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ABSTRACT

In this paper we show that certain special cases of the hid-
den subgroup problem can be solved in polynomial time by
a quantum algorithm. These special cases involve finding
hidden normal subgroups of solvable groups and permuta-
tion groups, finding hidden subgroups of groups with small
commutator subgroup and of groups admitting an elemen-
tary Abelian normal 2-subgroup of small index or with cyclic
factor group.

1. INTRODUCTION

A growing trend in recent years in quantum computing
is to cast quantum algorithms in a group theoretical set-
ting. Group theory provides a unifying framework for sev-
eral quantum algorithms, clarifies their key ingredients, and
therefore contributes to a better understanding why they
can, in some context, be more efficient than the best known
classical ones.

The most important unifying problem of group theory for
the purpose of quantum algorithms turned out to be the
hidden subgroup problem (HSP) which can be cast in the
following broad terms. Let G be a finite group (given by
generators), and let H be a subgroup of G. We are given
(by an oracle) a function f mapping G into a finite set such
that f is constant and distinct on different left cosets of H,
and our task is to determine the unknown subgroup H.

While no classical algorithm is known to solve this problem
in time faster than polynomial in the order of the group,
the biggest success of quantum computing until now is that
it can be solved by a quantum algorithm efficiently, which
means in time polynomial in the logarithm of the order of G,
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whenever the group is Abelian. The main tool for this solu-
tion is the (approximate) quantum Fourier transform which
can be efficiently implemented by a quantum algorithm [17].
Simon’s algorithm for finding an xor-mask [27], Shor’s sem-
inal factorization and discrete logarithm finding algorithms
[26], Boneh and Lipton’s algorithm for finding hidden linear
functions [6] are all special cases of this general solution, as
well as the algorithm of Kitaev [17] for the Abelian stabilizer
problem, which was the first problem set in a general group
theoretical framework. That all these problems are special
cases of the HSP, and that an efficient solution comes easily
once an efficient Fourier transform is at our disposal, was re-
alized and formalized by several people, including Brassard
and Hgyer [7], Mosca and Ekert [22] and Jozsa [15]. An ex-
cellent description of the general solution can be found for
example in Mosca’s thesis [21].

Addressing the HSP in the non-Abelian case is considered
to be the most important challenge at present in quantum
computing. Beside its intrinsic mathematical interest, the
importance of this problem is enhanced by the fact that
it contains as special case the graph isomorphism problem.
Unfortunately, the non-Abelian HSP seems to be much more
difficult than the Abelian case, and although considerable
efforts were spent on it in the last years, only limited success
can be reported. Rotteler and Beth [25] have presented an
efficient quantum algorithm for the wreath products Z51Z,.
In the case of the dihedral groups, Ettinger and Hgyer [9]
designed a quantum algorithm which makes only O(log|G|)
queries. However, this doesn’t make their algorithm efficient
since the (classical) post-processing stage of the results of the
queries is done in exponential time in O(log|G|). Actually,
this result was extended by Ettinger, Hgyer and Knill [10]
in the sense that they have shown that in any group, with
only O(log |G|) queries to the oracle, sufficiently statistical
information can be obtained to solve the the HSP. However,
it is not known how to implement efficiently these queries,
and therefore even the “quantum part” of their algorithm is
remaining exponential. Hallgren, Russel and Ta-Shma [14]
proved that the generic efficient quantum procedure for the
HSP in Abelian groups works also for non-Abelian groups
to find any normal subgroup, under the condition that the
Fourier transform on the group can efficiently be computed.
Grigni, Schulman, Vazirani and Vazirani could show that the
HSP is solvable efficiently in groups where the intersection
of the normalizers of all subgroups is large [12]. A recent
survey on the status of the non-Abelian HSP problem was



realized by Jozsa [16].

In a somewhat different line of research, recently several
group theoretical problems have been considered in the con-
text of black-box groups. The notion of black-box groups
has been introduced by Babai and Szemerédi in [2]. In this
model, the elements of a group G are encoded by words over
a finite alphabet, and the group operations are performed
by an oracle (the black box). The groups are assumed to
be input by generators, and the encoding is not necessar-
ily unique. There has been a considerable effort to develop
classical algorithms for computations with them [5, 3, 20],
for example to identify the composition factors (especially
the non-commutative ones). Efficient black-box algorithms
give rise automatically to efficient algorithms whenever the
black-box operations can be replaced by efficient procedures.
Permutation groups, matrix groups over finite fields and
even finite matrix groups over algebraic number fields fit
in this model. In particular, Watrous [28] has recently con-
sidered solvable black-box groups in the restricted model of
unique encoding, and using some new quantum algorithmi-
cal ideas, he could construct efficient quantum algorithms
for finding composition series, decomposing Abelian fac-
tors, computing the order and testing membership in these
groups.

In this paper we will focus on the HSP, and we will show
that it can be solved in polynomial time in several black-box
groups. In particular, we will present efficient quantum al-
gorithms for this problem for groups with small commutator
subgroup and for groups having an elementary Abelian nor-
mal 2-subgroup of small index or with cyclic factor group.
Our basic ingredient will be a series of deep algorithmical re-
sults of Beals and Babai from classical computational group
theory. Indeed, in [5] they have shown that, up to certain
computationally difficult subtasks — the so-called Abelian
obstacles — such as factoring integers and constructive mem-
bership test in Abelian groups many problems related to
the structure of black-box groups, such as finding composi-
tion series, can be solved efficiently for groups without large
composition factors of Lie type, and in particular, for solv-
able groups. As quantum computers can factor integers and
take discrete logarithms, and, more generally, perform the
constructive membership test in Abelian groups efficiently,
one expects that a large part of the Beals—Babai algorithms
can be efficiently implemented by quantum algorithms. In-
deed, the above results of Watrous partly fulfill this task,
although his algorithms are not using the Beals—Babai algo-
rithms. Here we will describe efficient quantum implemen-
tations of some of the Beals—Babai algorithms. It turns out,
that beside paving the way for solving the HSP in the groups
mentioned previously, these implementations give also al-
most “for free” efficient solutions for finding hidden normal
subgroups in many cases, including solvable groups and per-
mutation groups.

The rest of the paper is structured as follows. In Section 2 we
review the necessary definitions about black-box groups in
the quantum computing framework, and will summarize the
most important results about Abelian and solvable groups.
In Section 3 we state the result of Beals and Babai and
Corollary 5 which makes explicit two hypotheses (dispos-
ability of oracles for order computing and for constructive

membership test in elementary Abelian subgroups) under
which the algorithms have efficient quantum implementa-
tions. Section 4 deals with these quantum implementations
in the following cases: unique encoding (Theorem 6), mod-
ulo a hidden normal subgroup (Theorem 7) and modulo
a normal subgroup given by generators in case of unique
encoding (Theorem 10). As a consequence, we can de-
rive the efficient quantum solution for the normal HSP in
solvable and permutation groups without any assumption on
computability of noncommautative Fourier transforms (The-
orem 8). Section 5 contains the efficient algorithm for the
HSP for groups with small commutator subgroup (Theo-
rem 11), and Section 6 for groups having an elementary
Abelian normal 2-subgroup of small index or with cyclic
factor group (Theorem 13).

2. PRELIMINARIES

For basic group theory we refer the reader to [24]. In order to
achieve sufficiently general results we shall work in the con-
text of black-box groups. We will suppose that the elements
of the group G are encoded by binary strings of length n for
some fixed integer n, what we call the encoding length. The
groups will be given by generators, and therefore the input
size of a group is the product of the encoding length and the
number of generators. Note that the encoding of group ele-
ments need not to be unique, a single group element may be
represented by several strings. If the encoding is not unique,
one also needs an oracle for identity tests. Typical examples
of groups which fit in this model are factor groups G/N of
matrix groups GG, where N is a normal subgroup of G such
that testing elements of G for membership in N can be ac-
complished efficiently. Also, every binary string of length n
does not necessarily corresponds to a group element. If the
black box is fed such a string, its behavior can be arbitrary
on it.

Since we will deal with black-box groups we shall shortly
describe them in the framework of quantum computing (see
also [21] or [28]). For a general introduction to quantum
computing the reader might consult [13] or [23]. We will
work in the quantum Turing machine model. For a group
G of encoding length n, the black-box will be given by two
oracles Ug and its inverse U ! both operating on 2n qubits.
For any group elements g, h € G, the effect of the oracles is
the following:

Uclg)h) = 1g)|gh),
and

Ug'lg)lh) = lg)lg ™" h).
The quantum algorithms we consider might make errors,
but the probability of making an error should be bounded
by some fixed constant 0 < e < 1/2.

Let us quote here two basic results about quantum group
algorithms respectively in Abelian and in solvable black-box
groups.

THEOREM 1 (CHEUNG AND MOSCA [8]). Assume that
G is an Abelian black-box group with unique encoding. Then
the decomposition of G into a direct sum of cyclic groups of
prime power order can be computed in time polynomial in
the input size by a quantum algorithm.



THEOREM 2  (WATROUS [28]). Assume that G is a
solvable black-box group with unique encoding. Then com-
puting the order of G and testing membership in G can be
solved in time polynomial in the input size by a quantum al-
gorithm. Moreover, it is possible to produce a quantum state
that approzimates the pure state |G) = |G|~*/? > gec|9)
with accuracy € (in the trace norm metric) in time poly-
nomial in the input size + log(1/¢).

When we address the HSP, we will suppose that a function
f:+{0,1}" — {0,1}™ is given by an oracle, such that for
some subgroup H < G the function f is constant on the left
cosets of H and takes different values on different cosets.
We will say that f hides the subgroup H. The goal is to find
generators for H in time polynomial in the size of G and m,
that is we assume that m is also part of the input in unary.
The following theorem resumes the status of this problem
when the group is Abelian.

THEOREM 3 (Mosca [21]). Assume that G is an
Abelian black-box group with unique encoding. Then the hid-
den subgroup problem can be solved in time polynomial in the
mput size by a quantum algorithm.

3. GROUP ALGORITHMS

In [5] Beals and Babai described probabilistic Las Vegas
algorithms for several important tasks related the structure
of finite black-box groups. In order to state their result, we
will need some definitions, in particular the definition of the
parameter v(G), where G is any group.

Let us recall that a composition series of a group G is a
sequence of subgroups G = G1 > G2 > ... > Gy = 1 such
that each G;41 is a proper normal subgroup in G;, and the
factor groups G;/G;+1 are simple. The factors G;/Giy1 are
called the composition factors of G. It is known that the
composition factors of G are — up to order, but counted
with multiplicities — uniquely determined by G. Beals and
Babai define the parameter v(G) as the smallest natural
number v such that every non-Abelian composition factor of
G possesses a faithful permutation representation of degree
at most v.

By definition, for a solvable group G the parameter v(G)
equals 1. Also, representation-theoretic results of [11] and
[18] imply that v(G) is polynomially bounded in the input
size in many important special cases, such as permutation
groups or even finite matrix groups over algebraic number
fields.

The constructive membership test in Abelian subgroups is
the following problem. Given pairwise commuting group el-
ements hi, ..., h,, g of a non necessarily commutative group,
either express g as a product of powers of the h;’s or report
that no such expression exists. Babai and Szemerédi have
shown in [2] that under some group operations oracle this
problem cannot be solved in polynomial time by classical al-
gorithms. This test is usually required only for elementary
Abelian groups, that is groups which are isomorphic to Zj
for some prime p and integer n.

We can now quote part of the main results of [5].

THEOREM 4. (Beals and Babai [5], Theorem 1.2)
Let G be a finite black-box group with not necessarily unique
encoding. Assume that the followings are given:

(a) a superset of the primes dividing the order of G,

(b) an oracle for taking discrete logarithms in finite fields
of size at most |G|,

(¢) an oracle for the constructive membership tests in ele-
mentary Abelian subgroups of G.

Then the following tasks can be solved by Las Vegas algo-
rithms of running time polynomial in the input size+ v(G):

(i) test membership in G,
(i) compute the order of G and a presentation for G,
(i3i) find generators for the center of G,

(v) construct a composition series G = G1 > G2 > ... >
Gt =1 for G, together with nice representations of the
composition factors Gi/Giy1,

(v) find Sylow subgroups of G.

A presentation of G is a sequence g1, ..., gs of generator el-
ements for G, together with a set of group expressions in
variables x1, ..., zs, called the relators, such that gi,...,9s
generate G and the kernel of the homomorphism from the
free group F(x1,...,xs) onto G sending x; to g; is the small-
est normal subgroup of F(z1,...,zs) containing the relators.
We remark that the generators in the presentation may dif-
fer from the original generators of G.

A nice representation of a factor G;/Gi+1 means a ho-
momorphism from G; with kernel G;4+1 to either a per-
mutation group of degree polynomially bounded in the
input size + v(G) or to Z, where p is a prime dividing |G]|.
Of course, if G is solvable one can insist that the represen-
tations of all the cyclic factors be of the second kind.

It turns out that for some of the tasks in the hypotheses
of Theorem 4 there are efficient quantum algorithms. By
Shor’s results [26], the oracle for computing discrete log-
arithms can be implemented by a polynomial time quan-
tum algorithm. Also, a superset of the primes dividing
|G| can be obtained in polynomial time by quantum al-
gorithms in the most natural cases. For example, if G is
a matrix group over a finite field, say G < GL(n,q) then
such a superset can be obtained by factoring the number
(¢ — (g™ — q)---(¢™ — ¢ 1), the order of the group
GL(n,q). The same method works even for factors of matrix
groups over finite fields. If G is (a factor of) a finite matrix
group of characteristic zero, then the situation is even better
because in that case the prime divisors of G are of polyno-
mial size. But in any case, one can note that the superset of
the primes dividing the order of G is only used in Theorem 4
to compute (and factorize) the orders of elements of G as
well as those of matrices over finite fields of size at most
|G|. This latter task can also be achieved by a quantum
algorithm in polynomial time.



In addition, we remark that the algorithm for testing mem-
bership can be understood in a stronger, constructive sense,
(see Section 5.3 in [4]), which is the proper generalization of
the constructive membership test in the Abelian case. For
this we need the notion of a straight line program on a set
of generators. This is a sequence of expressions e1,...,es
where each e; is either of the form z; := h where h is a
member of the generating set or of the form z; = .:Cj.:lj;l
where 0 < j,k < i. It turns out that for elements g of G
one can also require that a straight line program expressing
g in terms of the generators be returned. Therefore, one can
immediately derive from Theorem 4 the following result.

COROLLARY 5. Let G be a finite black-box group with not
necessarily unique encoding. Assume that the following are
gilven:

(a) an oracle for computing the orders of elements of G,

(b) an oracle for the constructive membership tests in ele-
mentary Abelian subgroups of G.

Then the following tasks can be solved by quantum algo-
rithms of running time polynomial in the input size+ v(G):

(i) constructive membership test in G,

(i) —(v) as in Theorem 4.

4. QUANTUM IMPLEMENTATIONS

In this section we will discuss several cases when the re-
maining tasks in the hypotheses of Corollary 5 can also be
efficiently implemented by quantum algorithms.

4.1 Unique encoding

If we have a unique encoding for the elements of the black-
box group G then we can use Shor’s order finding method.
As we will show, in that case there is also an efficient quan-
tum algorithm for the constructive membership test in ele-
mentary (and non-elementary) Abelian subgroups. There-
fore we will get the following result.

THEOREM 6. Assume that G is a black-box group with
unique encoding. Then, each of the tasks listed in Corol-
lary 5 can be solved in time polynomial in the input size +
v(GQ) by a quantum algorithm..

PROOF. Let us prove that task (b) in Corollary 5 can be
solved efficiently by a quantum algorithm. In fact, we can
reduce the test to an instance of the Abelian hidden sub-
group problem as follows. First, we compute the orders of
the underlying elements (see [21] for example). Let the or-
ders of hi,...,h, and g be s1,...,s, and s, respectively.
Then for a tuple (au,...,ar,a) from Zs, X -+ X Zs, X Zs,
set ¢p(an,...,ar,a) = AT - himg™“. Clearly ¢ is a homo-
morphism from Zs, X --- X Zs, X Zs into G, therefore this is
an instance of the Abelian hidden subgroup problem, and its
kernel can be found in polynomial time by a quantum algo-
rithm. The kernel contains an element the last coordinate of

which is relatively prime to s if and only if g is representable
as a product of powers of h;’s. Also, from such an element
an expression for g in the desired form can be constructed
efficiently. [

This result generalizes the order finding algorithm of Wa-
trous (Theorem 2 in [28]) for solvable groups. Also note
that, even if G is solvable, the way how quantum algorithms
are used here is slightly different from that of Watrous.

4.2 Hidden normal subgroup

Assume now that G is a black-box group with an encoding
which is not necessarily unique, and N is a normal subgroup
of GG given as a hidden subgroup via the function f. We use
the encoding of G for that of G/N. The function f gives us
a secondary encoding for the elements of G/N. Although
we do not have a machinery to multiply elements in the
secondary encoding, Shor’s order-finding algorithm and even
the treatment of the constructive membership test outlined
above are still applicable.

THEOREM 7. Assume that G is a black-box group with not
necessarily unique encoding. Suppose that N is a normal
subgroup given as a hidden subgroup of G. Then all the
tasks listed in Corollary 5 for G/N can be solved by quantum
algorithms in time polynomial in the input size + v(G/N).

PRrROOF. The proof is similar to the one of Theorem 6,
where ¢(au, ..., ar, ) = f(h{' - hf7g™%) is taken. []

Let us now turn back to the original hidden subgroup prob-
lem. We are able to solve it completely when the hidden sub-
group is normal. Hallgren Russell and Ta-Shma [14] have al-
ready given a solution for that case under the condition that
one can efficiently construct the quantum Fourier transform
on G. Note that such an efficient construction is not known
in general. The algorithm presented here does not require
such a hypothesis, on the other hand its complexity depends
also on the additional parameter v(G/N).

THEOREM 8. Assume that G is a black-box group with not
necessarily unique encoding. Suppose that N is a normal
subgroup given as a hidden subgroup of G. Then generators
for N can be found by a quantum algorithm in time poly-
nomial in the input size + v(G/N). In particular, we can
find hidden normal subgroups of solvable black-box groups
and permutation groups in polynomial time.

PROOF. We use the presentation of G/N obtained by the
algorithm of Theorem 7 to find generators for N. Let T be
the generating set from the presentation. If T' generates G
then it is easy to find generators for N. Let Ry denote the
set of elements obtained by substituting the generators in T’
into the relators, and let No stand for the normal closure (the
smallest normal subgroup containing) of Ry. Then N = Ny
since No < N and G/No = G/N by definition of T" and Ry.

Still some care has to be taken since it is possible that 7" gen-
erates G only modulo N, that is it might generate a proper



subgroup of G. Therefore some additional elements should
be added to Ry. Let S be the generating set for G. Using the
constructive membership test for G/N, we express the origi-
nal generators from S modulo N with straight line programs
in terms of the elements of T. For each element x € S we
form the quotient y~ 'z where y is the element obtained by
substituting the generators from 7 into the straight line pro-
gram for z modulo N. Let Sy be the set of all the quotients
formed this way. Note that T" and Sy generate together G.
Then one can verify that the normal closure of Ry U Sy in G
is N.

Thus, from Ro and So we can find generators for N in time
polynomial in the input size+v(G/N) using the normal clo-
sure algorithm of [1]. We obtained the desired result. [

4.3 Unique encoding and solvable normal sub-

group
We conclude this section with some results obtained as com-
bination of the ideas presented above with those of Watrous
described in [28]. Assume that the encoding of the ele-
ments of G is unique and a normal solvable subgroup N
of G is given by generators. We use the encoding of G
for that of G/N. The identity test in G/N can be imple-
mented by an efficient quantum algorithm for testing mem-
bership in N due to Watrous (Theorem 2). We are also
able to produce (approximately) the uniform superposition
|N) = —= >, |z) efficiently. For solvable subgroups N,

VINI

we can again apply the result of Watrous (Theorem 2) to
produce |N) in polynomial time. We will now show that
having sufficiently many copies of |[N) at hand, we can use
ideas of Watrous for computing orders of elements of G/N
and even for performing the constructive membership test in
Abelian subgroups of G/N. Thus, we will have an efficient
quantum implementation of the Beals-Babai algorithms for
G/N. We will first state a lemma which says that we can
efficiently solve the HSP in an Abelian group if we have an
appropriate quantum oracle.

LEMMA 9. Let A be an Abelian group, and let X be a
finite set. Let H < A, and let f : A — CX (given by an
oracle) such that:

1. For every g € A, |f(g)) is a unit vector,

2. f is constant on the left cosets of H, and maps ele-
ments from different cosets into orthogonal states.

Then there exists a polynomial time quantum algorithm for
finding the hidden subgroup H.

PRroOOF. First we extend naturally f to G/H: on a coset
of H, it takes the value f(h) for an arbitrary member h of
the coset. The algorithm is the standard quantum algorithm
for the Abelian hidden subgroup problem. We repeat several
times the following steps to find a set of generators for H.

— Prepare the initial superposition: |1g)|0™).

— Apply the Abelian quantum Fourier transform in A on
the first register: > . 4 [9)[0™).

- Call £ Ye 4 19)1£(9))-

— Apply again the Fourier
2geasmnent Xn(9)R)[f(g))-

— Observe the first register.

transform in A:

By hypothesis, the states |f(g)) are orthogonal for distinct
g € A/H, therefore an observation of the first register will
give a uniform probability distribution on Ht. After suffi-
cient number of iterations, this will give a set of generators
for H*, which leads then to a set of generators for H.

Note that in the above steps it is sufficient to compute only
the approximate quantum Fourier transform on A which can
be done in polynomial time. []

THEOREM 10. Assume that G is a black-box group with
a unique encoding of group elements. Suppose that N is a
normal subgroup given by generators. Assume further that
N is either solvable or of polynomial size. Then all the tasks
listed in Corollary 5 for G/N can be solved by a quantum
algorithm in running time polynomial in the input size +

v(G/N).

ProoOF. For applying Corollary 5, one has to verify that
we can perform tasks (a)-(b) of the corollary. If N is of
polynomial size, it is trivial. Therefore we suppose that N
is solvable. We will closely follow the approach indicated by
Watrous in [28] for dealing with factor groups.

First, let ¢ € G. To compute the order of g in G/N, we
compute the period of the quantum function f(k) = |g* N),
where k € {1,...,m} for some multiple m of the order. This
function can be computed efficiently since one can prepare
the superposition |N) by Theorem 2, and for example we
can take m as the order of g in G. Therefore by Lemma 9
one can find this period.

Second, let g € G and let hi,...,h, € G be pairwise com-
muting elements modulo N. generating some Abelian sub-
group H < G/N. We compute the orders of the underlying
elements on G/N using the previous method. Let the or-

ders of hi,...,h, and g be si,...,s, and s, respectively.
Then for a tuple (a1,...,ar, a) from Zs, X -+ X Zs, X Zs,
set ¢(ag,...,ar,a) = |h{T - -h¥"g”*N). Then ¢ is a ho-

momorphism from Zs, X --- X Zs, X Zs into CS/N. From
Lemma 9, the kernel of ¢ can be computed in polynomial
time by a quantum algorithm. Moreover it contains an el-
ement the last coordinate of which is relatively prime to s
if and only if g is representable as a product of powers of
his. Also, from such an element an expression for g in the
desired form can be constructed efficiently using elementary
number theory. []

S. GROUPS WITH SMALL COMMUTA-
TOR SUBGROUPS



Assume that G is a black-box group with unique encoding
of elements, and suppose that a subgroup H is hidden by
a function f. Our next result states that one can solve the
HSP in time polynomial in the input size +|G’|, where G’ is
the commutator subgroup of G. Let us recall the commuta-
tor subgroup is the smallest normal subgroup of G containing
the commutators zyz 'y~ !, for every z,y € G.

THEOREM 11. Let G be a black-box group with unique en-
coding of elements. The hidden subgroup problem in G can
be solved by a quantum algorithm in time polynomial in the
input size + |G|

PROOF. Let H be a hidden subgroup of G defined by
the function f. We start with the following observation. If
N is a normal subgroup of G and H; < H is such that
HiNN =HNN and HiN = HN, then by the isomorphism
theorem, H,/(HNN) = HiN/N = H/(HNN) which implies
Hy = H. We will generate such a subgroup Hi1 < H for
N =G".

As the commutator subgroup G’ of G consists of products
conjugates of commutators of the generators of G we can
enumerate G’, and therefore also G’ N H, in time poly-
nomial in the input size 4+ |G’|. We consider the function
F:z e {f(zG")} = {f(zg)|lg € G'} which can be com-
puted by querying |G’| times the function f.

The function F hides the subgroup HG’'. Note that HG’
is normal since G/G’ is Abelian. Thus by Theorem 8, we
can find generators for HG' by a quantum algorithm in time
polynomial in the size of the input + |G’| since v(G/HG') =
1, because G/HG' is Abelian.

For each generator x of HG’, we enumerate all the elements
of coset *G’ and select an element of G’ N H. The cost of
this step is again polynomial in the input size + |G'|. We
take for H; the subgroup of G generated by the selected
elements and HNG'. We get H; NG’ = HNG', and by the
definition of the selected elements H1G' = HG'. [

A group G is an extra-special p-group if its commutator sub-
group G’ coincides with its center, |G’| = p, and moreover
G/G' is an elementary Abelian p-group. Therefore we get
the following corollary from the previous theorem.

COROLLARY 12. The hidden subgroup problem in extra-
special p-groups can be solved by a quantum algorithm in
time polynomial in input size + p.

6. GROUPS WITH A LARGE ELE-
MENTARY ABELIAN NORMAL 2-
SUBGROUP

Assume that N is an elementary Abelian normal 2-subgroup
of a group G, and it is given by generators as part of the
input. Our aim is to solve the HSP in G in the cases where
G/N is either small or cyclic. Typical examples of groups of
the latter type are matrix groups over a field of character-
istic 2 of degree k + 1 generated by a single matrix of type

(a), where the k X k sub-matrix in the upper left corner is
invertible, together with several matrices of type (b):

* x x *x 0 1 0 0 0 =
* *x % *x 0 01 0 0 =«
(a) * % % % 0 | (D) 0 01 0 =«
* *x x *x 0 0 0 0 1 =
0 0 0 0 1 00 0 0 1

Note that the class of groups of this kind include the wreath
products Z% 1 Zs in which the hidden subgroup problem has
been shown to be solvable in polynomial time by Rotteler
and Beth in [25]. Based on a technique inspired by the idea
of Ettinger and Hgyer used for the dihedral groups in [9], we
solve the hidden subgroup problem in quantum polynomial
time in this more general class of groups.

THEOREM 13. Let G be a black-box group with unique en-
coding of elements and N be a normal elementary Abelian
2-subgroup of G given by generators. Then the hidden sub-
group problem in G can be solved by a quantum algorithm in
time polynomial in the input size+ |G/N|. If G/N is cyclic
then the hidden subgroup problem can be solved in polyno-
mial time.

PROOF. Let H be a subgroup of G hidden by the function
f. The main line of the proof is like in Theorem 11: we will
generate H;y < H which satisfies H1 NN = H N N and
HiN/N = HN/N (or equivalently H1N = HN). Again
we start the generation of H; with H N N which can be
computed in polynomial time in the input size by Theorem 3
since N is Abelian. The additional generators of H; will
be obtained from a set V' C G which, for every subgroup
M < G/N (in particular, for M = HN/N), contains some
generator set for M. For each z € V, we will verify if zN €
HN (equivalently zHNN # () or also zNNH # ), and in the
positive case we will find some u € N such that v~ 'z € H.
Both of these tasks will be reduced to the Abelian hidden
subgroup problem, and the elements of the form v~ 'z will
be the additional generators of H;.

If G/N is cyclic, we use Theorem 10 to find generators for
the Sylow subgroups of G/N (note that v(G/N) = 1). Each
Sylow will be cyclic (and unique), therefore a random el-
ement of the Sylow p-subgroup will be a generator with
probability 1 — 1/p > 1/2. Note that one can check if the
choosen element is really a generator by using the order find-
ing procedure of Theorem 10. Then, for each p we choose
a generator x, N for the Sylow p-subgroup after iterating
the previous random choice. The p-subgroups of G/N are
(zpN),..., (mZ”N) = N/N, where p"» is the order of the
Sylow p-subgroup of G/N. Let V stand for the union of
the sets {1, zp,... ,wzp} over all primes p dividing |G/N]|.
Note that [V| = O(log|G/N|), and the cost of constucting
V' is polynomial in the input size. V contains a generating
set for an arbitray subgroup M of G/N because for each
p, it contains a generator for the Sylow p-subgroup of M
(namely xif where [, is the smallest positive integer | such
that =L, N € M).

In the general case, let V' be a complete set of coset repre-
sentatives of G/N. V can be constructed by the following



standard method. We start with the set V = {1}. In each
round we adjoin to V a representative vg of a new coset,
for each v € V and each generator g of G, if vg & wN,
for all w € V. This membership test can be achieved using
a quantum algorithm for testing membership of w™'vg in
the commutative group N. The procedure stops if no new
element can be added.

Then, for each z € V'\ {1}, we consider the function defined
on Zy x N as follows. For every € N, let F(0,z) = f(z)
and let F'(1,2) = f(xz). Obviously, for i« € {0,1} and z,y €
N, F(i,z) = F(i,y) if and only if y 'z € HN N, while
F(0,z2) = F(1,y) if and only if y ™' € zHN N.

We claim that zH N N is either empty or a coset of H N N
in N. Indeed, if zH N N contains zh for some h € H,
then zh(H N N) C zH N N, and conversely for all b’ € H
such that zh' € N, we have (zh)"'2h’ = h™'h € HN
N. It follows that in the group Zs x N, F hides either
{0} x (HNN) or {0} x (HNN)|J{1} x u(H N N) for some
u € zH N N depending on whether zH N N is empty or
not. Note that this set is indeed a subgroup because N
is an elementary Abelian 2-group. We remark that u is
determined only modulo H N N.

As Z2 x N is Abelian, we can find generators for this hidden
subgroup in quantum polynomial time. From any genera-
tor of type (1,u) we obtain an element u™'z € zN N H.
Repeating this, we collect elements in z/N N H for each of
z € V\ {1} such that zN N H # 0. Let Hy be the subgroup
of G generated by the collected elements and by H N N.
Then by construction H; is a subgroup of H which satisfies
the claimed properties. [

7. REFERENCES
[1] L. Babai, G. Cooperman, L. Finkelstein, E. M. Luks
and A. Seress, Fast Monte Carlo algorithms for

permutation groups, J. Computer and System
Sciences, vol. 50, 1995, 263-307.

[2] L. Babai and E. Szemerédi, On the complexity of
matrix group problems 1., Proc. 25th IEEE
Foundations of Computer Science, 1984, 229-240.

[3] L. Babai and R. Beals, A polynomial-time theory of
black-box groups 1., Groups St. Andrews 1997 in
Bath, I, London Math. Soc. Lecture Notes Ser., vol.
260, Cambridge Univ. Press, 1999, 30-64.

[4] R. Beals, Towards polynomial time algorithms for
matrix groups, Groups and Computation Proc. 1991
DIMACS Workshop, L. Finkelstein, W. M. Kantor
(eds.), DIMACS Ser. in Discr. Math. and Theor.
Comp. Sci. Vol. 11, AMS, 1993, 31-54.

[5] R. Beals and L. Babai, Las Vegas algorithms for
matrix groups, Proc. 34th IEEE Foundations of
Computer Science, 1993, 427-436.

[6] D. Boneh and R. Lipton, Quantum cryptanalysis of
hidden linear functions, Proc. Crypto’95, LNCS vol.
963, 1995, 427-437.

[7] G. Brassard and P. Hgyer, An exact quantum
polynomial-time algorithm for Simon’s problem,

(10]

(11]

(12]

(13]

(14]

(16]

(17]

(18]

23]

Proc. 5th Israeli Symposium on Theory of Computing
Systems, 1997, 12-23.

K. Cheung and M. Mosca, preprint available at
http://xxx.lanl.gov/abs/quant-ph/0101004.

M. Ettinger and P. Hgyer, On quantum algorithms for
noncommutative hidden subgroups, Proc. 16th
Symposium on Theoretical Aspects of Computer
Science, LNCS vol 1563, 1999, 478-487.

M. Ettinger, P. Hgyer, and E. Knill, Hidden subgroup
states are almost orthogonal, preprint available at
http://xxx.lanl.gov/abs/quant-ph/9901034.

W. Feit and J. Tits, Projective representations of
minimum degree of of group extensions, Canadian
J. Math., vol. 30, 1978, 1092-1102.

M. Grigni, L. Schulman, M. Vazirani and U. Vagzirani,
Quantum mechanical algorithms for the nonabelian
hidden subgroup problem, to appear in Proc. 33rd
ACM Symposium on Theory of Computing, 2001.

J. Gruska, Quantum Computing, McGraw Hill, 1999.

S. Hallgren, A. Russell and A. Ta-Shma, Normal
subgroup reconstruction and quantum computation
using group representations, Proc. 32nd ACM
Symposium on Theory of Computing, 2000, 627—635.

R. Jozsa, Quantum algorithms and the Fourier
transform, preprint available at
http://xxx.lanl.gov/abs/quant-ph/9707033.

R. Jozsa, Quantum factoring, discrete logarithms and
the hidden subgroup problem, preprint available at
http://xxx.lanl.gov/abs/quant-ph/0012084.

A. Kitaev, Quantum measurements and the Abelian
Stabilizer Problem, preprint available at
http://xxx.lanl.gov/abs/quant-ph/9511026.

V. Landazuri and G. M. Seitz, On the minimal
degrees of projective representations of the finite
Chevalley groups, J. Algebra vol. 32, 1974, 418-443.

E. M. Luks, Computing in solvable matrix groups,
Proc. 383th IEEE Foundations of Computer Science,
1992, 111-120.

W. M. Kantor and A. Seress, Black box classical
groups, Manuscript.

M. Mosca, Quantum Computer Algorithms, PhD
thesis, University of Oxford, 1999.

M. Mosca and A. Ekert, The hidden subgroup
problem and eigenvalue estimation on a quantum
computer, Proc. 1st NASA International Conference
on Quantum Computing and Quantum
Commumnication, LNCS vol. 1509, 1999.

M. Nielsen and I. Chuang, Quantum Computation and
Quantum Information, Cambridge University Press,
2000.



[24]

[26]

[27]

28]

J. Rotman, An Introduction to the Theory of Groups,
Springer-Verlag, Series: Graduate Texts in
Mathematics, vol. 148, 4th ed. 1995 (corr. 2nd
printing 1999).

M. Rotteler and T. Beth, Polynomial-time solution to
the hidden subgroup problem for a class of
non-abelian groups, preprint available at
http://xxx.lanl.gov/abs/quant-ph/9812070.

P. Shor, Polynomial-time algorithms for prime
factorization and discrete logarithms on a quantum
computer, SIAM J. on Computing, vol. 26(5), 1997,
1484-1509.

D. Simon, On the power of quantum computation,
SIAM J. on Computing, vol. 26(5), 1997, 1474-1483.

J. Watrous, Quantum algorithms for solvable groups,
to appear in Proc. 33rd ACM Symposium on Theory
of Computing, 2001. Preprint available at
http://xxx.lanl.gov/abs/quant-ph/0011023.



