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ABSTRACT

In this paper we show that certain special cases of the hidden subgroup problem
can be solved in polynomial time by a quantum algorithm. These special cases involve

finding hidden normal subgroups of solvable groups and permutation groups, finding

hidden subgroups of groups with small commutator subgroup and of groups admitting
an elementary Abelian normal 2-subgroup of small index or with cyclic factor group.

Keywords: Quantum computing, Hidden subgroup problem, Black-box groups.

1. Introduction

A growing trend in recent years in quantum computing is to cast quantum algo-
rithms in a group theoretical setting. Group theory provides a unifying framework
for several quantum algorithms, clarifies their key ingredients, and therefore con-
tributes to a better understanding why they can, in some context, be more efficient
than the best known classical ones.
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The most important unifying problem of group theory for the purpose of quan-
tum algorithms turned out to be the hidden subgroup problem (HSP) which can be
cast in the following broad terms. Let G be a finite group (given by generators),
and let H be a subgroup of G. We are given (by an oracle) a function f mapping
G into a finite set such that f is constant and distinct on different left cosets of H,
and our task is to determine the unknown subgroup H.

While no classical algorithm is known to solve this problem in time faster than
polynomial in the order of the group, the biggest success of quantum computing until
now is that it can be solved by a quantum algorithm efficiently, which means in time
polynomial in the logarithm of the order of G, whenever the group is Abelian. The
main tool for this solution is the (approximate) quantum Fourier transform which
can be efficiently implemented by a quantum algorithm [20]. Simon’s algorithm for
finding an xor-mask [30], Shor’s seminal factorization and discrete logarithm finding
algorithms [29], Boneh and Lipton’s algorithm for finding hidden linear functions [7]
are all special cases of this general solution, as well as the algorithm of Kitaev [20]
for the Abelian stabilizer problem, which was the first problem set in a general
group theoretical framework. That all these problems are special cases of the HSP,
and that an efficient solution comes easily once an efficient Fourier transform is at
our disposal, was realized and formalized by several people, including Brassard and
Høyer [8], Mosca and Ekert [25] and Jozsa [17]. An excellent description of the
general solution can be found for example in Mosca’s thesis [24].

We believe that addressing the HSP in the non-Abelian case is the most impor-
tant challenge at present in quantum computing. Beside its intrinsic mathematical
interest, the importance of this problem is enhanced by the fact that it contains
as special case the graph isomorphism problem. Unfortunately, the non-Abelian
HSP seems to be much more difficult than the Abelian case, and although consider-
able efforts were spent on it in the last years, only limited success can be reported.
Rötteler and Beth [28] have presented an efficient quantum algorithm for the wreath
products Zk

2 o Z2. In the case of the dihedral groups, Ettinger and Høyer [10] de-
signed a quantum algorithm which makes only O(log |G|) queries. However, this
doesn’t make their algorithm efficient since the (classical) post-processing stage of
the results of the queries is done in exponential time in O(log |G|). Actually, this
result was extended by Ettinger, Høyer and Knill [11] in the sense that they have
shown that in any group, with only O(log |G|) queries to the oracle, sufficiently sta-
tistical information can be obtained to solve the the HSP. However, it is not known
how to implement efficiently these queries, and therefore even the “quantum part”
of their algorithm is remaining exponential. Hallgren, Russel and Ta-Shma [16]
proved that the generic efficient quantum procedure for the HSP in Abelian groups
works also for non-Abelian groups to find any normal subgroup, under the condi-
tion that the Fourier transform on the group can efficiently be computed. Grigni,
Schulman, Vazirani and Vazirani could show that the HSP is solvable efficiently
in groups where the intersection of the normalizers of all subgroups is large [14].
In a subsequent work extending some of the results of this paper Friedl, Ivanyos,
Magniez, Santha and Sen [13] presented efficient quantum algorithms for the HSP
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in a class of groups which includes solvable groups of bounded exponent and having
a derived series of bounded length. Moore, Rockemore, Russell and Schulman [23]
proved that the strong Fourier sampling paradigm efficiently determines the HSP
in the semi-direct product Zp o Zq for p and q primes when q divides p − 1 and
q = p−1

(log p)c . A recent survey on the status of the non-Abelian HSP problem was
written by Jozsa [18].

In a somewhat different line of research, recently several group theoretical prob-
lems have been considered in the context of black-box groups. The notion of black-
box groups has been introduced by Babai and Szemerédi in [3]. In this model, the
elements of a group G are encoded by words over a finite alphabet, and the group
operations are performed by an oracle (the black box). The groups are assumed
to be input by generators, and the encoding is not necessarily unique. There has
been a considerable effort to develop classical algorithms for computations with
them [5, 1, 19], for example to identify the composition factors (especially the
non-commutative ones). Efficient black-box algorithms give rise automatically to
efficient algorithms whenever the black-box operations can be replaced by efficient
procedures. Permutation groups, matrix groups over finite fields and even finite ma-
trix groups over algebraic number fields fit in this model. In particular, Watrous [31]
has recently considered solvable black-box groups in the restricted model of unique
encoding, and using some new quantum algorithmic ideas, he could construct ef-
ficient quantum algorithms for finding composition series, decomposing Abelian
factors, computing the order and testing membership in these groups.

In this paper we will focus on the HSP, and we will show that it can be solved in
polynomial time in several black-box groups. In particular, we will present efficient
quantum algorithms for this problem for groups with small commutator subgroup
and for groups having an elementary Abelian normal 2-subgroup of small index or
with cyclic factor group. Our basic ingredient will be a series of deep algorithmic
results of Beals and Babai from classical computational group theory. Indeed, in [5]
they have shown that, up to certain computationally difficult subtasks – the so-
called Abelian obstacles – such as factoring integers and constructive membership
test in Abelian groups many problems related to the structure of black-box groups,
such as finding composition series, can be solved efficiently for groups without large
composition factors of Lie type, and in particular, for solvable groups. As quantum
computers can factor integers and take discrete logarithms, and, more generally,
perform the constructive membership test in Abelian groups efficiently, one expects
that a large part of the Beals–Babai algorithms can be efficiently implemented by
quantum algorithms. Indeed, the above results of Watrous partly fulfill this task,
although his algorithms are not using the Beals–Babai algorithms. Here we will de-
scribe efficient quantum implementations of some of the Beals–Babai algorithms. It
turns out, that beside paving the way for solving the HSP in the groups mentioned
previously, these implementations give also almost “for free” efficient solutions for
finding hidden normal subgroups in many cases, including solvable groups and per-
mutation groups.

The rest of the paper is structured as follows. In Section 2 we review the nec-
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essary definitions about black-box groups in the quantum computing framework,
and will summarize the most important results about Abelian and solvable groups.
In Section 3 we state the result of Beals and Babai and Corollary 1 which makes
explicit two hypotheses (disposability of oracles for order computing and for con-
structive membership test in elementary Abelian subgroups) under which the algo-
rithms have efficient quantum implementations. Section 4 deals with these quantum
implementations in the following cases: unique encoding (Theorem 5), modulo a
hidden normal subgroup (Theorem 6) and modulo a normal subgroup given by
generators in case of unique encoding (Theorem 8). As a consequence, we can de-
rive the efficient quantum solution for the normal HSP in solvable and permutation
groups without any assumption on the computability of noncommutative Fourier
transforms (Theorem 7). Section 5 contains the efficient quantum algorithm for
the HSP for groups with small commutator subgroup (Theorem 9), and Section 6
for groups having an elementary Abelian normal 2-subgroup of small index or with
cyclic factor group (Theorem 10).

As a conclusion, we consider that this work underlines the computational power
of the Abelian quantum Fourier transform for dealing with group theoretical prob-
lems in non-Abelian groups. Indeed, our algorithms use extensively the standard
quantum algorithm for the Abelian HSP but never the quantum non-Abelian Fourier
transform.

2. Preliminaries

For basic group theory we refer the reader to [27]. In order to achieve sufficiently
general results we shall work in the context of black-box groups. We will suppose
that the elements of the group G are encoded by binary strings of length n for
some fixed integer n, what we call the encoding length. The groups will be given by
generators, and therefore the input size of a group is the product of the encoding
length and the number of generators. Note that the encoding of group elements need
not to be unique, a single group element may be represented by several strings. If the
encoding is not unique, one also needs an oracle for identity tests. Typical examples
of groups which fit in this model are factor groups G/N of matrix groups G, where
N is a normal subgroup of G such that testing elements of G for membership in
N can be accomplished efficiently. Also, every binary string of length n does not
necessarily corresponds to a group element. If the black box is fed such a string, its
behavior can be arbitrary on it.

Since we will deal with black-box groups we shall shortly describe them in the
framework of quantum computing (see also [24] or [31]). For a general introduction
to quantum computing the reader might consult [15] or [26]. We will work in the
quantum Turing machine model. For a group G of encoding length n, the black-box
will be given by two oracles UG and VG both operating on 2n qubits. For any group
elements g, h ∈ G, the effect of the oracles is the following:

UG|g〉|h〉 = |g〉|gh〉, and VG|g〉|h〉 = |g〉|g−1h〉.

The quantum algorithms we consider might make errors, but the probability of
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making an error should be bounded by some fixed constant 0 < ε < 1/2.

Let us quote here two basic results about quantum group algorithms respectively
in Abelian and in solvable black-box groups.
Theorem 1 (Cheung and Mosca [9]) Assume that G is an Abelian black-box
group with unique encoding. Then the decomposition of G into a direct sum of
cyclic groups of prime power order can be computed in time polynomial in the input
size by a quantum algorithm.
Theorem 2 (Watrous [31]) Assume that G is a solvable black-box group with
unique encoding. Then computing the order of G and testing membership in G can
be solved in time polynomial in the input size by a quantum algorithm. Moreover,
it is possible to produce a quantum state that approximates the pure state |G〉 =
|G|−1/2

∑
g∈G |g〉 with accuracy ε (in the trace norm metric) in time polynomial in

the input size + log(1/ε).
When we address the HSP, we will suppose that a function f : {0, 1}n → {0, 1}m

is given by an oracle, such that for some subgroup H ≤ G the function f is constant
on the left cosets of H and takes different values on different cosets. We will say that
f hides the subgroup H. The goal is to find generators for H in time polynomial in
the size of G and m, that is we assume that m is also part of the input in unary. The
following theorem resumes the status of this problem when the group is Abelian.
Theorem 3 (Mosca [24]) Assume that G is an Abelian black-box group with
unique encoding. Then the hidden subgroup problem can be solved in time poly-
nomial in the input size by a quantum algorithm.

3. Group algorithms

In [5] Beals and Babai described probabilistic Las Vegas algorithms for sev-
eral important tasks related the structure of finite black-box groups. In order to
state their result, we will need some definitions, in particular the definition of the
parameter ν(G), where G is any group.

Let us recall that a composition series of a group G is a sequence of subgroups
G = G1 � G2 � . . . � Gt = 1 such that each Gi+1 is a proper normal subgroup in
Gi, and the factor groups Gi/Gi+1 are simple. The factors Gi/Gi+1 are called the
composition factors of G. It is known that the composition factors of G are – up to
order, but counted with multiplicities – uniquely determined by G. Beals and Babai
define the parameter ν(G) as the smallest natural number ν such that every non-
Abelian composition factor of G possesses a faithful permutation representation of
degree at most ν.

By definition, for a solvable group G the parameter ν(G) equals 1. Also,
representation-theoretic results of [12] and [21] imply that ν(G) is polynomially
bounded in the input size in many important special cases, such as permutation
groups or even finite matrix groups over algebraic number fields.

The constructive membership test in Abelian subgroups is the following problem.
Given pairwise commuting group elements h1, . . . , hr, g of a non necessarily com-
mutative group, either express g as a product of powers of the hi’s or report that
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no such expression exists. Babai and Szemerédi have shown in [3] that under some
group operations oracle this problem cannot be solved in polynomial time by clas-
sical algorithms. This test is usually required only for elementary Abelian groups,
that is groups which are isomorphic to Zn

p for some prime p and integer n.
A presentation of G is a sequence g1, . . . , gs of generator elements for G, to-

gether with a set of group expressions in variables x1, . . . , xs, called the relators,
such that g1, . . . , gs generate G and the kernel of the homomorphism from the free
group F (x1, . . . , xs) onto G sending xi to gi is the smallest normal subgroup of
F (x1, . . . , xs) containing the relators. We remark that the generators in the presen-
tation may differ from the original generators of G.

A nice representation of a factor Gi/Gi+1 means a homomorphism from Gi with
kernel Gi+1 to either a permutation group of degree polynomially bounded in the
input size+ν(G) or to Zp where p is a prime dividing |G|. Of course, if G is solvable
one can insist that the representations of all the cyclic factors be of the second kind.

We can now quote part of the main results of [5].
Theorem 4 (Beals and Babai [5], Theorem 1.2) Let G be a finite black-box
group with not necessarily unique encoding. Assume that the followings are given:

(a) a superset of the primes dividing the order of G,

(b) an oracle for taking discrete logarithms in finite fields of size at most |G|,

(c) an oracle for the constructive membership tests in elementary Abelian sub-
groups of G.

Then the following tasks can be solved by Las Vegas algorithms of running time
polynomial in the input size + ν(G):

(i) test membership in subgroups of G,

(ii) compute the order of G and a presentation for G,

(iii) find generators for the center of G,

(iv) construct a composition series G = G1 � G2 � . . . � Gt = 1 for G, together
with nice representations of the composition factors Gi/Gi+1,

(v) find Sylow subgroups of G.

In the following paragraphs, first we sketch the brief outline of the Beals-Babai
algorithm and then, using standard results, from quantum computing we rewrite
it in the quantum model. In addition, we remark that the algorithm for testing
membership can be understood in a stronger, constructive sense, (see Section 5.3
in [4]), which is the proper generalization of the constructive membership test in
the Abelian case. For this we need the notion of a straight line program on a set of
generators. This is a sequence of expressions e1, . . . , es where each ei is either of the
form xi := h where h is a member of the generating set or of the form xi = xjx

−1
k

where 0 < j, k < i. It turns out that for elements g of G one can also require that
a straight line program expressing g in terms of the generators be returned.
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Before starting the description of the Beals-Babai algorithm, we argue that task
(iv) is the crucial part of Theorem 4. Actually if we have a composition series with
nice factor representations the solutions of all of the other tasks can be solved using
standard techniques of computational group theory not requiring calls to the oracle
(c). Also, assumption (a) can be eliminated as the list of large prime factors of
|G| can be read from the non-permutation factor representations. (The other prime
factors are of magnitude polynomial in ν(G).)

We briefly outline below how the task of oracle (c) can be solved using a series
G = G1 � G2 � . . . � Gt = 1 with nice factor representations. Actually we solve the
more general task of testing membership constructively in arbitrary subgroups of G

in time polynomial in input size + ν(G). The technique, called sifting is a standard
tool of computational group theory. Its origins go back to basic permutation group
algorithms.

Let g be an element of G and H be a subgroup of G given by generators
h1, . . . , hr. Let G = G1 � G2 � . . . � Gt = 1 be a composition series and let φ

be a nice representation of G/G2. Then the constructive membership test of g in
H is reduced to the constructive membership of φ(g) in φ(H) and a constructive
membership test of another element in H ∩G2. Indeed, if φ(G) is not in φ(H) then
g is not in H. Otherwise, substituting h1, . . . , hr in the straight-line program for
φ(g) gives an element g′ ∈ H such that φ(g) = φ(g′). Here gg′−1 ∈ G2 and g is
in H if and only if gg′−1 ∈ G2 ∩ H. Finally, provided that we have straight line
programs for generators for G2 ∩H and a straight line program for gg′−1 in terms
of these elements then a straightforward combination gives a straight line program
for g in terms of the generators for H.

If φ is a representation of G/G2 into the additive group of the integers modulo
the prime p then the membership test in φ(H) can be accomplished by solving a
linear congruence modulo p. If φ : G → Sν is a permutation representation then
sifting along a stabilizer chain can be applied. First we enumerate the H-orbit of
1 and for every element j of the orbit we construct an element xj of H such that
φ(xj)1 = j. Next, a system of generators for the stabilizer H1 of 1 in H is given
by x−1

ji
hi (i = 1, . . . , r) where ji = φ(hi)1. Also set g1 = x−1

jg
g where jg = φ(g)1.

Now g ∈ H if and only if g1 ∈ H1; and both H1 and g1 acts on the smaller set
{2, . . . , ν}. Repeating this at most ν times and maintaining straight line program
representations carefully we can solve the constructive membership test in φ(H) in
time polynomial in ν (and the input size). Note that generators for H ∩G2 can be
obtained by a similar procedure.

Now we proceed with the description of the main part of Beals-Babai algorithm
which solves task (iv). Of course, we have to omit many important details.

The algorithm builds a composition series together with the nice factor repre-
sentations downward from the top. Assume that we have a series G = G1 � G2 �

. . . � Gd =: K, together with nice factor representations, such that the factors
Gi/Gi+1 are simple. For keeping track of intermediate progress the method also
maintains an auxiliary subgroup Z of the center of K which is set to {1} in every
step when the descending chain is extended and increased in certain other steps.
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For testing membership in Z a basis of Z consisting of elements of prime power
orders is computed. This can be relatively easily accomplished using the oracle for
the constructive elementary Abelian membership test and a list of primes possibly
occurring in the orders of the elements. Note that such a basis immediately provides
us with a composition series of Z together with nice factor representations.

The basic tool in non-Abelian groups is trying to find permutation represen-
tations of K of moderate size using the conjugation action of K either on certain
elements or on certain subgroups, and, using the extensive permutation group al-
gorithm library, extend the chain fro G to K to a chain reaching the kernel of this
representation. Recall that for x, u ∈ K the conjugate of u by x is ux := x−1ux.
The K-conjugates of u are the elements of the form ux for some x ∈ K. The group
K acts as a transitive permutation group on the set of the K-conjugates of u where
the action of an element x ∈ K is given by v 7→ vx. Similarly, if U is a subgroup of
K then the x-conjugate of U is the subgroup Ux = {ux|u ∈ U}. Again, K permutes
transitively the K-conjugates of an arbitrary subgroup.

The algorithm proceeds as follows. First it finds a subnormal subgroup U of
K (a subgroup reachable from K by a chain of subgroups where each element is
normal in its predecessor) containing Z such that U/Z is a nontrivial simple group
using a so-called one-way random walk technique of Beals and Seress ([6]). Note
that the probability of that this procedure successfully gets down depends on the
assumption on the composition factors of G.

If U/Z is non-Abelian and not normal in K then the conjugation action of K on
the conjugates of U gives a nontrivial permutation representation of K of moderate
size and by standard permutation group algorithms (essentially the sifting technique
outlined above) the chain can be extended down to the kernel of this representation.

If U/Z is non-Abelian but normal in K then, by theorems depending on the
classification of simple groups, with sufficiently high probability, for a random ele-
ment u of U there is a prime p dividing the order of u such that the number of the
K-conjugates of up is bounded by a polynomial in ν(U) ≤ ν(G). The prime can
be selected from the set (a). (And, of course it must be tested that the number of
conjugates of up does not exceed the limit.) This gives a permutation representation
of K of degree polynomial in ν(G) and again, the chain can be extended down to
the kernel of this representation.

If U/Z is Abelian then it is a cyclic group of prime order p and group theo-
retic facts imply that the K-conjugates of U generate a group P such that P/Z

is a p-group. The prime p can be made explicit using the set of possible primes
membership tests in Z. By descending along the lower central series of P (P0 = P ,
Pi+1 = [P, Pi]), i.e, iteratively taking commutators with generators from P one can
find an element of v ∈ P \ Z such that vZ is in the center of P/Z. Taking an
appropriate power one can further achieve that vp ∈ Z. Then the K-conjugates of
v together with Z generate a subgroup V of such that V/Z is a vector space over
the field Zp and this gives a linear representation of K over Zp with kernel con-
taining V . If this representation is trivial, i.e., vx = x−1vx ∈ vZ, or, equivalently,
[x, v] = x−1v−1xv ∈ Z for every x ∈ K, one can see that the mapping x 7→ [x, v]
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is a homomorphism from K to the Abelian group Z. If this homomorphism is also
trivial then v is in the center of K and Z can be increased by adding v to it. Oth-
erwise composing this map with the top factor representation of Z one obtains a
homomorphism of K into the additive group of a prime field. If this is a trivial map
one can go on with the next-to-top factor representation and so on. Eventually one
finds a nontrivial homomorphism from K to the additive group of a prime field and
hence extend the chain to the kernel.

If the conjugation action of K on V/Z is nontrivial, then, provided that matrices
for the generators of K can be computed efficiently, by a recursive call of the whole
procedure (considering a matrix group as a black box group) one can extend the
chain down to the kernel. An oracle for testing membership in elementary Abelian
matrix groups can be implemented by using an oracle for computing discrete loga-
rithms in finite extensions of the ground field. This explains the role of the oracle
for task (b) in Theorem 4.

Calculating a basis of V/Z and matrices for actions of the generators for K,
using the constructive elementary Abelian membership oracle, is immediate in the
case when Z is trivial. Even in the general case when Z is possibly nontrivial one
can see that for every fixed element u ∈ V the map x 7→ [u, x] is a homomorphism
from V to Z with kernel V0 containing Z. If u is not in the center of V (at least
one of the elements of a generator set for V is such provided that V is non-Abelian)
then V0 is a proper subgroup of V . Furthermore, the inverse image of the chain for
Z at this map gives a chain from V down to V0 with factors of order p and factor
representations in Zp. If V0 is non-Abelian then one can repeat this procedure.
Finally, for an Abelian subgroup V0 ≥ Z it is not difficult to produce a chain from
V0 down to Z using Abelian techniques. Selecting appropriate elements of V from
the subsequent members of the chain of subgroups between V and Z gives a basis
of V/Z over Zp and the nice factor representations give an efficient procedure for
expressing any element of V/Z in terms of this basis and hence a way to construct
the desired matrix representation of K.

After the description of the Beals-Babai algorithm, we now put the result in
the context of quantum computing. It turns out that for some of the tasks in
the hypotheses of Theorem 4 there are efficient quantum algorithms. By Shor’s
results [29], the oracle for computing discrete logarithms can be implemented by a
polynomial time quantum algorithm. Also, a superset of the primes dividing |G| can
be obtained in polynomial time by quantum algorithms in the most natural cases.
For example, if G is a matrix group over a finite field, say G ≤ GL(n, q) then such
a superset can be obtained by factoring the number (qn−1)(qn− q) · · · (qn− qn−1),
the order of the group GL(n, q). The same method works even for factors of matrix
groups over finite fields. If G is (a factor of) a finite matrix group of characteristic
zero, then the situation is even better because in that case the prime divisors of G

are of polynomial size. But in any case, one can note that the superset of the primes
dividing the order of G is only used in Theorem 4 to compute (and factorize) the
orders of elements of G as well as those of matrices over finite fields of size at most
|G|. This latter task can also be achieved by a quantum algorithm in polynomial
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time. Therefore, one can immediately derive from Theorem 4 the following result.
Corollary 1 Let G be a finite black-box group with not necessarily unique encoding.
Assume that the following are given:

(a) an oracle for computing the orders of elements of G,

(b) an oracle for the constructive membership tests in elementary Abelian sub-
groups of G.

Then the following tasks can be solved by quantum algorithms of running time poly-
nomial in the input size + ν(G):

(i) constructive membership test in subgroups of G,

(ii) –(v) as in Theorem 4.

4. Quantum implementations

In this section we will discuss several cases when the remaining tasks in the hy-
potheses of Corollary 1 can also be efficiently implemented by quantum algorithms.

4.1. Unique encoding

If we have a unique encoding for the elements of the black-box group G then
we can use Shor’s order finding method. As we will show, in that case there is also
an efficient quantum algorithm for the constructive membership test in elementary
(and non-elementary) Abelian subgroups. Therefore we will get the following result.
Theorem 5 Assume that G is a black-box group with unique encoding. Then, each
of the tasks listed in Corollary 1 can be solved in time polynomial in the input size+
ν(G) by a quantum algorithm..
Proof. Let us prove that task (b) in Corollary 1 can be solved efficiently by a
quantum algorithm. In fact, we can reduce the test to an instance of the Abelian
hidden subgroup problem as follows. First, we compute the orders of the underlying
elements (see [24] for example). Let the orders of h1, . . . , hr and g be s1, . . . , sr

and s, respectively. Then for a tuple (α1, . . . , αr, α) from Zs1 × · · · × Zsr × Zs,
set φ(α1, . . . , αr, α) = hα1

1 · · ·hαr
r g−α. Clearly φ is a homomorphism from Zs1 ×

· · · × Zsr × Zs into G, therefore this is an instance of the Abelian hidden subgroup
problem, and its kernel can be found in polynomial time by a quantum algorithm.
The kernel contains an element the last coordinate of which is relatively prime to s

if and only if g is representable as a product of powers of hi’s. Also, from such an
element an expression for g in the desired form can be constructed efficiently. 2

This result generalizes the order finding algorithm of Watrous (Theorem 2
in [31]) for solvable groups. Also note that, even if G is solvable, the way how
quantum algorithms are used here is slightly different from that of Watrous.

4.2. Hidden normal subgroup
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Assume now that G is a black-box group with an encoding which is not neces-
sarily unique, and N is a normal subgroup of G given as a hidden subgroup via the
function f. We use the encoding of G for that of G/N . The function f gives us a
secondary encoding for the elements of G/N . Although we do not have a machin-
ery to multiply elements in the secondary encoding, Shor’s order-finding algorithm
and even the treatment of the constructive membership test outlined above are still
applicable.
Theorem 6 Assume that G is a black-box group with not necessarily unique encod-
ing. Suppose that N is a normal subgroup given as a hidden subgroup of G. Then
all the tasks listed in Corollary 1 for G/N can be solved by quantum algorithms in
time polynomial in the input size + ν(G/N).
Proof. The proof is similar to the one of Theorem 5, where φ(α1, . . . , αr, α) =
f(hα1

1 · · ·hαr
r g−α) is taken. 2

Let us now turn back to the original hidden subgroup problem. We are able
to solve it completely when the hidden subgroup is normal. Hallgren Russell and
Ta-Shma [16] have already given a solution for that case under the condition that
one can efficiently construct the quantum Fourier transform on G. Note that such
an efficient construction is not known in general. The algorithm presented here
does not require such a hypothesis, on the other hand its complexity depends also
on the additional parameter ν(G/N).
Theorem 7 Assume that G is a black-box group with not necessarily unique encod-
ing. Suppose that N is a normal subgroup given as a hidden subgroup of G. Then
generators for N can be found by a quantum algorithm in time polynomial in the
input size+ν(G/N). In particular, we can find hidden normal subgroups of solvable
black-box groups and permutation groups in polynomial time.
Proof. We use the presentation of G/N obtained by the algorithm of Theorem 6
to find generators for N . Let T be the generating set from the presentation. If
T generates G then it is easy to find generators for N . Let R0 denote the set of
elements obtained by substituting the generators in T into the relators, and let N0

stand for the normal closure (the smallest normal subgroup containing) of R0. Then
N = N0 since N0 ≤ N and G/N0 = G/N by definition of T and R0.

Still some care has to be taken since it is possible that T generates G only modulo
N , that is it might generate a proper subgroup of G. Therefore some additional
elements should be added to R0. Let S be the generating set for G. Using the
constructive membership test for G/N, we express the original generators from S

modulo N with straight line programs in terms of the elements of T . For each
element x ∈ S we form the quotient y−1x where y is the element obtained by
substituting the generators from T into the straight line program for x modulo N .
Let S0 be the set of all the quotients formed this way. Note that T and S0 generate
together G. Then one can verify that the normal closure of R0 ∪ S0 in G is N .

Thus, from R0 and S0 we can find generators for N in time polynomial in the
input size + ν(G/N) using the normal closure algorithm of [2]. We obtained the
desired result. 2
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4.3. Unique encoding and solvable normal subgroup

We conclude this section with some results obtained as combination of the ideas
presented above with those of Watrous described in [31]. Assume that the encoding
of the elements of G is unique and a normal solvable subgroup N of G is given by
generators. We use the encoding of G for that of G/N . The identity test in G/N

can be implemented by an efficient quantum algorithm for testing membership in
N due to Watrous (Theorem 2). We are also able to produce (approximately) the
uniform superposition |N〉 = 1√

|N |

∑
x∈N |x〉 efficiently. For solvable subgroups N ,

we can again apply the result of Watrous (Theorem 2) to produce |N〉 in polynomial
time. We will now show that having sufficiently many copies of |N〉 at hand, we
can use ideas of Watrous for computing orders of elements of G/N and even for
performing the constructive membership test in Abelian subgroups of G/N . Thus,
we will have an efficient quantum implementation of the Beals-Babai algorithms for
G/N . We will first state a lemma which says that we can efficiently solve the HSP
in an Abelian group if we have an appropriate quantum oracle.
Lemma 1 Let A be an Abelian group, and let X be a finite set. Let H ≤ A, and
let f : A → CX (given by an oracle) such that:

1. For every g ∈ A, |f(g)〉 is a unit vector,

2. f is constant on the left cosets of H, and maps elements from different cosets
into orthogonal states.

Then there exists a polynomial time quantum algorithm for finding the hidden sub-
group H.

Proof. First we extend naturally f to G/H: on a coset of H, it takes the
value f(h) for an arbitrary member h of the coset. The algorithm is the standard
quantum algorithm for the Abelian hidden subgroup problem. We repeat several
times the following steps to find a set of generators for H.

– Prepare the initial superposition: |1G〉|0m〉.

– Apply the Abelian quantum Fourier transform in A on the first register:∑
g∈A |g〉|0m〉.

– Call f :
∑

g∈A |g〉|f(g)〉.

– Apply again the Fourier transform in A:
∑

g∈A/H,h∈H⊥ χh(g)|h〉|f(g)〉.

– Observe the first register.

By hypothesis, the states |f(g)〉 are orthogonal for distinct g ∈ A/H, therefore an
observation of the first register will give a uniform probability distribution on H⊥.
After sufficient number of iterations, this will give a set of generators for H⊥, which
leads then to a set of generators for H.

Note that in the above steps it is sufficient to compute only the approximate
quantum Fourier transform on A which can be done in polynomial time. 2
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Theorem 8 Assume that G is a black-box group with a unique encoding of group
elements. Suppose that N is a normal subgroup given by generators. Assume further
that N is either solvable or of polynomial size. Then all the tasks listed in Corol-
lary 1 for G/N can be solved by a quantum algorithm in running time polynomial
in the input size + ν(G/N).

Proof. For applying Corollary 1, one has to verify that we can perform tasks
(a)–(b) of the corollary. If N is of polynomial size, it is trivial. Therefore we suppose
that N is solvable. We will closely follow the approach indicated by Watrous in [31]
for dealing with factor groups.

First, let g ∈ G. To compute the order of g in G/N , we compute the period
of the quantum function f(k) = |gkN〉, where k ∈ {1, . . . ,m} for some multiple m

of the order. This function can be computed efficiently since one can prepare the
superposition |N〉 by Theorem 2, and for example we can take m as the order of g

in G. Therefore by Lemma 1 one can find this period.
Second, let g ∈ G and let h1, . . . , hr ∈ G be pairwise commuting elements

modulo N . generating some Abelian subgroup H ≤ G/N . We compute the orders
of the underlying elements on G/N using the previous method. Let the orders of
h1, . . . , hr and g be s1, . . . , sr and s, respectively. Then for a tuple (α1, . . . , αr, α)
from Zs1 × · · · × Zsr × Zs, set φ(α1, . . . , αr, α) = |hα1

1 · · ·hαr
r g−αN〉. Then φ is a

homomorphism from Zs1 × · · · × Zsr
× Zs into CG/N . From Lemma 1, the kernel

of φ can be computed in polynomial time by a quantum algorithm. Moreover it
contains an element the last coordinate of which is relatively prime to s if and only
if g is representable as a product of powers of his. Also, from such an element an
expression for g in the desired form can be constructed efficiently using elementary
number theory. 2

5. Groups with small commutator subgroups

Assume that G is a black-box group with unique encoding of elements, and
suppose that a subgroup H is hidden by a function f . Our next result states that
one can solve the HSP in time polynomial in the input size + |G′|, where G′ is the
commutator subgroup of G. Let us recall the commutator subgroup is the smallest
normal subgroup of G containing the commutators xyx−1y−1, for every x, y ∈ G.
Theorem 9 Let G be a black-box group with unique encoding of elements. The hid-
den subgroup problem in G can be solved by a quantum algorithm in time polynomial
in the input size + |G′|.
Proof. Let H be a hidden subgroup of G defined by the function f . We start
with the following observation. If N is a normal subgroup of G and H1 ≤ H is
such that H1 ∩ N = H ∩ N and H1N = HN , then by the isomorphism theorem,
H1/(H ∩ N) ∼= H1N/N ∼= H/(H ∩ N) which implies H1 = H. We will generate
such a subgroup H1 ≤ H for N = G′.

As the commutator subgroup G′ of G consists of products conjugates of commu-
tators of the generators of G we can enumerate G′, and therefore also G′∩H, in time
polynomial in the input size + |G′|. We consider the function F : x 7→ {f(xG′)} =
{f(xg)|g ∈ G′} which can be computed by querying |G′| times the function f .
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The function F hides the subgroup HG′. Note that HG′ is normal since G/G′

is Abelian. Thus by Theorem 7, we can find generators for HG′ by a quantum
algorithm in time polynomial in the size of the input + |G′| since ν(G/HG′) = 1,
because G/HG′ is Abelian.

For each generator x of HG′, we enumerate all the elements of coset xG′ and
select an element of xG′ ∩ H. The cost of this step is again polynomial in the
input size + |G′|. We take for H1 the subgroup of G generated by the selected
elements and H ∩ G′. We get H1 ∩ G′ = H ∩ G′, and by the definition of the
selected elements H1G

′ = HG′. 2

A group G is an extra-special p-group if its commutator subgroup G′ coincides
with its center, |G′| = p, and moreover G/G′ is an elementary Abelian p-group.
Therefore we get the following corollary from the previous theorem.
Corollary 2 The hidden subgroup problem in extra-special p-groups can be solved
by a quantum algorithm in time polynomial in input size + p.

6. Groups with a large elementary Abelian normal 2-subgroup

The purpose of this section is to introduce a few ideas which, in some cases,
can reduce the HSP in G to the HSP in a normal subgroup N of G. The HSP in
N is firstly used to compute H ∩ N . To simplify the following discussion let us
suppose that the hidden subgroup H has trivial intersection with N . If we have at
our disposal a representative element of HN/N , then finding the unique element
of H in this coset is reducible to the Hidden Translation Problem (HTP) in N .
Moreover deciding if a coset of N is an element of HN/N can also be reduced to
it. The HTP was implicitly defined by Ettinger and Høyer [10]. We are given two
injective functions f0 and f1 from a finite group to some finite set such that, for
some group element u, the equality f1(xu) = f0(x) holds for every x. The task is
to find the translation u. In elementary Abelian 2-groups, it is immediate that the
HTP can be efficiently solved since it is an instance of the Abelian HSP. Also, when
G/N is either small or cyclic, we can construct efficiently a small set V ⊆ G which,
when its elements are considered as coset representatives, every subgroup of G/N

contains a generator set consisting of some elements of V . For our purpose, we will
only use this property for the subgroup HN/N .

In the rest of this section, we assume that N is an elementary Abelian normal
2-subgroup of a group G, which is given by generators as part of the input, and
that G/N is either small or cyclic. Typical examples of groups of the latter type are
matrix groups over a field of characteristic 2 of degree k + 1 generated by a single
matrix of type (a), where the k×k sub-matrix in the upper left corner is invertible,
together with several matrices of type (b):

(a)


∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ 0
0 0 0 0 1

 , (b)


1 0 0 0 ∗
0 1 0 0 ∗
0 0 1 0 ∗
0 0 0 1 ∗
0 0 0 0 1

 .
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Note that the class of groups of this kind include the wreath products Zk
2 o Z2 in

which the hidden subgroup problem has been shown to be solvable in polynomial
time by Rötteler and Beth in [28].

The reduction idea was further extended and generalized in [13] where it is
shown that the problem Orbit Coset (see definition in [13]) generalizing both HTP
and HSP, has the powerful self-reducibility property: Orbit Coset in a finite group
G, is reducible to Orbit Coset in G/N and subgroups of N , for any solvable normal
subgroup N of G.
Theorem 10 Let G be a black-box group with unique encoding of elements and N be
a normal elementary Abelian 2-subgroup of G given by generators. Then the hidden
subgroup problem in G can be solved by a quantum algorithm in time polynomial in
the input size + |G/N |. If G/N is cyclic then the hidden subgroup problem can be
solved in polynomial time.
Proof. Let H be a subgroup of G hidden by the function f . The main line of
the proof is like in Theorem 9: we will generate H1 ≤ H which satisfies H1 ∩N =
H ∩ N and H1N/N = HN/N (or equivalently H1N = HN). Again we start the
generation of H1 with H ∩ N which can be computed in polynomial time in the
input size by Theorem 3 since N is Abelian. The additional generators of H1 will
be obtained from a set V ⊆ G which, for every subgroup M ≤ G/N (in particular,
for M = HN/N), contains some generator set for M . For each z ∈ V , we will verify
if zN ∈ HN (equivalently zH ∩N 6= ∅ or also zN ∩H 6= ∅), and in the positive case
we will find some u ∈ N such that u−1z ∈ H. Both of these tasks will be reduced
to the Abelian hidden subgroup problem, and the elements of the form u−1z will
be the additional generators of H1.

If G/N is cyclic, we use Theorem 8 to find generators for the Sylow subgroups
of G/N (note that ν(G/N) = 1). Each Sylow will be cyclic (and unique), therefore
a random element of the Sylow p-subgroup will be a generator with probability
1− 1/p ≥ 1/2. Note that one can check if the chosen element is really a generator
by using the order finding procedure of Theorem 8. Then, for each p we choose a
generator xpN for the Sylow p-subgroup after iterating the previous random choice.
The p-subgroups of G/N are 〈xpN〉, . . . , 〈xhp

p N〉 = N/N , where php is the order of
the Sylow p-subgroup of G/N . Let V stand for the union of the sets {1, xp, . . . , x

hp
p }

over all primes p dividing |G/N |. Note that |V | = O(log |G/N |), and the cost of
constructing V is polynomial in the input size. V contains a generating set for an
arbitrary subgroup M of G/N because for each p, it contains a generator for the
Sylow p-subgroup of M (namely x

lp
p where lp is the smallest positive integer l such

that xl
pN ∈ M).

In the general case, let V be a complete set of coset representatives of G/N .
V can be constructed by the following standard method. We start with the set
V = {1}. In each round we adjoin to V a representative vg of a new coset, for each
v ∈ V and each generator g of G, if vg 6∈ wN , for all w ∈ V . This membership test
can be achieved using a quantum algorithm for testing membership of w−1vg in the
commutative group N . The procedure stops if no new element can be added.

Then, for each z ∈ V \ {1}, we consider the function defined on Z2 × N as
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follows. For every x ∈ N , let F (0, x) = f(x) and let F (1, x) = f(xz). Obviously,
for i ∈ {0, 1} and x, y ∈ N , F (i, x) = F (i, y) if and only if y−1x ∈ H ∩ N , while
F (0, x) = F (1, y) if and only if y−1x ∈ zH ∩N .

We claim that zH ∩ N is either empty or a coset of H ∩ N in N . Indeed, if
zH ∩N contains zh for some h ∈ H, then zh(H ∩N) ⊆ zH ∩N , and conversely for
all h′ ∈ H such that zh′ ∈ N , we have (zh)−1zh′ = h−1h′ ∈ H ∩N . It follows that
in the group Z2×N , F hides either {0}×(H∩N) or {0}×(H∩N)

⋃
{1}×u(H∩N)

for some u ∈ zH ∩N depending on whether zH ∩N is empty or not. Note that this
set is indeed a subgroup because N is an elementary Abelian 2-group. We remark
that u is determined only modulo H ∩N .

As Z2×N is Abelian, we can find generators for this hidden subgroup in quantum
polynomial time. From any generator of type (1, u) we obtain an element u−1z ∈
zN ∩H. Repeating this, we collect elements in zN ∩H for each of z ∈ V \ {1} such
that zN ∩H 6= ∅. Let H1 be the subgroup of G generated by the collected elements
and by H ∩ N . Then by construction H1 is a subgroup of H which satisfies the
claimed properties. 2
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