [5, 7]. The heart
of the tester for CCR(k, t) is again Fourier sampling applied in the direct product
group G × Z2. Our tester is query efficient in any group if k is polylogarithmic
in the size of the group (Theorem 4).

After finishing this paper, we learnt from Lisa Hales that in her thesis [9],
she has also obtained polynomial time quantum testers for periodic functions
over any finite Abelian group, although her results, just as those of [10], are
not stated explicitly in the testing context. Her proof technique is also closely
related to that of [10], and the query complexity of her tester remains quadratic
in the inverse of the distance parameter. After hearing a talk about our results,
she has pointed out to us that our periodicity tester can be generalized to the
integers. For the sake of completeness, with her permission, we include here
in Section 4 this efficient periodicity tester over the integers Z. We present a
complete correctness proof for this tester (Theorem 3) by combining Hales’s
ideas with our earlier periodicity testing results about finite Abelian groups.

2 Preliminaries

2.1 Fourier Sampling over Abelian Groups

For a finite set D, let the uniform superposition over D be |D〉 = 1√
|D|

∑
x∈D |x〉,

and for a function f from D to a finite set S, let the uniform superposition of f be
|f〉 = 1√

|D|

∑
x∈D |x〉|f(x)〉. For two functions f, g from D to S, their distance is



dist(f, g) = |{x ∈ D : f(x) 6= g(x)}|/|D|. In this paper, ‖·‖ denotes the `2-norm
and ‖·‖1 denotes the `1-norm of a vector.

Proposition 1. For functions f, g defined on the same finite set, dist(f, g) =
1
2 ‖|f〉 − |g〉‖

2.

Let G be a finite Abelian group and H ≤ G a subgroup. The coset of
x ∈ G with respect to H is denoted by x + H. We use the notation <X>
for the subgroup generated by a subset X of G. We identify with G the set
Ĝ of characters of G, via some fixed isomorphism y 7→ χy. The orthogonal
of H ≤ G is defined as H⊥ = {y ∈ G : ∀h ∈ H,χy(h) = 1}, and we

set |H⊥(x)〉 =
√

|H|
|G|

∑
y∈H⊥ χy(x)|y〉. The quantum Fourier transform over

G, QFTG, is the unitary transformation defined as follows: For every x ∈ G,
QFTG|x〉 = 1√

|G|

∑
y∈G χy(x)|y〉.

Proposition 2. Let G be a finite Abelian group, x ∈ G and H ≤ G. Then

|x + H〉 QFTG−−−−→ |H⊥(x)〉.
The following well known quantum Fourier sampling algorithm will be used

as a building block in our quantum testers. In the algorithm, f : G→ S is given
by a quantum oracle.

Fourier samplingf (G)
1. Create zero-state |0〉G|0〉S .
2. Create the superposition 1√

|G|

∑
x∈G |x〉G in the first register.

3. Query function f .
4. Apply QFTG on the first register.
5. Observe and then output the first register.

2.2 Property Testing

Let D and S be two finite sets and let C be a family of functions from D to S.
Let F ⊆ C be the sub-family of functions of interest, that is, the set of functions
possessing the desired property. In the testing problem, one is interested in
distinguishing functions f : D → S, given by an oracle, which belong to F ,
from functions which are far from every function in F .

Definition 1 (δ-tester). Let F ⊆ C and 0 ≤ δ < 1. A quantum (resp.
probabilistic) δ-tester for F on C is a quantum (resp. probabilistic) oracle Turing
machine T such that, for every f ∈ C,

1. if f ∈ F then Pr[T f accepts] = 1,
2. if dist(f,F) > δ then Pr[T f rejects] ≥ 2/3,

where the probabilities are taken over the observation results (resp. the coin
tosses) of T .

By our definition, a tester always accepts functions having the property F . We
may also consider testers with two-sided error, where this condition is relaxed,
and one requires only that the tester accept functions from F with probability
at least 2/3.



3 Periodicity in Finite Groups

In this section, we design quantum testers for testing periodicity of functions
from a finite group G to a finite set S. For a normal subgroup H �G, a function
f : G → S is H-periodic if for all x ∈ G and h ∈ H, f(xh) = f(x). Notice that
our definition describes formally right H-periodicity, but this coincides with left
H-periodicity since H is normal. The set of H-periodic functions is denoted by
Per(H). For a known normal subgroup H, testing if f ∈ Per(H) can be easily
done classically by sampling random elements x ∈ G and h ∈ H and verifying
that f(xh) = f(x), as can be seen from the following proposition.

Proposition 3. Let G be a finite group, H � G and f : G→ S a function. Let
η = Prx∈G,h∈H [f(xh) 6= f(x)]. Then, η/2 ≤ dist(f,Per(H)) ≤ 2η.

On the other hand, testing if a function has a non-trivial period is classically
hard even in Zn

2 [2]. The main result of this section is that we can test query
efficiently (and efficiently in the Abelian case) by a quantum algorithm an even
more general property: Does a function have a strictly larger period than a
known normal subgroup K � G? Indeed, we test the family

LARGER-PERIOD(K) = {f : G→ S | ∃H�G, H > K and f is H-periodic}.

3.1 Finite Abelian Case

In this subsection, we give our algorithm for testing periodicity in finite Abelian
groups. Theorem 1 below states that this algorithm is efficient. The algorithm
assumes that G has an efficient exact quantum Fourier transform. When G
only has an efficient approximate quantum Fourier transform, the algorithm
has two-sided error. Efficient implementations of approximate quantum Fourier
transforms exist in every finite Abelian group [11].

Test Larger periodf (G, K, δ)
1. N ← 4 log(|G|)/δ.
2. For i = 1, . . . , N do yi ← Fourier samplingf (G).
3. Accept iff <yi>1≤i≤N < K⊥.

Theorem 1. For a finite set S, finite Abelian group G, subgroup K ≤
G, and 0 < δ < 1, Test Larger period(G, K, δ) is a δ-tester for
LARGER-PERIOD(K) on the family of all functions from G to S, with
O(log(|G|)/δ) query complexity and (log(|G|)/δ)O(1) time complexity.

Let S be a finite set and G a finite Abelian group. We describe now the
ingredients of our two-step correction process. First, we generalize the notion of
uniform superposition of a function to uniform superposition of a probabilistic
function. By definition, a probabilistic function is a mapping µ : x 7→ µx from
the domain G to probability distributions on S. For every x ∈ G, define the unit
`1-norm vector |µx〉 =

∑
s∈S µx(s)|s〉. Then the uniform superposition of µ is



defined as |µ〉 = 1√
|G|

∑
x∈G |x〉|µx〉. Notice that |µ〉 has unit `2-norm when µ is

a (deterministic) function, otherwise its `2-norm is smaller.
A function f : G→ S and a subgroup H ≤ G naturally define an H-periodic

probabilistic function µf,H , where µf,H
x (s) = |f−1(s)∩(x+H)|

|H| . The value µf,H
x (s)

is the proportion of elements in the coset x+H where f takes the value s. When
f is H-periodic |µf,H〉 = |f〉, and so

∥∥|µf,H〉
∥∥ = 1, otherwise

∥∥|µf,H〉
∥∥ < 1.

The next two lemmas, which imply Theorem 1, give the connection
between the distance

∥∥|f〉 − |µf,H〉
∥∥2 and respectively the probability that

Fourier sampling outputs an element outside H⊥, and dist(f,Per(H)).

Lemma 1.
∥∥|f〉 − |µf,H〉

∥∥2 = Pr[Fourier samplingf (G) outputs y 6∈ H⊥].

Proof. Since y 6∈ H⊥ iff y ∈ {0}⊥ − H⊥, the probability term is∥∥∥∥ 1√
|G|

∑
x∈G |{0}⊥(x)〉|f(x)〉 − 1√

|G||H|

∑
x∈G |H⊥(x)〉|f(x)〉

∥∥∥∥2

. We apply the

inverse quantum Fourier transform QFT−1
G , which is `2-norm preserving,

to the first register in the above expression. The probability becomes∥∥∥∥|f〉 − 1√
|G||H|

∑
x∈G |x + H〉|f(x)〉

∥∥∥∥2

, using Proposition 2. Changing the

variables, the second term inside the norm is

1√
|G|

∑
x∈G

|x〉 1
|H|

∑
h∈H

|f(x− h)〉 =
1√
|G|

∑
x∈G

|x〉 1
|H|

∑
h∈H

|f(x + h)〉,

where the equality holds because H is a subgroup of G. We conclude by observing
that 1

|H|
∑

h∈H |f(x + h)〉 =
∑

s∈S µf,H
x (s)|s〉 = |µf,H

x 〉. ut

Lemma 2. dist(f,Per(H)) ≤ 2
∥∥|f〉 − |µf,H〉

∥∥2
.

Proof. It will be useful to rewrite |f〉 as a probabilistic function
1√
|G|

∑
x∈G |x〉

∑
s∈S δf

x(s)|s〉, where δf
x(s) = 1 if f(x) = s and 0 otherwise.

Let us define the H-periodic function g : G → S by g(x) = Majh∈H f(x + h),
where ties are decided arbitrarily. In fact, g is the correction of f with respect to
H-periodicity. Proposition 1 and the H-periodicity of g imply dist(f,Per(H)) ≤
1
2 ‖|f〉 − |g〉‖

2. We will show that
∥∥|g〉 − |µf,H〉

∥∥ ≤ ∥∥|f〉 − |µf,H〉
∥∥. This will

allow us to prove the desired statement using the triangle inequality. Observe
that for any function h : G→ S, we have∥∥|h〉 − |µf,H〉

∥∥2
=

1
|G|

∑
x∈G

∑
s∈S

|δh
x(s)− µf,H

x (s)|2. (1)

Moreover for every x ∈ G, one can establish∑
s∈S

|δg
x(s)− µf,H

x (s)|2 = 1 +
∑
s∈S

(µf,H
x (s))2 − 2µf,H

x (g(x))

≤ 1 +
∑
s∈S

(µf,H
x (s))2 − 2µf,H

x (f(x)) =
∑
s∈S

|δf
x(s)− µf,H

x (s)|2,
(2)



where the inequality follows from µf,H
x (f(x)) ≤ µf,H

x (g(x)), which in turn
follows immediately from the definition of g. From (1) and (2) we get that∥∥|g〉 − |µf,H〉

∥∥ ≤ ∥∥|f〉 − |µf,H〉
∥∥, which completes the proof. ut

Lemmas 1 and 2 together can be interpreted as the robustness [14] in the
quantum context [4] of the property that Fourier samplingf (G) outputs only
y ∈ H⊥: if f does not satisfy exactly the property but with error probability
less than δ, then f is 2δ-close to a function that satisfies exactly the property.

3.2 Finite General Case

We now give our algorithm for testing periodicity in general finite groups.
Our main tool continues to be the quantum Fourier transform (over a general
finite group). For any d× d matrix M , define |M〉 =

√
d

∑
1≤i,j≤d Mi,j |M, i, j〉.

Let G be any finite group and let Ĝ be a complete set of finite dimensional
inequivalent irreducible unitary representations of G. Thus, for any ρ ∈ Ĝ
of dimension dρ and x ∈ G, |ρ(x)〉 =

√
dρ

∑
1≤i,j≤dρ

(ρ(x))i,j |ρ, i, j〉. The
quantum Fourier transform over G is the unitary transformation defined as
follows: For every x ∈ G, QFTG|x〉 = 1√

|G|

∑
ρ∈Ĝ |ρ(x)〉. For any H � G set

H⊥ = {ρ ∈ Ĝ : ∀h ∈ H, ρ(h) = Idρ
}, where Idρ

is the dρ × dρ identity matrix.

Let |H⊥(x)〉 =
√

|H|
|G|

∑
ρ∈H⊥ |ρ(x)〉.

Proposition 4. If x ∈ G and H � G, then |xH〉 QFTG−−−−→ |H⊥(x)〉.

Test Larger periodf (G, K, δ)
1. N ← 4 log(|G|)/δ.
2. For i = 1, . . . , N do ρi ← Fourier samplingf (G).
3. Accept iff ∩1≤i≤N ker ρi > K.

In the above algorithm, Fourier samplingf (G) is as before, except that we
only observe the representation ρ, and not the indices i, j. Thus, the output
of Fourier samplingf (G) is an element of Ĝ. K is assumed to be a normal
subgroup of G. For any ρ ∈ Ĝ, ker ρ denotes its kernel.

We now prove the robustness of the property that Fourier samplingf (G)
outputs only ρ ∈ H⊥, for any finite group G, normal subgroup H and H-periodic
function f . This robustness corresponds to Lemmas 1 and 2 of the Abelian case.

Lemma 3. Let f : G→ S and H � G. Then

dist(f,Per(H)) ≤ 2 · Pr[Fourier samplingf (G) outputs ρ 6∈ H⊥].

Our second theorem states that Test Larger period is a query efficient
tester for LARGER-PERIOD(K) for any finite group G.

Theorem 2. For a finite set S, finite group G, normal subgroup K�G, and 0 <
δ < 1, Test Larger period(G, K, δ) is a δ-tester for LARGER-PERIOD(K)
on the family of all functions from G to S, with O(log(|G|)/δ) query complexity.



4 Periodicity on Z

We address here the problem of periodicity testing when the group is finitely
generated Abelian, but possibly infinite. For Z, it is still possible to test if a
function is periodic. The proof involves Fourier sampling methods of [10] and
the following lemma which was communicated to us by Hales.

Lemma 4. Let G be a finite Abelian group, f : G → S a function and δ > 0.
Set N = 4(log|G|)2/δ. For i = 1, . . . , N , let yi = Fourier samplingf (G) and
set Y = <yi>1≤i≤N . Then Pr[f is δ-close to Per(Y ⊥)] ≥ 2/3.

Proof. Let E be the complementary event dist(f,Per(Y ⊥)) > δ. Then E is
realized exactly when there is a subgroup H ≤ G such that dist(f,Per(H)) > δ
and H⊥ = Y . Therefore Pr(E) is upper bounded by∑
H≤G

Pr[dist(f,Per(H)) > δ and H⊥ = Y ] ≤
∑

H≤G,dist(f,Per(H))>δ

(Pr[y1 ∈ H⊥])N .

The number of subgroups of G is at most |G|log |G|, and since by Lemmas 1 and
2 the probability that y1 is in H⊥ is at most 1− δ/2, we can upper bound Pr[E]
by |G|log |G|(1− δ/2) ≤ 1/3. ut

For the sake of clarity, we now restrict ourselves to functions defined over the
natural numbers N. For any integer T ≥ 1, we identify the set {0, . . . , T−1} with
ZT in the usual way. We recast Test Larger period(G, K, δ) in the arithmetic
formalism when G = ZT and K = <p0> ≤ G, for some p0 dividing T .

Test Dividing periodf (T, p0, δ)
1. N ← 4 log(T )/δ.
2. For i = 1, . . . , N do yi ← Fourier samplingf (ZT ) and

compute the reduced fraction ai

bi
of yi

T .
3. p← lcm{bi : 1 ≤ i ≤ N}.
4. Accept iff p divides and is less than p0.

Then Lemma 4 can be also rewritten as follows.

Corollary 1. Let T ≥ 1 be an integer, f : ZT → S a function and δ > 0.
Set N = 4(log T )2/δ. For i = 1, . . . , N let yi = Fourier samplingf (ZT ),
ai

bi
be the reduced fraction of yi

T , and set p = lcm{bi : 1 ≤ i ≤ N}. Then
Pr[f is δ-close to Per(<p>)] ≥ 2/3.

We want to test periodicity in the family of functions defined on N. To make
the problem finite, we fix an upper bound on the period. Then, a function
f : {0, . . . , T − 1} → S is q-periodic, for 1 ≤ q < T , if f(x + aq) = f(x),
for every x, a ∈ N such that x + aq < T . The problem we now want to test is if
there exists a period less than some given number t. More precisely, we define
for integers 2 ≤ t ≤ T ,

INT-PERIOD(T, t) = {f : {0, . . . , T − 1} → S | ∃q : 1 ≤ q < t, f is q-periodic}.

Here we do not require that q divides t since we do not have any finite group
structure.



Test Integer periodf (T, t, δ)
1. N ← Ω((log T )2/δ).
2. For i = 1, . . . , N do yi ← Fourier samplingf (ZT ), and use the continued

fractions method to round yi

T to the nearest fraction ai

bi
with bi < t.

3. p← lcm{bi : 1 ≤ i ≤ N}.
4. If p ≥ t, reject.
5. Tp ← bT/pcp.
6. M ← Ω(1/δ).
7. For i = 1, . . . ,M let ai, xi ∈R ZTp .
8. Accept iff 1

M |{i : f(xi + aip mod Tp) 6= f(xi)}| < δ
2 .

Theorem 3. For 0 < δ < 1, and integers 2 ≤ t ≤ T such that T/(log T )4 =
Ω((t log t/δ)2), Test Integer period(T, t, δ) is a δ-tester with two-sided error
for INT-PERIOD(T, t) on the family of functions from {0, . . . , T −1} to S, with
O((log T )2/δ) query complexity and (log T/δ)O(1) time complexity.

5 Common Coset Range

In this section, G denotes a finite group and S a finite set. Let f0, f1 be functions
from G to S. For a normal subgroup H � G, we say that f0 and f1 are H-
similar if on all cosets of H the ranges of f0 and f1 are the same, that is,
the multiset equality f0(xH) = f1(xH) holds for every x ∈ G. Consider the
function f : G × Z2 → S, where by definition f(x, b) = fb(x). We will use
f for (f0, f1) when it is convenient in the coming discussion. We denote by
Range(H) the set of functions f such that f0 and f1 are H-similar. We say
that H is (k, t)-generated, for some positive integers k, t, if |H| ≤ k and it is
the normal closure of a subgroup generated by at most t elements. The aim
of this section is to establish that for any positive integers k and t, the family
COMMON-COSET-RANGE(k, t) (for short CCR(k, t)), defined as the set

{f : G× Z2 → S | ∃H � G : H is (k, t)-generated, f0 and f1 are H-similar},

can be tested by the following quantum test. Note that a subgroup of size k is
always generated by at most log k elements, therefore we always assume that
t ≤ log k. In the testing algorithm, we assume that we have a quantum oracle
for the function f : G× Z2 → S.

Test Common coset rangef (G, k, t, δ)
1. N ← 2kt log(|G|)/δ.
2. For i = 1, . . . , N do (ρi, bi)← Fourier samplingf (G× Z2).
3. Accept iff ∃H � G : H is (k, t)-generated ∀i (bi = 1 =⇒ ρi 6∈ H⊥).

We first prove the robustness of the property
that when Fourier samplingf (G × Z2) outputs (ρ, 1), where G is any finite
group, H � G and f ∈ Range(H), then ρ is not in H⊥.



Lemma 5. Let S be a finite set and G a finite group. Let f : G × Z2 →
S and H � G. Then dist(f,Range(H)) ≤ |H| · Pr[Fourier samplingf (G ×
Z2) outputs (ρ, 1) such that ρ ∈ H⊥].

Our next theorem implies that CCR(k, t) is query efficiently testable when k
is polynomial in log|G|.
Theorem 4. For any finite set S, finite group G, integers k ≥ 1, 1 ≤ t ≤ log k,
and 0 < δ < 1, Test Common coset range(G, k, t, δ) is a δ-tester for
CCR(k, t) on the family of all functions from G×Z2 to S, with O(kt log(|G|)/δ)
query complexity.

The proof technique of Theorem 4.2 of [2] yields:

Theorem 5. Let G be a finite Abelian group and let k be the exponent of G. For
testing CCR(k, 1) on G, any classical randomized bounded error query algorithm
on G requires Ω(

√
|G|) queries.
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