
Validating XML Documents in the Streaming Model with
External Memory∗

Christian Konrad
LIAFA, Univ. Paris Diderot; Paris, France;

and Univ. Paris-Sud; Orsay, France.
konrad@lri.fr

Frédéric Magniez
LIAFA, Univ. Paris Diderot, CNRS; Paris, France.

magniez@univ-paris-diderot.fr

ABSTRACT
We study the problem of validating XML documents of size
N against general DTDs in the context of streaming algo-
rithms. The starting point of this work is a well-known
space lower bound. There are XML documents and DTDs
for which p-pass streaming algorithms require Ω(N/p) space.

We show that when allowing access to external memory,
there is a deterministic streaming algorithm that solves this
problem with memory space O(log2N), a constant number
of auxiliary read/write streams, and O(logN) total number
of passes on the XML document and auxiliary streams.

An important intermediate step of this algorithm is the
computation of the First-Child-Next-Sibling (FCNS) encod-
ing of the initial XML document in a streaming fashion.
We study this problem independently, and we also provide
memory efficient streaming algorithms for decoding an XML
document given in its FCNS encoding.

Furthermore, validating XML documents encoding binary
trees in the usual streaming model without external memory
can be done with sublinear memory. There is a one-pass
algorithm using O(

√
N logN) space, and a bidirectional two-

pass algorithm using O(log2N) space performing this task.

Categories and Subject Descriptors
F.2.2 [Theory of Computation]: Analysis of algorithms
and problem complexity—Nonnumerical Algorithms and
Problems

General Terms
Algorithms, Theory

1. INTRODUCTION
∗Supported by the French ANR SeSur and Defis programs
under contracts ANR-07-SESU-013 (VERAP project) and
ANR-08-EMER-012 (QRAC project). Christian Konrad is
supported by a Fondation CFM-JP Aguilar grant.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICDT 2012, March 26–30, 2012, Berlin, Germany.
Copyright 2012 ACM 978-1-4503-0791-8/12/03 ...$10.00

The area of streaming algorithms has experienced tremen-
dous growth over the last decade in many applications.
Streaming algorithms sequentially scan the whole input
piece by piece in one pass, or in a small number of passes
(i.e., they do not have random access to the input), while us-
ing sublinear memory space, ideally polylogarithmic in the
size of the input. The design of streaming algorithms is
motivated by the explosion in the size of the data that al-
gorithms are called upon to process in everyday real-time
applications. Examples of such applications occur in bioin-
formatics for genome decoding, in Web databases for the
search of documents, or in network monitoring. The anal-
ysis of Internet traffic [1], in which traffic logs are queried,
was one of the first applications of this kind of algorithm.

There are various extensions of this basic streaming
model. One of them gives the streaming algorithm ac-
cess to an external memory consisting of several read/write
streams [8, 10, 6]. Then the streaming algorithm is also re-
laxed to perform multiple passes in any direction over the
input stream and the auxiliary streams. In most of the ap-
plications, the number of auxiliary streams is constant and
the total number of passes is logarithmic in the input size.

Verifying properties or evaluating queries of massive
databases is an active and challenging topic. For relational
algebra queries against relational databases, the situation
is quite clear. There are bidirectional O(logN)-pass deter-
ministic streaming algorithms with constant memory space
and a constant number of auxiliary streams [7]. Moreover,
the logarithmic number of passes is a necessary condition
in order to keep the memory space sublinear, even if ran-
domization is allowed. The latter was initially stated for
one-sided error [7] and then extended to two-sided error [4,
3].

In the context of data exchange, especially on the Web,
Extended Markup Language (XML) is emerging as the
standard, and is currently drawing much attention in data
management research. Only few is known on XML query
processing when only streaming access is allowed to the
XML document. For evaluating XQuery and XPath queries
against XML documents of size N , only the lower bound
has been extended [7, 4, 3], meaning that Ω(logN) passes
are necessary. For the upper bound, only simple refinements
of the direct algorithm are known: no auxiliary stream, one
pass and linear memory in the height of the XML document,
which in the worst case is as large as N .

This paper considers the problem of validating XML doc-
uments against a given Document Type Definition (DTD) in
a streaming fashion without restrictions on the DTD. Prior

works on that topic [16, 15] essentially try to characterize
those DTDs for which validity can be checked by a finite-
state automaton, that is a one-pass deterministic stream-
ing algorithm with constant memory. Concerning arbitrary
DTDs, two approaches have been considered in [16]. The
first one leads to an algorithm with memory space linear
in the height of the XML document [16]. The second one
consists in constructing a refined DTD of at most quadratic
size, which defines a similar family of tree documents as the
original one, and against which validation can be done with
constant space. Nonetheless, for an existing document and
DTD, the later requires that both, documents and DTD, are
converted before validation.

One of the obstacles prior works had to cope with was
to check well-formedness of XML documents, that is every
opening tag matches its same-level closing tag. Due to the
past work of [12], we can now perform such a verification
with a constant-pass randomized streaming algorithm with
sublinear memory space and no auxiliary streams. In one-
pass the memory space is O(

√
N logN), and collapses to

O(log2N) with an additional pass in reverse direction.
The starting point of this work is the fact that checking

validity is hard without auxiliary streams. There are DTDs
defining ternary XML documents for which any p-pass bidi-
rectional randomized streaming algorithm requires Ω(N/p)
space. This lower bound comes from encoding a well known
communication complexity problem, Set-Disjointness, as an
XML validity problem. This lower bound should be well-
known, however we are not aware of a complete proof in
the literature. In [9], a similar approach using ternary trees
with a reduction to Set-Disjointness is used for proving lower
bounds for queries. For the sake of completeness we provide
a proof in Appendix A.

An XML document is valid against a DTD if for each
node, the sequence of the labels of their children fulfills a
regular expression defined in the DTD. For the case of XML
documents encoding binary trees, we present in Section 3
two deterministic streaming algorithms for checking validity
with sublinear space. As a consequence, the presence of
nodes of degree at least 3 is indeed a necessary condition
for the linear space lower bound for general documents. We
first show how to design a one-pass algorithm with space
O(
√
N logN) (Theorem 1). We conjecture that there is a

Ω(Nα) lower bound for one-pass algorithms for some 1
3
≤

α ≤ 1
2
. With a second pass in reverse direction the memory

collapses to O(log2N) (Theorem 2). These two algorithms
make use of the simple, but fundamental fact that in one
pass over an XML document each node is seen twice in form
of its opening and closing tag. Hence, it is not necessary
to remember all opening tags in the stream since there is a
second chance to get the same information by their closing
tags. Our algorithms exploit this observation.

Then, in Section 4 we present our main result. Corol-
lary 1 states that validity of any XML document against
any DTD can be checked in the streaming model with exter-
nal memory with poly-logarithmic space, a constant number
of auxiliary streams, and O(logN) passes over these streams.
Validity of a node depends on its children, hence is crucial
to have easy access to the sequence of children of any node.
The fundamental idea to establish this is, firstly, to compute
the First-Child-Next-Sibling (FCNS) encoding, an encoding
as a 2-ranked tree of the XML document. In this encod-
ing, the sequence of closing tags of the children of a node

are consecutive. The computation of this encoding is the
hard part of the validation process, and the resource require-
ments of our validation algorithm stem from this operation
(Theorem 3). Since the FCNS encoding can be seen as a
reordering of the tags of the original document, our strategy
is to see this problem as a sorting problem with a particular
comparison function. Merge sort can be implemented as a
streaming algorithm, and we make use of it customized by
an adapted merge function. The same idea can be used for
decoding with similar complexity (Theorem 7).

Then, based on the FCNS encoding, verification can
be done either in one pass and O(

√
N logN) space

(Theorem 4), or in two bidirectional passes and O(log2N)
space (Theorem 5). Concerning FCNS encoding and de-
coding, we show a linear space lower bound for one-pass
algorithms. For decoding, we present a O(

√
N logN) algo-

rithm (Theorem 6) that performs one pass over the input,
but two passes over the output. We conjecture for encoding
that memory space remains Ω(N) after any constant num-
ber of passes, which would show that decoding is easier than
encoding.

This suggests a systematic use of the FCNS encoding for
large documents since validity can be checked easily without
auxiliary streams and in sublinear space. For user interac-
tions, the original document can be obtained by the sublin-
ear space 3-pass algorithm. The applicability of this idea is
left as an open question.

2. PRELIMINARIES
From now Σ is a finite alphabet. The k-th letter of

X ∈ ΣN is denoted by X[k], for 1 ≤ k ≤ N , and the con-
secutive letters of X between positions i and j by X[i, j].
A subsequence of X is any string X[i1]X[i2] . . . X[ik], where
1 ≤ i1 < i2 < ... < ik ≤ N .

2.1 Streaming model
In streaming algorithms, a pass over input X ∈ ΣN

means that X is given as input stream X[1], X[2], . . . , X[N],
which arrives sequentially, i.e., letter by letter in this order.
Streaming algorithms have access to random access memory
space, and, as the case may be, to read-write external mem-
ory as in [7, 5]. See also the review in [8]. We assume that
any letter of Σ fits into one cell of internal/external memory.
The external memory is a collection of auxiliary streams,
that we see as read/write streams with, again, sequential
access. When needed, we augment the alphabet of auxil-
iary streams from Σ by k-tuples of elements in Σ ∪ [0, 2N],
for some fixed constant k, which therefore fit in one cell of
auxiliary streams.

At the beginning of each pass on a read/write stream,
the algorithm decides whether it performs a read or write
pass. The input stream is read-only. On a writing pass, the
algorithm can either write a letter, and then move to the
next cell, or move directly to the next cell. For the case
of bidirectional streaming algorithms, opposed to unidirec-
tional streaming algorithm where each pass is in the same
order, the algorithm can decide the direction of the sequen-
tial access.

For simplicity, we assume throughout this article that the
length of the input is known in advance by the algorithm.
Nonetheless, all our algorithms can be adapted to the case in
which the length is unknown until the end of a pass. See [13]
for an introduction to streaming algorithms.

Definition 1 (Streaming algorithm). A p(N)-
pass streaming algorithm A with s(N) space, k(N)
auxiliary streams, t(N) processing time per letter is an
algorithm such that for every input stream X ∈ ΣN :

1. A has access to k(N) auxiliary read/write streams,
2. A performs in total at most p(N) passes on X and

auxiliary streams,
3. A maintains a memory space of size s(N) letters of Σ

and bits while reading X and auxiliary streams,
4. A does not exceed a running time of t(N) between two

write or read operations.
We say that A is bidirectional if it performs at least one pass
in each direction. Otherwise A is implicitly unidirectional.

We do not mention the number of auxiliary streams when
there are none (k(N) = 0). Furthermore, we assume that
operations on numbers N ∈ [0, 2N] can be done in constant
time.

2.2 XML documents
We consider finite unranked ordered labeled trees t, where

each tree node is labeled by some label in Σ, and its root
has a distinguished label r. Moreover, the children of every
non-leaf node are ordered. From now, we omit the terms
ordered and labeled. Then k-ranked trees are a special case
where each node has at most k children. Binary trees are a
special type of 2-ranked trees, where each node is either a
leaf or has exactly 2 children.

For each label a ∈ Σ, we associate its corresponding open-
ing tag a and closing tag a, standing for 〈a〉 and 〈/a〉 in the
usual XML notations. An XML sequence is a sequence over
the alphabet Σ′ = {a, a : a ∈ Σ}. The XML sequence of
a tree t is the sequence of opening tags and closing tags in
the order of a depth first traversal of t (Figure 1): when at
step i we visit a node with label a top-down (respectively
bottom-up), we let X[i] = a (respectively X[i] = a). Hence
X is a word over Σ′ = {a, a : a ∈ Σ} of size twice the num-
ber of nodes of t. The XML file describing t is unique, and
we denote it as XML(t).

r

b b b c

a a c a a

Figure 1: Let Σ = {a, b, c}, and let t be the tree as above. Then

XML(t) = rbaaaaccbbbbaaaabccr.

We assume that the input XML sequences X are well-
formed, namely X = XML(t), for some tree t. The past
work of [12] legitimates this assumption since checking well-
formedness is at least as easy as any of our algorithms for
checking validity. Hence we could run an algorithm for well-
formedness in parallel without increasing the resource re-
quirements. Note, that randomness is necessary for checking
well-formedness with sublinear space, whereas we will show
that randomness is useless for validation.

Let us introduce more useful notations. Since the length
of a well-formed XML sequence is known in advance, we will
denote it by 2N instead of N . Each opening tag X[i] and
matching closing tag X[j] in X = XML(t) corresponds to
a unique tree node v of t. We sometimes denote v either
by X[i] or X[j]. We also write (ambiguously) v for its cor-
responding opening tag, and v for its corresponding closing

tag. Then, the position of v in X is pos(v) = i. Similarly,
pos(v) = j.

We consider XML validity against some DTD. A DTD is
a mapping D from Σ to regular expressions over Σ. Let t
be a tree. Then a node v ∈ t with label v and children
v1, v2, . . . , vk with respective labels v1, v2, . . . , vk is valid
against D if v1, v2, . . . , vk satisfies the regular expression
D(v). In particular, v can be a leaf if and only if the empty
word ε satisfies the regular expression D(v). Then t is valid
against D if all its nodes are valid against D. Through-
out the document we assume that DTDs are considerably
small and our algorithms have full access to them without
accounting this to their space requirements.

Definition 2 (Validity). Let D be some DTD. The
problem Validity consists of deciding whether an input tree
t given by its XML sequence XML(t) on an input stream is
valid against D.

We denote by Validity(2) the problem Validity restricted
to input XML sequences describing binary trees.

3. VALIDITY OF BINARY TREES
For simplicity, we only consider binary trees in this sec-

tion. A left opening/closing tag (respectively right open-
ing/closing tag) of an XML sequence X is a tag whose cor-
responding node is the first child of its parent (respectively
second child).

Our algorithms for binary trees can be extended to 2-
ranked trees. This requires few changes in the one-pass
Algorithm 1 and the two-pass Algorithm 2 (indeed in the
subroutine Algorithm 3), that we do not describe here.

We fix now a DTD D, and assume that, in our algorithms,
we have access to a procedure check(a, b, c) that signalizes
invalidity and aborts if bc is not valid against the regular
expression D(a). Otherwise it returns without any action.

3.1 One-pass algorithm
In order to validate an XML document, we ensure validity

of all tree nodes. For checking validity of a node v with two
children, we have to relate 3 labels, that is the label v of the
node itself, and the labels of the two children nodes v1, v2.
In a top-down verification we use the opening tag v of the
parent node v for verification, in a bottom-up verification
we use the closing tag v of the parent node v. Algorithm 1
makes use of the fact that there are these two chances to ver-
ify a node. It uses a stack onto which it pushes all opening
tags in order to perform top-down verifications once the in-
formation of the children nodes arrives on the stream. v1v2
forms a substring of the input, hence top-down verification
requires only the storage of the opening tag v since the la-
bels of the children arrive in a block. The algorithm’s space
requirements depend on a parameter K (we optimize by set-
ting K =

√
N logN). Once the number of opening tags on

the stack is about to exceed K, we remove the bottom-most
opening tag. The corresponding node will then be verified
bottom-up. Note that v2v forms a substring of the input.
Hence for bottom-up verifications it is enough to store the
label of the left child v1 on the stack since the label of the
right child arrives in form of a closing tag right before the
closing tag of the parent node. See Algorithm 1 for details.

For the unique identification of closing tags on the stack,
we have to store them with their depth in the tree. A stack

item corresponding to a closing tag requires hence O(logN)
space. Opening tags don’t require the storage of their depth
(we store a depth of −1 which we assume to require only
constant space).

Algorithm 1 Validity of binary trees in 1-pass

Require: input stream is a well-formed XML document
1: d← 0, S ← empty stack
2: K ←

√
N logN

3: while stream not empty do
4: x← next tag on stream
5: if x is an opening tag c then
6: if x is a leaf then check(c, ε, ε) end if

7: if S has on top (a,−1), (b, d) then
8: check(a, b, c); pop S {Top-down verification}
9: end if

10: if |{(a,−1) ∈ S | a opening }| ≥ K then
11: remove bottom-most (a,−1) in S, a opening
12: end if
13: d← d+ 1
14: push (x,−1)
15: else if x is a closing tag c then
16: d← d− 1
17: if S has on top (a, d+ 1), (b, d+ 1) then
18: check (c, a, b) {Bottom-up verification}
19: pop S, pop S
20: else if S has on top (b, d+ 1) then pop S
21: end if
22: if S has on top (c,−1) then pop S end if
23: push (x, d)
24: end if
25: end while

The query in line 6 can be implemented by a lookahead
of 1 on the stream. The opening tag x corresponds to a leaf
only if the subsequent tag in the stream is the corresponding
closing tag x.

Figure 2 visualizes the different cases with their stack
modifications appearing in Algorithm 1.

c

c

c c ca

b a b b

line 6 line 7 line 17 line 20 line 22

X ← X Xab← Xa Xab← X Xb← X Xc← X

Figure 2: Visualization of the different conditions in Algorithm 1
with the applied stack modifications. X represents the bottom
part of the stack. Note that Algorithm 1 pushes the currently
treated tag c or c on the stack in Line 14 or Line 23. c or c
corresponds to the highlighted node.

Fact 1 (not proved here) and Lemma 1 concern the struc-
ture of the stack S used in Algorithm 1.

Fact 1. Let S = (x1, d1), . . . (xk, dk) be the stack at the
beginning of the while loop in line 3. Then:

1. pos(x1) < pos(x2) · · · < pos(xk),
2. depth(x1) ≤ depth(x2) · · · ≤ depth(xk) ≤ d. More-

over, if depth(xi) = depth(xi+1) then xi is the left
sibling of xi+1,

3. The sequence x1 . . . xk satisfies the regular expression
a∗b∗(ε | c | de), where a∗ are left closing tags, b∗ are
opening tags, c is a closing tag, d is a left closing tag,
and e is a right closing tag.

4. A left closing tag a is only removed from S upon veri-
fication of its parent node.

Lemma 1. Let S = (x1, d1), . . . (xk, dk) be the stack at the
beginning of the while loop in line 3. Let (ci, di), (ci+1, di+1)
be two consecutive left closing tags in S such that (ci+1, di+1)
is not the topmost one. Then pos(ci+1) ≥ pos(ci) + 2K.

Proof. Denote by X = X[1]X[2] . . . X[2N] the input
stream. Since ci+1 is not the topmost left closing tag in S,
the algorithm has already processed the right sibling open-
ing tag X[pos(ci+1) + 1] of ci+1. By Item 4 of Fact 1, no
verification has been done of the parent of ci+1, since ci+1 is
still in S. Therefore, the parent’s opening tag X[k] of ci+1

has been deleted from S, where pos(ci) < k < pos(ci+1).
This can only happen if at least K opening tags have been
pushed on S between X[k] and ci+1. Since these K opening
tags must have been closed between X[k] and ci+1 we obtain
pos(ci+1) ≥ pos(ci) + 2K.

r

a1

a2

ak

b1

b2

b3

bl

Figure 3: Visualization of the structure of the stack used in Al-
gorithm 1. The stack fulfills the regular expression a∗b∗(ε | c | de),
compare Item 3 of Fact 1. The (ai)i=1...k are closing tags whose
parents’ nodes were not verified top-down. For j > i, aj is con-
nected to ai by the right sibling of ai. The (bi)i=1...l form a
sequence of opening tags such that bi is the parent node of bi+1.
On top of the stack might be one or two closing tags depending
on the current state of the verification process.

Fact 1 and Lemma 1 provide more insight in the stack
structure and are used in the proof of Theorem 1. Item 3
of Fact 1 states that the stack basically consists of a se-
quence of left closing tags which are the left children that
are needed for bottom-up verifications of nodes that could
not be verified top-down. This sequence is followed by a
sequence of opening tags for which we still aim a top-down
verification. The proof of Lemma 1 explains the fact that
the two sequences are strictly separated: a left-closing tag
v1 only remains on the stack if at the moment of insertion
there are no opening tags on the stack.

Theorem 1. Algorithm 1 is a one-pass streaming algo-
rithm for Validity(2) with space O(

√
N logN) and O(1)

processing time per letter.

Proof. To prove correctness, we have to ensure validity
of all nodes. Leaves are correctly validated upon arrival of
its opening tag in line 6. Concerning non-leaf nodes, firstly,

note that all closing tags are pushed on S in line 23, in
particular all closing tags of left children appear on the stack.
The algorithm removes left closing tags only after validation
of its parent node, no matter whether the verification was
done top-down or bottom-up, compare Item 4 of Fact 1.
Emptiness of the stack after the execution of the algorithm
follows from Item 2 of Fact 1 and implies hence the validation
of all non-leaf nodes.

For the space bound, Line 10 guarantees that the number
of opening tags in S is always at most K. We bound the
number of closing tags on the stack by N

K
+2. Item 3 of Fact 1

states that the stack contains at most one right closing tag.
From Item 4 of Fact 1 we deduce that S comprises at most
N
K

+1 left closing tags, since the stream is of length 2N , and
the distance in the stream of two consecutive left closing tags
that reside on S except the top-most one is at least 2K. A
closing tag with depth (a, d) ∈ Σ′ × [N] requires O(logN)
space, an opening tag requires only constant space. Hence
the total space requirements are O((N

K
+2) logN+K) which

is minimized for K =
√
N logN .

Concerning the processing time per letter, the algorithm
only performs a constant number of local stack operations
in one iteration of the while loop.

Remark Algorithm 1 can be turned into an algorithm
with space complexity O(

√
D logD), where D is the depth

of the XML document. If D is known beforehand, it is
enough to set K =

√
D logD in line 2. If D is not known

in advance, we make use of an auxiliary variable D′ storing
a guess for the document depth. Initially we set D′ = C,
C > 0 some constant, we set K =

√
D′ logD′, and we run

Algorithm 1. Each time d exceeds D′, we double D′, and
we update K accordingly.

This guarantees that the number of opening tags on the
stack is limited by O(

√
D logD). Since we started with a

too small guess for the document depth, we may have re-
moved opening tags that would have remained on the stack
if we had chosen the depth correctly. This leads to further
bottom-up verifications, but no more than O(

√
D/ logD)

guaranteeing O(
√
D logD) space.

3.2 Two-pass algorithm
The bidirectional two-pass Algorithm 2 uses a subroutine

that checks in one-pass validity of all nodes whose left sub-
tree is at least as large as its right subtree. Feeding into this
subroutine the XML document read in reverse direction and
interpreting opening tags as closing tags and vice versa, it
checks validity of all nodes whose right subtree is at least
as large as its left subtree. In this way all tree nodes get
verified.

The subroutine performs only checks in a bottom-up fash-
ion, that is, the verification of a node v with children c1, c2
makes use of the tags c1 and c2 (which are adjacent in the
XML document and hence easy to recognize) and the closing
tag of v. When c1, c2 appears in the stream, a 4-tuple con-
sisting of c1, c2, depth(c1) and pos(c1) gets pushed on the
stack. Upon arrival of v, depth(c1) is needed to identify
c1, c2 as the children of v. pos(c1) is needed for cleaning the
stack: with the help of the pos values of the stack items, we
identify stack items whose parents’ nodes have larger right
subtrees than left subtrees, and these stack items get re-
moved from the stack. In so doing, we guarantee that the
stack size does not exceed log(N) elements which is an ex-

ponential improvement over the one-pass algorithm.
Note that the reverse pass can be done independently of

the first one, namely eventually in parallel.

Algorithm 2 Two-pass algorithm validating binary trees

run Algorithm 3 reading the stream from left to right
run Algorithm 3 reading the stream from right to left, where
opening tags are interpreted as closing tags, and vice versa.

Algorithm 3 Validating nodes with size(left subtree) ≥
size(right subtree)

1: l← 0; n← 0; S ← empty stack
2: while stream not empty do
3: x← next tag on stream (and move stream to next tag)
4: y ← next tag on stream, without consuming it yet
5: n← n+ 1
6: if x is an opening tag c then
7: l← l + 1
8: if y = c then check(c, ε, ε) end if
9: else {x is a closing tag c}

10: l← l − 1
11: if S has on top (·, ·, l + 1, ·) then
12: (a, b, ·, ·)← pop from S; check(c, a, b)
13: end if
14: if y is an opening tag d then
15: push (c, d, l, n) to S
16: end if
17: end if
18: while there is s1 = (·, ·, ·, n1) just below s2 = (·, ·, ·, n2) in

S with n− n2 > n2 − n1 do
19: suppress s2 from S
20: end while
21: end while

Figure 4 visualizes the different cases in Algorithm 3.

c c

ca b d

line 8 line 11 line 14

Figure 4: Visualization of the different conditions in Algorithm 3.
The incoming tag x corresponds to the highlighted node.

We highlight some properties concerning the stack used
in Algorithm 3.

Fact 2. S in Algorithm 3 satisfies the following:
1. If (a2, b2, depth(a2), pos(a2)) is below

(a1, b1,depth(a1), pos(a1)) in S, then
pos(a2) < pos(a1), depth(a2) < depth(a1), and
a1, b1 are in the subtree of b2.

2. Consider l at the end of the while loop in line 20. Then
there are no stack elements (·, ·, l′, ·) with l′ > l.

Figure 5 illustrates the relationship between two consecu-
tive stack elements as discussed in Item 1 of Fact 2.

Lemma 2. Algorithm 3 verifies all nodes v whose left sub-
tree is at least as large as its right subtree.

Proof. Let q be such a node. Let a1, b1 be the children
of q. Then it holds that

pos(a1)− pos(a1) ≥ pos(b1)− pos(b1), (1)

p

a2 b2

q

a1 b1

c

Stack S

...

(a1, b1, pos(a1), depth(a1))

(a2, b2, pos(a2), depth(a2))

...

Figure 5: c is the current element under consideration in Algo-
rithm 3. a1, b1 is in the subtree of b2, compare Item 1 of Fact 2.

.

since the size of the left subtree of q is at least as large as
the size of the right subtree.

Upon arrival of a1 Algorithm 3 pushes the 4-tuple
t = (a1, b1, pos(a1),depth(a1)) onto the stack S. We have
to show that t remains on the stack until the arrival of
q. More precisely, we have to show that the condition in
line 18 is never satisfied for s2 = t. Since the algorithm
never deletes the bottom-most stack item, we consider the
case where there is a stack item (a2, b2, pos(a2),depth(a2))
just below t. Item 1 of Fact 2 tells us that a1, b1 are in
the subtree of b2. Let c be the current tag under consider-
ation such that pos(b1) < pos(c) < pos(q). The situation is
visualized in Figure 5.

According to the condition of line 18, t gets removed from
the stack if

pos(c)− pos(a1) > pos(a1)− pos(a2). (2)

Note that the left side of Inequality 2 is a lower bound on
the size of the right subtree of q. Furthermore, the right side
of Inequality 2 upper bounds the size of the left subtree of
q.

Using pos(c) − pos(a1) ≤ pos(b1) − pos(b1) + 1 and
pos(a1) − pos(a2) > pos(a1) − pos(a1), Inequality 2 con-
tradicts Inequality 1 which shows that t remains on the
stack until the arrival of q. Item 2 of Fact 2 guarantees
that there is no other stack element on top of t upon arrival
of q. This guarantees the verification of node q and proves
the lemma.

Theorem 2. Algorithm 2 is a bidirectional two-pass
streaming algorithm for Validity(2) with space O(log2N)
and O(logN) processing time per letter.

Proof. To prove correctness of Algorithm 2, we ensure
that all nodes get verified. By Lemma 2, in the first pass,
all nodes with a left subtree being at least as large as its
right subtree get verified. The second pass ensures then
verification of nodes with a right subtree that is at least as
large as its left subtree.

Next, we prove by contradiction that for any current
value of variable n in Algorithm 3, the stack contains at
most log(n) elements. Assume that there is a stack con-
figuration of size t ≥ log(n) + 1. Let (n1, n2 . . . , nt) be
the sequence of the fourth parameters of the stack ele-
ments. Since these elements are not yet removed, due to
line 18 of Algorithm 3, it holds that n− ni ≤ ni − ni−1,
or equivalently ni ≥ 1/2(n+ ni−1), for all 1 < i ≤ t. Since

n1 ≥ 1, we obtain that ni ≥ 2i−1
2i

n + 1
2i

, and, in particu-

lar, nt−1 ≥ (n − 1) + 1
n

. Since all ni are integers, it holds
that nt−1 ≥ n. Furthermore, since nt > nt−1, we obtain
nlogn+1 ≥ n+ 1 which is a contradiction, since the element
at position n+ 1 has not yet been seen.

Since n ≤ 2N and the size of a stack element is in O(logn),
Algorithm 3 uses space O(log2N). This also implies that
the while-loop at line 18 of Algorithm 3 can only be iterated
O(logn) times during the processing of a tag on the stream.
The processing time per letter is then O(logN), since we as-
sume that operations on the stack run in constant time.

4. VALIDITY OF GENERAL TREES

4.1 Preparation
The FCNS encoding (see for instance [14]) is an encoding

of unranked trees as extended 2-ranked trees, where we dis-
tinguish left child from right child. This is an extension of
ordered 2-ranked trees, since a node may have a left child
but no right child, and vice versa. We therefore duplicate
the labels a ∈ Σ to aL and aR, for respectively left and right
opening/closing tags. The FCNS tree is obtained by keeping
the same set of tree nodes. The root node of the unranked
tree remains the root in the FCNS tree, and we annotate it
by default left. The left child of any internal node in the
FCNS tree is the first child of this node in the unranked
tree if it exists, otherwise it does not have a left child. The
right child of a node in the FCNS tree is the next sibling of
this node in the unranked tree if it exists, otherwise it does
not have a right child. For a tree t, we denote FCNS(t) the
FCNS tree, and XML(FCNS(t)) the XML sequence of the
FCNS encoding of t.

Instead of annotating by left/right, another way to
uniquely identify a node as left or right is to insert dummy
leaves with label ⊥. For a tree t, we denote the binary
version without annotations and insertion of ⊥ leaves by
FCNS⊥. The two representations can be easily transformed
into each other. In this section, we compute the FCNS en-
coding with annotations. In the next section, we present
algorithms for the validation of the encoded form that make
use of the representation using dummy leaves. See Figure 6
for an example.

r

b b b c

a a c a a

r

b

a b

a

c

b

a c

a

r

b

a b

a

c

b

a c

a

⊥

⊥

⊥

⊥

⊥

Figure 6: Left: introductory example tree t already shown in
Figure 1. Middle: FCNS encoding of t: XML(FCNS(t)) =

rLbLaLaRcRcRaRaLbRbRaLaRaRaLcRcRbRbRbLrL.
Right: FCNS⊥ encoding of t: XML(FCNS⊥(t)) =

rba⊥⊥a⊥⊥ccaab⊥⊥ba⊥⊥aaaccbbb⊥⊥r.

In the following subsections we provide streaming algo-
rithms for the transformation of XML(t) to XML(FCNS(t)),
that we call the FCNS encoding, and its inverse, the FCNS
decoding.

The FCNS encoding can be seen as a reordering of the
tags of XML(t) and an annotation of the tags with left/right.

We state several properties about the relationship of the or-
dering of the tags in XML(t) and XML(FCNS(t)). Fact 3
concerns the structure of the subsequence of opening tags in
XML(FCNS(t)), Fact 4 concerns the structure of the subse-
quence of closing tags in XML(FCNS(t)), and Fact 5 con-
cerns the interplay of the subsequences of opening and clos-
ing tags in XML(FCNS(t)).

Fact 3. The opening tags in XML(t) are in the same
order as the opening tags in XML(FCNS(t)).

For a node v of some tree t, let pos′(v) and pos′(v̄) be the
respective positions of the opening and closing tags of v in
XML(FCNS(t)).

Fact 4. Nodes v1, v2 of t satisfy pos′(v1) < pos′(v2) iff
one of the following conditions holds:

1. v1 is in the subtree of v2 in t;
2. or v1 is a right sibling of v2 in t;
3. or there is a node u with depth(u) ≤ depth(v1) − 2

such that pos(v1) < pos(u) ≤ pos(v2).

Fact 5. Nodes v1, v2 of t satisfy pos′(v1) < pos′(v2) iff
there is a node u with depth(u) ≤ depth(v1) − 2 such that
pos(v1) < pos(u) ≤ pos(v2).

4.2 FCNS encoding
In this section, we are interested in computing the trans-

formation XML(t) → XML(FCNS(t)). Our strategy is to
compute the subsequence of opening tags of XML(FCNS(t))
(using Fact 3 and discussed in subsection 4.2.1) and the
subsequence of closing tags (using Fact 4 and discussed in
4.2.2) of XML(FCNS(t)) independently, and merge them af-
terwards (using Fact 5 and discussed in subsection 4.2.3).

4.2.1 Computing the sequence of opening tags
Concerning the opening tags, since due to Fact 3 the sub-

sequences of opening tags in XML(t) and XML(FCNS(t))
coincide, we extract the subsequence of opening tag of
XML(t), and we annotate them with left or right as they
should be in XML(FCNS(t)). Remind that an opening tag
is left if it is the opening tag of a first child, otherwise it
is right. Furthermore, for later use we annotate each open-
ing tag c with depth(c) in t and the position in the stream
pos(c). We summarize this as a fact:

Fact 6. There is a streaming algorithm with space
O(logN) that, given XML(t) as input, outputs on an auxil-
iary stream the sequence of opening tags of XML(FCNS(t))
with left/right annotations, and furthermore, annotates each
tag c with depth(c) and pos(c), performing one pass on each
stream.

4.2.2 Computing the sequence of closing tags
For computing the sequence of closing tags, we start with

the sequence of opening tags of XML(FCNS(t)) as produced
by the output of the algorithm of Fact 6, that is, correctly
annotated with left/right and with depth and position an-
notations. To obtain the correct subsequence of closing tags
as in XML(FCNS(t)), we interpret the opening tags as clos-
ing tags and we sort them with a merge sort algorithm.
Merge sort can be implemented as a streaming algorithm
with O(log(N)) passes and 3 auxiliary streams [7]. For the
sake of simplicity, Algorithm 4 assumes an input of length
2l for some l > 0.

Algorithm 4 Merge sort

Require: unsorted data of length 2l on stream 1
1: for i = 0 . . . l − 1 do
2: copy data in blocks of length 2i from stream 1 alternately

onto stream 2 and stream 3
3: for j = 1 . . . 2l−i−1 merge(2i) end for
4: end for

merge(b) reads simultaneously the next b values from
stream 2 and stream 3, and merges them onto stream 1.
The whole loop in Line 3 of Algorithm 4 requires one read
pass on stream 2, one read pass on stream 3, and one write
pass on stream 1. See Figure 7 for an illustration.

line 2 (copy) line 3 (merge)

str 1:

str 2:

str 3:

B1 B2 B3 B4
. . . B2l−i

B1

B2

B3

B4

. . .

. . .

Bl−i−1

Bl−i

B12 B34
. . . B2l−i−12l−i

B1

B2

B3

B4

. . .

. . .

Bl−i−1

Bl−i

Figure 7: In Line 2, blocks from stream 1 are copied onto stream
2 and stream 3. The Bi are sorted blocks. In line 3, all blocks Bi
and Bi+1 are merged into a sorted block Bi(i+1).

In order to use merge sort, we have to define a com-
parator function that, given two closing tags c1, c2, decides
whether pos′(c1) < pos′(c2). Firstly, consider nodes v1, v2
with pos(v1) < pos(v2) to be as in Point 1 or Point 2 of
Fact 4, that is, either v1, v2 are siblings or one node is con-
tained in the subtree of the other one. Obviously, their or-
dering with respect to pos′ can easily be decided by their
depth: pos′(v1) < pos′(v2) iff depth(v1) > depth(v2).

If neither v1, v2 are siblings, nor v2 is in the subtree of v1
(Point 3 of Fact 4), then pos′(v1) < pos′(v2), independently
of their depths. A comparison function hence should be
able to infer the relationship of the two nodes, however, this
seems to be difficult in the streaming model.

To overcome this problem, instead of defining a com-
parison function, we design a complete merge function in
Lemma 3 that, by construction, only compares two nodes of
the first kind. The key idea is to introduce separator tags
which we denote by a new tag outside Σ. They are initially
inserted right after each closing tag of a last child u, that
is exactly before the depth decreases. We denote by u the
separator we introduce when seeing the last child u, and we
define depth(u) = depth(u).

Fact 7. There is a streaming algorithm with space
O(logN) that, given a sequence XML(t) on a stream,
computes on another stream the sequence of opening tags
XML(FCNS(t)) together with their separators, and anno-
tated with depth, pos and left/right, performing one pass on
each stream.

We have to define the way we integrate the separators into
our sorting. Let v1, v2, . . . , vk be the ordered sequence of
the children of some node. For the separator vk we ask their
position among the closing tags to satisfy for each node v:

pos′(v) < pos′(vk) iff pos′(v) ≤ pos′(v1); (3)

and for any other separator wk:

pos′(vk) < pos′(wk) iff pos′(vk) < pos′(wk). (4)

Blocks appearing in merge sort fulfill a property that we
call well-sorted. A block B of closing tags is well-sorted

if the corresponding tags in XML(FCNS(t)) appear in the
same order, and for all v1, v2 ∈ B with pos(v1) < pos(v2),
all closing tags v of nodes v with pos(v1) < pos(v) < pos(v2)
are in B as well.

In addition, for two blocks B1, B2 of closing tags, we say
that (B1, B2) is a well-sorted adjacent pair, if B1 and B2 are
well-sorted, for each closing tag v1 ∈ B1 and each closing
tag v2 ∈ B2 pos(v1) < pos(v2) is satisfied, and furthermore,
all closing tags v of nodes v with pos(v1) < pos(v) < pos(v2)
are either in B1 or B2.

The only function to design is a comparator deciding
for two closing tags v1, v2 from a well-sorted adjacent pair
(B1, B2) whether pos′(v1) < pos′(v2).

The following lemma shows that we can merge a well-
sorted adjacent pair correctly.

Lemma 3. Let (B1, B2) be a well-sorted adjacent pair,
and let v1 = B1[p1] and v2 = B2[p2] for some p1, p2. As-
sume that pos′(v) < pos′(v1) and pos′(v) < pos′(v2), for all
v ∈ B1[1, p1 − 1] ∪B2[1, p2 − 1]. Then:

1. If v1 is a separator, or there is a separator in B1 after
v1, then pos′(v1) < pos′(v2);

2. Else if v2 is a separator then:
(a) if depth(v1) < depth(v2) then pos′(v1) <

pos′(v2),
(b) else pos′(v1) > pos′(v2);

3. Else (neither v1 nor v2 is a separator):
(a) if depth(v1) ≤ depth(v2) then pos′(v1) <

pos′(v2),
(b) else pos′(v1) > pos′(v2).

Proof. Let (B1, B2) be a well-sorted adjacent pair. Let
l = max{i : B1[i] is a separator}. If there are no separa-
tors in B1, let l = 0. First, we prove Point 1. Since B1

is well-ordered, we only need to check that pos′(B1 [l]) <
pos′(B2 [1]). Denote by u the last child that was responsi-
ble for the insertion of the separator tag B1[l]. Let u′ be
the left-most sibling of u. Due to Equation (3) it suffices to
show that pos′(u′) < pos′(B2[1]). Clearly, the shortest path
from u′ to B2[1] passes by a common ancestor p of u′ and
B2[1] which is not the parent of u′ since the separator B1[l]
indicates that the last child u has been seen. Then, by the
third condition of Fact 4, we get pos′(u′) < pos′(B2[1]).

For proving Points 2 and 3 we use the observation that if
the premises to Point 1 are not fulfilled, v1, v2 do not have
a common ancestor p s.t. pos(v1) < pos(p) < pos(v2) and
p is not the parent node of v1. Furthermore, this observa-
tion implies that depth(v2) ≥ depth(v1) − 1 and hence, if
depth(v2) > depth(v1) then v2 is in the subtree of v1. This
and Fact 4 prove Points 2a, 2b, 3a and 3b.

We prove the observation by contradiction. Assume that
there is such a node p. Since (B1, B2) is a well-ordered ad-
jacent pair and pos(v1) < pos(p) < pos(v2), node p would
be in B1 ∪B2. Therefore, the separator u inserted after the
rightmost sibling of v1 would be also in B1 ∪ B2 as well.
More precisely, this separator would be in B2[1 . . . p2 − 1]
since otherwise Point 1 would have been applied. This, how-
ever, is a contradiction to the assumption that pos′(v) <
pos′(v1) ∀v ∈ B1[1 . . . p1 − 1] ∪B2[1 . . . p2 − 1] since it holds
that pos′(v1) < pos′(u). Hence such a node does not ex-
ist.

Lemma 4. There is a O(logN)-pass streaming algorithm
with space O(logN) and 3 auxiliary streams that computes

the subsequence of closing tags of the FCNS encoding of any
XML document given in the input stream.

Proof. Using Fact 7, we compute on the first auxiliary
stream the sequence of opening tags with corresponding an-
notations, together with separators, and interpret opening
tags as closing tags.

We show that we can do a merge sort algorithm with
a merge function inspired by Lemma 3 on the first three
auxiliary streams with O(logN) space and passes. For
that assume that the first stream contains a sequence
(B1, B2, . . . , BM) of blocks of size 2i. For simplicity we as-
sume that M is even, otherwise we add an empty block. We
alternately copy odd blocks on the second stream, and even
blocks on the third stream. For a block B2i that we write on
the third stream, we write before each of them, the number
of separators that occur in the block B2i−1 that was copied
on the second stream.

Then we merge sequentially all pairs of blocks
(B2k−1, B2k) for 1 ≤ k ≤ M/2 using Lemma 3.
Note that (B2k−1, B2k)i are all well-formed pairs. Let
l = max{i : B2k−1[i] is a separator}. Firstly, we copy ele-
ments B2k−1[1, l] onto auxiliary stream 1. Knowing the
number of separators in B2k−1 allows us to perform this
operation. The correctness of this step follows from Point 1
of Lemma 3. Then, we merge blocks B2k−1[l+1, 2i] and B2k

by using the comparison function defined in Points 2 and 3
of Lemma 3.

4.2.3 Merging opening and closing tags
Merging the subsequence of opening tags of

XML(FCNS(t)) and the subsequence of closing tags of
XML(FCNS(t)) can be done using one additional pass.

Lemma 5. There is a streaming algorithm with space
O(logN) that, given the sequence of opening tags of
XML(FCNS(t)) on a stream, and the sequence of clos-
ing tags of XML(FCNS(t)) on another stream, computes
XML(FCNS(t)) on a third stream using one pass on each
stream.

Proof. We directly apply Fact 5, so that we know when
to alternate from the sequence of opening tags to the one of
closing tags, and conversely.

From Fact 6, Lemma 4 and Lemma 5 we obtain Theo-
rem 3.

Theorem 3. There is a O(logN)-pass streaming algo-
rithm with space O(logN) and 3 auxiliary streams and O(1)
processing time per letter that computes on the third auxil-
iary stream the FCNS transformation of any XML document
given in the input stream.

Proof. Firstly, we compute according to Lemma 4 the
sequence of closing tags and we store them on auxiliary
stream 1. Then, by Fact 6 we extract the sequence of open-
ing tags, and we store them on auxiliary stream 2. By
Lemma 5 we can merge the tags of auxiliary stream 1 and
auxiliary stream 2 correctly onto stream 3.

The space requirements of these operations do not exceed
O(logN). The processing time per letter of these operations
is constant.

4.3 Checking Validity on the encoding form

In this section, we reuse the algorithms for validating bi-
nary trees for the validation of the encoded form. We dis-
cuss one-pass read/write streaming algorithms (one for left-
to-right passes, and one for right-to-left passes) that read
XML(FCNS⊥(t)) and output an XML document with an-
notations on closing tags that can be fed into Algorithm 1
or Algorithm 2. This requires little modifications in Algo-
rithm 1 and Algorithm 2 since validity then depends on the
annotations. Since we want to reuse the algorithms for the
validation of binary trees, we suppose that XML(FCNS⊥(t))
is available as input. The algorithm stated in Theorem 3 can
be easily adapted such that it outputs XML(FCNS⊥(t)) in-
stead of XML(FCNS(t)).

The problem of validating the encoded form and the
problem of validating binary trees are similar. Note that
the children v1, . . . vk of a node v form a substring in
XML(FCNS⊥(t)), see Figure 8. Hence, for validating a node
v, the label v has to be related to the block of children nodes
vk . . . v1. This is similar to the task of the validation of bi-
nary trees where the parent label v has to be related to the
block of children nodes v1v2.

t :

v

v1 v2 . . . vk

t1 t2 tk

FCNS⊥(t) :

v

v1

v2

. . .

vk

t′1

t′2

t′k

Figure 8: A tree t and its FCNS⊥ encoding. While the opening
and closing tags of the children of a node v are separated by the
subtrees t1, . . . tk in XML(t), the closing tags of the children of

v are consecutive in XML(FCNS⊥(t)) in reverse order, that is

vkvk−1 . . . v2v1 is a substring of XML(FCNS⊥(t)).

For a node v, we gather the information of the children
nodes v1, . . . , vk by the help of finite automata A1 (for left-
to-right passes) and A2 (for right-to-left passes) that we de-
fine later, and the information - a state of the automata -
is annotated at the closing tag of leaf v1 (left-to-right) or
vk (right-to-left). Then, by the help of Algorithm 1 or Al-
gorithm 2, this information is related to the parent label
v.

We define automata A1 and A2 now. A1 is constructed
from automaton A. Let A = (Σ, Q, q0, δ, F) be a determinis-
tic finite automaton where Σ is its input alphabet, Q is the
state set, q0 is its initial state, δ : Q×Σ→ Q is the transition
function, and F is a set of final states. For a ∈ Σ and the in-
put DTD D, denote by Aa a deterministic finite automaton
that accepts the regular expression D(a). We compose the
Aa as in the left illustration of Figure 9 to an automaton A
that accepts words ω′ such that ω′ = aω, a ∈ Σ, ω ∈ Σ∗ if
ω ∈ D(a).

Let A1 = (Σ, Q1, (q0)1, δ1, F1) be a deterministic finite au-
tomaton that accepts a word ω, iff ωrev is accepted by A,
where ωrev denotes ω read from right to left.

Let A2 = (Σ, Q2, (q0)2, δ2, F2) be a deterministic finite
automaton that accepts a word ω′ such that ω′ = ωa,
a ∈ Σ, ω ∈ Σ∗ if ω ∈ D(a). A2 is a version of the automaton
in the right illustration of Figure 9 without ε transitions.

In the following, we assume for every state q1 ∈ Q1 and

q0

A1

A2

A|Σ|

...

a1

a2

a|Σ|

q0 qf

A1

A2

A|Σ|

...

ǫ

ǫ

ǫ

a1

a2

a|Σ|

Figure 9: Left: Automaton A. A1 accepts words ω if A accepts
ωrev. Right: Automaton A2 is a version of the illustrated au-
tomaton without ε transitions.

q2 ∈ Q2 that δ1(q1,⊥) = q1 and δ2(q2,⊥) = q2.
Given XML(FCNS⊥(t)), for a left-to-right pass, we an-

notate closing tags v by a state from the state set Q1 of
automaton A1. We denote the annotation for left-to-right
passes of v by ann1(v).

if v is a leaf then ann1(v) = δ1((q0)1, v),
otherwise let u be the right child of v, then ann1(v) =
δ1(ann1(u), v).

For a right-to-left pass, we annotate closing tags v by a
state from the state set Q2 of automaton A2. We denote
the annotation of right-to-left passes of v by ann2(v).

if v is a left child then ann2(v) = δ2((q0)2, v),
if v is a right child of u then ann2(v) = δ2(ann2(u), v) .

For the sake of completeness, the root can be annotated
by ann2(r) = (q0)2, though this annotation will not be used
for checking validity. Figure 10 shows the annotations of the
children nodes v1, . . . , vk of node v.

v

v1

v2

. . .

vk

v

v1(δ1(ann1(v2), v1))

v2(δ1(ann1(v3), v2))

. . .

vk(δ1((q0)1, vk))

v

v1(δ2((q0)2, v1))

v2(δ2(ann2(v1), v2))

. . .

vk(δ2(ann2(vk−1), vk))

Figure 10: Left: a node v with its children v1, . . . vk in the FCNS
tree. Middle: annotations for left-to-right passes. v is valid if
δ1(ann1(v1), v) results in an accepting state of A1. Right: anno-
tations for right-to-left passes. v is valid if δ2(ann2(vk), v) is an
accepting state of A2.

The annotation operations can be seen as streaming algo-
rithms performing one read pass over the input and one write
pass over another stream using constant space, since the an-
notation of a closing tag v only depends on the annotation of
its right child (for left-to-right passes) or its parent (for right-
to-left passes). The respective closing tag is in both cases
the tag prior to v in the input stream XML(FCNS⊥(t)).
Remember that we consider a right-to-left pass for the an-
notation with ann2.

In the following, we prove that given the annotations, Al-
gorithm 1 and Algorithm 2 can be adapted to decide validity
of the encoded form.

Theorem 4. There is a one-pass deterministic algorithm
for Validity with space O(

√
N logN) and O(1) processing

time per letter when the input is given in its FCNS⊥ encod-
ing.

Proof. Append the rule D(⊥) = ε to the input DTD

D. Compute automaton A1. Compute a new XML stream
with annotations ann1 and feed this stream directly into
Algorithm 1. In order to verify a node v, Algorithm 1 uses
the closing tag v1 of the left child v1 of v. Since v is valid if
δ1(ann1(v1), v) is an accepting state, we only have to replace
the check function used in Algorithm 1. The new check
function computes δ1(ann1(v1), v) and aborts if the resulting
state is not accepting.

The space requirements and the processing time per letter
inherit from Algorithm 1.

Theorem 5. There is a bidirectional two-pass determin-
istic algorithm for Validity with space O(log2N) and
O(logN) processing time per letter when the input is given
in its FCNS encoding.

Proof. Append the rule D(⊥) = ε to the input DTD D.
Compute automata A1 and A2. Firstly, in a left-to-right
pass, as in the proof of Theorem 4 we compute a new XML
stream with annotations ann1 and feed this stream directly
into Algorithm 3. We adapt the check function as above.

Concerning the right-to-left pass, we compute the annota-
tions ann2, and feed this stream directly into Algorithm 3 in-
terpreting opening tags as closing tags, and vice versa. Note
that the annotations ann2 are hence annotated on opening
tags. Let v be a node with children v1, . . . , vk. We have to
show how Algorithm 3 can be adapted to relate the annota-
tion of the opening tag vk to v. When Algorithm 3 reads the
closing tag w and the opening tag v1, it pushes (w, v1, ·, ·)
on the stack, where w is the sibling of v1 in the FCNS⊥

encoding. Note that the subsequent tags on the stream are
v2, v3, . . . vk. Node vk can be identified since vk is either a
leaf or followed by a tag with label ⊥. Hence, the stack
item (w, v1, ·, ·) can be annotated with ann2(vk) when vk is
seen. Again by adapting the check routine, we can compute
δ2(ann2(vk), v1) and abort if the result is not an accepting
state.

The space requirements and the processing time per letter
inherit from Algorithm 2.

Applying the bidirectional algorithm of Theorem 5 on
the encoded form XML(FCNS⊥(t)), we obtain that valid-
ity of general trees can be decided memory efficiently in the
streaming model with auxiliary streams.

Corollary 1. There is a bidirectional O(logN)-pass de-
terministic streaming algorithm for Validity with space
O(log2N), O(logN) processing time per letter, and 3 auxil-
iary streams.

4.4 Decoding
In the following, we present a streaming algorithm for

FCNS decoding, that is, given XML(FCNS(t)) of some tree
t, output XML(t). We start with a non-streaming algorithm,
Algorithm 5 performing this task.

We describe how this algorithm can be converted into a
streaming algorithm. For some opening tag X[i], checking
the condition in Line 4 can easily be done by investigating
X[i + 1]. If X[i + 1] is a right opening tag or equals X[i],
X[i] does not have a left subtree. The difficulty in converting
this algorithm into a streaming algorithm is in Line 8, it is
difficult to keep track of opening tags until the respective
closing tags of their left children are seen, and indeed, this
can not be done with sublinear space in one pass (Fact 10).

Algorithm 5 offline algorithm for FCNS decoding

1: for i = 1→ 2N do
2: if X[i] is an opening tag then
3: write X[i]
4: if X[i] does not have a left subtree then

5: write X[i]
6: end if
7: else if X[i] is a left closing tag then {See Figure 11}
8: let p be the parent node of X[i]
9: write p

10: end if
11: end for

p

v1 v2

subtree of v1 subtree of v2

Figure 11: The main difficulty of the FCNS decoding is to write
the closing tag of a node p when the closing tag of its left child is
seen. This is difficult when the subtrees of v1 and v2 are large.

In the following, we present a streaming algorithm that
performs one pass over the input, but two passes over the
output, and uses O(

√
N logN) space, and a streaming algo-

rithm that performs O(logN) passes over the input and 3
auxiliary streams using O(log2(N)) space.

4.4.1 One read-pass and two write-passes
We read blocks of size

√
N logN and execute Algorithm 5

on that block. In Lemma 6 we show that in any block there
is at most one left closing tag for which the parent’s opening
and closing tag are not in that block. Hence per block there
is at most one left closing tag for which we can not obtain
the label of the parent node. We call this closing tag crit-
ical. In this case we write a dummy symbol on the output
stream that will be overwritten by the parent closing tag
in the second pass. The closing tag of the parent node will
arrive in a subsequent block, and it can easily be identified
as this since it is the next closing tag arriving at a depth −1
of the critical closing tag. We store it upon its arrival in our
random access memory. Since there is at most one critical
closing tag per block and we have a block size of

√
N logN ,

we have to recover at most O(
√
N/ logN) parent nodes. At

the end of the pass over the input stream we have recovered
all closing tags of parent nodes for which we wrote dummy
symbols on the output stream. In a second pass over the
output stream we overwrite the dummy symbols by the cor-
rect closing tags.

The complexity derives from the following lemma demon-
strating that in a block there is at most one critical left
closing tag.

Lemma 6. Let X[i, j] be a block. Then there is at most
one left closing tag a with parent node p such that:

pos(p) < i ≤ pos(a) ≤ j < pos(p). (5)

Proof. By contradiction, assume that there are 2 left
closing tags a, b with p being the parent node of a, and q be-
ing the parent node of b, for which Inequality 5 holds. Wlog
we assume that pos(p) < pos(q). Since pos(p) < pos(q) <
pos(a), q is contained in the subtree of a or q = a. This,
however, implies that pos(q) ≤ pos(a) < j contradicting

pos(q) > j.

Theorem 6. There is a streaming algorithm using
O(
√
N logN) space and O(1) processing time per letter

which performs one pass over the input stream containing
XML(t) and two passes over the output stream onto which
it outputs XML(FCNS(t)).

4.4.2 Logarithmic number of passes
Again, we use the offline Algorithm 5 as a starting point

for the algorithm we design now. For coping with the prob-
lem that it is hard to remember all opening parent tags when
their corresponding closing tag ought to be written on the
output, we write categorically dummy symbols on the out-
put stream for all parent closing tags. The crux then is the
following observation:

Fact 8. Let c1L . . . cNL be the subsequence of closing
tags of left children of XML(FCNS(t)). Then the sequence
p1 . . . pN is a subsequence of XML(t) where pi is the parent
node of ci in FCNS(t).

We apply a modified version of our bidirectional two-pass
Algorithm 2 to recover the missing tags. Instead of check-
ing validity, once the check function is called in Algorithm 3
with variables (a, b, c), we output the parent label a onto an
auxiliary stream, annotated with pos(b). We do the same in
a reverse pass over the input stream counting positions from
2N downwards to 1. In so doing, the auxiliary stream con-
tains all parent labels for which dummy symbols are written
on the output stream.

Fact 8 shows that it is enough to sort by means of two fur-
ther auxiliary streams the auxiliary stream with respect to
the annotated position of the closing tags of the left children
of these nodes. In a last pass we insert the parent closing
tags into the output stream.

Theorem 7. There is a O(logN)-pass streaming algo-
rithm with space O(log2N) and O(logN) processing time
per letter and 3 auxiliary streams that computes on the third
auxiliary stream the FCNS decoding of any FCNS encoded
document given in the input stream.

5. LOWER BOUNDS FOR FCNS ENCOD-
ING AND DECODING

We define a family of hard instances of length N = Θ(n)
for the computation of the FCNS encoding of a tree as in
Figure 12.

r

x1 x2 . . . xn

r

x1

x2

. . .

xn

Figure 12: Left: hard instance. Right: its FCNS encoded form.

It is easy to see that computing the sequence of
closing tags in the FCNS encoding requires to in-
vert a stream. Let t be a hard instance. Then
XML(t) = rx1x1x2x2 . . . xnxnr, and XML(FCNS(t)) =
rLx1Lx2R . . . xnRxnRxn−1R . . . x2Rx1LrL. Since the writing

on the stream can only start after reading xn, we deduce
that memory space Ω(n) is required, in order to store all
previous tags.

Fact 9. Every one-pass randomized streaming algorithm
for FCNS encoding with bounded error requires Ω(N) space.

We conjecture that this argument can be extended as fol-
lows:

Conjecture 1. Any p-passes randomized streaming al-
gorithm for FCNS encoding with bounded error requires
space Ω(N/p).

We now define another family of hard instances of length
N = Θ(n) for decoding a FCNS encoded tree as in Figure 13.

r

x1

xk−1

xk

xk+1

xn
subtree y

r

x1

xk−1

xk

xk+1

xn

subtree z

Figure 13: Left: hard instance in FCNS form, where y is any tree
of size Θ(n). Right: its decoded form.

Intuitively, decoding the tree of any hard instance
requires to put the full tree y into memory. Let
XML(FCNS(t)) denote a hard instance which we aim
to decode into XML(t). Then: XML(FCNS(t)) =
rx1L . . . xnLxnL . . . xk+1LY xkL . . . x1LrL and the decoded
form is XML(t) = rx1 . . . xnxn . . . xkZxk−1 . . . x1r where Z
is the decoded form of Y . Since Z can only be written af-
ter xk, and since xk cannot be memorized because k was
unknown until we reach Y , memory space Ω(n) is required.
This argument can be easily formalized using standard in-
formation theory arguments.

Fact 10. Every one-pass randomized streaming algo-
rithm for FCNS decoding with bounded error requires space
Ω(N).

This argument can be extended to two-pass randomized
streaming algorithms. Construct a hard instance of size
Θ(n2) by gluing n previous instances (xi, ki, yi)1≤i≤n as fol-
lows: instance (xi+1, ki+1, yi+1) is branched to the left most
leaf of instance (xi, ki, yi). After the first pass, the algorithm

is not able to write n closing tags of form xiki . Therefore he
needs to store them in order to write them at the second
pass. This requires some formalization that we omit here.

Fact 11. Every randomized streaming algorithm for
FCNS decoding with bounded error, one pass on the input
stream, and two passes on the output stream requires space
Ω(
√
N).

Acknowledgements
The authors would like to thank Michel de Rougemont, who,
among other things, introduced the authors to the problem
of validating streaming XML documents.

6. REFERENCES
[1] N. Alon, Y. Matias, and M. Szegedy. The space

complexity of approximating the frequency moments.
Journal of Computer and System Sciences,
58(1):137–147, 1999.

[2] Z. Bar-Yossef, T. S. Jayram, R. Kumar, and
D. Sivakumar. An information statistics approach to
data stream and communication complexity. Journal
of Computer and System Sciences, 68(4):702–732,
2004.

[3] P. Beame and D.-T. Huynh-Ngoc. On the value of
multiple read/write streams for approximating
frequency moments. In FOCS, pages 499–508, 2008.

[4] P. Beame, T. Jayram, and A. Rudra. Lower bounds
for randomized read/write stream algorithms. In
STOC, pages 689–698, 2007.

[5] C. Demetrescu, I. Finocchi, and A. Ribichini. Trading
off space for passes in graph streaming problems. In
ACM-SIAM SODA, pages 714–723, 2006.

[6] M. Grohe, A. Hernich, and N. Schweikardt.
Randomized computations on large data sets: Tight
lower bounds. In ACM PODS, pages 243–252, 2006.

[7] M. Grohe, A. Hernich, and N. Schweikardt. Lower
bounds for processing data with few random accesses
to external memory. Journal of the ACM, 56(3):1–16,
2009.

[8] M. Grohe, C. Koch, and N. Schweikardt. The
complexity of querying external memory and
streaming data. In FCT, pages 1–16, 2005.

[9] M. Grohe, C. Koch, and N. Schweikardt. Tight lower
bounds for query processing on streaming and
external memory data. Theor. Comput. Sci.,
380:199–217, July 2007.

[10] M. Grohe and N. Schweikardt. Lower bounds for
sorting with few random accesses to external memory.
In ACM PODS, pages 238–249, 2005.

[11] E. Kushilevitz and N. Nisan. Communication
complexity. Cambridge University Press, 1997.

[12] F. Magniez, C. Mathieu, and A. Nayak. Recognizing
well-parenthesized expressions in the streaming model.
In ACM STOC, pages 261–270, 2010.

[13] S. Muthukrishnan. Data Streams: Algorithms and
Applications. Now Publishers Inc., 2005.

[14] F. Neven. Automata theory for xml researchers.
Sigmod Record, 31:2002, 2002.

[15] L. Segoufin and C. Sirangelo. Constant-memory
validation of streaming XML documents against
DTDs. In ICDT, pages 299–313, 2007.

[16] L. Segoufin and V. Vianu. Validating streaming XML
documents. In ACM PODS, pages 53–64, 2002.

APPENDIX
A. A Ω(N/P) SPACE LOWER BOUND FOR

P -PASS ALGORITHMS FOR Validity

For the sake of clarity, in this section we provide a proof
showing that p-pass algorithms require Ω(N/p) space for
checking validity of arbitrary XML files against arbitrary
DTDs. Many space lower bound proofs for Streaming Algo-
rithms are reductions to problems in communication com-
plexity [1, 2, 12]. For an introduction to communication

complexity we refer the reader to [11].
Consider a player Alice holding an N bit string x =

x1 . . . xN , and a player Bob holding an N bit string
y = y1 . . . yN both taken from a uniform distribution over
{0, 1}N . Their common goal is to compute the function
f(x, y) =

∨
i x[i] ∧ y[i] by exchanging messages. This

communication problem is the well studied problem Set-
Disjointness (DISJ).

It is well known that the randomized communication com-
plexity with bounded two-sided error of the Set Disjointness
function R(DISJ) = Θ(N). In this model, the players Alice
and Bob have access to a common string of independent,
unbiased coin tosses. The answer is required to be correct
with probability at least 2/3.

We make use of this fact by encoding this problem into
an XML validity problem. Consider Σ = {r, 0, 1}, the DTD
DDISJ such that DDISJ(r) = 0r0 | 0r1 | 1r0 | ε, DDISJ(0) = ε,
andDDISJ(1) = ε. Given an input x, y as above, we construct
an input tree t(x, y) as in Figure 14.

r

x1 r y1

x2 r y2

r

xn r yn

DDISJ(r) = 0r0 | 0r1 | 1r0 | ε
DDISJ(0) = DDISJ(1) = ε

Figure 14: t(x, y) is a hard instance for Validity.

Clearly, DISJ(x, y) = 0 if and only if XML(t(x, y)) is valid
with respect to DDISJ.

Theorem 8. Every p-pass randomized streaming algo-
rithm for Validity with bounded error uses Ω(N/p) space,
where N is the input length.

Proof. Given an instance x ∈ {0, 1}N , y ∈ {0, 1}N of
DISJ, we construct an instance for Validity. Then, we
show that if there is a p-pass randomized algorithm for
Validity using space s with bounded error, then there
is a communication protocol for DISJ with the same er-
ror and communication O(s · p). This implies that any p-
pass algorithm for Validity requires space Ω(N/p) since
R(DISJ) = Θ(N).

Assume that A is a randomized streaming algorithm de-
ciding validity with space s and p passes. Alice generates
the first half of XML(t(x, y)), that is rx1x1rx2x2 . . . rxnxnr
of length 2N + 2 and executes algorithm A on this se-
quence using a memory of size O(s). Alice send the mem-
ory of size at most s to Bob via message M1

A who contin-
ues algorithm A on the second half of XML(t(x, y)), that is
rynynr . . . ry2y2ry1y1r of length 2N + 2 using memory M1

A.
After execution, Bob sends the memory of size at most s
back to Alice via M1

B . This procedure is repeated at most p
times.

This protocol has a total length of O(s ·p) which we know
to be Ω(N) since R(DISJ) ∈ Θ(N). The claim follows.

