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Abstract

The quantum query complexity of Boolean matrix multiplication is typically studied as a
function of the matrix dimension, n, as well as the number of 1s in the output, `. We prove an
upper bound of Õ(n

√
`+ 1) for all values of `. This is an improvement over previous algorithms

for all values of `. On the other hand, we show that for any ε < 1 and any ` ≤ εn2, there is an
Ω(n
√
`) lower bound for this problem, showing that our algorithm is essentially tight.

We first reduce Boolean matrix multiplication to several instances of graph collision. We
then provide an algorithm that takes advantage of the fact that the underlying graph in all of
our instances is very dense to find all graph collisions efficiently.

Using similar ideas, we also show that the time complexity of Boolean matrix multiplication
is Õ(n

√
`+ 1 + `

√
n).

1 Introduction

Quantum query complexity has been of fundamental interest since the inception of the field of
quantum algorithms [BBBV97, Gro96, Sho97]. The quantum query complexity of Boolean matrix
multiplication was first studied by Buhrman and Špalek [BŠ06]. In the Boolean matrix multiplica-
tion problem, we want to multiply two n× n matrices A and B over the Boolean semiring, which
consists of the set {0, 1} with logical or (∨) as the addition operation and logical and (∧) as the
multiplication operation.

For this problem it is standard to consider an additional parameter in the complexity: the
number of 1s in the product C := AB, which we denote by `. We study the query complexity as a
function of both n and `, and obtain improvements for all values of `.

The problem of Boolean matrix multiplication is of fundamental interest, in part due to its
applications in several areas in computer science. Boolean matrix multiplication is used for instance
to construct efficient algorithms for computing the transitive closure of a graph [FM71, Fur70,

∗This paper is an extended and combined version of [JKM12], [Le 12a] and [Le 12b]. This work was partially
supported by NSERC, MITACS, QuantumWorks, the French ANR Blanc project ANR-12-BS02-005 (RDAM), and
the European Commission IST STREP project 25596 (QCS).
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Mun71], recognizing context-free languages [Ryt85, Val75], detecting if a graph contains a triangle
[IR78, VW10], solving all-pairs path problems [DHZ00, GM97, Sei95, SZ99], or speeding up data
mining tasks [AP09].

Classically, it was shown by Vassilevska Williams and Williams that “practical advances in
triangle detection would imply practical [Boolean matrix multiplication] algorithms” [VW10]. The
previous best quantum algorithm for Boolean matrix multiplication, by Le Gall, is based on a
subroutine for finding triangles in graphs with a known tripartition [Le 12a], already suggesting
that the relationship between Boolean matrix multiplication and triangle finding might be more
complex for quantum query complexity. We give further evidence for this by bypassing the triangle
finding subroutine entirely.

Despite its fundamental importance, much has remained unknown about the quantum query
complexity of Boolean matrix multiplication and its relationship with other query problems in the
quantum regime. Even for the simpler decision problem of Boolean matrix product verification,
where we are given oracle access to three n × n Boolean matrices, A, B and C, and must decide
whether or not AB = C, the quantum query complexity is unknown. The best upper bound is
O(n3/2) [BŠ06], whereas the lower bound was recently improved from the trivial Ω(n) to Ω(n1.055)
by Childs, Kimmel, and Kothari [CKK11].

A better understanding of these problems may lead to an improved understanding of quantum
query complexity in general. We contribute to this by closing the gap (up to logarithmic factors)
between the best known upper and lower bounds for Boolean matrix multiplication for all ` ≤ εn2
for any constant ε < 1.

Previous Work. We are interested in the query complexity of Boolean matrix multiplication,
where we count the number of accesses (or queries) to the input matrices A and B. Buhrman and
Špalek [BŠ06, Section 6.2] describe how to perform Boolean matrix multiplication using Õ(n3/2

√
`)

queries, by simply quantum searching for a pair (i, j) ∈ [n] × [n] such that there is some k ∈ [n]
for which A[i, k] = B[k, j] = 1, where [n] = {1, . . . , n}. By means of a classical reduction relating
Boolean matrix multiplication and triangle finding, Vassilevska Williams and Williams [VW10] were
able to combine the quantum triangle finding algorithm of Magniez, Santha and Szegedy [MSS07]
with a classical strategy of Lingas [Lin11] to get a quantum algorithm for Boolean matrix multipli-
cation with query complexity Õ(min{n1.3`17/30, n2 + n13/15`47/60}).

Recently, Le Gall [Le 12a] improved on their work by noticing that the triangle finding needed
for Boolean matrix multiplication involves a tripartite graph with a known tripartition. He then
recast the known quantum triangle finding algorithm of [MSS07] for this special case and improved
the query complexity of Boolean matrix multiplication. He then further improved the algorithm
for large ` by adapting the strategy of Lingas to the quantum setting, and obtained the following
query complexity: 

Õ(n1.3
√
`) if 1 ≤ ` ≤ n1/5,

Õ(n9/7`4/7) if n1/5 ≤ ` ≤ n3/8,
Õ(n3/2) if n3/8 ≤ ` ≤ n16/21,
Õ(n13/14`3/4) if n16/21 ≤ ` ≤ n8/7,
Õ(n3/2`1/4) if n8/7 ≤ ` ≤ n6/5,
Õ(n6/7`11/14) if n6/5 ≤ ` ≤ n16/11,
O(n2) if n16/11 ≤ ` ≤ n2.

These upper bounds are illustrated in Figure 1.
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Figure 1: Quantum query complexity of Boolean matrix multiplication (BMM).

Our Contributions. Since previous quantum algorithms for Boolean matrix multiplication are
based on a triangle finding subroutine, a natural question to ask is whether triangle finding is a
bottleneck for this problem. We show that this is not the case by bypassing the triangle finding
problem completely to obtain a nearly tight result for Boolean matrix multiplication.

A key ingredient of the best known quantum algorithm for triangle finding is an efficient al-
gorithm for the graph collision problem. Our main contribution is to build an algorithm directly
on graph collision instead, bypassing the use of a triangle finding algorithm. Surprisingly, we do
not use the graph collision algorithm that is used as a subroutine in the best known quantum
algorithm for triangle finding. That algorithm is based on Ambainis’ quantum walk for the element
distinctness problem [Amb04]. Our algorithm, on the other hand, does not have any quantum
walks.

We would like to emphasize two main ideas. First, we can reduce the Boolean matrix multipli-
cation problem to several instances of the graph collision problem. Second, the instances of graph
collision that arise depend on `; in particular, they have at most ` non-edges. Moreover, we need
to find all graph collisions, not just one. We present an algorithm to find a graph collision in query
complexity Õ(

√
` +
√
n), or to find all graph collisions in time Õ(

√
` +
√
nλ), where λ ≥ 1 is the

number of graph collisions. Combining these ideas yields the aforementioned Õ(n
√
`+ 1) upper

bound on the query complexity of Boolean matrix multiplication, which is represented in Figure 1
as well. In addition, these ideas yield an algorithm with time complexity Õ(n

√
`+ 1 + `

√
n).

3



A lower bound of Ω(n
√
`) for all values of ` ≤ εn2 for any constant ε < 1 follows from a simple

reduction to several instances of the search problem, which we state in Theorem 4.2.
This paper is organized as follows. After presenting some preliminaries in Section 2, we describe

in Section 3, the graph collision problem, its relationship to Boolean matrix multiplication, and a
subroutine for finding all graph collisions when there are at most ` non-edges. In Section 4, we apply
our graph collision subroutine to get the stated upper bound for Boolean matrix multiplication,
and then describe a tight lower bound that applies to all values of ` ≤ εn2 for ε < 1. Finally,
in Section 5, we prove an upper bound of Õ(n

√
`+ 1 + `

√
n) on the time complexity of Boolean

matrix multiplication.

2 Preliminaries

2.1 Quantum Query Framework

For a more thorough introduction to the quantum query model, see [BBC+01]. For Boolean matrix
multiplication, we assume access to two query operators that act as follows on a Hilbert space
spanned by {|i, j, b〉 : i, j ∈ [n], b ∈ {0, 1}}:

OA : |i, j, b〉 7→ |i, j, b⊕A[i, j]〉 OB : |i, j, b〉 7→ |i, j, b⊕B[i, j]〉

In the quantum query model, we count the uses of OA and OB, and ignore the cost of implementing
other unitaries that are independent of A and B. We call OA and OB the oracles, and each access
a query. The query complexity of an algorithm is the maximum number of oracle accesses used by
the algorithm, taken over all inputs.

A search problem P is a map X → 2Y , where P(x) ⊆ Y denotes the set of valid outputs on
input x. We say a quantum algorithm A solves a problem P: X → 2Y with bounded error δ(|x|) if
for all x ∈ X , Pr[A(x) ∈ P(x)] ≥ 1− δ(|x|), where |x| is the size of the input. The quantum query
complexity of P is the minimum query complexity of any quantum algorithm that solves P with
bounded error δ(|x|) ≤ 1/3.

We will use the phrase with high probability to mean probability at least 1 − 1
poly for some

super-linear polynomial. We ensure that all of our subroutines succeed with high probability, to
finally achieve a bounded-error algorithm. Consequently, we will necessarily incur polylog factors
in the query complexity. We will use the notation Õ to indicate that we are suppressing polylog
factors. More precisely, f(n) ∈ Õ(g(n)) means f(n) ∈ O(g(n) logk n) for some constant k.

Boolean Matrices. We let B denote the Boolean semiring, which is the set {0, 1} under the
operations ∨,∧. The problem we will be considering is formally defined as the following:

Boolean Matrix Multiplication
Oracle Input: Two Boolean matrices A,B ∈ Bn×n.
Output: C ∈ Bn×n such that C = AB.

In Bn×n, we say that C = AB if for all i, j ∈ [n], C[i, j] =
∨n
k=1A[i, k] ∧ B[k, j]. We will use

the notation A + B to denote the entry-wise ∨ of two Boolean matrices. We will use ` to denote
the number of non-zero entries in C.
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2.2 Quantum Search Algorithms

In this section we examine some well-known variations of the search problem that we require. The
reader familiar with quantum search algorithms may skip to Section 3.

Any search problem can be recast as searching for a marked element among a given collection,
U . In order to formalize this, let f : U → {0, 1} be a function whose purpose is to identify marked
elements. An element is marked if and only if f(x) = 1. Define tf = |f−1(1)|. In Grover’s search
algorithm, the algorithm can directly access f , and the overall complexity can be stated as the
number of queries to f . In the following t ≥ 1 is an integer parameter.

Theorem 2.1 ([Gro96]). There is a quantum algorithm, GroverSearch(t), with query complexity
Õ(
√
|U |/t) to f , such that, if t/2 ≤ tf ≤ t, then GroverSearch(t) finds a marked element with

probability at least 1− 1/poly(|U |).
Moreover, if tf = 0, then GroverSearch(t) declares with probability 1 that there is no marked element.

There are several ways to generalize the above statement when no approximation of t is known.
Most of the generalizations in the literature are stated in terms of expected query complexity, such
as in [BBHT98]. Nonetheless, one can derive from [BBHT98, Lemma 2] an algorithm in terms of
worst case complexity, when only a lower bound t on tf is known. The algorithm consists of T
iterations of one step of the original Grover algorithm where T is chosen uniformly at random from
[0,
√
|U |/t ]. This procedure is iterated O(log |U |) times in order to get bounded error 1/poly(|U |).

Corollary 2.2. There is a quantum algorithm Search(t) with query complexity Õ(
√
|U |/t) to f ,

such that, if tf ≥ t, then Search(t) finds a marked element with probability at least 1− 1/poly(|U |).
Moreover, if tf = 0, then Search(t) declares with probability 1 that there is no marked element.

One consequence of Corollary 2.2 is that we can always apply Search(t) with t = 1, when no
lower bound on tf is given. In that case, we simply refer to the resulting algorithm as Search. Its

query complexity to f is then Õ(
√
|U |).

Another simple generalization is for finding all marked elements. This generalization is stated
in the literature in various ways for expected and worst case complexity. For the sake of clarity we
explicitly describe one version of this procedure using GroverSearch as a subroutine. This version
is robust in the sense that it works even when the number of marked elements may decrease
arbitrarily. This may occur, for example, when the finding of one marked element may cause
several others to become unmarked. This situation will naturally occur in the context of Boolean
matrix multiplication. Then the complexity will only depend on the number of elements that are
actually in the output, as opposed to the number of elements that were marked at the beginning
of the algorithm.
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SearchAll

1. Let t = |U |, and V = U

2. While t ≥ 1

(a) Apply GroverSearch(t) to V

(b) If a marked element x is found: Output x; Set V ← V − {x}
and t← t− 1
Else: t← t/2

3. If no marked element has been found, declare ‘no marked element’

Corollary 2.3. SearchAll has query complexity Õ(
√
|U |(tf + 1)) to f , and finds all marked elements

with probability at least 1− 1/poly(|U |).
Moreover, if tf = 0, then SearchAll declares with probability 1 that there is no marked element.

We end this section with an improvement of GroverSearch when we are looking for an optimal
solution for some notion of maximization.

Theorem 2.4 ([DH96, DHHM06]). Given a function g : U → R, there is a quantum algorithm,
FindMax(g), with query complexity Õ(

√
|U |) to f , such that FindMax(g) returns x ∈ f−1(1) such

that g(x) = maxx′∈f−1(1) g(x′) with probability at least 1 − 1/poly(|U |). Moreover, if tf = 0, then
FindMax(g) declares with probability 1 that there is no marked element.

3 Graph Collision

In this section we describe the graph collision problem, and its relation to Boolean matrix multi-
plication. We then describe a method for solving the special case of graph collision in which we are
interested.

3.1 Problem Description

Graph collision is the following problem. Let G = (A,B, E) be a balanced bipartite graph on 2n
vertices. We will suppose A = [n] and B = [n], though we note that in the bipartite graph, the
vertex labelled by i in A is distinct from the vertex labelled by i in B.

Graph Collision(G)
Oracle Input: A pair of Boolean functions fA : A → {0, 1} and fB : B → {0, 1}.
Output: (i, j) ∈ A×B such that fA(i) = fB(j) = 1 and (i, j) ∈ E, if such a pair exists,
otherwise reject.

The graph collision problem was introduced by Magniez, Santha and Szegedy as a subproblem
in triangle finding [MSS07]. The algorithm they used to solve graph collision is based on Ambainis’
quantum walk algorithm for element distinctness [Amb04], and has query complexity O(n2/3). The
same algorithm is also used in other triangle finding algorithms [Bel12, LMS13]. However, the best
known lower bound for graph collision is Ω(

√
n). It is an important open problem to close this gap.
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To obtain our upper bound, we do not use the quantum walk algorithm for graph collision, but
rather, a new algorithm that takes advantage of two special features of our problem. The first is
that we always know an upper bound, `, on the number of non-edges. When ` ≤ n, we can find a
graph collision in O(

√
n) queries. The second salient feature of our problem is that we need to find

all graph collisions.

3.2 Relation to Boolean Matrix Multiplication

Recall that the Boolean matrix product of A and B, can be viewed as the sum (entry-wise ∨) of
n outer products: C =

∑n
k=1A[·, k]B[k, ·], where A[·, k] denotes the kth column of A and B[k, ·]

denotes the kth row of B.
For a fixed k, if there exists some i ∈ [n] and some j ∈ [n] such that A[i, k] = 1 and B[k, j] = 1,

then we know that C[i, j] = 1, and we say that k is a witness for (i, j). We are interested in finding
all such pairs (i, j). For each index k, we could search for all pairs (i, j) with A[i, k] = B[k, j] = 1;
however, this could be very inefficient, since a pair (i, j) may have up to n witnesses. Instead, we
will keep a matrix C̃ such that C̃[i, j] = 1 if we have already found a one at position (i, j). Thus,
we want to find a pair (i, j) such that A[i, k] = B[k, j] = 1 and C̃[i, j] = 0. That is, we want to find

a graph collision in the graph with bi-adjacency matrix C̃, the entry-wise complement of C̃, and
fA = A[·, k], fB = B[k, ·].

This gives the following natural algorithm for Boolean matrix multiplication, whose details and
full analysis can be found in Section 4.1:

First, let C̃ = 0.

Search for an index k such that the graph collision problem on k with C̃ as the underlying
graph has a collision.
If no such k is found then we are done, and C̃ is the product of A and B.

Otherwise, find all the graph collisions on the graph defined by C̃ with oracles A[·, k]
and B[k, ·] and record them in C̃.
Eliminate this k from future searches and search for another index k again.

3.3 Algorithm for Graph Collision

When G is a complete bipartite graph, then the relation between A and B defined by G is trivial.
In that case, there is a very simple algorithm to find a graph collision: Search for some i ∈ [n]
such that fA(i) = 1. Then search for some j ∈ [n] such that fB(j) = 1. Then (i, j) is a graph
collision pair. The query complexity of this is O(

√
n +
√
n). However, when G is not a complete

bipartite graph, there is a nontrivial relation between A and B. The best known algorithm solves
this problem using a quantum walk.

In our case, we can take advantage of the fact that the graph we are working with always has at
most ` non-edges — it is never more than distance ` from the complete bipartite graph, which we
know is easy to deal with. We are therefore interested in the query complexity of finding a graph
collision in some graph with m non-edges, which we denote GC(n,m). In our case, ` will always be
an upper bound on m.

For larger values of `, we will also make use of the fact that for some k, we will have multiple
graph collisions to find. We let GCall(n,m, λ) denote the query complexity of finding all graph
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collisions in a graph with m non-edges, where λ is the number of graph collisions. It is not
necessary to know λ a priori.

Again we note that if G is a complete bipartite graph, then we can accomplish the task of
finding all graph collisions using SearchAll to search for all marked elements on each of fA and fB,
and output f−1A (1)×f−1B (1). Letting tA =

∣∣f−1A (1)
∣∣ and tB =

∣∣f−1B (1)
∣∣, so the total number of graph

collision pairs is λ = tAtB, the query complexity of this method is O(
√
ntA +

√
ntB) ∈ O(

√
nλ). So

if G is close to being a complete bipartite graph, we would like to argue that we can do nearly as
well. This motivates the following algorithm.

AllGCG(fA, fB)

Let di be the degree of the ith vertex in A, and let ci := n − di. Let
the vertices in A be arranged in decreasing order of degree, so that
d1 ≥ d2 ≥ . . . ≥ dn.

1. Find the highest degree marked vertex in A using FindMax. Let r
denote the index of this vertex. Õ(

√
n)

2. Case 1: If cr ≤
√
m

(a) Find all marked neighbours of r by SearchAll. Output any
graph collisions found. Õ(

√
nλ)

(b) Delete all unmarked neighbours of r. Read the values of all
non-neighbours of r. O(

√
m)

(c) Let A′ denote the subset of A consisting of all i ∈ A with
a marked neighbour in B. Find all marked vertices in A′ by
SearchAll. Õ(

√
nλ)

3. Case 2: If cr ≥
√
m

(a) Delete the first r − 1 vertices in A since they are unmarked.

(b) Read the values of all remaining vertices in A. O(
√
m)

(c) Let B′ denote the subset of B consisting of all j ∈ B with a
marked neighbour in A. Find all marked vertices in B′ by
SearchAll. Õ(

√
nλ)

Theorem 3.1. For all λ ≥ 1, GCall(n,m, λ) ∈ Õ(
√
nλ+

√
m) and GC(n,m) ∈ Õ(

√
n+
√
m).

Proof. We will analyze the complexity of AllGCG(fA, fB) step by step.
Step 1 has query complexity Õ(

√
n) by Theorem 2.4. Steps 2a, 2c and 3c have query complexity

Õ(
√
nλ) by Corollary 2.3. In Case 1, r has cr ≤

√
m non-neighbours, so we can certainly query

them all in step 2b with O(
√
cr) ∈ O(

√
m) queries.

Consider Case 2, when cr ≥
√
m. We can ignore the first r−1 vertices, since they are unmarked.

Since the remaining n − r + 1 vertices all have ci ≥ cr ≥
√
m, and the total number of non-edges

is m, we have (n− r+ 1)×
√
m ≤ m⇒ (n− r+ 1) ≤

√
m. Thus, there are at most

√
m remaining

vertices and querying them all costs at most O(
√
m) queries.
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The query complexity of this algorithm is therefore Õ(
√
nλ +

√
m), and it outputs all graph

collisions. To check if there is at least one graph collision, instead of finding them all, we can replace
finding all marked vertices using SearchAll in steps 2a, 2c and 3c, with a procedure to check if there
is any marked vertex, Search, and this only requires Õ(

√
n) queries by Corollary 2.2, rather than

Õ(
√
nλ).

4 Boolean Matrix Multiplication

In this section we show how the graph collision algorithm from the previous section can be used to
obtain an efficient algorithm for Boolean matrix multiplication, and then prove a lower bound.

4.1 Algorithm

What follows is a more precise statement of the high level procedure described in Section 3.2.

BMM(A,B)

1. Let C̃ = 0, t = n, and V = [n].

2. While t ≥ 1:

(a) GroverSearch(t) for an index k ∈ V such that the graph col-

lision problem on k with C̃ as the underlying graph has a
collision.

(b) If such a k is found:

Compute AllGC on the graph defined by C̃ with oracles
A[·, k] and B[k, ·] and record all output graph collisions
in C̃.

Set V ← V − {k} and t← t− 1.

(c) Else: t← t/2.

3. Output C̃.

Theorem 4.1. The query complexity of Boolean Matrix Multiplication is Õ(n
√
`+ 1).

Proof. We will analyze the complexity of the algorithm BMM(A,B). We begin by analyzing the cost
of all the iterations in which we don’t find a marked k. We have by Theorem 2.1 that GroverSearch(t)

costs Õ(
√
n/t) queries to a procedure that checks if there is a collision in the graph defined by C̃

with respect to A[·, k] and B[k, ·], each of which costs GC(n,mi), where mi ≤ ` is the number of 1s
in C̃ at the beginning of the ith iteration. The cost of these steps is at most the following:

Õ

(
logn∑
i=0

√
n

2i
GC(n,mi)

)
∈ Õ

(
logn∑
i=0

√
n

2i
(
√
n+
√
mi)

)

9



∈ Õ

(
(n+

√
n`)

logn∑
i=0

(
1√
2

)i)
∈ Õ

(
n+
√
n`
)

We now analyze the cost of all the iterations in which we do find a marked witness k. Let T
be the number of witnesses found by BMM, that is, the number of times we execute step 2(b). Of
course, T is a random variable that depends on which witnesses k are found, and in which order.
We always have T ≤ min{n, `}.

Let i1, . . . , iT be the indices of rounds where we find a witness. Let tj be the value of t in round
j. Since there must be at least 1 marked element in the last round in which we find a marked
element, we have tiT ≥ 1. Since we find and eliminate at least 1 marked element in each round, we
also have ti(T−j−1)

≥ ti(T−j)
+ 1, which yields ti(T−j)

≥ j + 1⇒ tij ≥ T − j + 1.

Let λj be the number of graph collisions found on the jth successful iteration, that is, the

number of pairs witnessed by the jth witness, kj , that have not been recorded in C̃ at the time we
find kj . Then λj is also a random variable depending on which other witnesses k have been found

already, but we always have
∑T

j=1 λj = `.
Then we can upper bound the cost of all the iterations in which we do find a witness by the

following:

Õ

 T∑
j=1

(√
n

tij
GC(n,mij ) + GCall(n,mij , λj)

) (1)

∈ Õ

 T∑
j=1

(√
n

T − j + 1
GC(n,mij ) + GCall(n,mij , λj)

) (2)

∈ Õ

√nTGC(n, `) +
T∑
j=1

GCall(n,mij , λj)

 (3)

∈ Õ

√nT (√`+
√
n
)

+

T∑
j=1

(√
nλj +

√
`
) (4)

∈ Õ
(√

nT`+ n
√
T +
√
n`T + T

√
`
)

(5)

∈ Õ
(√

nmin{n, `}`+ n
√

min{n, `}+
√

min{n, `}n`+ min{n, `}
√
`
)

(6)

∈ Õ
(
n
√
`
)

(7)

In (3), we use the fact that mij ≤ `, and in (5), we use
∑T

j=1

√
λj ≤

√
T
√∑

j λj =
√
`T , which

follows from the Cauchy–Schwarz inequality. When ` = 0, the algorithm makes Õ(
√
n) queries,

giving an upper bound of Õ(n
√
`+ 1) queries.

4.2 Lower Bound

Theorem 4.2. The quantum query complexity of Boolean Matrix Multiplication is
Ω(n

√
min{`, n2 − `}), even if the value of ` is known.

10



Proof. Consider an instance of Boolean Matrix Multiplication where we know that B is the
identity matrix and A has exactly ` ones. In this case, the output C is equal to A. We will prove
an Ω(n

√
min{`, n2 − `}) lower bound for this problem. This is the problem of learning an n2-bit

string promised that it has ` ones. Since the problem is symmetric under complementation, i.e.,
learning A is equivalent to learning the complement of A, we can assume without loss of generality
that ` ≤ n2/2.

Now our problem is to learn an n2-bit string given that it has ` ≤ n2/2 ones. Divide the string
into ` parts, each of size bn2/`c, which is at least 2 since ` ≤ n2/2. Now restrict to the inputs
where we are promised that each part contains exactly one 1. Finding the locations of all these
ones is equivalent to ` instances of the Search problem on n2/` bits each. Since each instance
of the search problem requires Ω(

√
n2/`) queries to solve, and there are ` copies of the problem,

using the composition theorem proved by [LMR+11], we get a lower bound of Ω(
√
n2`). Using

the observation that the complement of the problem is equally hard gives us a lower bound of
Ω(n

√
min{`, n2 − `}).

This lower bound implies that our algorithm is tight for any ` ≤ εn2 for any constant ε < 1.
However, it is not tight for ` = n2−o(n). We can search for pairs (i, j) such that there is no k ∈ [n]
that witnesses (i, j) in cost n3/2. If there are m 0s, we can find them all in Õ(n3/2

√
m), which is

o(n
√
`) when m ∈ o(n). It remains open to close the gap between Õ(n3/2

√
m) and Ω(n

√
m) when

m ∈ o(n2).

5 Time Efficient Implementation

In this section, we will prove the following theorem.

Theorem 5.1. The time complexity of Boolean Matrix Multiplication is
Õ
(
n
√
`+ 1 + `

√
n
)
.

To prove Theorem 5.1, we will slightly modify AllGCG(fA, fB). First, we discuss how we store
the data to enable efficient access to stored data.

We suppose that the graph G is stored as a data structure M that contains the following
information:

• for each vertex u in A, the degree of u;

• for each vertex u in A, a list of all the vertices of B not connected to u.

The size of M is at most Õ(n2), but the key idea is that its size will be much smaller when G
is “close to” a complete bipartite graph. Using adequate data structures to implement M (e.g.,
using self-balancing binary search trees), we can perform the following four access operations in
poly(log n) time.

get-degree(u): get the degree of a vertex u ∈ A

check-connection(u, v): check if the vertices u ∈ A and v ∈ B are connected

get-vertA(i, d): get the i-th smallest vertex in A that has degree lower than d

get-vertB(i, u): get the i-th smallest vertex in B not connected to u ∈ A

11



For the latter two access operations, the order on the vertices refers to the usual order ≤ obtained
when considering vertices in A and B as integers in {1, . . . , n}. We assume that these two access
operations output an error message when the query is not well-defined (i.e, when i is too large).

We can also update M in poly(log n) time to take into consideration the removal of one edge
(u, v) from E (i.e., update the degree of u and update the list of vertices not connected to u).
This low complexity will be crucial since our main algorithm (in Theorem 5.2 below) will remove
successively edges from E.

Theorem 5.2. For all λ ≥ 1, GCtall(n,m, λ) ∈ Õ(
√
nλ+

√
mλ) and GCt(n,m) ∈ Õ(

√
n+
√
m).

Proof. We will use the following algorithm to find all graph collisions.

AllGCtG(fA, fB)

Let di be the degree of the ith vertex in A, and let ci := n − di. Let
the vertices in A be arranged in decreasing order of degree, so that
d1 ≥ d2 ≥ . . . ≥ dn.

1. Find the highest degree marked vertex in A using FindMax. Let r
denote the index of this vertex. Õ(

√
n)

2. Let Γ(r) denote the set of neighbours of r. Find all marked neigh-
bours of r using SearchAll. Output any graph collisions found.
Õ(
√
nλ)

3. Let B′ denote the set of marked neighbours of r. Find all graph
collisions in A × B′ using SearchAll. Output any graph collisions
found. Õ(

√
nλ)

4. Let A′ = {u ∈ A : du < dr} be the set of vertices in A with lower
degree than r. Find all graph collisions in A′ × (B \ Γ(r)) using
SearchAll. Output all graph collisions found. Õ(

√
mλ)

We analyze the complexity of AllGCtG(fA, fB) step by step.
Step 1 requires one call to FindMax, where we search over all vertices for a marked vertex

maximizing the function get-degree(u), which we can compute using M in time Õ(1). The cost
is therefore Õ(

√
n).

In Step 2, we perform SearchAll for elements of B that are both marked, and a neighbour of r.
We can check if a vertex in B is marked by querying fB, and we can check if a vertex in B is a
neighbour of r using check-connection(·, r) in time Õ(1). The cost to find all of B′ is therefore
Õ(
√
n |B′|). However, B′ contains at most λ vertices, since r is marked, and so each marked

neighbour we find corresponds to a distinct graph collision. The cost is therefore Õ(
√
nλ).

In Step 3, we perform SearchAll for elements of A × B′ that are graph collisions. To check
if a pair (u, v) ∈ A × B′ is a graph collision, we must query fA(u) and fB(v), and compute
check-connection(u, v), which can be done in time Õ(1), so the total time complexity of the step
is Õ(

√
|A × B′|λ) = Õ(

√
nλ), since |A × B′| ≤ nλ.

We have now found all graph collisions inA×Γ(r), and we know that there are no graph collisions
in (A \ A′)× B, since no vertex in A \ A′ is marked. Thus, all remaining graph collisions must lie
in A′× (B \Γ(r)). In Step 4, we find all of these remaining graph collisions using SearchAll, where,
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again, we can check if some (u, v) is a graph collision in time complexity Õ(1). In order to implement
this step time-efficiently, the search is actually done over the set {1, . . . , |A′|} × {1, . . . , |B \ Γ(r)|},
using the bijection (i, j) 7→ (get-vertA(i, dr), get-vertB(j, r)) from this set to A′×(B\Γ(r)|) and
observing that this bijection can be evaluated in time complexity Õ(1) from the data structureM.
Thus, this search costs Õ(

√
|A′ × (B \ Γ(r))|λ). Note that |B \ Γ(r)| ≤ n− dr = cr, and so∣∣A′∣∣ |B \ Γ(r)| ≤

∣∣A′∣∣ cr ≤ m,
since every vertex in A′ has at least cr non-edges. Thus Step 4 costs Õ(

√
mλ).

The time complexity of this algorithm is therefore Õ(
√
nλ +

√
mλ), and it outputs all graph

collisions. To check if there is at least one graph collision instead of finding them all, we can replace
finding all marked elements with SearchAll with an application of Search to check if there is any
marked vertex in Step 2, and an application of Search to check if there is any graph collision in Steps
3 and 4. These procedures require Õ(

√
n), Õ(

√
n), and Õ(

√
m) time respectively, by Corollary 2.2.

Thus, GCt(n,m) is Õ(
√
n+
√
m).

We are now ready to prove the main result of this section, Theorem 5.1.

Proof of Theorem 5.1. This proof is similar to that of Theorem 4.1, which analyzed the query
complexity of the algorithm BMM(A,B). Instead, we will analyze the time complexity of this
algorithm.

We first discuss the complexity of creating the data structure M (remember that updating M
to take in consideration the removal of one edge from E has polylogarithmic cost). Initially the
graph considered is the complete bipartite graph, so each vertex of A has the same degree n and,
for each vertex u ∈ A, there is no vertex in B not connected to u. The cost for creating M is thus
Õ(n) time.

Then, we note that the only quantum subroutines used in the algorithm BMM(A,B) are
GroverSearch(t) and AllGC. The rest of the algorithm is classical and time efficient. Thus the
only change that has to be made to the analysis is the substitution of time complexities of these
algorithms into the final calculation, instead of their query complexities. However, Grover’s algo-
rithm and its variants used in this paper are all time-efficient, i.e., their time complexity is the
same as the query complexity up to polylogarithmic factors. Since we are neglecting these factors,
the only change we need to make in the calculation is the substitution of values of GCtall (n,m, λ)
and GCt(n,m) from Theorem 5.2.

Thus the calculation of time complexity is exactly the same as the calculation of query com-
plexity at the end of Theorem 4.1 up to equation (3).

We continue the calculation here starting from equation (3). The time complexity is upper
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bounded by the following.

Õ

√nTGCt(n, `) +
T∑
j=1

GCtall(n,mij , λj)

 (8)

∈ Õ

√nT (√`+
√
n
)

+
T∑
j=1

(√
nλj +

√
`λj

) (9)

∈ Õ
(√

nT`+ n
√
T +
√
n`+ `

√
T
)

(10)

∈ Õ
(
n
√
`+ `

√
n
)

(11)

Theorem 4.2 shows that the time complexity given in Theorem 5.1 is optimal in the case ` ≤ n.
We conclude this section by discussing the optimality in the case ` > n. We first present a simple
reduction from general Boolean matrix multiplication (i.e., without any sparsity condition on the
output matrix) to several instances of Boolean matrix multiplications with sparse output matrices.

Proposition 5.3. Let L be any value such that n ≤ L ≤ n2. Assume the existence of an algorithm
that multiplies two n× n Boolean matrices with at most L non-zero entries in the product in time
T (n,L), where T (n,L) ≥ L. Then there exists another algorithm that computes the product of two

arbitrary n× n Boolean matrices in time Õ(n
2

L × T (n,L)).

Proof. Partition the set {1, . . . , n} into t = O(n2/L) subsets S1, . . . , St, each of size at most L/n.
For each r ∈ {1, . . . , t}, let Br be the n × n Boolean matrix such that Br[i, j] = 1 if and only if
B[i, j] = 1 and j ∈ Sr. Observe that

AB =
t∑

r=1

ABr,

where the sum represents the entry-wise OR operation. In order to compute the Boolean product
AB it is thus sufficient to compute the t Boolean products ABr. Finally, observe that each product
ABr can have at most n× L/n = L non-zero entries.

In the time complexity setting, the asymptotically fastest algorithms [CW90, Vas12] computing
the product of two n × n Boolean matrices have complexity O(n2.38) but use an algebraic ap-
proach. This algebraic approach has many disadvantages, the main being that the huge constants
involved in the complexities make these algorithms impractical. Indeed, in the classical setting,
much attention has focused on algorithms that do not use reductions to matrix multiplication over
rings, but instead are based on search or on combinatorial arguments. Such algorithms are often
called combinatorial algorithms, and the main open problem in this field is to understand whether a
O(n3−ε)-time combinatorial algorithm, for some constant ε > 0, exists for Boolean matrix multipli-
cation. Unfortunately, there has been little progress on this question. The best known combinatorial
classical algorithm for Boolean matrix multiplication, by Bansal and Williams [BW09], has time
complexity O(n3/ log2.25(n)).

The reduction stated in Proposition 5.3 is actually classical and combinatorial: the resulting
algorithm uses only classical combinatorial operations and O(n2/L) calls to the first algorithm.
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Thus Proposition 5.3 implies that, if for a given value ` ≥ n the complexity of Theorem 5.1 can be
improved to O

(
`
√
n/nδ

)
for some constant δ > 0 using techniques similar to ours (i.e., based on

quantum search), then there exists an algorithm based on quantum search and classical combina-
torial operations that computes the product of two n × n Boolean matrices with time complexity
Õ(n5/2−δ), i.e., an amortized cost of Õ(n1/2−δ) per entry of the output matrix. Since quantum
search can typically be simulated classically with a quadratic increase in the time complexity, such
an algorithm may lead to a combinatorial way of computing, classically, each entry of the output
matrix in (amortized) time Õ(n1−ε), for some constant ε > 0, giving the first truly subcubic-time
classical combinatorial algorithm for Boolean matrix multiplication.
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