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Abstract. We study the complexity of quantum query algorithms that
make p queries in parallel in each timestep. We show tight bounds for
a number of problems, specifically Θ((n/p)2/3) p-parallel queries for el-
ement distinctness and Θ((n/p)k/(k+1)) for k-sum. Our upper bounds
are obtained by parallelized quantum walk algorithms, and our lower
bounds are based on a relatively small modification of the adversary
lower bound method, combined with recent results of Belovs et al. on
learning graphs. We also prove some general bounds, in particular that
quantum and classical p-parallel complexity are polynomially related for
all total functions f when p is small compared to f ’s block sensitivity.

1 Introduction

Using quantum effects to speed up computation has been a prominent research-
topic for the past two decades. Most known quantum algorithms have been de-
veloped in the model of quantum query complexity, the quantum generalization
of decision tree complexity. Here an algorithm is charged for each “query” to the
input, while intermediate computation is free (see [15] for more details). This
model facilitates the proof of lower bounds, and often, though not always, quan-
tum query upper bounds carry over to quantum time complexity. For certain
functions one can obtain large quantum-speedups in this model. For example,
Grover’s algorithm [21] can search an n-bit database (looking for a bit-position
of a 1) using O(

√
n) queries. In contrast, any classical algorithm needs Ω(n)

queries. For some partial functions we know exponential and even unbounded
speed-ups [18, 34, 33, 7].

A more recent crop of quantum speed-ups come from algorithms based on
quantum walks. Such algorithms solve a search problem by embedding the search
on a graph, and doing a quantum walk on this graph that converges rapidly to a
superposition over only the “marked” vertices, which are the ones containing a
solution. An important example is Ambainis’s quantum algorithm for solving
the element distinctness problem [3]. In this problem one is given an input
x ∈ [q]n, and the goal is to find a pair of distinct i and j in [n] such that
xi = xj , or report that none exists. Ambainis’s quantum walk solves this in
O(n2/3) queries, which is optimal [1]. Classically, Θ(n) queries are required. Two
generalizations of this are the k-distinctness problem, where the objective is to



find distinct i1, . . . , ik ∈ [n] such that xi1 = · · · = xik , and the k-sum problem,
where the objective is to find distinct i1, . . . , ik ∈ [n] such that xi1 + · · ·+xik = 0
mod q. Ambainis’s approach solves both problems using O(nk/(k+1)) quantum
queries. Recently, Belovs gave a o(n3/4)-query algorithm for k-distinctness for
any fixed k [8] (which can also be made time-efficient for k = 3 [11]). In contrast,
Ambainis’s O(nk/(k+1))-query algorithm is optimal for k-sum [10, 14].

Here we consider to what extent such algorithms can be parallelized. Doing
operations in parallel is a well-known way to trade hardware for time, speeding up
computations by distributing the work over many processors that run in parallel.
This is becoming ever more prominent in classical computing due to multi-core
processors and grid computing. In the case of quantum computing there is an
additional reason to consider parallelization, namely the limited lifetime of qubits
due to decoherence: because of unintended interaction with their environment,
qubits tend to lose their quantum properties over a limited amount of time,
called the decoherence time, and degrade to classical random bits. One way to
fight this is to apply quantum error-correction4, which can counteract the effects
of certain models of decoherence. Another way is to try to parallelize as much as
possible, completing the computation before the qubits decohere too much (this
may of course increase the width of the computation, creating other problems).

We know of only a few results about parallel quantum algorithms, most
of them in the circuit model where “time” is measured by the depth of the
circuit. A particularly important and beautiful example is the work of Cleve
and Watrous [16], who showed how to implement the n-qubit quantum Fourier
transform using a quantum circuit of depth O(log n). As a consequence, they
were able to parallelize the quantum component of Shor’s algorithm: they showed
that one can factor n-bit integers by means of an O(log n)-depth quantum circuit
with polynomial-time classical pre- and post-processing. There have also been
a number of papers about quantum versions of small-depth classical Boolean
circuit classes like AC and NC [29, 19, 23, 35]. Beals et al. [5] show how the
quantum circuit model can be efficiently simulated by the more realistic model
of a distributed quantum computer (see also [20]). The setting of measurement-
based quantum computing (see [25] and references therein) in some cases allows
more parallelization than the usual circuit model. Another example, the only
one we know of in the setting of query complexity, is Zalka’s tight analysis of
parallelizing quantum search [36, Section 4]. Suppose one wants to search an
n-bit database, with the ability to do p queries in parallel in one time-step. An
easy way to make use of this parallelism is to view the database as p databases
of n/p bits each, and to run a separate copy of Grover’s algorithm on each of
those. This finds a 1-position with high probability using O(

√
n/p) p-parallel

queries, and Zalka showed that this is optimal.

Our results. We focus on parallel quantum algorithms in the setting of
quantum query complexity. Consider a function f : D → {0, 1}, with D ⊆ [q]n.
For standard (sequential) query complexity, let Q(f) denote the bounded-error

4 Parallelism is in fact necessary to do quantum error-correction against a constant
noise rate: sequential operations cannot keep up with the parallel build-up of errors.



quantum query complexity of f , i.e., the minimal number of queries needed
among all quantum algorithms that (for every input x ∈ D) output f(x) with
probability at least 2/3. In the p-parallel query model, for some integer p ≥ 1,
an algorithm can make up to p quantum queries in parallel in each timestep. In
that case, we let Qp‖(f) denote the bounded-error p-parallel complexity of f . As
always in query complexity, all intermediate input-independent computation is
free. For every function, we have Q(f)/p ≤ Qp‖(f) ≤ Q(f).

An extreme case of the parallel model is where p large enough so that Qp‖(f)
becomes 1; such algorithms are called “nonadaptive,” because all queries are
made in parallel. Montanaro [28] showed that for total functions, such nonadap-
tive quantum algorithms cannot improve much over classical algorithms: every
Boolean function that depends on n input bits needs p ≥ n/2 nonadaptive quan-
tum queries for exact computation, and p = Ω(n) for bounded-error.

Here we prove matching upper and lower bounds on the p-parallel complexity
Qp‖(f) for a number of problems: Θ((n/p)2/3) queries for element distinctness
and Θ((n/p)k/(k+1)) for the k-sum problem for any constant k > 1. Our upper
bounds are obtained by parallelized quantum walk algorithms, and our lower
bounds are based on a modification of the adversary lower bound method com-
bined with some recent results by Belovs et al. about using so-called “learning
graphs,” both for upper and for lower bounds [9, 13, 10, 14]. The modification
we need to make is surprisingly small, and technically we need to do little more
than adapt recent progress on sequential algorithms to the parallel case. Still,
we feel this extension is important because: (1) our techniques may be useful
for proving future lower bounds; (2) parallel quantum algorithms are important
and yet have received little attention before; and (3) the fact that the extension
is easy and natural increases our confidence that the adversary method is the
“right” approach in the parallel as well as the sequential case.

In Section 5 we prove some more “structural” results, i.e., bounds for Qp‖(f)
that hold for all Boolean functions f : {0, 1}n → {0, 1}. Specifically, based on
earlier results in the sequential model due to Beals et al. [6], we show that if p
is not too large then Qp‖(f) is polynomially related to its classical deterministic
p-parallel counterpart. We also observe that Qp‖(f) ≈ n/2p for almost all f .

2 Preliminaries

Sequential and parallel query complexity. We use [n] := {1, . . . , n},
(
[n]
k

)
:=

{S ⊆ [n] : |S| = k},
(
[n]
≤k
)

:= {S ⊆ [n] : |S| ≤ k}, and
(
n
≤k
)

:=
∑k
s=0

(
n
s

)
.

We will consider algorithms in the p-parallel quantum query model. A quan-
tum query to an input x ∈ [q]n corresponds to the unitary map |i, b〉 7→ |i, b+xi〉.
Here the first n-dimensional register contains the index i ∈ [n] of the queried
element, and the value of that element is added (in Zq) to the contents of the
second (q-dimensional) register. In order to enable an algorithm to not make a
query on part of its state, we extend the previous unitary map to the case i = 0
by |0, b〉 7→ |0, b〉. In each timestep we can make up to p quantum queries in



parallel by applying the map |i1, b1, . . . , ip, bp〉 7→ |i1, b1 +xi1 , . . . , ip, bp +xip〉 at
unit cost. All intermediate input-independent computation is free.

Consider a function f : D → {0, 1}, with D ⊆ [q]n. When p = 1 we have
the standard sequential query complexity, and we let Qε(f) denote the quantum
query complexity of f with error probability ≤ ε on every input x ∈ D. For

general p, let Q
p‖
ε (f) be the p-parallel complexity of f . Note that Qε(f)/p ≤

Q
p‖
ε (f) ≤ Qε(f) for every function. The exact value of the error probability ε

does not matter, as long as it is a constant < 1/2. We usually fix ε = 1/3,

abbreviating Q(f) = Q1/3(f) and Qp‖(f) = Q
p‖
1/3(f) as in the introduction.

We will use an extension of the adversary bound for the usual sequential
(1-parallel) quantum query model. An adversary matrix Γ for f is a real-valued
matrix whose rows are indexed by f−1(0) and whose columns by f−1(1). Let ∆j

be the Boolean matrix whose rows and columns are indexed by x ∈ f−1(0) and
y ∈ f−1(1), such that ∆j [x, y] = 1 if xj 6= yj , and ∆j [x, y] = 0 otherwise. The
(negative-weights) adversary bound for f is given by:

ADV(f) = max
Γ

‖Γ‖
maxj∈[n] ‖Γ ◦∆j‖

, (1)

where Γ ranges over all adversary matrices for f , ‘◦’ denotes entry-wise product
of two matrices, and ‘‖·‖’ denotes the operator norm associated to the `2 norm.
This lower bound (often denoted ADV±(f) instead of ADV(f)) was introduced
by Høyer et al. [22], generalizing Ambainis [2]. They showed Qε(f) ≥ 1

2 (1 −√
ε(1− ε))ADV(f) for all f . Reichardt et al. [32, 26] showed this is tight: Q(f) =

Θ(ADV(f)) for all f .

Quantum walks. We will construct and analyze our algorithms in the quan-
tum walk framework of [27], which we now briefly describe. Given a reversible
Markov process P on state space V , and a subset M ⊂ V of marked elements,
we define three costs: the setup cost, S, is the cost to construct a superposi-
tion over all states

∑
v∈V
√
πv|v〉, where πv is the probability of vertex v in the

stationary distribution π of P ; the checking cost, C, is the cost to check if a
state v ∈ V is in M ; and the update cost, U, is the cost to perform the map
|v〉|0〉 7→ |v〉

∑
u∈V
√
Pvu|u〉, where Pvu is the transition probability in P to go

from v to u. Then, if δ is the spectral gap of P , and ε is a lower bound on∑
v∈M πv whenever M is nonempty, we can determine if M is nonempty with

bounded error probability in cost O
(
S + 1√

ε

(
1√
δ
U + C

))
. If S, U and C denote

query complexities, then the above expression gives the bounded-error query
complexity of the quantum walk algorithm. If they denote p-parallel query com-
plexities, the above expression gives the bounded-error p-parallel complexity.

3 Lower bounds for parallel quantum query complexity

3.1 Adversary bound for parallel algorithms

We start by extending the adversary bound for the usual sequential quantum
query algorithms to p-parallel algorithms. For J ⊆ [n], let xJ be the string x



restricted to the entries in J . Let ∆J be the Boolean matrix whose rows are
indexed by x ∈ f−1(0) and whose columns are indexed by y ∈ f−1(1), and that
has a 1 at position (x, y) iff xJ 6= yJ (i.e., xj 6= yj for at least one j ∈ J). For
J = ∅, ∆J is the all-0 matrix. Define the following quantity:

ADVp‖(f) = maxΓ
‖Γ‖

max
J∈([n]
≤p)
‖Γ ◦∆J‖

. (2)

The following fact (proved in our full version [24]) implies we only need

to consider sets J ∈
(
[n]
p

)
in the above definition: ADVp‖(f) equals

max
Γ

‖Γ‖
max

J∈([n]
p ) ‖Γ ◦∆J‖

up to a factor of 2. We could even use the latter as an

alternative definition of ADVp‖(f).

Fact 1 For every set J ⊆ K ⊆ [n], we have ‖Γ ◦∆J‖ ≤ 2‖Γ ◦∆K‖.

Theorem 2. For every f : D → {0, 1} and D ⊆ [q]n, Qp‖(f) = Θ(ADVp‖(f)).

Proof. In order to derive p-parallel lower bounds from sequential lower bounds,
observe that we can make a bijection between input x ∈ [q]n and a larger string

X indexed by all sets J ∈
(
[n]
≤p
)
, such that XJ = (xj)j∈J . That is, each index

J of X corresponds to up to p indices j of x. We now define a new function
F : D′ → {0, 1}, where D′ is the set of X as above, in 1-to-1 correspondence
with the elements of x ∈ D, and F (X) is defined as f(x). One query to X can be
simulated by p parallel queries to x, and vice versa, so we have Qp‖(f) = Q(F ).
We have Q(F ) = Θ(ADV(F )) by [32, 26]. Now Eq. (1) applied to F gives the
claimed lower bound of Eq. (2) on Qp‖(f). ut

Sometimes we can even use the same adversary matrix Γ to obtain optimal
lower bounds for F and f . An example is the n-bit OR-function. Let Γ be the
all-ones 1× n matrix, with the row corresponding to input 0n and the columns
indexed by all weight-1 inputs. Then ‖Γ‖ =

√
n and ‖Γ ◦∆j‖ = 1 for all

j ∈ [n], and hence Q(OR) = Ω(
√
n). To get p-parallel lower bounds, we define

a new function F : X 7→ {0, 1} as in the proof of Theorem 2. We can use the
same Γ , with the n columns still indexed by the weight-1 inputs to f (which
induce 1-inputs to F ). Now J ranges over subsets of [n] of size at most p, and
∆J will be the matrix whose (x, y)-entry is 1 if there is at least one j ∈ J
such that xj 6= yj . Note that ‖Γ ◦∆J‖ =

√
|J | for all J . Hence Qp‖(OR) =

Ω(ADV(F )) = Ω(
√
n/p). This is optimal and was already proved (in a different

way) by Zalka [36, Section 4].

3.2 Belovs’s learning graph approach

Recently Belovs [9] gave a new approach to designing quantum algorithms, in-
troducing the model of learning graphs to prove upper bounds on the adversary



bound, and hence on quantum query complexity. We state it here for certifi-
cate structures. We define these below, slightly simpler and less general than
Definitions 1 and 3 of Belovs and Rosmanis [13] (for us M denotes a minimal
certificate, while in [13] it denotes the set of supersets of a minimal certificate).

Definition 1. Let C be a set of incomparable subsets of [n]. We say C is a 1-
certificate structure for a function f : D → {0, 1}, with D ⊆ [q]n, if for every
x ∈ f−1(1) there exists an M ∈ C such that for all y ∈ D, yM = xM implies
f(y) = 1. We say C is k-bounded if |M | ≤ k for all M ∈ C.

The learning graph complexity of C is defined in the following in its primal
formulation as a minimization problem (we will see an equivalent dual formu-
lation soon). Let E = {(S, j) : S ⊆ [n], j ∈ [n]\S}. For e = (S, j) ∈ E , we use
s(e) = S and t(e) = S ∪ {j}.

LGC(C) = min
√∑

e∈E we such that (3)∑
e∈E

θe(M)2

we
≤ 1 for all M ∈ C (4)∑

e∈E:t(e)=S

θe(M) =
∑

e∈E:s(e)=S

θe(M) for all M ∈ C, ∅ 6= S ⊆ [n],M 6⊆ S (5)

∑
e∈E:s(e)=∅

θe(M) = 1 for all M ∈ C (6)

θe(M) ∈ R, we ≥ 0 for all e ∈ E and M ∈ C (7)

For each M , θe(M) is a flow from ∅ to M on the graph with vertices {S ⊆ [n]}
and edges {{S, S ∪ {j}} : (S, j) ∈ E} if θe(M) satisfies condition (5). Moreover,
θe(M) is a unit flow if it also satisfies condition (6).

The learning graph complexity of C is an upper bound on ADV(f), and hence
on Q(f), for any function f with certificate structure C. This bound is not always
optimal, since it only depends on the certificate structure of f . E.g. k-distinctness
has quantum query complexity o(n3/4) even though it has the same 1-certificate
structure as k-sum, whose quantum query complexity is Θ(nk/(k+1)) [10, 14].
However, Belovs and Rosmanis [13] proved that for a special class of functions,
it turns out the upper bound LGC(C) is optimal.

Definition 2. An orthogonal array of length k is a set T ⊆ [q]k, such that for
every i ∈ [k] and every x1, . . . , xi−1, xi+1, . . . , xk there exists exactly one xi ∈ [q]
such that (x1, . . . , xk) ∈ T .

Theorem 3 (Belovs-Rosmanis). Let C be a k-bounded 1-certificate structure
for some constant k, q ≥ 2|C|, and let each M ∈ C be equipped with an orthogonal
array TM of length |M |. Define a Boolean function f : [q]n → {0, 1} by: f(x) = 1
iff there exists an M ∈ C such that xM ∈ TM . Then Q(f) = Θ(LGC(C)).

For example, the element distinctness problem ED on input x ∈ [q]n is in-

duced by the 2-bounded 1-certificate structure C =
(
[n]
2

)
, equipped with associ-

ated orthogonal arrays T{i,j} = {(v, v) : v ∈ [q]}. Hence Q(ED) = Θ(LGC(C)).



Belovs and Rosmanis [13] show that an equivalent dual definition of the
learning graph complexity as a maximization problem is the following:

LGC(C) = max
√∑

M∈C α∅(M)2 (8)

s.t.
∑
M∈C(αs(e)(M)− αt(e)(M))2 ≤ 1 for all e ∈ E (9)

αS(M) = 0 whenever M ⊆ S
αS(M) ∈ R for all S ⊆ [n] and M ∈ C

In particular, that means we can prove lower bounds on LGC(C) (and hence, for
the functions described in Theorem 3, on Q(f)) by exhibiting a feasible solution
{αS(M)} for this maximization problem and calculating its objective value.

Before stating a similar result for p-parallel query complexity, we first adapt
learning graphs. Edges, which were of type e = (S, j) with S ⊆ [n] and j ∈ [n]\S,
are now of type e = (S, J) with S ⊆ [n], J ⊆ [n] \ S and |J | ≤ p.

Definition 3. The p-parallel learning graph complexity LGCp‖(C) of C is de-
fined as LGC(C) where we replace the edge set E with Ep = {(S, J) : S ⊆ [n], J ⊆
[n] \ S, |J | ≤ p}. Its dual is analogous. In particular, we replace (9) by∑

M∈C(αs(e)(M)− αt(e)(M))2 ≤ 1 for all e = (S, J) ∈ Ep,
where s(e) = S and t(e) = S ∪J . We call this modified constraint “parallel-(9).”

As in the special case of p = 1, the p-parallel learning graph complexity of C
provides an upper bound on ADVp‖(f), and hence on Qp‖(f), for any function f
having that same certificate structure. The proof is given in our full version [24].

Lemma 1. Let C be a certificate structure for f . Then ADVp‖(f) ≤ LGCp‖(C).

We now generalize Theorem 3 to the p-parallel case. The proof, given in [24],
is an adaptation of the proof of [13, Theorem 5].

Theorem 4. Let C be a k-bounded 1-certificate structure for some constant k,
q ≥ 2|C|, and let each M ∈ C be equipped with an orthogonal array TM of length
|M |. Define a Boolean function f : [q]n → {0, 1} as follows: f(x) = 1 iff there

exists an M ∈ C such that xM ∈ TM . Then Qp‖(f) = Θ(LGCp‖(C)).

4 Parallel quantum query complexity of specific functions

4.1 Algorithms

In this section we give upper bounds for element distinctness and k-sum in the
p-parallel quantum query model, by way of quantum walk algorithms.

Our p-parallel algorithm for element distinctness is based on the sequential
query algorithm for element distinctness of Ambainis [3]. Ambainis’s algorithm
uses a quantum walk on a Johnson graph, J(n, r), which has vertex set V =
{S ⊆ [n] : |S| = r} and edge set {{S, S′} ⊆ V : |S \ S′| = 1}. Each state S ∈ V
represents a set of queried indices. The algorithm seeks a state S containing
(i, xi) and (j, xj) such that i 6= j and xi = xj . Such a state is said to be marked.



Theorem 5. Element distinctness on [q]n has Qp‖(ED) = O((n/p)2/3).

Proof. We modify Ambainis’s quantum walk algorithm slightly. Consider a walk
J(n, r/p)p, on p copies of the Johnson graph J(n, r/p). Vertices are p-tuples
(S1, S2, . . . , Sp) where, for each i ∈ [p], Si ⊆ [n] and |Si| = r/p. Two vertices
(S1, S2, . . . , Sp) and (S′1, S

′
2, . . . , S

′
p) are adjacent if, for each i ∈ [p], |Si \S′i| = 1.

We call a state (S1, S2, . . . , Sp) marked if there are j, j′ ∈
⋃p
i=1 Si such that xj =

xj′ . Since the stationary distribution is µp, where µ is the uniform distribution

on
(
[n]
r/p

)
, the probability that a state is marked is at least ε = Ω(r2/n2).

The setup cost is only S = O(r/p) p-parallel queries, since it suffices to query
r elements in the initial superposition over all states. Similarly, the update re-
quires that we query and unquery p elements, but we can accomplish this in two
p-parallel queries, so U = O(1). Also, C = 0. Finally, the eigenvalues of the prod-
uct of p copies of a graph are exactly the products of p eigenvalues of that graph.
Hence if the largest eigenvalue of a graph is 1 and the second-largest is 1 − δ,
then the same will be true for the product graph. Accordingly, the spectral gap δ
of p copies of J(n, r/p) is exactly the spectral gap of one copy of J(n, r/p), which
is Ω(p/r). We can now calculate the p-parallel query complexity of element dis-

tinctness as O
(
S + 1√

ε

(
( 1√

δ
)U + C

))
= O

(
r
p + (nr )

(√
r
p

))
= O

(
r
p + n√

rp

)
.

Setting r to the optimal n2/3p1/3 gives an upper bound of O((n/p)2/3). ut

It is easy to generalize our element distinctness upper bound to k-sum:

Theorem 6. k-sum on [q]n has Qp‖(k-sum) = O((n/p)k/(k+1)).

Proof. Again, we walk on p copies of J(n, r/p), but now we consider a state
(S1, S2, . . . , Sp) marked if there are distinct indices i1, . . . , ik ∈

⋃p
i=1 Si such

that
∑k
j=1 xij = 0 (mod q). The proportion of marked states in a 1-instance is

ε = Ω(rk/nk). All other parameters are as in Theorem 5. We get the follow-

ing upper bound for k-sum: O
(
S + 1√

ε

(
1√
δ
U + C

))
= O

(
r
p + nk/2

rk/2

(√
r
p

))
=

O
(
r
p + nk/2

r(k−1)/2√p

)
. Setting r = nk/(k+1)p1/(k+1) gives O((n/p)k/(k+1)). ut

4.2 Lower bounds

We now use the ideas from Section 3.2 to prove p-parallel lower bounds for ED
and k-sum, matching our upper bounds if the alphabet size q is sufficiently large.
Our proofs are generalizations of the sequential lower bounds in [13, Section 4].

Theorem 7. For q ≥ 2
(
n
2

)
, ED on [q]n has Qp‖(ED) = Ω((n/p)2/3).

Proof. Recall that element distinctness is induced by the 1-certificate structure
C =

(
[n]
2

)
, equipped with associated orthogonal arrays T{i,j} = {(v, v) : v ∈ [q]}.

By Theorem 4, it suffices to prove the lower bound on the p-parallel learning
graph complexity of ED. For this, it suffices to exhibit a feasible solution to the



dual (8) and to lower bound its objective function. Note that the elements of E
are now of the form (S, J), where S ⊆ [n] and J ⊆ [n] \ S with |J | ≤ p. Define

αj = 1
2n max((n/p)2/3 − j/p, 0), and αS(M) =

{
0 if M ⊆ S
α|S| otherwise.

To show that this is a feasible solution, the only constraint we need to verify is
parallel-(9). Fix S ⊆ [n] of some size s, and a set J ⊆ [n] \S with |J | ≤ p. Let L
denote the left-hand side of parallel-(9), which is a sum over all

(
n
2

)
certificates

M ∈ C. With respect to e = (S, J), there are four kinds of M = {i, j}:

1. i, j ∈ S. Then αt(e)(M) = αs(e)(M) = 0, so these M contribute 0 to L.
2. i ∈ S, j ∈ J . There are s|J | ≤ sp such M , and each contributes α2

s to L
because αs(e)(M) = αs and αt(e)(M) = 0.

3. i, j 6∈ S, i, j ∈ J . There are
(|J|

2

)
≤
(
p
2

)
such M , each contributes α2

s to L.

4. i and/or j 6∈ S ∪ J . There are
(
n
2

)
−
(
s+|J|

2

)
≤ n2 such M , each contributes

|αs − αs+|J||2 to L.

Hence, using αs = 0 if s ≥ n2/3p1/3, αs ≤ α0 = 1
2p2/3n1/3 , and |αs − αs+|J||2 ≤

1/4n2, we can establish constraint parallel-(9):

L ≤
(
sp+

(
p
2

))
α2
s + n2|αs − αs+|J||2 ≤ p(n2/3p1/3 + p/2) 1

4p4/3n2/3 + n2 1
4n2 ≤ 1.

Hence our solution is feasible. Its objective value is
√(

n
2

)
α2
0 = Ω((n/p)2/3). ut

The lower bound proof for k-sum is similar. Here we use certificate structure
C =

(
[n]
k

)
with the orthogonal array T = {(v1, . . . , vk) :

∑k
i=1 vi = 0 mod q},

which induces k-sum. In [24], we show that the following has objective value√(
n
k

)
α2
0 = Ω

(
(n/p)k/(k+1)

)
and is feasible for LGCp‖(C):

αj = 1
2nk/2 max((n/p)k/(k+1) − j/p, 0) and αS(M) =

{
0 if M ⊆ S
α|S| otherwise;

Theorem 8. For q ≥ 2
(
n
k

)
, k-sum on [q]n has Qp‖(k-sum) = Ω

(
(n/p)k/(k+1)

)
.

5 Some general bounds

In this section we will relate quantum and classical p-parallel complexity. For the
sequential model (p = 1) it is known that quantum bounded-error query com-
plexity is no more than a 6th power less than classical deterministic complexity,
for all total Boolean functions [6]. Here we will see to what extent we can prove
a similar result for the p-parallel model.

We start with a few definitions, referring to [15] for more details. Let f :
{0, 1}n → {0, 1} be a total Boolean function. For b ∈ {0, 1}, a b-certificate for f
is an assignment C : S → {0, 1} to a subset S of the n variables, such that



f(x) = b whenever x is consistent with C. The size of C is |S|. The certificate
complexity Cx(f) of f on x is the size of a smallest f(x)-certificate that is
consistent with x. The certificate complexity of f is C(f) = maxx Cx(f). The
1-certificate complexity of f is C(1)(f) = max{x:f(x)=1} Cx(f). Given an input
x ∈ {0, 1}n and subset B ⊆ [n] of indices of variables, let xB denote the n-bit
input obtained from x by negating all bits xi whose index i is in B. The block
sensitivity bs(f, x) of f at input x, is the maximal integer k such that there
exist disjoint sets B1, . . . , Bk satisfying f(x) 6= f(xBi) for all i ∈ [k]. The block
sensitivity of f is bs(f) = maxx bs(f, x). Nisan [30] proved that

bs(f) ≤ C(f) ≤ bs(f)2. (10)

Via a standard reduction [31], Zalka’s Θ(
√
n/p) bound for OR implies:

Theorem 9. For every f : {0, 1}n → {0, 1}, Qp‖(f) = Ω(
√
bs(f)/p).

We now prove a general upper bound on deterministic p-parallel complexity:

Theorem 10. For every f : {0, 1}n → {0, 1}, Dp‖(f) ≤ dC(1)(f)/pebs(f).

Proof. Beals et al. [6, Lemma 5.3] give a deterministic decision tree for f that
runs for at most bs(f) rounds, and in each round queries all variables of a
1-certificate, and substituting their values into the function. This reduces the
function to a constant. By parallelizing the querying of the certificate we can
implement every round using dC(1)(f)/pe p-parallel steps. ut

Dp‖(f) and Qp‖(f) are polynomially related if p is not too big:

Theorem 11. For every f : {0, 1}n → {0, 1}, c > 1, p ≤ bs(f)1/c, we have
Dp‖(f) ≤ O(Qp‖(f)6+4/(c−1)).

Proof. We can assume C(f) = C(1)(f) (else consider 1−f). By Eq. (10) we have
p ≤ bs(f)1/c ≤ C(1)(f). We also have C(1)(f) ≤ bs(f)2. The assumption on p is
equivalent to p ≤ (bs(f)/p)1/(c−1). Using Theorems 9 and 10, we obtain

Dp‖(f) ≤ dC(1)(f)/pebs(f) ≤ O(bs(f)3/p) = O((bs(f)/p)3p2)

≤ O((bs(f)/p)3+2/(c−1)) ≤ O(Qp‖(f)6+4/(c−1)). ut

For example, if p ≤ bs(f)1/3 then Qp‖(f) is at most an 8th power smaller
than Dp‖(f). Whether superpolynomial gaps exist for large p remains open.

We end with an observation about random functions. Van Dam [17] showed
that an n-bit input string x can be recovered with high probability using n/2 +
O(
√
n) quantum queries, hence Q(f) ≤ n/2+O(

√
n) for all f : {0, 1}n → {0, 1}.

His algorithm already applies its queries in parallel, so allows us to compute x
using roughly n/2p p-parallel quantum queries. Ambainis et al. [4] proved an
essentially optimal lower bound for random functions: almost all f have Q(f) ≥
(1/2 − o(1))n. Since trivially Q(f) ≤ pQp‖(f), we obtain the p-parallel lower
bound Qp‖(f) ≥ (1/2− o(1))n/p for almost all f .



6 Conclusion and future work

This paper is the first to systematically study the power and limitations of paral-
lelism for quantum query algorithms. We leave open many interesting questions:

– There are many other computational problems whose p-parallel complexity
is unknown, for example finding a triangle in a graph or deciding whether two
given matrices multiply to a third one. For both of these problems, however,
even the sequential quantum query complexity is still open.

– We suspect Theorem 11 is non-optimal, and conjecture that Dp‖(f) and
Qp‖(f) are polynomially related for large p as well. Montanaro’s result [28]
about the weakness of maximally parallel quantum algorithms is evidence.

– Can we find relations with quantum communication complexity? Nonadap-
tive quantum query algorithms induce one-way communication protocols,
while fully adaptive ones induce protocols that are very interactive. Our
p-parallel algorithms would sit somewhere in between.
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