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We study the problem of validating XML documents of sizeN against general DTDs in the context of stream-
ing algorithms. The starting point of this work is a well-known space lower bound. There are XML docu-
ments and DTDs for which p-pass streaming algorithms require Ω(N/p) space.

We show that when allowing access to external memory, there is a deterministic streaming algorithm
that solves this problem with memory space O(log2N), a constant number of auxiliary read/write streams,
and O(logN) total number of passes on the XML document and auxiliary streams.

An important intermediate step of this algorithm is the computation of the First-Child-Next-Sibling
(FCNS) encoding of the initial XML document in a streaming fashion. We study this problem indepen-
dently, and we also provide memory efficient streaming algorithms for decoding an XML document given in
its FCNS encoding.

Furthermore, validating XML documents encoding binary trees against any DTD in the usual streaming
model without external memory can be done with sublinear memory. There is a one-pass algorithm using
O(
√
N logN) space, and a bidirectional two-pass algorithm using O(log2N) space which perform this task.

Categories and Subject Descriptors: F.2.2 [Theory of Computation]: Analysis of algorithms and problem
complexity—Nonnumerical Algorithms and Problems

General Terms: Algorithms, Theory

1. INTRODUCTION
Streaming Algorithms. The area of streaming algorithms has experienced tremen-
dous growth over the last decade in many applications. Streaming algorithms sequen-
tially scan the whole input piece by piece in one pass, or in a small number of passes
(i.e., they do not have random access to the input), while using sublinear memory
space, ideally polylogarithmic in the size of the input. The design of streaming algo-
rithms is motivated by the explosion in the size of the data that algorithms are called
upon to process in everyday real-time applications. Examples of such applications oc-
cur in bioinformatics for genome decoding, in Web databases for the search of docu-
ments, or in network monitoring. The analysis of Internet traffic [Alon et al. 1999], in
which traffic logs are queried, was one of the first applications of this kind of algorithm.

There are various extensions of this basic streaming model. One of them gives the
streaming algorithm access to an external memory consisting of several read/write
streams [Grohe et al. 2005; Grohe and Schweikardt 2005; Grohe et al. 2006]. Then
the streaming algorithm is also relaxed and allowed to perform multiple passes in any
direction over the input stream and the auxiliary streams. In most of the applications,
the number of auxiliary streams is constant and the total number of passes is logarith-
mic in the input size.
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Databases and XML. Verifying properties or evaluating queries of massive
databases is an active and challenging topic. For relational algebra queries against
relational databases, the situation is quite clear. There are bidirectional O(logN)-
pass deterministic streaming algorithms with constant memory space and a constant
number of auxiliary streams [Grohe et al. 2009] where N is the size of the database.
Moreover, the logarithmic number of passes is a necessary condition in order to keep
the memory space sublinear, even if randomization is allowed. The latter was ini-
tially stated for one-sided error [Grohe et al. 2009] and then extended to two-sided
error [Beame et al. 2007; Beame and Huynh-Ngoc 2008].

In the context of data exchange, especially on the Web, Extended Markup Language
(XML) is emerging as the standard, and is currently drawing much attention in
data management research. Only little is known about XML query processing when
only streaming access is allowed to the XML document. For evaluating XQuery and
XPath queries against XML documents of size N , only the lower bound has been ex-
tended [Grohe et al. 2009; Beame et al. 2007; Beame and Huynh-Ngoc 2008], meaning
that Ω(logN) passes are necessary. All known upper bounds make one pass over the
input and use linear memory in the depth of the document which in the worst case is
as large as N .

Validating XML Documents. This paper considers the problem of validating XML
documents against a given Document Type Definition (DTD) in a streaming fashion
without restrictions on the DTD. An XML document is valid against a DTD if for each
node, the sequence of the labels of their children fulfills a regular expression defined in
the DTD. Prior works on this topic [Segoufin and Vianu 2002; Segoufin and Sirangelo
2007] essentially try to characterize those DTDs for which validity can be checked by
a finite-state automaton, which is a one-pass deterministic streaming algorithm with
constant memory. Concerning arbitrary DTDs, two approaches have been considered
in [Segoufin and Vianu 2002]. The first one leads to an algorithm with memory space
linear in the height of the XML document [Segoufin and Vianu 2002]. The second
one consists of constructing a refined DTD of at most quadratic size, which defines
a similar family of tree documents as the original one, and against which validation
can be done with constant space. Nonetheless, for an existing document and DTD, the
latter requires that both documents and DTD, are converted before validation.

A related line of research is the incremental validation of XML documents [Balmin
et al. 2004; Barbosa et al. 2004]. Given an XML document and a set of update opera-
tions such as insertion and deletion of nodes, the goal is to validate the XML document
that is obtained by applying the update operations on the initial document. Balmin et
al. [Balmin et al. 2004] show for instance that an XML document with n nodes that
is modified by m update operations can be validated against a DTD in time O(m log n)
and space O(n) under the assumption that the document was initially valid.

One of the obstacles that prior works had to cope with was the verification of well-
formedness of XML documents, meaning that every opening tag matches its same-level
closing tag. Due to the work [Magniez et al. 2010], such a verification can be performed
now with a constant-pass randomized streaming algorithm with sublinear memory
space and no auxiliary streams. In one pass the memory space is O(

√
N logN), and

collapses to O(log2N) with an additional pass in reverse direction.
Our Contributions. The starting point of this work is the fact that checking DTD-

validity is hard without auxiliary streams. There are DTDs that admit ternary XML
documents, and any p-pass bidirectional streaming algorithm which validates those
documents against those DTDs requires Ω(N/p) space. This lower bound even holds
if the streaming algorithm makes use of randomness. This lower bound comes from
encoding a well-known communication complexity problem, Set-Disjointness, as an
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XML validity problem. This lower bound should be well-known, however we are not
aware of a complete proof in the literature. In [Grohe et al. 2007], a similar approach
using ternary trees with a reduction from Set-Disjointness is used for proving lower
bounds for queries. For the sake of completeness we provide a proof in Section 3.1
(Theorem 3.1).

On the other hand, it is possible to validate XML documents in one pass and space
O(d), where d is the depth of the XML document (Theorem A.1). This algorithm is
straightforward and should be well known. Furthermore, we mention that the pre-
viously discussed lower bound of Ω(N/p) can be modified to obtain a lower bound of
Ω(d/p). Therefore, space O(d) is best possible for one-pass algorithms. For complete-
ness we discuss this algorithm in Appendix A.

We then discuss validity notions, such as extended DTDs (EDTD), which allow the
specification of the validity of a node as a function of the grandchildren of that node.
Using a further reduction from Set-Disjointness we show that validating XML doc-
uments encoding binary trees against those validity schemas requires linear space
(Theorem 3.3).

For the case of XML documents encoding binary trees, we present in Section 4 three
deterministic streaming algorithms for checking validity with sublinear space. As a
consequence, the presence of nodes of degree at least 3 is indeed a necessary condition
for the linear space lower bound for general documents. We first present two one-
pass algorithms with space O(

√
N logN) (Theorem 4.2 and Theorem 4.4). The first

algorithm, Algorithm 1, processes the input XML document in blocks and is easy to
analyze, however, it is not optimal in terms of processing time per letter. The second
algorithm, Algorithm 2, uses a stack and has constant processing time per letter. We
conjecture that there is a Ω(N1/2) lower bound for one-pass algorithms. With a second
pass in reverse direction the memory collapses to O(log2N) (Theorem 4.6). These
three algorithms make use of the simple but fundamental fact that in one pass over an
XML document each node is seen twice by means of its opening and closing tag. Hence,
it is not necessary to remember all opening tags in the stream since there is a second
chance to get the same information from their closing tags. Our algorithms exploit this
observation. We summarize our streaming algorithms for validating documents that
encode binary trees in Figure 1.

Passes Space Time Remark
1 O(

√
N logN) Ω(

√
N logN) Block Algorithm (Theorem 4.2), simple analysis

1 O(
√
N logN) O(1) Stack Algorithm (Theorem 4.4)

2 O(log2N) O(logN) Bidirectional Algorithm (Theorem 4.6)

Fig. 1. Overview about our streaming algorithms for checking DTD-validity of XML documents that encode
binary trees. Time refers to the worst-case processing time between two consecutive read operations from
the stream. We did not fully analyze the processing time of the block algorithm, however, since it processes
the input in blocks of size Θ(

√
N logN), the processing time is Ω(

√
N logN).

Then, in Section 5 we present our main result. Corollary 5.12 states that the vali-
dation of any XML document against any DTD can be checked in the streaming model
with external memory with poly-logarithmic space, a constant number of auxiliary
streams, and O(logN) passes over these streams. Validity of a node depends on its
children, hence it is crucial to have easy access to the sequence of children of any
node. We establish this by computing the First-Child-Next-Sibling (FCNS) encoding,
which is an encoding of the XML document as a 2-ranked tree. In this encoding, the
sequence of closing tags of the children of a node are consecutive. The computation
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of this encoding is the hard part of the validation process, and the resource require-
ments of our validation algorithm stem from this operation (Theorem 5.6). Since the
FCNS encoding can be seen as a reordering of the tags of the original document, our
strategy is to regard this problem as a sorting problem with a particular compari-
son function. Merge sort can be implemented as a streaming algorithm with auxiliary
streams. We use a version that is customized with an adapted merge function. The
same idea can be used for FCNS decoding with similar complexity (Theorem 5.16).
Then, based on the FCNS encoding, verification can be completed either in one pass
and O(

√
N logN) space (Theorem 5.11), or in two bidirectional passes and O(log2N)

space (Theorem 5.10). Figure 2 illustrates how our streaming algorithm of Corol-
lary 5.12 for the validation of general XML documents is obtained.

Theorem 5.6 Theorem 5.10

3 aux. streams 2 passes
O(logN) passes (bidirectional)

Fig. 2. Schema of our Streaming Algorithm of Corollary 5.12 for checking DTD-validity of arbitrary XML
documents. First, the First-Child-Next-Sibling encoding of the input XML document is computed with 3
auxiliary streams and O(logN) space. Then, validity of the document is checked with 2 bidirectional passes
and O(log2N) space.

Concerning the computation of the FCNS encoding and the FCNS decoding, we show
linear space lower bounds for algorithms that perform one pass over the input and one
pass over the output. For decoding, we present an algorithm that uses O(

√
N logN)

space (Theorem 5.15) and performs one pass over the input, but two passes over the
output. Furthermore, we show that with 3 auxiliary streams and O(logN) passes, both
encoding and decoding can be done with O(logN) space. For encoding, we conjecture
that if no access to auxiliary streams is granted the memory space remains Ω(N) after
any constant number of passes. This would show that decoding is easier than encod-
ing. This suggests a systematic use of the FCNS encoding for large documents, since
validity can be checked easily without auxiliary streams and with sublinear space. The
applicability of this idea is left as an open question.

LB/UB Passes Space Remark
FCNS encoding:
Lower Bound 1 pass on input, 1 pass on output Ω(N) (Fact 6)
Upper Bound O(logN) passes on 3 auxiliary streams O(logN) (Corollary 5.7)

FCNS decoding:
Lower Bound 1 pass on input, 1 pass on output Ω(N) (Fact 6.2)
Upper Bound 1 pass on input, 2 passes on output O(

√
N logN) (Theorem 5.15)

Upper Bound O(logN) passes on 3 auxiliary streams O(logN) (Theorem 5.16)

Fig. 3. Overview about our results on computing the FCNS encoding and the FCNS decoding. For encoding,
an XML document is on the input stream and the goal is to output the FCNS encoding of this document on
an output stream. For decoding, the FCNS encoding of an XML document is on the input stream and the
goal is to output the original document on an output stream.

Practical relevance. In many applications, XML documents are of bounded depth
(for instance a depth of O(logcN) for some constant c is a reasonable assumption), and
therefore, the previously mentioned one-pass streaming algorithm with space O(d),
where d is the depth of the XML document, may be sufficient. However, since the depth
of an XML document can be as large as Θ(N), such an algorithm would then require
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linear space. The space complexity of our streaming algorithm for general documents
does not depend on the depth of the underlying XML document. This algorithm is
therefore particularly interesting for XML documents with large depth.

Furthermore, note again that our streaming algorithm for general XML documents
does not make any assumptions on the structure of the input XML documents and the
DTDs. Therefore, this algorithm can be considered to be mainly of theoretical inter-
est, since in practice, the structure of the input XML documents and DTDs may be
exploited to obtain algorithms with better space complexity.

Moreover, the authors are not aware of applications that use XML documents that
encode binary trees or 2-ranked trees. Our streaming algorithms for the validation
of documents that encode binary trees are hence mainly of theoretical interest. Note,
however, that we use a modified version of the bidirectional two-pass algorithm for the
validation of XML documents that encode binary trees for checking validity of an XML
document that is given in its First-Child-Next-Sibling encoding.

Conference version. This work builds on the article [Konrad and Magniez 2012]
that was presented at the 15th International Conference on Database Theory 2012
(ICDT 2012). Besides a more detailed presentation of the results of [Konrad and Mag-
niez 2012], this article provides:

— a Ω(N/p) space lower bound for p-pass streaming algorithms for validating XML
documents that encode binary trees against extended DTDs (Theorem 3.3),

— the description of a one-pass streaming algorithm with space O(d) for validating ar-
bitrary XML documents of depth d against any DTD (Theorem A.1), and

— a linear space lower bound for First-Child-Next-Sibling decoding for streaming al-
gorithms that perform one pass over the input and one pass over the output (Theo-
rem 6.2).

2. PRELIMINARIES
Let Σ be a finite alphabet. The k-th letter of X ∈ ΣN is denoted by X[k], for 1 ≤ k ≤ N ,
and the consecutive letters of X between positions i and j by X[i, j]. A subsequence of
X is any string X[i1]X[i2] . . . X[ik], where 1 ≤ i1 < i2 < ... < ik ≤ N .

2.1. Streaming model
In streaming algorithms, a pass over input X ∈ ΣN means that X is given as input
stream X[1], X[2], . . . , X[N ], which arrives sequentially, i.e., letter by letter in this or-
der. Streaming algorithms have access to random access memory space, and possibly
also to read-write external memory as in [Grohe et al. 2009; Demetrescu et al. 2006].
See also the review in [Grohe et al. 2005]. We assume that any letter of Σ fits into
one cell of internal/external memory. The external memory is a collection of auxiliary
streams, which are read/write streams with sequential access. When needed, we aug-
ment the alphabet of auxiliary streams from Σ by k-tuples of elements in Σ ∪ [0, 2N ],
for a fixed constant k, which therefore fit into one cell of auxiliary streams.

At the beginning of each pass on a read/write stream, the algorithm decides whether
it will perform a read or write pass. The input stream is read-only. On a writing pass,
the algorithm can either write a letter, and then move to the next cell, or move directly
to the next cell. For the case of bidirectional streaming algorithms, as opposed to uni-
directional streaming algorithms where each pass is in the same order, the algorithm
can decide the direction of the sequential pass.

For the sake of simplicity, we assume throughout this article that the length of
the input is known in advance by the algorithm. Nonetheless, all our algorithms
can be adapted to the case in which the length is unknown until the end of a pass.
See [Muthukrishnan 2005] for an introduction to streaming algorithms.
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Definition 2.1 (Streaming algorithm). A p(N)-pass streaming algorithm A with
s(N) space, k(N) auxiliary streams, t(N) processing time per letter is an algorithm
such that for every input stream X ∈ ΣN :

(1) A has access to k(N) auxiliary read/write streams,
(2) A performs in total at most p(N) passes on X and auxiliary streams,
(3) A maintains a memory space of size s(N) letters of Σ and bits while reading X and

auxiliary streams,
(4) A does not exceed a running time of t(N) between two write or read operations.

We say that A is bidirectional if it performs at least one pass in each direction. Other-
wise A is implicitly unidirectional.

If we do not mention the number of auxiliary streams explicitely, then we assume
that there none, i.e. k(N) = 0. Furthermore, we assume that operations on numbers
N ∈ [0, 2N ] can be done in constant time.

Even though all our streaming algorithms are deterministic, we will prove lower
bounds that also hold for randomized algorithms. We define a randomized streaming
algorithm as follows.

Definition 2.2 (Randomized streaming algorithm). A randomized streaming algo-
rithm A with error probability ε < 1/2 is a streaming algorithm that has access to
an infinite number of independent uniform random bits B, that is ∀i : Pr[B[i] = 0] =
Pr[B[i] = 1] = 1/2. Furthermore, A is correct with probability at least 1 − ε on every
input (where the probability is taken over the random bits B).

We say that a randomized streaming algorithm has bounded error if there is an ε < 1/2
such that the algorithm is correct on any input with probability at least 1− ε.

2.2. XML documents
We consider finite unranked ordered labeled trees t, where each tree node has a label in
Σ. From now on, we omit the terms ordered, labeled, and finite. Moreover, the children
of every non-leaf node are ordered. k-ranked trees are a special case where each node
has at most k children. Binary trees are a special type of 2-ranked tree, where each
node is either a leaf or has exactly 2 children. We use the following notations to access
the nodes of a tree:

— root(t) : root node of tree t,
— children(x) : (ordered) sequence of children nodes of node x, if x is a leaf then this

sequence is empty,
— fc(x) : first child of node x, if x is a leaf then fc(x) = ⊥,
— ns(x) : next sibling of node x, if x is a right most (last) child then ns(x) = ⊥.

For each label a ∈ Σ, we associate its corresponding opening tag a and closing tag a,
standing for 〈a〉 and 〈/a〉 in the usual XML notations. An XML sequence is a sequence
over the alphabet Σ′ = {a, a : a ∈ Σ}. The XML sequence of a tree t is the sequence
of opening tags and closing tags in the order of a depth first left-to-right traversal of t
(Figure 4): when at step i we visit a node with label a top-down (respectively bottom-
up), we let X[i] = a (respectively X[i] = a). Hence X is a word over Σ′ = {a, a : a ∈ Σ} of
size twice the number of nodes of t. The XML file describing t is unique, and we denote
it as XML(t). We define XML(t) as a recursive function in Definition 2.3. For a node
x ∈ t, we write (ambiguously) x and x to denote its opening and closing tag. x is also
used to denote its label.
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Fig. 4. Let Σ = {a, b, c}, and let t be the tree as above. Then XML(t) = rbaaaaccbbbbaaaabccr.

Definition 2.3. Let t be an unranked tree, let x, x1, . . . , xn ∈ t be nodes. Then:

XML(x) = xXML(children(x))x,

XML(x1, . . . , xn) = XML(x1) . . .XML(xn),

XML(⊥) = ε,

and we write XML(t) for XML(root(t)).

We assume that the input XML sequences X are well-formed, namely X = XML(t),
for some tree t. The work [Magniez et al. 2010] legitimates this assumption, since
checking well-formedness is at least as easy as any of our algorithms for checking
validity. Hence, we could run an algorithm for well-formedness in parallel without
increasing the resource requirements. Note that randomness is necessary for checking
well-formedness with sublinear space, whereas our algorithms for validation are all
deterministic.

Since the length of a well-formed XML sequence is known in advance, we will denote
it by 2N instead of N . Each opening tag X[i] and matching closing tag X[j] in X =
XML(t) corresponds to a unique tree node v of t. We sometimes denote v either by X[i]
or X[j]. Then, the position of v in X is pos(v) = i. Similarly, pos(v) = j.

2.3. FCNS encoding and decoding
The FCNS encoding (see for instance [Neven 2002]) is an encoding of unranked trees
as extended 2-ranked trees, where we distinguish left child from right child. This is an
extension of ordered 2-ranked trees, since a node may have a left child but no right
child, and vice versa. We therefore duplicate the labels a ∈ Σ to aL and aR, in order
to denote the left and right opening/closing tags of a. The FCNS tree is obtained by
keeping the same set of tree nodes. The root node of the unranked tree remains the
root in the FCNS tree, and we annotate it by default left. The left child of any internal
node in the FCNS tree is the first child of this node in the unranked tree if it exists,
otherwise it does not have a left child. The right child of a node in the FCNS tree is the
next sibling of this node in the unranked tree if it exists, otherwise it does not have
a right child. For a tree t, we denote FCNS(t) the FCNS tree, and XML(FCNS(t)) the
XML sequence of the FCNS encoding of t. Figure 5 illustrates the construction of the
FCNS encoding, and we define XML(FCNS(t)) by means of a recursive function XMLF

in Definition 2.4.

Definition 2.4. Let t be an unranked tree, and let x ∈ t be a node. Let D ∈ {L,R}.
Then XMLF is defined as follows:

XMLF(x,D) = xD XMLF(fc(x),L) XMLF(ns(x),R)xD,

XMLF(⊥, D) = ε,

and we write XML(FCNS(t)) for XMLF(root(t), L).
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1. initial tree 2. keep edges to first children

3. insert edges to next siblings 4. FCNS encoding

Fig. 5. 1: introductory example tree t already shown in Figure 4. 2: removal of all edges except
edges to first children. 3: Insertion of edges to next siblings. 4: FCNS encoding of tree t. XMLF (t) =

rLbLaLaRcRcRaRaLbRbRaLaRaRaLcRcRbRbRbLrL.

Instead of annotating by left/right, another way to uniquely identify a node as left
or right is to insert dummy leaves with a new label ⊥, and we assume that ⊥ /∈ Σ.
For a tree t, we denote the binary version without annotations and insertion of ⊥
leaves by FCNS⊥(t), and the XML sequence of FCNS⊥(t) by XML(FCNS⊥(t)). This is
illustrated in Figure 6. The two representations can be easily transformed into each
other. Depending on the application, we will use the more convenient version.

Fig. 6. FCNS⊥ encoding of the example tree. XMLF⊥(t) = rba⊥⊥a⊥⊥ccaab⊥⊥ba⊥⊥aaaccbbb⊥⊥r.

We call the transformation of XML(t) into XML(FCNS(t)) FCNS encoding, and the
transformation of XML(FCNS(t)) into XML(t) FCNS decoding.

2.4. Validity and DTDs
We consider XML validity against some DTD.
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Definition 2.5 (DTD). A DTD is a triple (Σ, d, sd) where Σ is a finite alphabet, d is
a function that maps Σ-symbols to regular expressions over Σ and sd ∈ Σ is the start
symbol. A tree t satisfies (Σ, d, sd) if its root is labeled by sd, and for every node with
label a, the sequence a1 . . . an of labels of its children is in the language defined by d(a).

We illustrate this notion in Figure 7.

Σ = {r, a, b, c}, sd = r

d(r) = b∗c

d(a) = ε

d(b) = a∗c∗

d(c) = ε

valid tree invalid tree
Fig. 7. Example of a DTD. The tree on the left is valid agaist the DTD (Σ, d, sd) shown on the right of this
illustration. For each node v of the tree, the sequence of the labels of its children nodes fulfills the regular
expression d(v). The tree in the middle is not valid against the DTD on the right: The sequence of the labels
of the children of the highlighted node is ab, however, ab does not satisfy the regular expression d(b) = a∗c∗.

Throughout the document we assume that DTDs are considerably small and our al-
gorithms have full access to them without accounting this to their space requirements.

Definition 2.6 (VALIDITY). Let D be a DTD. The problem VALIDITY consists of de-
ciding whether an input tree t given by its XML sequence XML(t) on an input stream
is valid against D.

We denote by VALIDITY(2) the problem VALIDITY restricted to input XML sequences
describing binary trees.

3. HARDNESS OF SOME NOTIONS OF VALIDITY
In this section, we discuss some lower bounds for checking different notions of validity
of XML files. In Section 3.1, we show that there are DTDs that admit ternary trees
and checking those requires linear space. In Section 4 we show that checking DTD
validity of XML documents encoding binary trees can be done with sublinear space.
We conclude that ternary trees are necessary for obtaining a linear space lower bound.

In Section 3.2, we consider validity notions that allow one to express a node’s validity
as a function of its children and its grandchildren. These validity notions are harder
to check than DTD validity in the sense that even checking XML documents encoding
binary trees requires linear space.

3.1. A linear space lower bound for VALIDITY using ternary trees
We provide now a proof showing that p-pass algorithms require Ω(N/p) space for check-
ing validity of arbitrary XML files against arbitrary DTDs. Many space lower bound
proofs for streaming algorithms are reductions from problems in communication com-
plexity [Alon et al. 1999; Bar-Yossef et al. 2004; Magniez et al. 2010]. For an intro-
duction to communication complexity we refer the reader to [Kushilevitz and Nisan
1997].

Consider a player Alice holding an N bit string x = x1 . . . xN , and a player Bob hold-
ing an N bit string y = y1 . . . yN both taken from the uniform distribution over {0, 1}N .
Their common goal is to compute the function f(x, y) =

∨
i x[i] ∧ y[i] by exchanging
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messages. This communication problem is the widely studied problem Set-Disjointness
(DISJ).

It is well known that the randomized communication complexity with bounded two-
sided error of the Set Disjointness functionR(DISJ) = Θ(N) (see for instance [Kushile-
vitz and Nisan 1997]). Informally speaking, the randomized communication complex-
ity of a function is the minimal amount of communication in bits that is needed in
order to compute the function. In this model, the players Alice and Bob have access to
a common string of independent, unbiased coin tosses. The answer is required to be
correct with probability at least 2/3.

We make use of this fact by encoding this problem into an XML validity prob-
lem. Consider ΣDISJ = {r, 0, 1}, the DTD DDISJ = (ΣDISJ, dDISJ, r) such that
dDISJ(r) = 0r0 | 0r1 | 1r0 | ε, dDISJ(0) = ε, and dDISJ(1) = ε. Given an input x, y as above,
we construct an input tree t(x, y) as in Figure 8.

dDISJ(r) = 0r0 | 0r1 | 1r0 | ε
dDISJ(0) = dDISJ(1) = ε

Fig. 8. t(x, y) is a hard instance for VALIDITY.

Clearly, DISJ(x, y) = 0 if and only if XML(t(x, y)) is valid with respect to DDISJ.

THEOREM 3.1. Every p-pass randomized streaming algorithm for VALIDITY with
bounded error and no auxiliary streams uses Ω(N/p) space, whereN is the input length.

PROOF. Given an instance x ∈ {0, 1}N , y ∈ {0, 1}N of DISJ, we construct an in-
stance for VALIDITY. Then, we show that if there is a p-pass randomized algorithm for
VALIDITY using space s with bounded error, then there is a communication protocol
for DISJ with the same error and communication O(s ·p). This implies that any p-pass
algorithm for VALIDITY requires space Ω(N/p) since R(DISJ) = Θ(N).

Assume that A is a randomized streaming algorithm deciding validity with
space s and p passes. Alice generates the first half of XML(t(x, y)), that is
rx1x1rx2x2 . . . rxNxNr of length 3N + 1 and executes algorithm A on this sequence
using a memory of size O(s). Alice sends the content of the memory to Bob via message
M1
A. Bob initializes his memory with M1

A, and continues algorithm A on the second
half of XML(t(x, y)), that is ryNyNr . . . ry2y2ry1y1r of length 3N + 1. After execution,
Bob sends the content of the memory back to Alice via M1

B . This procedure is repeated
at most p times.

This protocol has a total length of O(s · p) since the size of each message is at most s.
Since R(DISJ) ∈ Θ(N), we obtain that s · p ∈ Ω(N). The claim follows.

3.2. Validity notions that allow to relate nodes to their grandchildren
Suppose that a validity schema allows to express a node’s validity not only through
the labels of its children but also of its grandchildren. Note that this is not the case for
DTDs since DTD validity only considers the direct descendants of a node for checking
its validity. We show that checking validity against such schemas requires linear space
even if the XML document encodes a binary tree, see Theorem 3.3 below.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January 2013.



A:11

As in the prior subsection, we encode the communication problem Set-Disjointness
into an XML document. Let x = x1 . . . xN ∈ {0, 1}N denote the input of Alice, and let
y = y1 . . . yN ∈ {0, 1}N denote the input of Bob. They construct a binary tree t′(x, y) as
on the left side of Figure 9.

Fig. 9. Left: hard instance t′(x, y) for validity schemas that allow to relate nodes to its grandchildren. Right:
the validity constraints for nodes labeled r.

t′(x, y) is valid if the subtrees below a node with label r are as in the right side of
Figure 9. Only if this is true then DISJ(x, y) = 0. Extended Document Type Definition
(EDTD) as well as Relax NG schemas allow to express validity constraints of that kind.
XML Schema and DTDs are not powerful enough to express these type of constraints
[Martens et al. 2006]. EDTDs were introduced in [Papakonstantinou and Vianu 2000]
under the name specialized DTDs. They are defined as follows.

Definition 3.2. An extended DTD (EDTD) is a tuple D = (Σ,∆, d, sd, µ), where ∆
is a finite set of types, µ is a mapping from ∆ to Σ, and (∆, d, sd) is a DTD. A tree t
satisfies D if t = µ(t′) for some t′ satisfying the DTD (∆, d, sd).

EDTD validity of the trees t′(x, y) of Figure 9 can be checked by the EDTD D =
(Σ,∆, d, sd, µ) where

Σ = {r, r′, 0, 1},∆ = {r, 0, 1, r′0, r′1}, sd = r,

µ(r) = r, µ(0) = 0, µ(1) = 1, µ(r′0) = r′, µ(r′1) = r′, and
d(0) = ε, d(1) = ε, d(r′0) = r 0, d(r′1) = r 1, d(r) = 0r′0|0r′1|1r′0|ε.

THEOREM 3.3. Every p-pass randomized streaming algorithm validating XML doc-
uments encoding binary trees against a validity schema that allows to express a node’s
validity as a function of its children and its grandchildren with bounded error and no
auxiliary streams uses Ω(N/p) space, where N is the input length.

PROOF. The proof is identical to the proof of Theorem 3.1, except that the encoding
is slightly different. Let x ∈ {0, 1}N , y ∈ {0, 1}N be an instance of DISJ. Alice generates
the left half of the tree t′(x, y) as follows: rx1x1srx2x2s . . . rxnxnsrr. Bob generates the
right half of the tree t′(x, y) as follows: ynynsryn−1yn−1sr . . . y1y1sr. A p-pass stream-
ing algorithm with space s checking the two-level validity constraints as on the right
side of Figure 9 of t′(x, y) hence solves DISJ with a protocol of length O(s · p). Since
R(DISJ) = Θ(N), the result follows.
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4. VALIDITY OF BINARY TREES
For simplicity, we only consider binary trees in this section. A left opening/closing
tag (respectively right opening/closing tag) of an XML sequence X is a tag whose
corresponding node is the first child of its parent (respectively second child).

Our algorithms for binary trees can be extended to 2-ranked trees. This requires few
changes in the one-pass Algorithms 1 and 2, and the two-pass Algorithm 3 (indeed in
the subroutine Algorithm 4) that we do not describe here since they only complicate
the presentation and do not affect the essence of the algorithms.

We fix now a DTD D = (Σ, d, sd), and assume that in our algorithms we have access
to a procedure check(v, v1, v2) that indicates invalidity and aborts if v1v2 is not valid
against the regular expression d(v). Otherwise it returns without any action. Note
that in the case of binary trees, the regular expressions specified in the DTD simplify
to disjunctions of allowed pairs and potentially ε in case of leaves.

In order to validate an XML document, we ensure validity of all tree nodes. For
checking validity of a node v with two children v1, v2, we have to relate the labels
v1, v2 to v. In a top-down verification we use the opening tag v of the parent node v for
verification, in a bottom-up verification we use the closing tag v of the parent node v.

4.1. One-pass block algorithm
Algorithms 1 reads the XML document in blocks of size K (we optimize by setting
K =

√
N logN ) into memory. Such a block corresponds to a subtree, and the algorithm

performs all verifications that are possible within this block. We guarantee that all
nodes are verified by ensuring that all substrings v1v2 that correspond to the children
of a node v are used for verification. We show in Lemma 4.1 that within a block of
any size there is at most one node v with children v1, v2 such that v1 is in that block
but neither the opening tag v nor the closing tag v is in that block. Hence, per block
all necessary verifications but at most one can be performed. If a pair of tags v1v2 can
not be related to their parent node within a block, we store v1v2 and we perform a
bottom-up verification upon arrival of the parent node’s closing tag v, see Algorithm 1.
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Algorithm 1 Validity of binary trees in 1-pass, block algorithm
Require: input stream is a well-formed XML document
1: K ←

√
N logN

2: X ← array of size K + 1, S ← empty stack
3: while stream not empty do
4: X ← next K tags on stream
5: if X[K] is a closing tag and next tag on stream is an opening tag then
6: X[K + 1]← next tag on stream
7: end if
8: for all leaves v in X do check(v, ε, ε) end for
9: for all substrings v1v2 of X do {denote the parent node of v1, v2 by v}
10: if v ∈ X or v ∈ X then
11: check(v, v1, v2)
12: else
13: push((v1, v2,depth(v1)), S)
14: end if
15: end for
16: if stack S not empty then
17: repeat
18: (v1, v2, d1)← topmost item on stack S {denote the parent node of v1, v2 by v}
19: if v ∈ X or v ∈ X then
20: check(v, v1, v2)
21: pop S
22: end if
23: until v /∈ X and v /∈ X or S empty
24: end if
25: end while

In order to compute the depth of tags (as it is required for instance in Line 13),
throughout the algorithm we keep track of the current depth with the help of an in-
teger with initial value 0. We increase its value when we encounter an opening tag in
the stream and we decrease it when we encounter a closing tag. The depth of a tag is
the number of opening tags minus the number of closing tags that precede the tag in
the input stream.

The condition in line 10 can be checked as follows. Starting from index i such that
X[i] = v1, we first traverse X to the left. The first encountered opening tag that has
a depth depth(v1) − 1 (if any) is the opening tag of the parent node v. If the parent
node’s opening tag is not in X, we then traverse X to the right starting at index i.
The first encountered closing tag at level depth(v1)− 1 (if any) is the closing tag of the
parent node v. IfX does not comprise any tags at depth depth(v1)−1 then the condition
evaluates to false. Similarly, the condition in line 19 can be checked. For implementing
the condition in line 8 a lookahead of one on the stream might be required if the last
tag of X is an opening tag.

LEMMA 4.1. Let X[i, j] be a block. Then there is at most one left closing tag a with
parent node p such that:

pos(p) < i ≤ pos(a) ≤ j < pos(p). (1)

PROOF. For the sake of a contradiction, assume that there are 2 left closing tags
a, b with p being the parent node of a, and q being the parent node of b, for which
Inequality 1 holds. Wlog. we assume that pos(p) < pos(q). Since pos(p) < pos(q) <
pos(a), q is contained in the subtree of a or q = a. This, however, implies that pos(q) ≤
pos(a) < j contradicting pos(q) > j.
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THEOREM 4.2. Algorithm 1 is a one-pass streaming algorithm for VALIDITY(2)
with space O(

√
N logN).

PROOF. To prove correctness, we have to ensure validity of all nodes. Leaves are
validated in line 8. Concerning non-leaf nodes, note that all substrings v1v2 are used
for validation. Either a node v is validated in line 11 if its opening tag v or its closing
tag v is in the same block as v1v2, or the node is validated in line 20 if v, v1v2 and v
are all in different blocks. In this case, the children are pushed on the stack S and the
verification is done upon arrival of v.

Concerning the space, X is of size at most K+1. By Lemma 4.1, the stack S grows at
most by one element per iteration of the while loop. A stack element requires O(logN)
storage space since we require to store the depth of the tags which is a number in
[N ]. Since there are O(N/K) iterations, the total memory requirements are O(K +
N/K log(N)) which is minimized for K =

√
N logN .

4.2. One-pass algorithm using a stack
We now present a second one-pass streaming algorithm, Algorithm 2, for checking
validity of XML documents that encode binary trees. This algorithm has the same
space complexity as the block algorithm, Algorithm 1, of the previous section, however,
it has optimal (constant) processing time per letter.

Algorithm 2 Validity of binary trees in 1-pass, stack algorithm
Require: input stream is a well-formed XML document
1: d← 0, S ← empty stack
2: K ←

√
N logN

3: while stream not empty do
4: x← next tag on stream
5: if x is an opening tag c then
6: if x is a leaf then check(c, ε, ε) end if
7: if S has on top (a,−1), (b, d) then
8: check(a, b, c); pop S {Top-down verification}
9: end if
10: if |{(a,−1) ∈ S | a opening }| ≥ K then
11: remove bottom-most (a,−1) in S, where a is an opening tag
12: end if
13: d← d+ 1
14: push ((x,−1), S)
15: else if x is a closing tag c then
16: d← d− 1
17: if S has on top (a, d+ 1), (b, d+ 1) then
18: check (c, a, b) {Bottom-up verification}
19: pop S, pop S
20: else if S has on top (b, d+ 1) then
21: pop S
22: end if
23: if S has on top (c,−1) then pop S end if
24: push ((x, d), S)
25: end if
26: end while

Algorithm 2 performs top-down and bottom-up verifications. It uses a stack onto
which it pushes all opening tags in order to perform top-down verifications once the
information of the children nodes arrives on the stream. v1v2 forms a substring of the
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input, hence top-down verification requires only the storage of the opening tag v since
the labels of the children arrive in a block. The algorithm’s space requirement depends
on a parameter K (we optimize by setting K =

√
N logN ). Once the number of opening

tags on the stack is about to exceed K, we remove the bottom-most opening tag. The
corresponding node will then be verified bottom-up. Note that v2v forms a substring of
the input. Hence, for bottom-up verifications it is enough to store the label of the left
child v1 on the stack since the label of the right child arrives in form of a closing tag
right before the closing tag of the parent node. See Algorithm 2 for details.

For the unique identification of closing tags on the stack, we have to store them with
their depth in the tree. A stack item corresponding to a closing tag requires hence
O(logN) space. Opening tags don’t require the storage of their depth (we store the
default depth −1).

The query in line 6 can be implemented by a lookahead of 1 on the stream. The
opening tag x corresponds to a leaf only if the subsequent tag in the stream is the
corresponding closing tag x.

Figure 10 visualizes the different cases with their stack modifications appearing in
Algorithm 2.

c

c

c c ca

b a b b

line 6 line 7 line 17 line 21 line 23

X ← X Xab← Xa Xab← X Xb← X Xc← X

Fig. 10. Visualization of the different conditions in Algorithm 2 with the applied stack modifications. X
represents the bottom part of the stack. Note that Algorithm 2 pushes the currently treated tag c or c on the
stack in Line 14 or Line 24. c or c corresponds to the highlighted node.

Fact 1 (which can be easily proved by induction) and Lemma 4.3 concern the struc-
ture of the stack S used in Algorithm 2.

FACT 1. Let S = (x1, d1), . . . (xk, dk) be the stack at the beginning of the while loop
in line 3. Then:

(1) pos(x1) < pos(x2) · · · < pos(xk),
(2) depth(x1) ≤ depth(x2) · · · ≤ depth(xk) ≤ d. Moreover, if depth(xi) = depth(xi+1) then

xi is the left sibling of xi+1,
(3) The sequence x1 . . . xk satisfies the regular expression a∗b∗(ε | c | de), where a∗ are left

closing tags, b∗ are opening tags, c is a closing tag, d is a left closing tag, and e is a
right closing tag.

(4) A left closing tag a is removed from S just after its parent node is verified.

LEMMA 4.3. Let S = (x1, d1), . . . (xk, dk) be the stack at the beginning of the while
loop in line 3. Let (ci, di), (ci+1, di+1) be two consecutive left closing tags in S such that
(ci+1, di+1) is not the topmost left closing tag. Then pos(ci+1) ≥ pos(ci) + 2K.

PROOF. Denote by X = X[1]X[2] . . . X[2N ] the input stream. Since ci+1 is not the
topmost left closing tag in S, the algorithm has already processed the right sibling
opening tag X[pos(ci+1) + 1] of ci+1. By Item 4 of Fact 1, no verification has been done
of the parent of ci+1, since ci+1 is still in S. Therefore, the parent’s opening tag X[k]
of ci+1 has been deleted from S, where pos(ci) < k < pos(ci+1). This can only happen
if at least K opening tags have been pushed on S between X[k] and ci+1. Since these
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K opening tags must have been closed between X[k] and ci+1 we obtain pos(ci+1) ≥
pos(ci) + 2K.

r

a1

a2

ak

b1

b2

b3

bl

Fig. 11. Visualization of the structure of the stack used in Algorithm 2. The stack fulfills the regular expres-
sion a∗b∗(ε | c | de), compare Item 3 of Fact 1. The (ai)i=1...k are closing tags whose parents’ nodes were not
verified top-down. For j > i, aj is connected to ai by the right sibling of ai. The (bi)i=1...l form a sequence
of opening tags such that bi is the parent node of bi+1. On top of the stack might be one or two closing tags
depending on the current state of the verification process.

Fact 1 and Lemma 4.3 provide more insight in the stack structure and are used in
the proof of Theorem 4.4. Item 3 of Fact 1 states that the stack basically consists of a
sequence of left closing tags which are the left children that are needed for bottom-up
verifications of nodes that could not be verified top-down. This sequence is followed by
a sequence of opening tags for which we still aim a top-down verification. The proof
of Lemma 4.3 explains the fact that the two sequences are strictly separated: a left-
closing tag v1 only remains on the stack if at the moment of insertion there are no
opening tags on the stack.

THEOREM 4.4. Algorithm 2 is a one-pass streaming algorithm for VALIDITY(2)
with space O(

√
N logN) and O(1) processing time per letter.

PROOF. To prove correctness, we have to ensure validity of all nodes. Each leaf is
correctly validated upon arrival of its opening tag in line 6. Concerning non-leaf nodes,
firstly, note that all closing tags are pushed on S in line 24, in particular all closing tags
of left children appear on the stack. The algorithm removes left closing tags only after
validation of its parent node, no matter whether the verification was done top-down or
bottom-up, compare Item 4 of Fact 1. Emptiness of the stack after the execution of the
algorithm follows from Item 2 of Fact 1 and implies hence the validation of all non-leaf
nodes.

For the space bound, Line 10 guarantees that the number of opening tags in S is
always at most K. We bound the number of closing tags on the stack by N

K + 2. Item 3
of Fact 4.3 states that the stack contains at most one right closing tag. From Item 4 of
Fact 4.3 we deduce that S comprises at most N

K + 1 left closing tags, since the stream
is of length 2N , and the distance in the stream of two consecutive left closing tags that
reside on S except the top-most one is at least 2K. A closing tag with depth (a, d) ∈
Σ′ × [N ] requires O(logN) space, an opening tag requires only constant space. Hence
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the total space requirements are O((NK + 2) logN + K) which is minimized for K =√
N logN .
Concerning the processing time per letter, the algorithm only performs a constant

number of local stack operations in one iteration of the while loop.

Remark Algorithm 2 can be turned into an algorithm with space complexity
O(
√
D logD), where D is the depth of the XML document. If D is known beforehand,

it is enough to set K =
√
D logD in line 2. If D is not known in advance, we make

use of an auxiliary variable D′ storing a guess for the document depth. Initially we set
D′ = C, C > 0 some constant, we set K =

√
D′ logD′, and we run Algorithm 2. Each

time d exceeds D′, we double D′, and we update K accordingly.
This guarantees that the number of opening tags on the stack is limited by

O(
√
D logD). Since we started with a too small guess for the document depth, we may

have removed opening tags that would have remained on the stack if we had chosen
the depth correctly. This leads to further bottom-up verifications, but no more than
O(

√
D/ logD) guaranteeing O(

√
D logD) space.

4.3. Two-pass algorithm

Algorithm 3 Two-pass algorithm validating binary trees
run Algorithm 4 reading the stream from left to right
run Algorithm 4 reading the stream from right to left, where opening tags are interpreted as
closing tags, and vice versa.

Algorithm 4 Validating nodes with size(left subtree) ≥ size(right subtree)
1: l← 0; n← 0; S ← empty stack
2: while stream not empty do
3: x← next tag on stream (and move stream to next tag)
4: y ← next tag on stream, without consuming it yet
5: n← n+ 1
6: if x is an opening tag c then
7: l← l + 1
8: if y = c then check(c, ε, ε) end if
9: else {x is a closing tag c}
10: l← l − 1
11: if S has on top (·, ·, l + 1, ·) then
12: (a, b, ·, ·)← pop from S; check(c, a, b)
13: end if
14: if y is an opening tag d then
15: push (c, d, l, n) to S
16: end if
17: end if
18: while there is s1 = (·, ·, ·, n1) just below s2 = (·, ·, ·, n2) in S with n− n2 > n2 − n1 do
19: delete s2 from S
20: end while
21: end while

The bidirectional two-pass algorithm, Algorithm 3, uses a subroutine that checks
in one-pass validity of all nodes whose left subtree is at least as large as its right
subtree. Feeding into this subroutine the XML document read in reverse direction and
interpreting opening tags as closing tags and vice versa, it checks validity of all nodes
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whose right subtree is at least as large as its left subtree. In this way all tree nodes
get verified.

The subroutine performs only checks in a bottom-up fashion, that is, the verification
of a node v with children c1, c2 makes use of the tags c1 and c2 (which are adjacent
in the XML document and hence easy to recognize) and the closing tag of v. When
c1, c2 appear in the stream, a 4-tuple consisting of c1, c2,depth(c1) and pos(c1) is pushed
on the stack. Upon arrival of v, depth(c1) is needed to identify c1, c2 as the children
of v. pos(c1) is needed for cleaning the stack: with the help of the pos values of the
stack items, we identify stack items whose parents’ nodes have larger right subtrees
than left subtrees, and these stack items get removed from the stack. In so doing, we
guarantee that the stack size does not exceed log(N) elements which is an exponential
improvement over the one-pass algorithm.

Note that the reverse pass can be done independently of the first one, for instance in
parallel to the first pass.

Figure 12 visualizes the different cases in Algorithm 4.

c c

ca b d

line 8 line 11 line 14

Fig. 12. Visualization of the different conditions in Algorithm 4. The incoming tag x corresponds to the
highlighted node.

We highlight some properties concerning the stack used in Algorithm 4.

FACT 2. S in Algorithm 4 satisfies the following:

(1) If (a2, b2,depth(a2),pos(a2)) is below (a1, b1,depth(a1),pos(a1)) in S, then
pos(a2) < pos(a1), depth(a2) < depth(a1), and a1, b1 are in the subtree of b2.

(2) Consider l at the end of the while loop in line 20. Then there are no stack elements
(·, ·, l′, ·) with l′ > l.

Figure 13 illustrates the relationship between two consecutive stack elements as
discussed in Item 1 of Fact 2.

p

a2 b2

q

a1 b1

c

Stack S
...

(a1, b1, pos(a1), depth(a1))

(a2, b2, pos(a2), depth(a2))

...

Fig. 13. c is the current element under consideration in Algorithm 4. a1, b1 is in the subtree of b2, compare
Item 1 of Fact 2.

LEMMA 4.5. Algorithm 4 verifies all nodes q whose left subtree is at least as large
as its right subtree.
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PROOF. Let q be such a node. Let a1, b1 be the children of q. Then it holds that

pos(a1)− pos(a1) ≥ pos(b1)− pos(b1), (2)

since the size of the left subtree of q is at least as large as the size of the right subtree.
Upon arrival of a1 Algorithm 4 pushes the 4-tuple t = (a1, b1,pos(a1),depth(a1)) onto

the stack S. We have to show that t remains on the stack until the arrival of q. More
precisely, we have to show that the condition in line 18 is never satisfied for s2 = t.
Since the algorithm never deletes the bottom-most stack item, we consider the case
where there is a stack item (a2, b2,pos(a2),depth(a2)) just below t. Item 1 of Fact 2 tells
us that a1, b1 are in the subtree of b2. Let x be the current tag under consideration such
that pos(b1) < pos(x) < pos(q). The situation is visualized in Figure 13.

According to the condition of line 18, t gets removed from the stack if

pos(x)− pos(a1) > pos(a1)− pos(a2). (3)

Note that the left side of Inequality 3 is a lower bound on the size of the right subtree
of q. Furthermore, the right side of Inequality 3 is an upper bound for the size of the
left subtree of q.

Using pos(x)−pos(a1) ≤ pos(b1)−pos(b1)+1 and pos(a1)−pos(a2) > pos(a1)−pos(a1),
Inequality 3 contradicts Inequality 2 which shows that t remains on the stack until the
arrival of q. Item 2 of Fact 2 guarantees that there is no other stack element on top of t
upon arrival of q. This guarantees the verification of node q and proves the lemma.

THEOREM 4.6. Algorithm 3 is a bidirectional two-pass streaming algorithm for
VALIDITY(2) with space O(log2N) and O(logN) processing time per letter.

PROOF. To prove correctness of Algorithm 3, we ensure that all nodes get verified.
By Lemma 4.5, in the first pass, all nodes with a left subtree being at least as large as
its right subtree get verified. The second pass ensures then verification of nodes with
a right subtree that is at least as large as its left subtree.

Next, we prove by contradiction that for any current value of variable n in Algo-
rithm 4, the stack contains at most log(n) elements. Assume that there is a stack con-
figuration of size t ≥ log(n) + 1. Let (n1, n2 . . . , nt) be the sequence of the fourth param-
eters of the stack elements. Since these elements are not yet removed, due to line 18
of Algorithm 4, it holds that n− ni ≤ ni − ni−1, or equivalently ni ≥ 1/2(n+ ni−1),
for all 1 < i ≤ t. Since n1 ≥ 1, we obtain that ni ≥ 2i−1

2i n + 1
2i , and, in particular,

nt−1 ≥ (n− 1) + 1
n . Since all ni are integers, it holds that nt−1 ≥ n. Furthermore, since

nt > nt−1, we obtain nlogn+1 ≥ n + 1 which is a contradiction, since the element at
position n+ 1 has not yet been seen.

Since n ≤ 2N and the size of a stack element is in O(log n), Algorithm 4 uses space
O(log2N). This also implies that the while-loop at line 18 of Algorithm 4 can only be
iterated O(log n) times during the processing of a tag on the stream. The processing
time per letter is then O(logN), since we assume that operations on the stack run in
constant time.

5. VALIDITY OF GENERAL TREES
In the following, we provide streaming algorithms for the FCNS encoding which is the
transformation of XML(t) to XML(FCNS(t)), and for the FCNS decoding which is the
transformation of XML(FCNS(t)) to XML(t), see the definition in Section 2.3.

5.1. FCNS encoding
In this section, we are interested in computing the transformation XML(t) →
XML(FCNS(t)). Our strategy is to compute the subsequence of opening tags of
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XML(FCNS(t)) (discussed in Subsection 5.1.1) and the subsequence of closing tags
(discussed in Subsection 5.1.2) of XML(FCNS(t)) independently, and merge them af-
terwards (discussed in Subsection 5.1.3).

5.1.1. Computing the sequence of opening tags. First, we provide a lemma that shows
that the sequence of opening tags in XML(t) and XML(FCNS(t)) coincide. The proof of
Lemma 5.1 is straightforward and can be found in Appendix B.1.

LEMMA 5.1. The opening tags in XML(t) are in the same order as the opening tags
in XML(FCNS(t)).

Since due to Lemma 5.1 the subsequences of opening tags in XML(t) and
XML(FCNS(t)) coincide, we extract the subsequence of opening tags of XML(t), and
we annotate them with left or right as they should be in XML(FCNS(t)). Recall that an
opening tag is left if it is the opening tag of a first child, otherwise it is right. Further-
more, for later use we annotate each opening tag c with depth(c) in t and the position
in the stream pos(c), see Algorithm 5.

Algorithm 5 Extracting the opening tags of XML(t)

Require: input stream is a well-formed XML document
1: d← 0, p← 0
2: D ← L
3: while stream not empty do
4: x← next tag on stream
5: p← p+ 1
6: if x is an opening tag c then
7: d← d+ 1
8: write on output stream (cD, d, p)
9: D ← L
10: else {x is a closing tag c}
11: d← d− 1
12: D ← R
13: end if
14: end while

FACT 3. Algorithm 5 is a streaming algorithm with space O(logN) that, given
XML(t) as input, outputs on an auxiliary stream the sequence of opening tags of
XML(FCNS(t)) with left/right annotations, and furthermore, annotates each tag c with
depth(c) and pos(c). It performs one read pass on the input stream and one write pass
on the auxiliary stream.

5.1.2. Computing the sequence of closing tags. For a node v of some tree t, let pos′(v)
and pos′(v̄) be the respective positions of the opening and closing tags of v in
XML(FCNS(t)). Lemma 5.2 refers to the structure of the subsequence of closing tags
in XML(FCNS(t)).

LEMMA 5.2. Let v1, v2 be nodes of t with pos(v1) < pos(v2). Then pos′(v2) < pos′(v1)
iff:

(1) v2 is in the subtree of v1 in t;
(2) or v2 is in the subtree of a right sibling of v2 in t.

PROOF. Suppose that either Item 1 or Item 2 is true. Note that for a node
x, XMLF(x) generates opening and closing tags for the entire subtree of x, and
for all right siblings of x. Disregarding the annotations, we have XMLF(v2) =
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v2XMLF(fc(v2))XMLF(ns(v2))v2, and hence v2 is preceded by all closing tags that are
in the subtree of v2 (Item 1) and all closing tags that are right siblings of v2 or in the
subtrees of right siblings of v2 (Item 2).

We prove now that if Item 1 and Item 2 are false then pos′(v1) < pos′(v2). Suppose
now that Item 1 and Item 2 are false. Let p = lca(v1, v2) where lca(x, y) denotes the
lowest common ancestor of nodes x and y. Then depth(p) ≤ depth(v1)−2 since otherwise
Item 1 or Item 2 would be true.

Consider now XMLF(p) = pXMLF(fc(p))XMLF(ns(p))p. If v2 equals p then the lemma
follows immediately since v1 is generated by XMLF(fc(p)) and p is generated after
XMLF(fc(p)). Otherwise, let p′ be the node at depth depth(p)+1 that is on the path from
v1 to p. Then v2 is a right sibling of p′ or v2 is in a subtree of a right sibling of p′. Con-
sider XMLF(p′) = p′XMLF(fc(p′))XMLF(ns(p′))p′. Then v1 is generated by XMLF(fc(p′))
and v2 is generated by XMLF(ns(p′)) and this proves that pos′(v1) < pos′(v2).

For computing the sequence of closing tags, we start with the sequence of open-
ing tags of XML(FCNS(t)) as produced by the output of the Algorithm 5, that is, cor-
rectly annotated with left/right and with depth and position annotations. To obtain
the correct subsequence of closing tags as in XML(FCNS(t)), we interpret the open-
ing tags as closing tags and we sort them with a merge sort algorithm. Merge sort
can be implemented as a streaming algorithm with O(log(N)) passes and 3 auxiliary
streams [Grohe et al. 2009]. For the sake of simplicity, Algorithm 6 assumes an input
of length 2l for some l > 0.

Algorithm 6 Merge sort
Require: unsorted data of length 2l on stream 1
1: for i = 0 . . . l − 1 do
2: copy data in blocks of length 2i from stream 1 alternately onto stream 2 and stream 3
3: for j = 1 . . . 2l−i−1 do
4: merge(2i)
5: end for
6: end for

The function merge(b) reads simultaneously the next b values from stream 2 and
stream 3, and merges them onto stream 1. The for loop in Line 3 of Algorithm 6 re-
quires one read pass on stream 2, one read pass on stream 3, and one write pass on
stream 1. See Figure 14 for an illustration.

line 2 (copy) line 3 (merge)
str 1:
str 2:
str 3:

B1 B2 B3 B4
. . . B2l−i

B1

B2

B3

B4

. . .

. . .

Bl−i−1

Bl−i

B12 B34
. . . B2l−i−12l−i

B1

B2

B3

B4

. . .

. . .

Bl−i−1

Bl−i

Fig. 14. Left: Illustration of the copy operation in Line 2 of Algorithm 6. Blocks from stream 1 are copied
alternately onto stream 2 and stream 3. Right: Illustration of the merge operations executed within the for
loop of Line 3 of Algorithm 6. The Bi are sorted blocks. All blocks Bi and Bi+1 are merged into a sorted
block Bi(i+1).

In order to use merge sort, we have to define a comparator function that, given
two closing tags c1, c2 with pos(c1) < pos(c2), decides whether pos′(c1) < pos′(c2).
Lemma 5.2 states that if c2 is in the subtree of c1 or c2 is in the subtree of a right sibling
of c1 then pos′(c2) < pos′(c1), otherwise pos′(c2) > pos′(c1). Therefore, a comparator has
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to be able to distinguish between these two situations. This, however, seems difficult
in the streaming model.

To overcome this problem, instead of only defining a comparison function, we design
a complete merge function in Lemma 5.3 that, by construction, never encounters the
situation that nodes v1, v2 with pos(v1) < pos(v2) that do not fulfill Item 1 and Item 2 of
Lemma 5.2 are compared. The key idea is to introduce separator tags which we denote
by new tags outside of Σ. They are initially inserted right after each closing tag of a
last child u. We denote by u the separator we introduce when seeing the last child u,
and we define depth(u) = depth(u).

Algorithm 7 Unsorted sequence of closing tags of XML(FCNS(t)) with separators
Require: input stream is a well-formed XML document
1: d← 0, p← 0
2: D ← L
3: while stream not empty do
4: x← next tag on stream
5: p← p+ 1
6: if x is an opening tag c then
7: d← d+ 1
8: write on output stream (cD, d, p)
9: D ← L
10: else {x is a closing tag c}
11: if next item on stream is a closing tag then
12: write on output stream (c, d, p)
13: end if
14: d← d− 1
15: D ← R
16: end if
17: end while

FACT 4. Algorithm 7 is a streaming algorithm with space O(logN) that, given a
sequence XML(t) on a stream, computes on an auxiliary stream the sequence of closing
tags XML(FCNS(t)) together with their separators and annotates the tags with depth,
pos, and left/right. It performs one read pass on the input stream and one write pass
on the auxiliary stream.

We have to define the way we integrate the separators into our sorting. Let
v1, v2, . . . , vk be the ordered sequence of the children of some node. For the separator vk
we ask their position among the closing tags to satisfy for each node v:

pos′(v) < pos′(vk) iff pos′(v) ≤ pos′(v1); (4)

and for any other separator wk:

pos′(vk) < pos′(wk) iff pos′(vk) < pos′(wk). (5)

Blocks appearing in merge sort fulfill a property that we call well-sorted. A block B
of closing tags is well-sorted if the corresponding tags in XML(FCNS(t)) appear in the
same order, and for all v1, v2 ∈ B with pos(v1) < pos(v2), all closing tags v of nodes v
with pos(v1) < pos(v) < pos(v2) are in B as well.

In addition, for two blocks B1, B2 of closing tags, we say that (B1, B2) is a well-sorted
adjacent pair, ifB1 andB2 are well-sorted, for each closing tag v1 ∈ B1 and each closing
tag v2 ∈ B2, pos(v1) < pos(v2) is satisfied, and furthermore, all closing tags v of nodes
v with pos(v1) < pos(v) < pos(v2) are either in B1 or B2.

The following lemma shows that we can merge a well-sorted adjacent pair correctly.
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LEMMA 5.3. Let (B1, B2) be a well-sorted adjacent pair, and let b1 = B1[p1] and
b2 = B2[p2] for some p1, p2. Assume that pos′(b) < pos′(b1) and pos′(b) < pos′(b2), for all
b ∈ B1[1, p1 − 1] ∪B2[1, p2 − 1]. Then:

(1) If b1 is a separator, or there is a separator in B1 after b1, then pos′(b1) < pos′(b2);
(2) Else if b2 is a separator then:

(a) if depth(b1) < depth(b2) then pos′(b2) < pos′(b1),
(b) else depth(b1) = depth(b2) and pos′(b1) < pos′(b2);

(3) Else (neither b1 nor b2 are separators and there is no separator in B1 after b1):
pos′(b2) < pos′(b1).

PROOF. Let (B1, B2) be a well-sorted adjacent pair. Let
l = max{i : B1[i] is a separator}. If there are no separators in B1, let l = 0.

Item 1. Since B1 is well-sorted, we only need to check that pos′(B1 [l]) < pos′(B2 [1]).
Denote by u the last child that was responsible for the insertion of the separator tag
B1[l]. Let u′ be the left-most sibling of u. Due to Equation (4) it suffices to show that
pos′(u′) < pos′(B2[1]). Since the separator B1[l] indicates that the last child u has been
seen, B2[1] is not in the subtree of u′ or in a subtree of a right sibling of u′. Therefore,
by Lemma 5.2 we get pos′(u′) < pos′(B2[1]).

Item 2. Let v denote a node in the tree with children v1, . . . , vk. First, note that the
separator vk is initially inserted after vk. Furthermore, between the initial position
of any vi and vk there are no other separators with a depth smaller than depth(vk).
Therefore, it can not happen that the node b1 is compared to a separator tag with
depth smaller than depth(b1).

If depth(b2) = depth(b1) then b2 is the seperator tag that was inserted after the
right-most sibling of b1. Let l be the left-most sibling of b1. Then pos′(b1) < pos′(l)
and therefore by Equation 4 we have pos′(b1) < pos′(b2). If depth(b2) > depth(b1) then
b2 is the separator that was introduced after a node that is either in the subtree of
b1 or in the subtree of a right sibling of b1. Let l′ denote the left-most sibling of that
node. By Lemma 5.2 we have pos′(l′) < pos′(b1) and hence by Equation 4 we have
pos′(b2) < pos′(b1).

Item 3. We argue that b2 is in the subtree of b1 or b2 is in the subtree of a right
sibling of b1. Then, by Lemma 5.2, we have pos′(b2) < pos′(b1). Suppose for the sake of
contradiction that this is not the case. Then the separator that was introduced after
the right-most sibling of b1 must be in B1[p1 + 1, k] ∪ B2[1, p2 − 1], where k = |B1|.
Suppose that this separator was in B1[p1 + 1, k]. Then this is a contradiction since this
case is treated in Item 1 of this lemma. Suppose that this separator was in B2[1, p2−1].
Then this is a contradiction to the assumption of the lemma that pos′(B2[j]) < pos′(b1)
for all j < p1.

LEMMA 5.4. There is a O(logN)-pass streaming algorithm with space O(logN) and
3 auxiliary streams that computes the subsequence of closing tags of the FCNS encoding
of any XML document given in the input stream.

PROOF. Using Algorithm 7, we compute on the first auxiliary stream the sequence
of opening tags interpreted as closing tags with corresponding annotations, together
with separators.

We show that we can do a merge sort algorithm with a merge function inspired by
Lemma 5.3 on the first three auxiliary streams with O(logN) space and passes. For
that assume that the first stream contains a sequence (B1, B2, . . . , BM ) of blocks of
size 2i. For simplicity we assume that M is even, otherwise we add an empty block.
We alternately copy odd blocks on the second stream, and even blocks on the third
stream. For a block B2i that we write on the third stream, we write before each of
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them, the number of separators that occur in the block B2i−1 that was copied on the
second stream.

Then we merge sequentially all pairs of blocks (B2k−1, B2k) for 1 ≤ k ≤
M/2 using Lemma 5.3. Note that (B2k−1, B2k)k are all well-sorted pairs. Let
l = max{i : B2k−1[i] is a separator}. Firstly, we copy elements B2k−1[1, l] onto auxiliary
stream 1. Knowing the number of separators in B2k−1 allows us to perform this oper-
ation. The correctness of this step follows from Item 1 of Lemma 5.3. Then, we merge
blocks B2k−1[l+ 1, 2i] and B2k by using the comparison function defined in Items 2 and
3 of Lemma 5.3.

5.1.3. Merging opening and closing tags. Merging the subsequence of opening tags of
XML(FCNS(t)) and the subsequence of closing tags of XML(FCNS(t)) can be done by
simultaneously reading the two subsequences and performing one write pass over an
auxiliary stream.

Algorithm 8 Merging the sequence of opening and closing tags
Require:

— stream 1: annotated opening tags as output by Algorithm 5
— stream 2: annotated closing tags as output by the algorithm of Lemma 7

1: while stream 2 not empty do
2: (c1, p1, d1), . . . , (ck, pk, dk)(ck+1, pk+1, dk+1) ← next k + 1 annotated opening tags from

stream 1 such that d1 ≤ d2 ≤ · · · ≤ dk and dk > dk+1 and (ck+1, pk+1, dk+1) is not dis-
carded from the stream

3: output c1 . . . ck on output stream
4: for i = 1 . . . dk − dk+1 do
5: (c1, p1, d1), . . . , (cl, pl, dl)(cl+1, pl+1, dl+1)← next l annotated closing tags from stream 2

such that (ci)1≤i≤l are closing tags and cl+1 is a separator
6: output c1 . . . cl on output stream
7: end for
8: end while

When merging the sequence of opening tags and closing tags, we have to write
closing tags only between two opening tags am, bi+1 (see Figure 15) if depth(am) >
depth(bi+1) in t. Figure 15 shows the closing tags that have to be written at that
moment. The sequences am . . . a1, e, dl . . . d1 and cj . . . c1 are all separated by a sep-
arator in the sequence of closing tags. Therefore, it is enough to write the next
depth(am) − depth(bi+1) blocks of closing tags that are separated by a separator be-
tween am and bi+1.

LEMMA 5.5. Algorithm 8 merges correctly the sequence of opening tags and closing
tags using space O(logN).

PROOF. First, we argue that closing tags only have to be written between consecu-
tive opening tags a and b in the sequence of opening tags such that depth(a) > depth(b).
We have XMLF (a) = aXMLF (fc(a))XMLF (ns(a))a, and therefore if depth(a) < depth(b)
then b is either the first child of a or if a is a leaf then b is the next sibling of a. In both
cases, there are no closing tags between a and b.

Figure 15 illustrates the closing tags that have to be written beween two consecutive
opening tags a and b with depth(a) > depth(b). Since closing tags at different levels are
separated by a separator, it is enough to write the next depth(a) − depth(b) blocks of
closing tags that are separated by a separator between the tags a and b.
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Fig. 15. A part of a tree and its FCNS encoding. Consider nodes am and bi+1. In the FCNS encoding, the
sequence of closing tags am . . . a1edl . . . d1cj . . . c1 has to be written in between the opening tag am and bi+1.

From Fact 3, Lemma 5.4 and Lemma 5.5 we obtain Theorem 5.6.

THEOREM 5.6. There is a O(logN)-pass streaming algorithm with space O(logN)
and 3 auxiliary streams and O(1) processing time per letter that computes on the third
auxiliary stream the FCNS transformation of any XML document given in the input
stream.

PROOF. Firstly, we compute according to Lemma 5.4 the sequence of closing tags
and we store them on auxiliary stream 1. Then, by Fact 3 we extract the sequence of
opening tags, and we store them on auxiliary stream 2. By Lemma 5.5 we can merge
the tags of auxiliary stream 1 and auxiliary stream 2 correctly onto stream 3.

The space requirements of these operations do not exceed O(logN). The processing
time per letter of these operations is constant.

The algorithm described in the proof of Theorem 5.6 can be easily modified such
that it outputs XML(FCNS⊥(t)) instead of XML(FCNS(t)). We state this fact in the
following.

COROLLARY 5.7. There is a O(logN)-pass streaming algorithm with space O(logN)
and 3 auxiliary streams and O(1) processing time per letter that computes on the third
auxiliary stream the FCNS⊥ encoding of any XML document given in the input stream.

PROOF. Firstly, we use the algorithm described in Theorem 5.6 to compute the
transformation XML(t) into XML(FCNS(t)). Then, with an additional read pass and an
additional write pass we transform XML(FCNS(t)) into XML(FCNS⊥(t)). To perform
this transformation, we read the tags of XML(FCNS(t)) and output them on another
stream without left/right annotations, and at the same time we insert leaves labeled
with ⊥. Such a leaf has to be inserted below internal nodes that have only a single
child. The left/right annotations of the input stream allow us to recognize those nodes.
Note that the transformation XML(FCNS(t)) into XML(FCNS⊥(t)) requires only con-
stant space.

5.2. Checking Validity on the encoded form
The problem of validating trees given in their encoded form and the problem of val-
idating binary trees are similar. We will provide intuition that basically any stream-
ing algorithm that decides validity of binary trees by calling a check function upon
all triplets (v, v1, v2) of internal nodes v with children v1, v2 ((v, ε, ε) for leaves) can be
transformed into an algorithm that decides validity of trees given in their encoded
form. We will explicitly show how to use the bidirectional 2-pass algorithm, Algo-
rithm 3, and the one-pass algorithm, Algorithm 2, to perform this task.
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To validate a node v with children v1, . . . , vk, an algorithm has to ensure that the
sequence v1 . . . vk is valid with respect to the regular expression d(v). To perform such
a check, an algorithm has to gather the relevant information, which is the label of
v and the label of its children v1, . . . , vk, from the stream. Figure 16 illustrates the
fact that vk . . . v1 forms a substring in XML(FCNS⊥(t)). Suppose that the information
about the labels of the children v1, . . . , vk was available at node v1 in FCNS⊥(t) (in a
compressed form since the number of children of a node can be large). Then we could
use any algorithm validating binary trees which uses a check function as described
above for our purpose: since such an algorithm relates a node to its two children, we
can use this algorithm on FCNS⊥(t) to relate a node to its left child.

Granting access to all children labels when it is required is established with the help
of a finite automaton that we discuss later. Consider a left-to-right pass over FCNS⊥(t).
When seeing the sequence vk . . . v1, we feed it into a finite automaton. The resulting
state is a compressed version of this sequence. A binary tree validity algorithm will
then relate this state to the parent node. The details follow.

t :

v

v1 v2 . . . vk

t1 t2 tk

FCNS⊥(t) :

v

v1

v2

. . .

vk

t′1

t′2

t′k

Fig. 16. A tree t and its FCNS⊥ encoding. While the opening and closing tags of the children of a node v
are separated by the subtrees t1, . . . tk in XML(t), the closing tags of the children of v are consecutive in
XMLF⊥(t) in reverse order, that is vkvk−1 . . . v2v1 is a substring of XMLF⊥(t).

For a non-leaf node v, we gather the information of the children nodes v1, . . . , vk with
the help of finite automata A1 (for left-to-right passes) and A2 (for right-to-left passes).

We denote by (Σ, Q, q0, δ, F ) a deterministic finite automaton where Σ is its input
alphabet, Q is the state set, q0 is its initial state, δ : Q × Σ → Q is the transition
function, and F is a set of final states. Furthermore, for a word ω = ω1 . . . ωn of length
n, we define ωrev to be ω read from right to left, that is ωrev = ωn . . . ω1.

LEMMA 5.8. Let D = (Σ, d, sd) denote a DTD. Then there is a deterministic finite
automaton A1 = (Σ, Q1, q

1
0 , δ1, F1) that for any v ∈ Σ and any v1 . . . vk in Σk accepts the

word vk . . . v1v only if v1 . . . vk fulfills the regular expression d(v).

PROOF. For a ∈ Σ, denote by Aa a deterministic finite automaton that accepts the
regular expression d(a). We compose the Aa as in the left illustration of Figure 17 to
an automaton A that accepts words ω′ such that ω′ = aω, a ∈ Σ, ω ∈ Σ∗ if ω ∈ d(a). A1

is a deterministic finite automaton that accepts a word ω, iff ωrev is accepted by A.

LEMMA 5.9. Let D = (Σ, d, sd) denote a DTD. Then there is a deterministic finite
automaton A2 = (Σ, Q2, q

2
0 , δ2, F2) that for any v ∈ Σ and any v1 . . . vk in Σk accepts the

word v1 . . . vkv only if v1 . . . vk fulfills the regular expression d(v).

PROOF. For a ∈ Σ, denote by Aa a deterministic finite automaton that accepts the
regular expression d(a). We compose the Aa as in the right illustration of Figure 17 to
an automaton A that accepts words ω′ such that ω′ = ωa, a ∈ Σ, ω ∈ Σ∗ if ω ∈ d(a).
Then A2 is a deterministic version of A without ε transitions.
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q0

A1

A2

A|Σ|

...

a1

a2

a|Σ|

q0 qf

A1

A2

A|Σ|

...

ǫ

ǫ

ǫ

a1

a2

a|Σ|

Fig. 17. Left: Automaton A. A1 accepts words ω if A accepts ωrev. Right: Automaton A2 is a version of the
illustrated automaton without ε transitions.

We show now that by the help of automata A1 and A2, Algorithm 3 can be reused for
the validation of trees given in their encoded form.

THEOREM 5.10. There is a bidirectional two-pass deterministic algorithm for
VALIDITY with space O(log2N) and O(logN) processing time per letter when the in-
put is given in its FCNS encoding.

PROOF. We run a modified version of Algorithm 3 on XML(FCNS⊥(t)). The modifica-
tions concern the subroutine described in Algorithm 4. The modifications are different
for the left-to-right pass and the right-to-left pass.

Firstly, we consider the left-to-right pass. We will annotate the closing tags of left
children on the fly by states of the automaton A1 as described in Lemma 5.8. Let
v1, . . . , vk denote the children of a node v. Then the annotation of v1 is a state that we
denote by q1(v). q1(v) is the resulting state of A1 when feeding the sequence vk, . . . , v1

into it. We describe later how to compute it on the fly. Given this annotation, we use
a different implementation of the check function. For internal nodes v with first child
v1 and annotation q1(v), the check function simply computes the state δ1(q1(v), v) and
stops if the prior state is not an accepting state. Note that by the definition of A1, v is
valid if δ1(q1(v), v) is an accepting state.

We discuss now how to compute this annotation. As discussed before and illustrated
in Figure 16, the closing tags vk . . . v1 of children v1, . . . , vk of a node v form a substring.
Hence, as soon as we see vk which we can easily identify since it is a right leaf, we run
the automaton A1 on the labels of the upcoming closing tags. We stop this procedure
after v1 is read which we can identify since v1 is followed by an opening tag. Hence,
when v1 is pushed on the stack (in Algorithm 4 it is actually pushed on the stack
together with the opening tag of the right child of v), we can annotate it with q1(v1).

Consider now a right-to-left pass. Note that in a right-to-left pass, closing tags are
interpreted as opening tags and vice versa. This implies that a left child becomes a
right child and a right child becomes a left child. Let v1, . . . , vk denote the children of a
node v. Then in a right-to-left pass, we see the sequence of opening tags v1, . . . , vk as a
substring, where v1 is a right opening tag and v2, . . . , vk are left opening tags. We will
annotate the closing tag of the left child of v. Note that due to the exchange of the role
of left and right, the left closing tag is the next sibling of v and not the first child. Since
our input tree FCNS⊥(t) is a binary tree, it is guaranteed that this node exists. The
annotation is the state q2(v). q2(v) is obtained by feeding the sequence v1, . . . , vk into
the automaton A2, who is described in Lemma 5.9. The check function then computes
δ2(q2(v), v) and stops if the resulting state is not an accepting state.

We discuss now that this annotation can be computed on the fly and it can be added
correctly to the closing tag of the left child of v. The main difference to the left-to-right
pass is that we compute the annotation after having pushed the children of v onto
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the stack and we add the annotation afterwards. Denote by vl the left child of v in
FCNS⊥(t). Then in the right-to-left pass we see the substring vlv1v2 . . . vk. Algorithm 4
pushes vl, v1 on the stack as soon as v1 is seen. We then feed the sequence v1v2 . . . vk
into A2. As soon as vk is read which can be easily identified since vk is either a leaf of
followed by a right opening tag, we annotate the left closing tag of the topmost stack
item by the state q2(v).

Correctness, that is the validation of all nodes, follows then from the correctness of
Algorithm 3. The automataA1,A2 are of constant size since we assumed that the input
DTD is of constant size. Hence, the described algorithm has the same space complexity
as Algorithm 3.

By modifying the one-pass algorithm Algorithm 2 in a similar way, the following
theorem can be obtained.

THEOREM 5.11. There is a one-pass deterministic algorithm for VALIDITY with
space O(

√
N logN) and O(1) processing time per letter when the input is given in its

FCNS⊥ encoding.

PROOF. We reuse Algorithm 2. Concerning the modifications, the idea is the same
as for the left-to-right pass of the algorithm described in the proof of Theorem 5.10.
For all internal nodes v with children v1, . . . , vk, we compress the sequence v1, . . . , vk
into a state q1(v) of the finite automaton A1 who is described in Lemma 5.8. q1(v) is
obtained by feeding vk . . . v1 into A1 which can be done since vk . . . v1 forms a substring
of the input XML sequence. We annotate the closing tag of v1 with this state. The
check routine is modified in the same way as in the proof of Theorem 5.10: only if
δ1(q1(v), v) is an accepting state then v is valid, otherwise the check routine aborts
and the algorithm reports an invalid node. The correctness of Algorithm 2 ensures the
validation of all nodes.

Applying the bidirectional algorithm of Theorem 5.10 on the encoded form
XML(FCNS⊥(t)), we obtain that validity of general trees can be decided memory ef-
ficiently in the streaming model with auxiliary streams.

COROLLARY 5.12. There is a bidirectional O(logN)-pass deterministic streaming
algorithm for VALIDITY with space O(log2N), O(logN) processing time per letter, and
3 auxiliary streams.

PROOF. We perform the transformation XML(t) into XML(FCNS⊥(t)) with the al-
gorithm stated in Corollary 5.7. Then, we run the two-pass bidirectional algorithm of
Theorem 5.10 on XML(FCNS⊥(t)) and the result follows.

Note that this result only holds for the validation of DTDs. Nothing is known about
the validation of more powerful validity schemas such as extended DTDs or XML
Schema if access to auxiliary streams is granted.

5.3. Decoding
In the following, we present streaming algorithms for FCNS decoding, that is, given
XML(FCNS(t)) of some tree t, output XML(t). These results complement our results on
the computation of the FCNS encoding and so may be primarily of theoretical interest.
There are, however, potential applications: It may be advantageous to store the FCNS
encoding of an XML file instead of the XML file itself. Then validity could be efficiently
ensured by Algorithm 5.10 with two bidirectional passes and space O(log2N). The
original document could then be exported by means of the algorithms that we present
in this section. The applicability of this approach is left open.
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We start with a non-streaming algorithm, Algorithm 9 performing this task.

Algorithm 9 offline algorithm for FCNS decoding
1: for i = 1→ 2N do
2: if X[i] is an opening tag then
3: write X[i]
4: if X[i] does not have a left subtree then {X[i] is a leaf}
5: write X[i]
6: end if
7: else if X[i] is a left closing tag then {See Figure 18}
8: let p be the parent node of X[i]
9: write p
10: end if
11: end for

p

v1 v2

subtree of v1 subtree of v2

Fig. 18. The main difficulty of the FCNS decoding is to write the closing tag of a node p when the closing
tag of its left child is seen. This is difficult when the subtrees of v1 and v2 are large.

We first discuss the correctness of Algorithm 9. We show that the algorithm run on
XML(FCNS(t)) computes the function dec(root(t)) which we define in the following. Let
t be a tree and let x ∈ t be a node, then

dec(x) = x dec(fc(x))xdec(ns(x)),

dec(⊥) = ε.

The only difference between dec and XMLF is that for some non-leaf node x, dec(x)
outputs x between the recursive calls to dec(fc(x)) and dec(ns(x)) while XMLF outputs
x at the very end. Algorithm 9 computes dec since it ignores the closing tags of the
FCNS encoding and it inserts closing tags when we do a transition from the left child
to a right child, that is between the recursive calls to dec(fc(x)) and dec(ns(x)). We show
in Lemma 5.13 that dec(root(t)) produces the same output as XML(root(t)). The proof
can be found in Appendix B.2.

LEMMA 5.13. dec(root(t)) = XML(root(t)).

COROLLARY 5.14. Algorithm 9 is an offline algorithm that computes XML(t) given
XML(FCNS(t)).

We describe how this algorithm can be converted into a streaming algorithm. For an
opening tag X[i], checking the condition in Line 4 can easily be done by investigating
X[i+1]. If X[i+1] is a right opening tag or equals X[i], X[i] does not have a left subtree.
The difficulty in converting this algorithm into a streaming algorithm is in Line 8, it
is difficult to keep track of opening tags until the respective closing tags of their left
children are seen, and indeed, this cannot be done with sublinear space in one pass,
see Theorem 6.2.
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In the following, we present a streaming algorithm that performs one pass over the
input, but two passes over the output, and uses O(

√
N logN) space, and a streaming

algorithm that performs O(logN) passes over the input and 3 auxiliary streams using
O(log2(N)) space.

5.3.1. One read-pass and two write-passes. We read blocks of size
√
N logN and execute

Algorithm 9 on that block. In Lemma 4.1 we showed that in any block there is at most
one left closing tag for which the parent’s opening and closing tag are not in that block.
Hence per block there is at most one left closing tag for which we can not obtain the
label of the parent node. We call this closing tag critical. In this case we write a dummy
symbol on the output stream that will be overwritten by the parent’s closing tag in the
second pass. The closing tag of the parent node will arrive in a subsequent block, and it
can easily be identified as this since it is the next closing tag arriving at a depth −1 of
the critical closing tag. We store it upon its arrival in our random access memory. Since
there is at most one critical closing tag per block and we have a block size of

√
N logN ,

we have to recover at most O(
√
N/ logN) parent nodes. At the end of the pass over the

input stream we have recovered all closing tags of parent nodes for which we wrote
dummy symbols on the output stream. In a second pass over the output stream we
overwrite the dummy symbols by the correct closing tags.

The space complexity uses Lemma 4.1 that was already applied in Section 4.1.

THEOREM 5.15. There is a streaming algorithm using O(
√
N logN) space and O(1)

processing time per letter which performs one pass over the input stream containing
XML(t) and two passes over the output stream onto which it outputs XML(FCNS(t)).

5.3.2. Logarithmic number of passes. Again, we use the offline Algorithm 9 as a starting
point for the algorithm we design now. For coping with the problem that it is hard to
remember all opening parent tags when their corresponding closing tag ought to be
written on the output, we always write dummy symbols on the output stream for all
parent closing tags. The crux then is the following observation:

FACT 5. Let c1L . . . cNL be the subsequence of closing tags of left children of
XML(FCNS(t)). Then the sequence p1 . . . pN is a subsequence of XML(t) where pi is the
parent node of ci in FCNS(t).

We apply a modified version of our bidirectional two-pass Algorithm 3 to recover the
missing tags. Instead of checking validity, once the check function is called in Algo-
rithm 4 with variables (a, b, c), we output the parent label a onto an auxiliary stream,
annotated with pos(b). We do the same in a reverse pass over the input stream count-
ing positions from 2N downwards to 1. In so doing, the auxiliary stream contains all
parent labels for which dummy symbols are written on the output stream.

Fact 5 shows that it is enough to sort by means of two further auxiliary streams the
auxiliary stream with respect to the annotated position of the closing tags of the left
children of these nodes. In a last pass we insert the parent closing tags into the output
stream.

THEOREM 5.16. There is a O(logN)-pass streaming algorithm with space O(log2N)
and O(logN) processing time per letter and 3 auxiliary streams that computes on the
third auxiliary stream the FCNS decoding of any FCNS encoded document given in the
input stream.
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6. LOWER BOUNDS FOR FCNS ENCODING AND DECODING
6.1. Lower bound for FCNS encoding
Let x ∈ Σn. We define a family of hard instances t(x) of length N = Θ(n) for the
computation of XML(FCNS(t(x))) given XML(t(x)) as in Figure 19.

r

x1 x2 . . . xn

r

x1

x2

. . .

xn

Fig. 19. Left: hard instance. Right: its FCNS encoded form.

It is easy to see that computing the sequence of closing tags in
the FCNS encoding requires to reverse a stream. Let t be a hard
instance. Then XML(t) = rx1x1x2x2 . . . xnxnr, and XML(FCNS(t)) =
rLx1Lx2R . . . xnRxnRxn−1R . . . x2Rx1LrL. Since writing the closing tags on the out-
put stream can only start after reading xn, we deduce that memory space Ω(n) is
required in order to store all previous tags x1, . . . , xn−1.

FACT 6. Every randomized streaming algorithm for FCNS encoding that performs
one pass on the input stream and one pass on the output stream with bounded error
requires Ω(N) space.

6.2. Lower bound for FCNS decoding
We define now a family of hard instances of length N = Θ(n) for decoding a FCNS
encoded tree. Let X ∈ {0, 1}n, Y ∈ {0, 1}n and K ∈ [n] be uniformly distributed random
variables. Let x ← X, y ← Y and k ← K. Denote by t′(y) an arbitrary but fixed two-
ranked tree with n nodes that are labeled by y1, . . . , yn, and let s′(y) be the decoded
form of t′(y). We define then the hard instance t(x, y, k) and its decoded form s(x, y, k)
as in Figure 20.

r

x1

xk−1

xk

xk+1

xn
subtree t′(y)

r

x1

xk−1

xk

xk+1

xn

subtree s′(y)

Fig. 20. Left: hard instance t(x, y, k) in FCNS form. Right: its decoded form s(x, y, k). s′(y) is the decoded
form of subtree t′(y).
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Then we have

XML(t(x, y, k)) = rx1L . . . xnLxnL . . . xk+1LXML(t′(y))xkL . . . x1LrL, and
XML(s(x, y, k)) = rx1 . . . xnxn . . . xkXML(s′(y))xk−1 . . . x1r.

The crucial difference between t(x, y, k) and s(x, y, k) is that the subtree t′(y) is at-
tached to node xk in t(x, y, k) while the subtree s′(y) is attached to node xk−1 in
s(x, y, k). As a consequence, XML(t′(y))xkL is a substring of XML(t(x, y, k)) while
xkXML(s′(y)) is a substring of XML(s(x, y, k)). We will see that it is difficult to write
the substring xkXML(s′(y)) with sublinear space.

Note that xk has to be written before s′(y) (which is the decoded version of t′(y)).
However, xk appears after the subtree t′(y) in XML(t(x, y, k)). Hence, we either have to
store the entire subtree t′(y) in memory using Θ(n) space, or we have to infer xk from
the opening tag xkL in t(x, y, k). Since, however, k is not known to the algorithm before
seeing the subtree t′(y), this can not be done with sublinear memory.

We start with the definition of a one-way three-party communication game that we
denote by INDEXCOPY. Let the input be uniformly distributed random variables X ∈
{0, 1}n, Y ∈ {0, 1}n and K ∈ [n]. They are given to the three parties Alice, Bob and
Charlie as follows:

Alice MA−→ Bob MB−→ Charlie
X K,X[K + 1, n], Y X[1,K]

The common goal of the parties is to write the sequence X[K]Y on a shared output
stream. Firstly, Alice is allowed to write, followed by Bob and then Charlie. The com-
munication is one-way: Alice sends message MA to Bob, and then Bob sends message
MB to Charlie.

From the presentation of the family of hard instances for FCNS decoding, it is easy
to see that an algorithm for FCNS decoding that makes one pass over the input stream
and one pass over the output stream can be used to obtain a communication protocol
for INDEXCOPY. We state this as a fact.

FACT 7. A streaming algorithm for FCNS decoding that makes one pass over the in-
put stream and one pass over the output stream with space s serves as a communication
protocol for INDEXCOPY with communication cost O(s).

We will prove now that a communication protocol for INDEXCOPY has communica-
tion cost Ω(N).

LEMMA 6.1. Every possibly randomized communication protocol for INDEXCOPY
with error O(1/N) has communication cost Ω(N).

PROOF. Let P be a (possibly randomized) communication protocol such that the
parties output X[K]Y on the shared output stream with error ε = 1

32n on any input.
We will prove now that P has communication cost Ω(n).

By Yao’s minimax principle, there is a deterministic communication protocol Pd with
distributional error at most ε that has the same communication complexity as P . Sup-
pose that Alice’s message in Pd is at most of length n/100 bits. We will show that under
this assumption, for a particular input, Bob has to send a message of length Ω(n) bits
which proves the theorem.

Since Pd has distributional error ε = 1
32n , we obtain by the Markov inequality:

Pr
x←X

[error ≥ 1/(16n) |X = x] ≤ ε

1/(16n)
=

1

2
.
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Therefore, there are at least (1/2)2n = 2n−1 values x for which the protocol errs with
probability at most 1/(16n). Denote this set of x values by U . Furthermore, again by
the Markov inequality:

∀x ∈ U : Pr
k←K

[error ≥ 1/4 |X = x,K = k] ≤
1

16n

1/4
=

1

4n
.

Therefore, for any x ∈ U and any k ∈ [n], the protocol errs with probability less than
1/4.

Consider an input of Alice x coming from U that is different from x0 = 0 . . . 0 and
x1 = 1 . . . 1. Then Alice cannot write the bit X[K] on the output stream. If on input x
Alice writes deterministically 0 (or 1) then there is a value of K such that Alice wrote
the wrong bit. The error on x would then be greater than 1/(16n) contradicting the fact
that x ∈ U . Therefore, for all x ∈ U \ {x0, x1} it is either Bob or Charlie who writes the
bit X[K].

We will argue now that there is at least one x ∈ U and k ∈ [n] such that Charlie has
to output the bit X[K].

Since the maximal message length of Alice is n/100 bits, there is a subset U ′ ⊆ U

with |U ′| ≥ |U |
2n/100 = 2n−1−n/100 such that for all x ∈ U ′, the message MA sent by Alice

is the same. Denote this message by mA.
Using a technique of [Magniez et al. 2010], we will show now that there are x1, x2 ∈

U ′ and k ∈ [n] such that x1[k] 6= x2[k] and x1[k + 1, n] = x2[k + 1, n]. This can be seen
by building the following two-ranked tree: For each x ∈ U ′ the tree has exactly one
leaf at depth n that is labeled by x. All edges of the tree are labeled by bits 0 or 1. The
sequence of labels of the edges of a path from a leaf to the root then equals the label of
the leaf. An example for such a tree is provided in Figure 21.

Fig. 21. Organizing the set {010, 110, 001, 111} in a two-ranked tree.

By construction of the tree, the labels of leaves that have a common ancestor at depth
i have the same suffix of length i. Consider now an inner node v of this tree with two
children nodes. Such an inner node exists since the two-ranked tree has depth n and
contains |U ′| ≥ 2n−1−n/100 leaves. Let k be its depth. Furthermore, let x1 be the label of
an arbitrary leaf connected to the left child of v, and let x2 be the label of an arbitrary
leaf connected to the right child of v. Then x1[k+ 1, n] = x2[k+ 1, n] and x1[k] 6= x2[k] as
desired.

Since x1, x2 ∈ U ′, the protocols errs with probability at most 1/4 if X ∈ {x1, x2} and
K = k. Note that on both inputs x1 and x2, Bob has the same suffix X[K + 1, n] since
x1[k + 1, n] = x2[k + 1, n]. Furthermore, Bob receives the same message mA of Alice.
Hence, Bob can not distinguish between the two events X = x1 and X = x2 if K = k.
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Since x1[k] 6= x2[k], Bob can not output the bit X[K] since this would lead to an error
larger than 1/4.

Therefore, in this setting Charlie has to output the bit X[K]. This also requires that
subsequently Charlie outputs Y . Since Y is independent of the conditioning X = x1 (or
x2) and K = k and Charlie has no information about Y , we deduce that Charlie can
learn Y from Bob’s message MB with error at most 3/4.

Fix the input distribution X ∈ {x1, x2}, K = k and Y is chosen uniformly at random.
Then

H(MB) ≥ H(MB)−H(MB |Y ) = I(MB : Y ),

where H is the entropy function and I(MB : Y ) denotes the mutual information be-
tween MB and Y . Furthermore,

I(MB : Y ) = H(Y )−H(Y |MB) = n−H(Y |MB).

By the Fano Inequality, we obtain

H(Y |MB) ≤ 1 + 1/4n.

This implies that I(MB : Y ) ≥ 3/4n− 1 and H(MB) ∈ Ω(n) which in turn implies that
the average message length is Ω(n).

Finally, we state our space lower bound for streaming algorithm for FCNS decoding
that make one pass over the input stream and one pass over the output stream.

THEOREM 6.2. Every randomized streaming algorithm for FCNS decoding that
makes one pass over the input stream and one pass over the output stream with error
probability O(1/N) requires space Ω(N).

PROOF. The proof is by contradiction. Suppose that there is such a streaming algo-
rithm with space o(N). Then, by Fact 7 there is a communication protocol for INDEX-
COPY with communication cost o(N). This, however, is a contradiction to Lemma 6.1
that states that such a communication protocol has communication cost at least
Ω(N).
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APPENDIX
A. ONE-PASS ALGORITHM WITH SPACE LINEAR IN THE DEPTH OF THE DOCUMENT
We discuss now a straight-forward one-pass streaming algorithm, Algorithm 10, that
uses O(d) space to validate a well-formed XML document of depth d. Let (Σ, e, se) de-
note the input DTD, and for all c ∈ Σ let Ac be a deterministic finite automaton with
initial state q0

e and transition function δe that accepts words ω iff e(c) accepts ω. Note
that since we assume in this work that the size of the input DTD is O(1), the size of
(Ae)e∈Σ and the time complexity to compute it is O(1).

In order to validate the input stream, we check for all nodes v that the sequence of
labels of its children fulfills the regular expression e(v) (remember: we write ambigu-
ously v to denote the node as well as the label of v). We do this by feeding the sequence
of labels of its children into automaton Av, and we reject if the automaton does not
accept this sequence.

Consider an internal node v at depth depth(v) with children c1, . . . , ck. Then
vc1 . . . c1c2 . . . ck−1ck . . . ckv is a substring of the input stream. As soon as we encounter
the opening tag v, we store the initial state of Av in an array S at index depth(v). As
soon as an opening tag of a children node of v is encountered, we compute the follow-
up state of S[depth(v)] by feeding the children node’s label into Av on state S[depth(v)].
When v is reached and S[depth(v)] is not an accepting state of Av, we report invalidity.

Since the depth of the document is d, there are at most d nodes whose validity has to
be checked at the same time. These nodes are the nodes on the path from the current
node to the root node. Therefore, we need to store at most d states of the automata
(Aσ)σ∈Σ leading to a space complexity O(d). See Algorithm 10 for details.

Algorithm 10 One-pass Streaming Algorithm for VALIDITY with space O(d)

Require: input stream is a well-formed XML document of depth d
1: l← −1, L, S ← array of size d
2: while stream not empty do
3: x← next tag on stream
4: if x is an opening tag c then
5: if l = −1 then {Root node}
6: if c 6= se then report error and abort end if
7: else {Node different from the root node}
8: S[l]← δL[l](S[l], c)
9: end if
10: l← l + 1
11: L[l]← c
12: S[l]← q0c
13: else {x is a closing tag c}
14: if l 6= −1 then
15: if S[l] is not an accepting state of Ac then report error and abort end if
16: end if
17: l← l − 1
18: end if
19: end while

THEOREM A.1. Algorithm 10 is a deterministic one-pass streaming algorithm for
VALIDITY with space O(d) and O(1) processing time per letter where d is the depth of
the input XML document.
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PROOF. Correctness of the algorithm follows by construction. Concerning space, the
arrays L and S are of size O(d) and since l does not exceed d, the space requirements
for storing l are O(log d).

B. MISSING PROOFS OF SECTION 5
B.1. Proof of Lemma 5.1

PROOF. Recall Definition 2.3 of XML and Definition 2.4 of XMLF. We will show that
the following two functions XML′ and XMLF′ which, applied to the root of a tree t, gen-
erate the sequences of opening tags of XML(t) and XML(FCNS(t)) (without left/right
annotations) are equivalent. For a tree t and nodes x, x1, . . . , xn we define

XML′(x) = xXML′(children(x)),

XML′(x1, . . . , xn) = XML′(x1) . . .XML′(xn),

XML′(⊥) = ε,

and

XMLF′(x) = xXMLF′(fc(x)) XMLF′(ns(x)),

XMLF′(⊥) = ε.

Clearly, XML′(root(t)) and XMLF′(root(t)) construct the sequences of opening tags of
XML(t) and XML(FCNS(t)). Let x ∈ t be any node. We prove the following statement
by induction on the size of the subtree below x:

XML′(x) = xXMLF′(fc(x)). (6)

The statement is trivially true if x is a leaf, that is a tree of size 1. Let x be a non-leaf
node with children x1, . . . , xn. Then

xXMLF′(fc(x)) = xx1 XMLF′(fc(x1)) XMLF′(ns(x1)) (7)

= xXML′(x1) XMLF′(x2) (8)

= xXML′(x1)x2 XMLF′(fc(x2)) XMLF′(ns(x2)) (9)

= xXML′(x1) XML′(x2) XMLF′(x3) (10)
. . .

= xXML′(x1) . . . XML′(xn) = xXML′(children(x)) = XML′(x).

We used the induction hypothesis in Equation 7 to obtain Equation 8 and in Equa-
tion 9 to Equation 10. Let r denote the root of t. Then using Equation 6 the result
follows

XMLF′(r) = rXMLF′(fc(r))XMLF′(ns(r))

= XML′(r)XMLF′(⊥) = XML′(r).

B.2. Proof of Lemma 5.13
PROOF. We will prove that for a node x ∈ t the following is true

XML(x) = xdec(fc(x))x. (11)
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The proof is by induction on the height of the subtree below x and is similar to the
proof of Lemma 5.1. The claim is obvious for leaves. Let x be a node and let v1, . . . , vn
denote the children of x. Then

xdec(v1)x = x v1 dec(fc(v1)) v1 dec(v2)x (12)
= xXML(v1) v2 dec(fc(v2)) v2 dec(v3)x (13)
= xXML(v1) XML(v2) v3 dec(fc(v3)) v3 dec(v4)x (14)
. . .

= xXML(children(x))x = XML(x),

where we used the induction hypothesis in Equation 12 to obtain Equation 13, and in
Equation 13 to obtain Equation 14. Since the root node r of the tree t does not have a
next sibling, the result follows using Equation 11

dec(r) = r dec(fc(r)) r dec(ns(r)) = XML(r).
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