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Abstract We solve an open problem by constructing quantum walks that
not only detect but also find marked vertices in a graph. In the case when the
marked set M consists of a single vertex, the number of steps of the quantum
walk is quadratically smaller than the classical hitting time HT(P,M) of any
reversible random walk P on the graph. In the case of multiple marked ele-
ments, the number of steps is given in terms of a related quantity HT+(P ,M )
which we call extended hitting time.

Our approach is new, simpler and more general than previous ones. We
introduce a notion of interpolation between the random walk P and the ab-
sorbing walk P ′, whose marked states are absorbing. Then our quantum walk
is simply the quantum analogue of this interpolation. Contrary to previous
approaches, our results remain valid when the random walk P is not state-
transitive. We also provide algorithms in the cases when only approximations
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or bounds on parameters pM (the probability of picking a marked vertex from
the stationary distribution) and HT+(P ,M ) are known.

Keywords Quantum algorithms, quantum walks, Markov chains, interpo-
lated quantum walks
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1 Introduction

Many randomized classical algorithms rely heavily on random walks or Markov
chains. This technique has been extended to the quantum case and is called
a quantum walk. Ambainis [1] was the first to solve a natural problem—the
element distinctness problem—using a quantum walk. Following this, many
other quantum walk algorithms were discovered (see, for example, [2, 3, 4]).
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A common class of problems that are typically solved using a random walk
are the so-called spatial search problems. In such problems, the displacement
constraints are modelled by edges of an undirected graph G, which has some
desired subset of vertices M that are marked. The goal of a spatial search
problem is to find one of the marked vertices by traversing the graph along its
edges. Classically, a simple strategy for finding a marked vertex is to perform a
random walk on G, by repeatedly applying some stochastic matrix P until one
of the marked vertices is reached (see Sect. 2.5 for more details). The expected
running time of this algorithm is called the hitting time of P and is denoted
by HT(P,M).

Quantum walk algorithms for the spatial search problem were studied in [5].
This problem has also been considered for several specific graphs, such as the
hypercube [6] and the grid [7, 8]. The notion of the hitting time has been carried
over to the quantum case in [8, 9, 10, 11, 12, 13, 14] by generalizing the classical
notion in different ways. Usually, the quantum hitting time has a quadratic
improvement over the classical one. However, several serious restrictions were
imposed for this to be the case. A quantum algorithm could only solve the
detection problem of deciding whether there are marked vertices or not [10],
but for being able to find them, the Markov chain had to be reversible, state-
transitive, and with a unique marked vertex [15, 13]. Recall that a Markov
chain P is called state-transitive if, given any two states x and y, there exists
an automorphism1 of P that takes x to y. This is analogous to the definition
of vertex-transitive graphs and imposes a high degree of symmetry on the
Markov chain (intuitively, each state of P locally looks the same). While the
detection algorithm [10] is quite intuitive and well understood, the finding
algorithm [15, 13] requires an elaborate proof whose intuition is not clear. This
is due in part to a modification of the quantum walk, so that the resulting
walk is not a quantum analogue of a Markov chain anymore.

Whether this quadratic speed-up for finding a marked element also holds
for all reversible Markov chains (and not merely state-transitive ones) was an
open question. In the case of a single marked element, we give a positive answer
to this question by providing a quantum algorithm, which finds the marked
element in time that is quadratically smaller than the classical hitting time for
all reversible Markov chains, thus removing the extraneous condition of state-
transitivity. While our algorithm also extends to the case of multiple marked
elements, the possibility of a general quadratic speed-up still remains open in
that case, because of a possible gap between the so-called extended hitting
time HT+(P ,M ), which characterizes the cost of our quantum algorithm, and
the standard hitting time HT(P,M) (see Sect. 2.7 and Appendix C for more
details2).

1 An automorphism of P is a permutation matrix Q such that QPQT = P .
2 Note that in the preliminary version of this work [16], a subtle error led to the wrong

conclusion that HT+(P ,M ) = HT(P,M) for all M and reversible P . In general this only
holds when |M | = 1.
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1.1 Related work

Inspired by Ambainis’ quantum walk algorithm for solving the element dis-
tinctness problem [1], Szegedy [10] has introduced a powerful way of con-
structing quantum analogues of Markov chains which led to new quantum
walk algorithms. He showed that for any symmetric Markov chain a quantum
walk could detect the presence of marked vertices in at most the square root of
the classical hitting time. However, showing that a marked vertex could also
be found in the same time (as is the case for the classical algorithm) proved to
be a very difficult task. Magniez et al. [12] extended Szegedy’s approach to the
larger class of ergodic Markov chains, and proposed a quantum walk algorithm
to find a marked vertex, but its complexity may be larger than the square root
of the classical hitting time. A typical example where their approach fails to
provide a quadratic speed-up is the 2D grid, where their algorithm has com-
plexity Θ(n), whereas the classical hitting time is Θ(n log n). Ambainis et
al. [8] and Szegedy’s [10] approaches yield a complexity of Θ(

√
n log n) in this

special case, for a unique marked vertex. This result was, in fact, first obtained
by Childs and Goldstone [17, 7] using a continuous-time quantum walk.

However, whether a full quadratic speed-up was possible in the 2D grid
case remained an open question, until Tulsi [15] proposed a solution involv-
ing a new technique. Magniez et al. [13] extended Tulsi’s technique to any
reversible state-transitive Markov chain, showing that for such chains, it is
possible to find a unique marked vertex with a full quadratic speed-up over
the classical hitting time. However, as explained earlier, state-transitivity is a
strong symmetry condition, and furthermore their technique cannot deal with
multiple marked vertices. Recently, [18] have suggested a modification of the
original [8] algorithm in the case of the 2D grid with a single marked element
by replacing amplitude amplification with a classical search in a neighbour-
hood of the final vertex. This results in a

√
log n speed-up over the original

algorithm from [8] and yields complexity O(
√
n log n) as in the case of [15, 13].

It seems implausible that one has to rely on involved techniques to solve the
finding problem under such restricted conditions in the quantum case, while
the classical random walk algorithm (see Sect. 2.5) is conceptually simple
and works under general conditions. The classical algorithm simply applies an
absorbing walk P ′ obtained from P by turning all outgoing transitions from
marked states into self-loops (see Appendix A). Each application of P ′ results
in more probability being absorbed in marked states.

Previous attempts at providing a quantum speed-up over this classical
algorithm have followed one of these two approaches:

– Combining a quantum version of P with a reflection through marked ver-
tices to mimic a Grover operation [8, 1, 12].

– Directly applying a quantum version of P ′ [10, 13].

The problem with these approaches is that they would only be able to find
marked vertices in very restricted cases. We explain this by the different na-
ture of random and quantum walks: while both have a stable state, i.e., the



Quantum walks can find a marked element on any graph? 5

stationary distribution for the random walk and the eigenstate with eigenvalue
1 for the quantum walk, the way both walks act on other states is dramatically
different.

Indeed, an ergodic random walk will converge to its stationary distribution
from any initial distribution. This apparent robustness may be attributed to
the inherent randomness of the walk, which will smooth out any initial per-
turbation. After many iterations of the walk, non-stationary contributions of
the initial distribution will be damped and only the stationary distribution
will survive (this can be attributed to the thermodynamical irreversibility3 of
ergodic random walks).

On the other hand, this is not true for quantum walks, because in the
absence of measurements a unitary evolution is deterministic (and in particular
thermodynamically reversible): the contributions of the other eigenstates will
not be damped but just oscillate with different frequencies, so that the overall
evolution is quasi-periodic. As a consequence, while iterations of P ′ always lead
to a marked vertex, it may happen that iterations of the quantum analogue
of P ′ will never lead to a state with a large overlap over marked vertices,
unless the walk exhibits a strong symmetry (as is the case for a state-transitive
walk with only one marked element, which could be addressed by previous
approaches).

1.2 Our approach and contributions

Our main result is that a quadratic speed-up for finding a marked element via
a quantum walk holds for any reversible Markov chain with a single marked
element. We provide several algorithms for different versions of the problem.
Compared to previous results, our algorithms are more general and conceptu-
ally clean. The intuition behind our main algorithm is based on the adiabatic
algorithm from [19]. However, all algorithms presented here are circuit-based
and thus do not suffer from the drawbacks of the adiabatic algorithm in [19].

We choose an approach that is different from the ones described above:
first, we directly modify the original random walk P , and then construct a
quantum analogue of the modified walk. We choose the modified walk to be
the interpolated Markov chain P (s) = (1−s)P+sP ′ that interpolates between
P and the absorbing walk P ′ whose outgoing transitions from marked vertices
have been replaced by self-loops. Thus, we can still use our intuition from the
classical case, but at the same time also get simpler proofs and more general
results in the quantum case.

All of our quantum walk algorithms are based on eigenvalue estimation per-
formed on the operator W (s), a quantum analogue of the Markov chain P (s).
We consider the (+1)-eigenstate |Ψn(s)〉 of W (s), which plays the role of the
stationary distribution in the quantum case. We use the interpolation param-
eter s to tune the length of projections of |Ψn(s)〉 onto marked and unmarked

3 Reversibility of Markov chains (see Appendix A.1.2) is not related to thermodynamical
reversibility. Actually, even a “reversible” Markov chain is thermodynamically irreversible.
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vertices. If both projections are large, our algorithm succeeds with large proba-

bility in O
(√

HT+(P ,M )
)

steps (Theorem 6), where HT+(P ,M ) is a quantity

we call the extended hitting time (see Definition 9 and Prop. 3 for precise state-
ments). In particular, we find that when |M | = 1, HT+(P ,M ) = HT(P,M)
and when |M | > 1, there exists P such that HT+(P ,M ) > HT(P,M).

We also provide several modifications of the main algorithm. In particular,
we show how to make a suitable choice of s to balance the overlap of |Ψn(s)〉
on marked and unmarked vertices even if some of the parameters required by
the main algorithm are unknown and the rest are either approximately known
(Theorem 7 and Theorem 8) or bounded (Theorem 9 and Theorem 10). In all

cases a marked vertex is found in Õ
(√

HT+(P ,M )
)

steps.

In Sect. 2 we introduce several variations of the spatial search problem and
provide preliminaries on random and quantum walks and their hitting times.
Sect. 3 describes our quantum algorithms and contains the main results. The
main algorithm is presented in Sect. 3.1 and is followed by several modifications
that execute the main algorithm many times with different parameters.

Technical and background material is provided in several appendices. In
Appendix A we describe basic properties of the interpolated Markov chain P (s)
and the extended hitting time HT+(P ,M ), which is crucial for the analysis of
the algorithms in Sect. 3. In Appendix B we compute the spectrum of the walk
operator W (s) and show how it can be implemented for any s. In Appendix C
we discuss limitations of our results for the case of multiple marked elements.

2 Preliminaries

2.1 Classical random walks

A Markov chain4 on a discrete state space X of size n := |X| is described by an
n× n row-stochastic matrix P where Pxy ∈ [0, 1] is the transition probability
from state x to state y and

∀x ∈ X :
∑
y∈X

Pxy = 1. (1)

Such a Markov chain has a corresponding underlying directed graph with n
vertices labelled by elements of X, and directed arcs labelled by non-zero
probabilities Pxy (see Fig. 1).

We represent probability distributions by row vectors whose entries are
real, non-negative, and sum to one. When one step of the Markov chain P is
applied to a given distribution p, the resulting distribution is pP . A probability
distribution π that satisfies πP = π is called a stationary distribution of P .
For more background on Markov chains see, e.g., [20, 21, 22, 23].

4 We will use terms “random walk”, “Markov chain”, and “stochastic matrix” interchange-
ably. The same holds for “state”, “vertex”, and “element”.
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Fig. 1 Markov chain P and the corresponding graph with transition probabilities.

2.1.1 Ergodicity

Let us consider Markov chains with some extra structure.

Definition 1 A Markov chain P is called

– irreducible, if any state in the underlying directed graph can be reached
from any other by a finite number of steps (i.e., the graph is strongly
connected);

– aperiodic, if there is no integer k > 1 that divides the length of every
directed cycle of the underlying directed graph;

– ergodic, if it is both irreducible and aperiodic.
– reversible, if it is ergodic and satisfies the so called detailed balance equation

i.e., the stationary distribution π satisfies πxPxy = πyPyx.

Equivalently, a Markov chain P is ergodic if there exists some integer k0 ≥ 1
such that all entries of P k0 (and, in fact, of P k for any k ≥ k0) are strictly
positive (see [23, Prop. 1.7, p. 8] for a proof of this equivalence). Some authors
call such chains regular and use the term “ergodic” already for irreducible
chains [20, 21]. From now on, we will exclusively consider Markov chains that
are ergodic and reversible (but not necessarily state-transitive).

Even though some of the Markov chain properties in Definition 1 are inde-
pendent from each other (such as irreducibility and aperiodicity), usually they
are imposed in a specific order which is summarized in Fig. 2. As we impose
more conditions, more can be said about the spectrum of P as discussed in
the next section.

2.1.2 Perron–Frobenius theorem

The following theorem will be very useful for us. It is essentially the standard
Perron–Frobenius theorem [24, Theorem 8.4.4, p. 508], but adapted for Markov
chains. (This theorem is also known as the “Ergodic Theorem for Markov
chains” [22, Theorem 5.9, p. 72].) The version presented here is based on the
extensive overview of Perron–Frobenius theory in [25, Chapter 8].

Theorem 1 (Perron–Frobenius) Let P be a stochastic matrix. Then
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stochastic

irreducible

aperiodic

reversible

ergodic

Fig. 2 The order in which Markov chain properties from Definition 1 are typically imposed
(starting from the bottom). Reversibility is discussed in more detail in Appendix A.1.2.

– all eigenvalues of P are at most 1 in absolute value and 1 is an eigenvalue
of P ;

– if P is irreducible, then the 1-eigenvector is unique and strictly positive
(i.e., it is of the form cπ, where c > 0 and π is a probability distribution
that is non-zero everywhere);

– if in addition to being irreducible, P is also aperiodic (i.e., P is ergodic),
then the remaining eigenvalues of P are strictly smaller than 1 in absolute
value.

If P is irreducible but not aperiodic, it has some complex eigenvalues on the
unit circle (which can be shown to be roots of unity) [25, Chapter 8]. However,
when in addition we also impose aperiodicity (and hence ergodicity), we are
guaranteed that there is a unique eigenvalue of absolute value 1 and, in fact,
it is equal to 1.

2.2 Spatial search on graphs

We fix an undirected graph G = (X,E) with n := |X| vertices and a set
of edges E. Let M ⊆ X be a set of marked vertices of size m := |M |. We
insist that during the traversing of the graph the current vertex is stored in a
distinguished vertex register. Our goal is to find any of the marked vertices in
M using only evolutions that preserve the locality of G on the vertex register,
i.e., to perform a spatial search on G [5] (here we use a notion of locality that
is a special case of the one defined in [5] and it is powerful enough for our
purpose). Note that algorithms for spatial search cannot simply ignore the
vertex register as only the vertex encoded in this register can be checked to
be marked or not.

We allow two types of operations on the vertex register:

– static transformations, that can be conditioned on the state of the vertex
register, but do not modify it;

– Shift, that exchanges the value of the vertex register and another register.

To impose locality, we want to restrict the execution of Shift only to the
edges of G.
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Definition 2 (Shift operation) Let

Shift : (x, y) 7→

{
(y, x), if (x, y) ∈ E,
(x, y), otherwise.

(2)

In the first case we say that Shift succeeds, but in the second case it fails (we
assume that Shift always succeeds if x = y).

Definition 3 (Search problems) Under the restriction that only static
transformations and Shift are allowed, consider the following problems:

– Detect(G): Detect if there is a marked vertex in G;
– Find(G): Find any marked vertex in G, with the promise that M 6= ∅.

We also define the following variations of the above problems:

– Detect(k)(G): problem Detect(G) with the promise that either m = 0
or m = k;

– Find(k)(G): problem Find(G) with the promise that m = k.

Similarly, let Detect(≥k)(G) and Find(≥k)(G) denote the corresponding prob-
lems with equality m = k replaced by inequality m ≥ k.

Note that an algorithm for Find (or its variations) should output a marked
element and there are no additional constraints on its output. Our quan-
tum algorithms will solve a slightly stronger version of Find, which we call
Sample-marked, where it is necessary to sample marked elements from a
specific distribution (see Sect. 2.7).

2.3 Search via random walk

A natural approach to searching on a graph involves using a random walk.
Intuitively, a random walk is an alternation of coin flips and shifts. More
precisely, a coin is flipped according to the current state x ∈ X of the vertex
register, its value describes the target vertex y, and Shift performs a move
from x to y. Let Pxy be the probability that x is shifted to y. Then Shift
always succeeds if Pxy = 0 whenever (x, y) /∈ E. In such case, we say that
P = (Pxy)x,y∈X is a Markov chain on graph G.

From now on, we assume that P is an ergodic Markov chain (see Defini-
tion 1). Therefore, by the Perron–Frobenius Theorem, P has a unique station-
ary distribution π. We also assume that P is reversible: πxPxy = πyPyx, for
all x, y ∈ X.

To measure the complexity of implementing a random walk corresponding
to P , we introduce the following black-box operations:

– Check(M): check if a given vertex is marked;
– Setup(P ): draw a sample from the stationary distribution π of P ;
– Update(P ): perform one step of P .

Each of these black-box operations have the corresponding associated imple-
mentation cost, which we denote by C, S, and U, respectively.
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2.4 Search via quantum walk

The setup in the quantum case is as follows. As in [19], the evolution takes
place in space H ⊗ H where H := span{|x〉 : x ∈ X} is the n-dimensional
complex Euclidean space spanned by elements of set X. The first register
stores the current vertex of the walk and is called vertex register. We call a
unitary transformation static if it is controlled by this register, i.e., it is of
the form

∑
x∈X |x〉〈x| ⊗ Ux for some unitaries Ux. The quantum version of

the Shift operation is obtained by extending the expression in Eq. (2) by
linearity.

A quantum walk on G is a composition of static unitary transformations
and Shift. In addition, we require that it respects the local structure of G,
i.e., whenever Shift is applied to a state, the state must completely lie within
the subspace of H⊗H where Shift is guaranteed to succeed.

We will only consider quantum walks built from quantum analogues of re-
versible Markov chains, so we extend the operations Check, Setup, and Update

to the quantum setting as follows (we implicitly also allow controlled versions
of these operations):

– Check(M): map |x〉|b〉 to |x〉|b〉 if x /∈M and |x〉|b⊕ 1〉 if x ∈M , where |x〉
is the vertex register and b ∈ {0, 1};

– Setup(P ): construct the superposition |π〉 :=
∑
x∈X
√
πx|x〉;

– Update(P ): apply any of V (P ), V (P )†, or Shift, where V (P ) is a unitary
operation that satisfies

V (P )|x〉|0̄〉 := |x〉|px〉 := |x〉
∑
y∈X

√
Pxy|y〉 (3)

for all x ∈ X and some fixed reference state |0̄〉 ∈ H.

Implicitly, we allow controlled versions of the black-box operations Check(M),
Setup(P ), and Update(P ).

In terms of the number of applications of Shift, Update has complexity 1
while Setup has complexity at least one-half times the diameter of the graph
G (this is a lower bound on the mixing time of ergodic Markov chains [23]).
Nonetheless, in many algorithmic applications, the situation is more complex
and the number of applications of Shift is not the only relevant cost; see for
instance [1, 2].

To define a quantum analogue of a reversible Markov chain P , we follow the
construction of Szegedy [10]. Let X := H⊗ span{|0̄〉} = span{|x〉|0̄〉 : x ∈ X}
and

refX := 2
∑
x∈X
|x〉〈x| ⊗ |0̄〉〈0̄| − I ⊗ I = I ⊗ (2|0̄〉〈0̄| − I) (4)

be the reflection in H⊗H with respect to the subspace X . The quantum walk
operator corresponding to Markov chain P is5

W (P ) := V (P )† · Shift · V (P ) · refX . (5)

5 Note that Szegedy [10] uses a different convention and defines the quantum walk operator

corresponding to P as
(
V (P )W (P )V (P )†

)2
where W (P ) is given in Eq. (5).
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Notice that W (P ) requires 3 calls to Update(P ).
Since we always choose an initial state that lies in the subspace X , we can

simplify the analysis by restricting the action of W (P ) to the smallest subspace
that contains X and is invariant under W (P ). We call this subspace the walk
space of W (P ). We show in Appendix B that this subspace is spanned by X
and W (P )X , and that Shift is guaranteed to succeed when W (P ) is applied
to a state in the walk space.

2.5 Classical hitting time

We define the hitting time of P based on a simple classical random walk
algorithm for finding a marked element in the state space X.

Definition 4 Let P be an ergodic Markov chain, and M be a set of marked
states. The hitting time of P with respect to M , denoted by HT(P,M), is
the expected number of executions of the last step of the Random Walk
Algorithm, conditioned on the initial vertex being unmarked.

Random Walk Algorithm

1. Generate x ∈ X according to the stationary distribution π of P
using Setup(P ).

2. Check if x is marked using Check(M). If x is marked, output x and
exit.

3. Otherwise, update x according to P using Update(P ) and go back
to step 2.

It is straightforward to bound the classical complexity of the Detect and
Find problems in terms of the hitting time.

Proposition 1 Let k ≥ 1. Detect(≥k)(G) can be solved with high probability
and classical complexity of order

S + T · (U + C), where T = max
|M ′|=k

HT(P,M ′). (6)

Find(G) can be solved with high probability and expected classical complexity
of order

S + T · (U + C), where T = HT(P,M). (7)

Note that since the Random Walk Algorithm consists in applying the
random walk P until hitting a marked vertex, it may be seen as repeated
applications of the absorbing walk P ′.

Definition 5 Let P be an ergodic Markov chain, and M be a set of marked
states. The absorbing walk P ′ is the walk obtained from P by replacing all
outgoing transitions from marked vertices by self-loops, that is P ′xy = Pxy for
all x /∈M , and P ′xy = δxy for all x ∈M (δxy being the Kronecker delta).
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The hitting time HT(P,M) may be obtained from the spectral properties
of the discriminant matrix of P ′, which was introduced by Szegedy in [10].

Definition 6 The discriminant matrix D(P ) of a Markov chain P is

D(P ) :=
√
P ◦ PT, (8)

where the Hadamard product “◦” and the square root are computed entry-
wise.

Proposition 2 The hitting time of Markov chain P with respect to marked
set M is given by

HT(P,M) =

n−|M |∑
k=1

|〈v′k|U〉|
2

1− λ′k
, (9)

where λ′k are the eigenvalues of the discriminant matrix D′ = D(P ′) in non-
decreasing order, |v′k〉 are the corresponding eigenvectors, and |U〉 is the unit
vector

|U〉 :=
1√

1− pM

∑
x/∈M

√
πx|x〉, (10)

pM being the probability to draw a marked vertex from the stationary distribu-
tion π of P .

This proposition is proved in Appendix A.3.

2.6 Quantum hitting time

Quantum walks have been successfully used for detecting the presence of
marked vertices quadratically faster than random walks [10]. Nonetheless, very
little is known about the problem of finding a marked vertex. Below, we de-
scribe the understanding of this problem prior to our work.

Theorem 2 ([10]) Let k ≥ 1. Detect(≥k)(G) can be solved with high prob-
ability and quantum complexity of order

S + T · (U + C), where T = max
|M ′|=k

√
HT(P,M ′). (11)

When P is state-transitive and there is a unique marked vertex z (i.e.,
m = 1), HT(P, {z}) is independent of z and one can also find z:

Theorem 3 ([15, 13]) Assume that P is state-transitive. Find(1)(G) can be
solved with high probability and quantum complexity of order

S + T · (U + C), where T =
√

HT(P, {z}). (12)
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Using standard techniques, such as in [5], Theorem 3 can be generalized
to any number of marked vertices, with an extra logarithmic multiplicative
factor. Nonetheless, the complexities of the corresponding algorithms do not
decrease when the size of M increases, contrary to the random walk search
algorithm (Prop. 1) and the quantum walk detecting algorithm (Theorem 2).

Corollary 1 Assume that P is state-transitive. Find(G) can be solved with
high probability and quantum complexity of order

log(n) ·
(
S + T · (U + C)

)
, where T =

√
HT(P, {z}), for any z. (13)

2.7 Extended hitting time

The quantum algorithms leading to the results in the previous subsection are
based on quantum analogues of either the Markov chain P or the corresponding
absorbing walk P ′. However, the algorithms proposed in the present article are
based on a quantum analogue of the following interpolated Markov chain.

Definition 7 Let P be a Markov chain, M be a set of marked elements and
P ′ be the corresponding absorbing walk. We define the interpolated Markov
chain P (s) as

P (s) := (1− s)P + sP ′, 0 ≤ s ≤ 1. (14)

We also denote by D(s) the discriminant matrix D(P (s)), by λk(s) its eigen-
values (in nondecreasing order) and by |vk(s)〉 its corresponding eigenvectors
where k = 1, . . . , n.

Some properties of P (s) are proven in Appendix A.1, in particular, we note
that P (s) is ergodic for any 0 ≤ s < 1 as soon as P is (Prop. 7). Moreover,
just as P (s) interpolates between P and P ′, the stationary distribution π(s) of
P (s) interpolates between the stationary distribution π of P and its restriction
to the set of marked vertices, i.e. a stationary distribution for P ′ (Prop. 11).

This implies that P (s) may be used to solve the following strong version
of the Find problem.

Definition 8 (Sampling problem) Let P be an ergodic Markov chain on
graph G. Under the restriction that only static transformations and Shift are
allowed, consider the following problems:

– Sample-marked(P ): Sample marked vertices in G according to the re-
striction to set M of the stationary distribution of P , with the promise
that M 6= ∅.

– Sample-marked(k)(P ): problem Sample-marked(P ) with the promise
that m = k.

Indeed, since the stationary distribution of P (s) precisely interpolates be-
tween π and its restriction to M , we can solve the Sample-marked problem
by applying Markov chain P (s) for a sufficient number of steps t to approach
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its stationary distribution, then outputting the current vertex if it is marked,
otherwise starting over.

Our new quantum algorithms can be seen as quantum analogues of this
classical algorithm, and their cost will be expressed in terms of a quantity
which we call the extended hitting time.

Definition 9 The extended hitting time of P with respect to M is

HT+(P ,M ) := lim
s→1

HT(s), (15)

where the interpolated hitting time HT(s) is defined for any s ∈ [0, 1)6 as

HT(s) :=

n−1∑
k=1

|〈vk(s)|U〉|2

1− λk(s)
. (16)

The name extended hitting time is justified by comparing Eq. (16) to
Eq. (9), and noting that 〈v′k|U〉 = 0 for k > n− |M |. In general, the extended
hitting time HT+(P ,M ) can be larger than the hitting time HT(P,M), but
they happen to be equal in the case of a single marked element. This implies
that when |M | = 1, the cost of our quantum algorithms can be expressed in
terms of the usual hitting time, which might be attributed to the fact that the
Sample-marked problem is equivalent to the usual Find problem in that
case.

Proposition 3 If |M | = 1 then HT+(P ,M ) = HT(P,M). However, there
exists P and |M | > 1 such that HT+(P ,M ) > HT(P,M).

This proposition is proved in Appendix A.3.1. An alternative expression for
HT+(P ,M ) is provided in Appendix C; it allows for an easier comparison with
HT(P,M). The following theorem holds for any number of marked elements
and it relates HT(s) to HT+(P ,M ).

Theorem 4 For s < 1, the interpolated hitting time HT(s) is related to
HT+(P ,M ) from Eq. (15) as follows:

HT(s) =
p2M

(1− s(1− pM ))2
HT+(P ,M ) (17)

where pM is the probability to pick a marked state from the stationary distri-
bution π of P . When |M | = 1, HT+(P ,M ) in Eq. (17) can be replaced by
HT(P,M).

The proof is provided in Appendix A.3.3.

6 Note that in the case of multiple marked elements this expression cannot be used for
s = 1, since the numerator and denominator vanish for terms with k > n−|M |. We analyze
the s→ 1 limit in Appendix C.
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3 Quantum search algorithms

In this section we provide several quantum search algorithms. They are all
based on a procedure known as eigenvalue estimation and essentially run it
different numbers of times with different values of parameters. Below is a
formal statement of what eigenvalue estimation does. It was discovered by
Alexei Kitaev and described in unpublished work (arXiv: quant-ph/9511026,
see also [26]).

Theorem 5 (Eigenvalue estimation) For any unitary operator W and
precision t ∈ N, there exists a quantum circuit Eigenvalue Estimation(W, t)
that uses 2t calls to the controlled-W operator and O(t2) additional gates, and
acts on eigenstates |Ψk〉 of W as

|Ψk〉 7→ |Ψk〉
1

2t

2t−1∑
l,m=0

e−
2πilm

2t eiϕkl|m〉, (18)

where eiϕk is the eigenvalue of W corresponding to |Ψk〉.

By linearity, Eigenvalue Estimation(W, t) resolves any state as a linear
combination of the eigenstates ofW and attaches to each term a second register
holding an approximation of the first t bits of the binary decomposition of
1
2πϕk, where ϕk is the phase of the corresponding eigenvalue. We will mostly
be interested in the component along the eigenvector |Ψn〉 which corresponds
to the phase ϕn = 0. In that case, the second register is in the state |0t〉 and
the estimation is exact.

Our search algorithms will be based on Eigenvalue Estimation(W (s), t)
for some values of parameters s and t. Here, W (s) := W (P (s)) is the quantum
analogue of the interpolated Markov chain P (s), following Szegedy’s construc-
tion as described in Sect. 2.4 (a quantum circuit implementing W (s) is also
provided by Lemma 3 in Appendix B.2). The value of the interpolation pa-
rameter s ∈ [0, 1] will be related to pM , the probability to pick a marked
vertex from the stationary distribution π of P . Precision t ∈ N, or the number
of binary digits in eigenvalue estimation, will be related to HT+(P ,M ), the
extended hitting time of P .

We consider several scenarios where different knowledge of the values of
parameters pM and HT+(P ,M ) is available, and for each case we provide an
algorithm. The list of all results and the corresponding assumptions is given
in Table 1.

Throughout the rest of this section we assume that all eigenvalues of P are
between 0 and 1. If this is not the case, we can guarantee it by replacing P
with (P + I)/2, which makes P “lazy” and affects the hitting time only by a
factor of 2 (see Prop. 20).
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Result pM HT+(P ,M )
Theorem 6 known known
Theorem 7 approximation known known
Theorem 8 approximation known not known
Theorem 9 bound known bound known
Theorem 10 not known bound known

Table 1 Summary of results on quantum search algorithms. Assumptions on pM and
HT+(P ,M ) are listed in the last two columns.

3.1 Algorithm with known values of pM and HT+(P ,M )

For simplicity, let us first assume that the values of pM and HT+(P ,M ) are
known. In this case we provide a quantum algorithm that solves Find(G) (i.e.,
outputs a marked vertex if there is any) with success probability and running
time that depends on two parameters ε1 and ε2.

Let us first recall how the classical Random Walk Algorithm from
Sect. 2.5 works. It starts with the stationary distribution π of P and applies
the absorbing walk P ′ until most of the probability is absorbed in marked
vertices and thus the state is close to a stationary distribution of P ′.

In the quantum case a natural starting state is |π〉|0̄〉 = |vn(0)〉|0̄〉, which
is a stationary state of W (P ) (see Eq. (26) below). By analogy, we would like
to end up in its projection onto marked vertices, namely |M〉|0̄〉, where

|M〉 :=
1
√
pM

∑
x∈M
|x〉, (19)

which is also a stationary state of W (P ′). However, at this point the analogy
breaks down, since we do not want to apply W (P ′) to reach the final state.
The reason is that in many cases, including the 2D grid, every iteration of
W (P ′) on |π〉|0̄〉 may remain far from |M〉|0̄〉. Instead, our approach consists
of quantizing a new random walk, namely an interpolation P (s) between P
and P ′. This technique is drastically different from the approach of [15, 13]
and, to our knowledge, new.

Intuitively, our quantum algorithm works as follows. We first prepare the
initial state |π〉 and check whether the vertex register corresponds to a marked
vertex. If so, we are done. If not, we have projected the initial state onto the
state |U〉 from Prop. 2:

|U〉 :=
1√

1− pM

∑
x/∈M

√
πx|x〉. (20)

Now, we fix some value of s ∈ [0, 1] and map |U〉 to |vn(s)〉 using a quantum
walk based on P (s), and then measure |vn(s)〉 in the standard basis to get a
marked vertex. For this to work with a good probability of success, we have
to choose the interpolation parameter s so that |vn(s)〉 has a large overlap
with both |U〉 and |M〉 (see Fig. 3). In that context, the following proposition,
proved in Appendix A.2.2, will be useful.
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θ(s)
|U〉

|M〉

|vn(s)〉

cos θ(s) ≥ √ε1

sin θ(s) ≥ √ε1

Fig. 3 Vectors |U〉, |M〉, and |vn(s)〉 = cos θ(s)|U〉 + sin θ(s)|M〉. We want to choose s so
that 〈U |vn(s)〉 = cos θ(s) ≥ √ε1 and 〈M |vn(s)〉 = sin θ(s) ≥ √ε1.

Proposition 4 |vn(s)〉 = cos θ(s)|U〉+ sin θ(s)|M〉 where

cos θ(s) =

√
(1− s)(1− pM )

1− s(1− pM )
, sin θ(s) =

√
pM

1− s(1− pM )
. (21)

Therefore, for |vn(s)〉 to have a large overlap on both |U〉 and |M〉, we will
demand that cos θ(s) sin θ(s) ≥ ε1 for some parameter ε1. A second parameter
ε2 controls the precision of phase estimation.

Theorem 6 Assume that the values of pM and HT+(P ,M ) are known, and
let s ∈ [0, 1), T ≥ 1, and 1

2 ≥ ε1 ≥ ε2 ≥ 0 be some parameters. If

cos θ(s) sin θ(s) ≥ ε1 and T ≥ π√
2ε2

√
HT(s) (22)

where cos θ(s) and sin θ(s) are defined in Eq. (21) and HT(s) is the interpolated
hitting time (see Definition 9), then Search(P,M, s, dlog T e) (defined below in
the proof) solves Find(G) with success probability at least

pM + (1− pM )(ε1 − ε2)2 (23)

and complexity of order S + T · (U + C).

The proof of this theorem relies on the following result, originally due to
Szegedy [10], which provides the spectral decomposition of the quantum walk
operator W (s) in terms of that of the discriminant matrix D(s). Recall from
Definition 7 that D(s) =

∑n
k=1 λk(s)|vk(s)〉〈vk(s)| is the spectral decomposi-

tion of D(s), and define phases ϕk(s) ∈ [0, π] such that

λk(s) = cosϕk(s). (24)

Then the walk space of W (s) has the following eigenvalues and eigenvectors:

e±iϕk(s), |Ψ±k (s)〉 :=
|vk(s), 0̄〉 ± i|vk(s), 0̄〉⊥√

2
(k = 1, . . . , n− 1), (25)

1, |Ψn(s)〉 := |vn(s), 0̄〉, (26)
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where the precise definition of vectors |vk(s), 0̄〉⊥ is not important (see Ap-
pendix B.1 for precise definitions and Lemma 2 for a precise statement and a
full proof). We can now prove Theorem 6.

Proof (of Theorem 6) Let t = dlog T e be the precision in the eigenvalue
estimation. Our algorithm uses two registers: R1 and R2 with underlying state
space H each. Occasionally we will attach the third register R3 initialized in
|0〉 ∈ C2 to check if the current vertex is marked.

Search(P,M, s, t)

1. Use Setup(P ) to prepare the state |π〉|0̄〉.
2. Attach R3, apply Check(M) to R1R3, and measure R3.
3. If R3 = 1, measure R1 (in the vertex basis) and output the outcome.
4. Otherwise, discard R3 and:

(a) Apply Eigenvalue Estimation(W (s), t) on R1R2.
(b) Attach R3, apply Check(M) to R1R3, and measure R3.
(c) If R3 = 1, measure R1 (in the vertex basis) and output the

outcome. Otherwise, output: No marked vertex.

Notice that step 1 has complexity S, but Eigenvalue Estimation(W (s), t)
in step 4a has complexity of the order 2t · (U+C) according to Theorem 5 and
Lemma 3. Thus, the total complexity is of the order S + T · (U + C), and it
only remains to bound the success probability.

Observe that the overall success probability is of the form pM + (1− pM )q
where q is the probability to find a marked vertex in step 4. Thus, it remains
to show that q ≥ (ε1 − ε2)2.

We assume that Search(P,M, s, t) reaches step 4a, otherwise a marked
vertex is already found. At this point the state is |U〉|0̄〉. Let us expand the
first register of this state in the eigenbasis of the discriminant matrix D(s).
From now on we will omit the explicit dependence on s when there is no
ambiguity. Let

αk := 〈vk|U〉 (27)

and observe from Eq. (25) that |vk〉|0̄〉 = 1√
2
(|Ψ+

k 〉+ |Ψ−k 〉). Then

|U〉|0̄〉 = αn|vn〉|0̄〉+
n−1∑
k=1

αk|vk〉|0̄〉 = αn|Ψn〉+
1√
2

n−1∑
k=1

αk
(
|Ψ+
k 〉+ |Ψ

−
k 〉
)
. (28)

According to Eqs. (26) and (25), the eigenvalues corresponding to |Ψn〉 and
|Ψ±k 〉 are 1 and e±iϕk , respectively. From Eq. (18) we see that Eigenvalue
Estimation(W (s), t) in step 4a acts as follows:

|Ψn〉 7→ |Ψn〉|0t〉, (29)

|Ψ±k 〉 7→ |Ψ
±
k 〉|ξ

±
k 〉, (30)
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where |ξ±k 〉 is a t-qubit state that satisfies

〈0t|ξ±k 〉 =
1

2t

2t−1∑
l=0

e±iϕkl =: δ±k . (31)

Thus, the state after eigenvalue estimation lies in H⊗H⊗C2t and is equal to

|Φ〉 := αn|Ψn〉|0t〉+
1√
2

n−1∑
k=1

αk
(
|Ψ+
k 〉|ξ

+
k 〉+ |Ψ−k 〉|ξ

−
k 〉
)
. (32)

Recall that q denotes the probability to obtain a marked vertex by mea-
suring the first register of |Φ〉 in step 4c. To lower bound q, we require that
the last register of |Φ〉 is in the state |0t〉 (i.e., the phase is estimated to be 0).
Then

√
q = ‖(ΠM ⊗ I ⊗ I)|Φ〉‖ (33)

≥ ‖(ΠM ⊗ I ⊗ |0t〉〈0t|)|Φ〉‖ (34)

≥ ‖αn(ΠM ⊗ I)|Ψn〉‖ −
1√
2

∥∥∥(ΠM ⊗ I)

n−1∑
k=1

αk
(
δ+k |Ψ

+
k 〉+ δ−k |Ψ

−
k 〉
)∥∥∥ (35)

≥ ‖αn(ΠM ⊗ I)|Ψn〉‖ −
1√
2

∥∥∥n−1∑
k=1

αk
(
δ+k |Ψ

+
k 〉+ δ−k |Ψ

−
k 〉
)∥∥∥. (36)

From Eq. (26) and Prop. 4 we know that |Ψn〉 = |vn〉|0̄〉 = (cos θ|U〉 +
sin θ|M〉)|0̄〉. Hence, we find that

αn = 〈vn|U〉 = cos θ (37)

and ‖(ΠM ⊗ I)|Ψn〉‖ = sin θ. Moreover, from Eq. (25) we know that vectors
|Ψ±1 〉, . . . , |Ψ

±
k 〉 are mutually orthogonal. We use this to simplify Eq. (36):

√
q ≥ cos θ sin θ −

√√√√n−1∑
k=1

|αk|2δ2k (38)

where δk := |δ+k | = |δ−k | (note from Eq. (31) that δ+k and δ−k are complex
conjugates). Now we will bound the second term in Eq. (38).

Let us compute the sum of the geometric series in Eq. (31):

δ2k =

∣∣∣∣∣∣ 1

2t

2t−1∑
l=0

eiϕkl

∣∣∣∣∣∣
2

=
1

22t

∣∣∣∣∣1− eiϕk2
t

1− eiϕk

∣∣∣∣∣
2

=
1

22t

∣∣∣∣∣e−i
ϕk
2 2t − ei

ϕk
2 2t

e−i
ϕk
2 − ei

ϕk
2

∣∣∣∣∣
2

. (39)

The imaginary parts cancel out and we get

δ2k =
sin2(ϕk2 2t)

22t sin2(ϕk2 )
. (40)
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We can upper bound the numerator in this expression by one. To bound the
denominator, we use sin x

2 ≥
x
π for x ∈ [0, π]. Hence, we get

δ2k ≤
π2

22tϕ2
k

≤ π2

T 2ϕ2
k

(41)

since we chose t = dlog T e.
The interpolated hitting time is given by Definition 9:

HT(s) =

n−1∑
k=1

|〈vk(s)|U〉|2

1− λk(s)
. (42)

If we substitute 〈vk(s)|U〉 = αk(s) and λk(s) = cosϕk(s) from Eqs. (31)
and (24), and omit the dependence on s, we get

HT(s) =

n−1∑
k=1

|αk|2

1− cosϕk
=

n−1∑
k=1

|αk|2

2 sin2(ϕk2 )
≥ 2

n−1∑
k=1

|αk|2

ϕ2
k

(43)

since x ≥ sinx for x ∈ [0, π].
By combining Eqs. (41) and (43) we get

n−1∑
k=1

|αk|2δ2k ≤
n−1∑
k=1

|αk|2
π2

T 2ϕ2
k

=
π2

T 2

n−1∑
k=1

|αk|2

ϕ2
k

≤ π2

2

HT(s)

T 2
. (44)

Thus, Eq. (38) becomes

√
q ≥ cos θ(s) sin θ(s)− π√

2

√
HT(s)

T
≥ ε1 − ε2, (45)

where the last inequality follows from our assumptions. Thus q ≥ (ε1 − ε2)2,
which was required to complete the proof. ut

3.2 Algorithms with approximately known pM

In this section we show that a good approximation p∗ of pM suffices to guar-
antee that the constraint cos θ(s) sin θ(s) ≥ ε1 in Theorem 6 is satisfied. Our
strategy is to make a specific choice of the interpolation parameter s, based
on p∗.

Intuitively, we want to choose s so that cos θ(s) sin θ(s) is large (recall
Fig. 3), since this will increase the success probability according to Eq. (45),
and make it easier to satisfy the constraint on ε1 in Theorem 6. The maximal
value of cos θ(s) sin θ(s) is achieved when sin θ(s) = cos θ(s) = 1/

√
2, and from

Eq. (21) we get that the optimal value of s as a function of pM is

s(pM ) := 1− pM
1− pM

. (46)
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Thus, when only an approximation p∗ of pM is known, we will choose the
interpolation parameter to be

s∗ := s(p∗) = 1− p∗

1− p∗
. (47)

If we substitute this in Eq. (21), we get the following expressions for cos θ(s∗)
and sin θ(s∗) in terms of pM and p∗:

cos θ(s∗) =

√
(1− pM )p∗

pM + p∗ − 2pMp∗
, sin θ(s∗) =

√
pM (1− p∗)

pM + p∗ − 2pMp∗
. (48)

Since we want s∗ ≥ 0, we have to always make sure that p∗ ≤ 1/2. In fact,
from now we will also assume that pM ≤ 1/2. This is without loss of generality,
since one can always prepare the initial state |π〉 at cost S and measure it in
the standard basis. If pM ≥ 1/2, this yields a marked vertex with probability
at least 1/2.

Proposition 5 If pM , ε1 ∈ [0, 12 ] and p∗ satisfy

2ε1pM ≤ p∗ ≤ 2(1− ε1)pM , (49)

then cos θ(s∗) sin θ(s∗) ≥ ε1 where s∗ := 1− p∗

1−p∗ .

Proof To get the desired result, we will show that the two inequalities in
Eq. (49) imply that cos2 θ(s∗) ≥ ε1 and sin2 θ(s∗) ≥ ε1, respectively.

From Eq. (48), we have sin2 θ(s∗) ≥ ε1 if and only if

p∗ ≤ (1− ε1)pM
ε1 + pM − 2ε1pM

. (50)

Since pM , ε1 ≤ 1/2, the denominator is upper bounded as

ε1 + (1− 2ε1)pM ≤ ε1 +
1− 2ε1

2
=

1

2
. (51)

Therefore, p∗ ≤ 2(1 − ε1)pM implies Eq. (50), which in turn is equivalent to
sin2 θ(s∗) ≥ ε1.

Similarly from Eq. (48) we have cos2 θ(s∗) ≥ ε1 if and only if

p∗ ≥ ε1pM
1− ε1 − pM + 2ε1pM

, (52)

where the denominator is lower bounded as

1− ε1 − (1− 2ε1)pM ≥ 1− ε1 −
1− 2ε1

2
=

1

2
. (53)

Therefore, p∗ ≥ 2ε1pM implies Eq. (52), which in turn is equivalent to the
second desired inequality, namely cos2 θ(s∗) ≥ ε1. ut
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3.2.1 Known HT+(P ,M )

Now we will use Prop. 5 to show how an approximation p∗ of pM can be used
to make a specific choice of the parameters ε1, ε2, s, and T in Theorem 6, so
that our quantum search algorithm succeeds with constant probability.

To be more specific, we assume that we have an approximation p∗ of pM
such that

|p∗ − pM | ≤
1

3
pM , (54)

where the constant 1/3 is an arbitrary choice. Notice that

1

3
pM ≥ p∗ − pM ⇐⇒ 4

3
pM ≥ p∗, (55)

1

3
pM ≥ pM − p∗ ⇐⇒ p∗ ≥ 2

3
pM , (56)

so Eq. (54) is equivalent to

2

3
pM ≤ p∗ ≤

4

3
pM . (57)

If we are given such p∗ and we choose s∗ according to Eq. (47), then our
algorithm succeeds with constant probability if T is sufficiently large.

Theorem 7 Assume that we know the value of HT+(P ,M ) and an approxi-

mation p∗ of pM such that |p∗ − pM | ≤ pM/3. If T ≥ 14
√

HT+(P ,M ) then

Search(P,M, s∗, dlog T e) solves Find(G) with probability at least 1/36 and
complexity of order S + T · (U + C).

Proof We are given p∗ that satisfies Eq. (57). This is equivalent to Eq. (49)
if we choose ε1 := 1/3. Without loss of generality pM ≤ 1/2, so from Prop. 5
we get that cos θ(s∗) sin θ(s∗) ≥ ε1. Thus, the first condition in Eq. (22) of
Theorem 6 is satisfied.

Next, we choose ε2 := 1/6 somewhat arbitrarily. According to Theorem 4,
HT(s∗) ≤ HT+(P ,M ). Thus

π√
2

1

ε2

√
HT(s∗) ≤ π 3

√
2

√
HT+(P ,M ) ≤ 14

√
HT+(P ,M ) ≤ T, (58)

so the second condition in Eq. (22) is also satisfied.
Hence, according to Theorem 6, Search(P,M, s∗, dlog T e) solves Find(G)

with success probability at least

pM + (1− pM )(ε1 − ε2)2 ≥ (ε1 − ε2)2 =

(
1

3
− 1

6

)2

=
1

36
(59)

and complexity of order S + T · (U + C). ut



Quantum walks can find a marked element on any graph? 23

3.2.2 Unknown HT+(P ,M )

Recall from Theorem 7 in previous section that a marked vertex can be found
if p∗, an approximation of pM , and HT+(P ,M ) are known. In this section
we show that a marked vertex can still be found (with essentially the same
expected complexity), even if the requirement that HT+(P ,M ) be known is
relaxed.

Theorem 8 Assume that we are given p∗ such that |p∗ − pM | ≤ pM/3, then
Incremental Search(P,M, s∗, 50) solves Find(G) with expected quantum
complexity of order

log(T ) · S + T · (U + C), where T =

√
HT+(P ,M ). (60)

Proof The idea is to repeatedly use Search(P,M, s∗, t) with increasing accu-
racy of the eigenvalue estimation. We start with t = 1 and in every iteration
increase it by one. Once t is above some threshold t0, any subsequent iteration
outputs a marked element with probability that is at least a certain constant.
To boost the success probability of the Search(P,M, s∗, t) subroutine, for each
value of t we call it k = 50 times.

Incremental Search(P,M, s∗, k)

1. Let t = 1.
2. Call k times Search(P,M, s∗, t).
3. If no marked vertex is found, set t← t+ 1 and go back to

step 2.

Let t0 be the smallest integer that satisfies

14

√
HT+(P ,M ) ≤ 2t0 . (61)

Assume that variable t has reached value t ≥ t0, but the execution of In-
cremental Search(P,M, s∗, 50) has not terminated yet. By Theorem 7, each
execution of Search(P,M, s∗, t) outputs a marked vertex with probability at
least 1/36. Let pfail be the probability that none of the k = 50 executions in
step 2 succeeds. Notice that

pfail ≤ (1− 1/36)50 ≤ 1/4. (62)

Let us assume that Incremental Search(P,M, s∗, 50) terminates with the
final value of t equal to tf . Recall from Theorem 6 that Search(P,M, s∗, t) has
complexity of order S+2t ·(U+C), so the expected complexity of Incremental
Search(P,M, s∗, 50) is of order

N1 · S +N2 · (U + C), (63)

where N1 is the expectation of tf , and N2 is the expectation of 2+4+ · · ·+2tf .
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To upper bound N1, we assume that the first t0 − 1 iterations fail. Since
each of the remaining iterations fails with probability at most pfail, we get

N1 ≤ (t0 − 1) +

∞∑
t=t0

p
1+(t−t0)
fail (64)

= (t0 − 1) +
pfail

1− pfail
(65)

≤ (t0 − 1) +
1/4

3/4
(66)

≤ t0. (67)

We use the same strategy to upper bound N2:

N2 ≤
t0−1∑
t=1

2t +

∞∑
t=t0

p
1+(t−t0)
fail 2t (68)

= (2t0 − 2) + pfail ·
∞∑
t=0

ptfail2
t+t0 (69)

≤ (2t0 − 2) +
1

4
·
∞∑
t=0

(1

4
· 2
)t
· 2t0 (70)

= (2t0 − 2) +
1

4
· 2 · 2t0 (71)

≤ 2 · 2t0 . (72)

We plug the bounds on N1 and N2 in Eq. (63) and get that the expected
complexity is of order t0 · S + 2t0+1 · (U + C). Since t0 satisfies Eq. (61), this
concludes the proof. ut

3.3 Algorithms with a given bound on pM or HT+(P ,M )

In previous section, we considered the case when we know a relative approxi-
mation of pM , i.e., a value p∗ such that |p∗ − pM | ≤ pM/3. In this section, we
consider the case when we are given an absolute lower bound pmin such that
pmin ≤ pM , or an absolute upper bound HTmax ≥ HT+(P ,M ), or both. In
particular, for problem Find(G)(≥k) we can set pmin := minM ′:|M ′|=k pM ′ and

HTmax := maxM ′:|M ′|≥k HT+(P,M ′).

3.3.1 Assuming a bound on pM

Theorem 9 Given pmin such that pmin ≤ pM , Find(G) can be solved with
expected quantum complexity of order√

log(1/pmin) ·
[
log(T ) · S + T · (U + C)

]
, where T =

√
HT+(P ,M ). (73)
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Moreover, given HTmax such that HTmax ≥ HT+(P ,M ), we can solve Find(G)
with quantum complexity of order√

log(1/pmin) ·
[
S + T · (U + C)

]
, where T =

√
HTmax. (74)

Proof We prove only the first part; the second part is similar except one has
to use Search(P,M, s∗, T ) instead of Incremental Search(P,M, s∗, 50).

To apply Theorem 8, it is enough to obtain an approximation p∗ of pM
such that |p∗ − pM | ≤ pM/3. Recall from Eq. (57) that this is equivalent to
finding p∗ such that

2

3
pM ≤ p∗ ≤

4

3
pM . (75)

Let l be the largest integer such that pM ≤ 2−l. Then

1

2
· 2−l ≤ pM ≤ 2−l (76)

and hence
2

3
pM ≤

2

3
· 2−l =

4

3
·
(

1

2
· 2−l

)
≤ 4

3
pM . (77)

We can make sure that Eq. (75) is satisfied by choosing p∗ := 2
3 ·2
−l. Unfortu-

nately, we do not know the value of l. However, we know that pmin ≤ pM and
without loss of generality we can assume that pM ≤ 1/2. Thus, it only suffices
to check all values of l from 1 to blog(1/pmin)c.

To find a marked vertex, we replace step 2 in the Incremental Search
algorithm by a loop over the blog(1/pmin)c possible values of p∗:

For l = 1 to blog(1/pmin)c do:

– Let p∗ := 2
3 · 2

−l.
– Call k times Search(P,M, s(p∗), t).

Recall from Theorem 6 that the complexity of Search(P,M, s∗, t) depends
only on t. Hence, the analysis of the modified algorithm is the same, except
that now the complexity of step 2 is multiplied by a factor of order log(1/pmin).
In fact, this is the only non-trivial step of the Incremental Search algorithm,
so the overall complexity increases by this multiplicative factor. Finally, note
that instead of trying all possible values of p∗, we can search for the right value
using Grover’s algorithm, following the approach of [27], therefore reducing the
multiplicative factor to

√
log(1/pmin). ut

3.3.2 Assuming a bound on HT+(P ,M )

Theorem 10 Given HTmax such that HTmax ≥ HT+(P ,M ), Find(G) can
be solved with expected quantum complexity of order

log(1/pM ) ·
[
S + T · (U + C)

]
, where T =

√
HTmax. (78)
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The proof of this theorem relies on the following procedure, which tests a
candidate value p∗ for pM and, in case it fails, concludes that this candidate
value was either too high or too low.

Test(P,M, p∗, t)

1. Call 300 times Search(P,M, s(p∗), t);
if a marked vertex is found, output it and stop.

2. Measure the last register of all 300 output states pro-
duced by Eigenvalue Estimation(W (s(p∗)), t) within
the Search subroutine above;
if a minority of 0ts is found, then output “p∗ ≤ 2pM/3”,
else output “p∗ ≥ 4pM/3”.

The above procedure will be used to “query” the value of pM . However,
rather than finding the precise value of pM , we only care about establish-
ing that 2pM/3 ≤ p∗ ≤ 4pM/3. Whenever p∗ is in this range, the first step of
Test(P,M, s(p∗), t) will succeed with probability at least 99/100 for appropri-
ately chosen value of t. If it fails, then with high probability it is because p∗ is
not within 2pM/3 and 4pM/3. One can decide which of the two cases it is by
measuring the last register of the output state of Search(P,M, s(p∗), t), which
stores the value of the phase computed by the phase estimation subroutine.
Indeed, if it turns out that p∗ ≥ 4pM/3, then this register will be in the state
|0t〉 with high probability. On the other hand, if p∗ ≤ 2pM/3, then it will be
in the state |0t〉 with low probability.

Proposition 6 For t :=
⌈
log(14

√
HTmax)

⌉
, the procedure Test(P,M, p∗, t)

runs in time of order S+
√

HTmax · (U+C) and produces the following output:

– If 2pM/3 ≤ p∗ ≤ 4pM/3, then with probability at least 99/100 the output
is a marked element.

– If p∗ ≤ 2pM/3, then with probability at least 2/3 the output is either a
marked element or “p∗ ≤ 2pM/3”.

– If p∗ ≥ 4pM/3, then with probability at least 2/3 the output is either a
marked element or “p∗ ≥ 4pM/3”.

Proof From Theorem 7, the procedure Search(P,M, s(p∗), t) has a cost of
order S+

√
HTmax · (U+C), hence repeating it 300 times yields an overall cost

of the same order.
When 2pM/3 ≤ p∗ ≤ 4pM/3, Theorem 7 also implies that the procedure

Search(P,M, s(p∗), t) outputs a marked element with probability at least
1/36. Since this is repeated 300 times, we conclude that the test procedure
outputs a marked element with probability at least 1−(1−1/36)300 ≥ 99/100.

For the two other cases, let us first recall the main steps of the proce-
dure Search(P,M, s(p∗), t). We prepare the initial state |π〉, and then check
wether the vertex register is marked. This either yields a marked vertex with
probability pM , or projects onto the state |U〉. We then apply Eigenvalue
Estimation(W (s(p∗)), t) on this state, which prepares the state |Φ〉 given by
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Eq. (32). We finally check whether the first register of this output state is
marked, which happens with probability

p1 :=
∥∥(ΠM ⊗ I ⊗ I

)
|Φ〉
∥∥2. (79)

Overall, the probability to obtain a marked vertex from one execution of
Search(P,M, s(p∗), t) is then given by

p′1 := pM + (1− pM ) · p1 ≥ p1 (80)

Let us note that p1 depends on p∗. We first consider the case where
p1 > 0.004. In that case, the 300 repetitions of Search(P,M, s(p∗), t) in the
procedure Test(P,M, p∗, t) will output at least one marked vertex with prob-
ability

1− (1− p′1)300 ≥ 1− (1− p1)300 ≥ 2/3, (81)

which is sufficient for the last two cases of the proposition.
It then remains to analyze the case where p1 ≤ 0.004. We show that if

none of the 300 repetitions of Search(P,M, s(p∗), t) find a marked vertex,
measuring the last register of the output states yields with probability at least
2/3 either a minority of 0t’s (when p∗ ≤ 2pM/3) or a majority of 0t’s (when
p∗ ≥ 4pM/3).

When the procedure Search(P,M, s(p∗), t) does not find a marked vertex,
its output state is (

(I −ΠM )⊗ I ⊗ I
)
|Φ〉

√
1− p1

. (82)

Therefore, the probability that the last register of this state is found in state
0t is

q1 :=

∥∥((I −ΠM )⊗ I ⊗ |0t〉〈0t|
)
|Φ〉
∥∥2

1− p1
. (83)

Defining

q′1 :=
∥∥(I ⊗ I ⊗ |0t〉〈0t|)|Φ〉∥∥2, (84)

we can bound the numerator in Eq. (83) as

q′1 − p1 ≤
∥∥((I −ΠM )⊗ I ⊗ |0t〉〈0t|

)
|Φ〉
∥∥2 ≤ q′1 (85)

and in turn q1 itself as

q′1 − p1 ≤ q1 ≤
q′1

1− p1
. (86)

Recall that we have assumed that p1 ≤ 0.004. It remains to compute q′1. From
Eq. (32), we have

q′1 =
∥∥(I ⊗ I ⊗ |0t〉〈0t|)|Φ〉

∥∥2 (87)

=

∥∥∥∥αn|Ψn〉+
1√
2

n−1∑
k=1

αk
(
δ+k |Ψ

+
k 〉+ δ−k |Ψ

−
k 〉
)∥∥∥∥2 (88)

= α2
n +

n−1∑
k=1

|αk|2δ2k. (89)
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Recall from Eq. (37) that αn = 〈vn(s∗)|U〉 = cos θ(s∗). Using Eq. (44) and
our choice of t = dlog T e where T := 14

√
HTmax, we can bound the remaining

terms in Eq. (89) as follows:

n−1∑
k=1

|αk|2δ2k ≤
π2

2

HT(s∗)

T 2
≤ π2

2

HT(s∗)

(14
√

HTmax)2
≤ π2

2 · 142
≤ 1

36
, (90)

where we relied on HTmax ≥ HT+(P ,M ) ≥ HT(s∗) (see Theorem 4). This
and Eq. (89) gives the following bounds on q′1:

cos2 θ(s∗) ≤ q′1 ≤ cos2 θ(s∗) +
1

36
. (91)

Recall from Eq. (48) that

cos2 θ(s∗) =
1− pM

pM
p∗ + 1− 2pM

. (92)

Let us now consider the case p∗ ≤ 2pM/3. Plugging pM
p∗ ≥

3
2 into the last

equation, we find the bound

cos2 θ(s∗) ≤ 1− pM
5
2 − 2pM

≤ 2

5
. (93)

Combining this bound with Eqs. (91) and (86), we obtain that the probability
of observing the last register of the output state of an unsuccessful application
of Search(P,M, s(p∗), t) in the state 0t is bounded as

q1 ≤
cos2 θ(s∗) + 1

36

1− p1
≤

2
5 + 1

36

1− 0.004
≤ 0.4295. (94)

It remains to bound the probability to obtain a minority of 0t’s for 300 repe-
titions of this measurement.

According to the Chernoff bound, if an experiment produces a desirable
outcome with probability at least q > 1/2, then for k independent repetitions
of the experiment a majority of outcomes are desirable with probability at

least 1 − e−
k
2q (q−

1
2 )

2

. In this case, the desirable outcome is to not obtain 0t,
hence we have q := 1 − q1 ≥ 0.570, and for k = 300, the expression is indeed
larger than 2/3.

For the final case p∗ ≥ 4pM/3, we obtain from Eq. (92) that

cos2 θ(s∗) ≥ 1− pM
7
4 − 2pM

≥ 4

7
(95)

(recall that we can always assume pM ≤ 1/2 as explained in the beginning of
Sect. 3.2). Together with Eqs. (91) and (86), we obtain the bound

q1 ≥ cos2 θ(s∗)− p1 ≥
4

7
− 0.004 ≥ 0.567. (96)

In this case the desirable outcome for the Chernoff bound is precisely 0t, which
happens with probability q := q1, so after 300 repetitions we obtain a majority
of 0t’s with probability at least 2/3. ut
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We are now ready to prove Theorem 10.

Proof (of Theorem 10) The general idea is to use Search(P,M, s(p∗), t) with
t :=

⌈
log(14

√
HTmax)

⌉
and perform a dichotomic search for an appropriately

chosen value of p∗, using the procedure Test(P,M, p∗, t). This dichotomic
search uses backtracking, since the branching in the dichotomy is with bounded
error, similar to the situation in [28].

Let us first describe the robust binary search of [28]. Let x 6= 0n be an
n-bit string of 0’s followed by some 1’s. An algorithm can only access x by
querying its bits as follows: the answer to a query i ∈ {1, . . . , n} is a random
and independent bit which takes value xi with probability at least 2/3.

When there is no error, finding the largest i such that xi = 0 can be done
using the usual binary search. Start with a = 1 and b = n. At each step, query
xi with i = d(a + b)/2e. Then set a = i if xi = 0, and b = i otherwise. The
procedure stops when a+ 1 = b, which happens after Θ(log n) steps.

In our error model, the above algorithm can be made robust by adding a
sanity check. Before querying xi, bits xa and xb are also queried. If one of the
two answers is inconsistent (i.e., xa = 1 or xb = 0), the algorithm backtracks
to the previous values of a and b. It is proven in [28] that this procedure
converges with expected time Θ(log n) and outputs a correct value with high
probability, say at least 2/3.

For our problem, we conduct a search similar to the one in [28], starting
with a = 0 and b = 1. The only difference is that the search stops when a
marked element is found. At each step, we check the consistency of a and b
by running Test(P,M, a, t) and Test(P,M, b, t). If there is a contradiction,
we backtrack to the previous values of a and b. Otherwise we conduct the
dichotomy search by running Test(P,M, p∗, t) with p∗ = (a + b)/2 (in order
to set either a = p∗ or b = p∗). The search stops when a marked element is
found.

Our procedure behaves similar to the one in [28]. Indeed, it follows from
Prop. 6 that our algorithm converges even faster since it stops with prob-
ability at least 99/100 when p∗ ∈ [2pM/3, 4pM/3]. Therefore it ends after
O(log(1/pM )) expected iterations of Test. Taking into account the cost of
Test(P,M, p∗, t), we see that the total number of steps is as stated in the
theorem. ut
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A Semi-absorbing Markov chains

In this appendix we study a special type of Markov chains described by a one-parameter
family P (s) corresponding to convex combinations of P and the associated absorbing chain
P ′. Intuitively, some states of P (s) are hard to escape and the interpolation parameter s
controls how absorbing they are. For this reason we call such chains semi-absorbing. In this
appendix we consider various properties of semi-absorbing Markov chains as a function of
the interpolation parameter s. The main result of this appendix is Theorem 4 which is of
central importance in Sect. 3.

We discussed some preliminaries on Markov chains and defined basic concepts such
as ergodicity in Sect. 2.1. Here we begin by defining the interpolated Markov chain P (s)
and considering its properties, such as the stationary distribution and reversibility (Ap-
pendix A.1). We proceed by applying these concepts to define and study the discriminant
matrix of P (s) which encodes all relevant properties of P (s), such as eigenvalues and the
principal eigenvector, but has a much more convenient form (Appendix A.2). Finally, we
define the hitting time HT and the interpolated hitting time HT(s) and relate the two in
the case of a single marked element via Theorem 4, which is our main result regarding
semi-absorbing Markov chains (Appendix A.3).

Results from this appendix are used in Sect. 3 to construct quantum search algorithms
based on discrete-time quantum walks.

A.1 Basic properties of semi-absorbing Markov chains

Assume that a subset M ⊂ X of size m := |M | of the states are marked (we assume that M
is not empty). (see [21, Chapter III] and [20, Sect. 11.2]). Note that P ′ differs from P only
in the rows corresponding to the marked states (where it contains all zeros on non-diagonal
elements, and ones on the diagonal). If we arrange the states of X so that the unmarked
states U := X \M come first, matrices P and P ′ have the following block structure:

P :=

(
PUU PUM
PMU PMM

)
, P ′ :=

(
PUU PUM

0 I

)
, (97)

where PUU and PMM are square matrices of size (n−m)×(n−m) and m×m, respectively,
while PUM and PMU are matrices of size (n−m)×m and m× (n−m), respectively.

U

M

U

M

Fig. 4 Directed graphs underlying Markov chain P (left) and the corresponding absorbing
chain P ′ (right). Outgoing arcs from vertices in the marked set M have been turned into
self-loops in P ′.

Recall that we have defined an interpolated Markov chain that interpolates between P
and P ′:

P (s) := (1− s)P + sP ′, 0 ≤ s ≤ 1. (98)
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This expression has some resemblance with adiabatic quantum computation where similar
interpolations are usually defined for quantum Hamiltonians [29]. Indeed, the interpolated
Markov chain P (s) was used in [19] to construct an adiabatic quantum search algorithm.
Note that P (0) = P , P (1) = P ′, and P (s) has the following block structure:

P (s) =

(
PUU PUM

(1− s)PMU (1− s)PMM + sI

)
. (99)

Proposition 7 If P is ergodic then so is P (s) for s ∈ [0, 1). P (1) is not ergodic.

Proof Recall from Definition 1 that ergodicity of a Markov chain can be established just
by looking at its underlying graph. A non-zero transition probability in P remains non-zero
also in P (s) for s ∈ [0, 1). Thus the ergodicity of P implies that P (s) is also ergodic for
s ∈ [0, 1). However, P (1) is not irreducible, since states in U are not reachable from M .
Thus P (1) is not ergodic. ut

Proposition 8 (P ′ t)UU = P tUU .

Proof Let us derive an expression for P ′ t, the matrix of transition probabilities correspond-
ing to t applications of P ′. Notice that

(
a b
0 1

)(
c d
0 1

)
=
(
ac ad+b
0 1

)
. By induction,

P ′ t =

(
P tUU

∑t−1
k=0 P

k
UUPUM

0 I

)
. (100)

When restricted to U , it acts as P tUU . ut

Proposition 9 ([20, Theorem 11.3, p. 417]) If P is irreducible then limk→∞ PkUU = 0.

Intuitively this means that the sub-stochastic process defined by PUU eventually dies
out or, equivalently, that the unmarked states of P ′ eventually get absorbed (by Prop. 8).

Proof Let us fix an unmarked initial state x. Since P is irreducible, we can reach a marked
state from x in a finite number of steps. Note that this also holds true for P ′. Let us denote
the smallest number of steps by lx and the corresponding probability by px > 0. Thus in
l := maxx lx steps of P ′ we are guaranteed to reach a marked state with probability at least
p := minx px > 0, independently of the initial state x ∈ U . Notice that the probability to
still be in an unmarked state after kl steps is at most (1− p)k which approaches zero as we
increase k. ut

Proposition 10 ([21, Theorem 3.2.1, p. 46]) If P is irreducible then I − PUU is in-
vertible.

Proof Notice that

(I − PUU ) · (I + PUU + P 2
UU + · · ·+ Pk−1

UU ) = I − PkUU (101)

and take the determinant of both sides. From Prop. 9 we see that limk→∞ det(I−PkUU ) = 1.

By continuity, there exists k0 such that det(I − Pk0UU ) > 0, so the determinant of the left-
hand side is non-zero as well. Using multiplicativity of the determinant, we conclude that
det(I − PUU ) 6= 0 and thus I − PUU is invertible. ut

In the Markov chain literature (I − PUU )−1 is called the fundamental matrix of P .
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A.1.1 Stationary distribution

From now on let us demand that P is ergodic. Then according to the Perron–Frobenius
Theorem it has a unique stationary distribution π that is non-zero everywhere. Let πU and
πM be row vectors of length n−m and m that are obtained by restricting π to sets U and
M , respectively. Then

π =
(
πU πM

)
, π′ :=

(
0U πM

)
(102)

where 0U is the all-zeroes row vector indexed by elements of U and π′ satisfies π′P ′ = π′.
Let pM :=

∑
x∈M πx be the probability to pick a marked element from the stationary

distribution. In analogy to the definition of P (s) in Eq. (98), let π(s) be a convex combination
of π and π′, appropriately normalized:

π(s) :=
(1− s)π + sπ′

(1− s) + spM
=

1

1− s(1− pM )

(
(1− s)πU πM

)
. (103)

Proposition 11 π(s) is the unique stationary distribution of P (s) for s ∈ [0, 1). At s = 1
any distribution with support only on marked states is stationary, including π(1).

Proof Notice that

(π − π′)(P − P ′) =
(
πU 0

)( 0 0
PMU PMM − I

)
= 0 (104)

which is equivalent to

πP ′ + π′P = πP + π′P ′. (105)

Using this equation we can check that π(s)P (s) = π(s) for any s ∈ [0, 1]:(
(1− s)π + sπ′

)(
(1− s)P + sP ′

)
(106)

= (1− s)2πP + (1− s)s(πP ′ + π′P ) + s2π′P ′ (107)

= (1− s)2π + (1− s)s(π + π′) + s2π′ (108)

=
(
(1− s)π + sπ′

)(
(1− s) + s

)
(109)

= (1− s)π + sπ′. (110)

Recall from Prop. 7 that P (s) is ergodic for s ∈ [0, 1) so π(s) is the unique stationary
distribution by Perron–Frobenius Theorem. Since P ′ acts trivially on marked states, any
distribution with support only on marked states is stationary for P (1). ut

A.1.2 Reversibility

Definition 10 Markov chain P is called reversible if it is ergodic and satisfies the so-called
detailed balance condition

∀x, y ∈ X : πxPxy = πyPyx (111)

where π is the unique stationary distribution of P .

Intuitively this means that the net flow of probability in the stationary distribution
between every pair of states is zero. Note that Eq. (111) is equivalent to

diag(π)P = PT diag(π) =
(
diag(π)P

)T
(112)

where diag(π) is a diagonal matrix whose diagonal is given by vector π. Thus Eq. (111) is
equivalent to saying that matrix diag(π)P is symmetric.
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Proposition 12 If P is reversible then so is P (s) for any s ∈ [0, 1]. Hence, P (s) satisfies
the interpolated detailed balance equation

∀s ∈ [0, 1], ∀x, y ∈ X : πx(s)Pxy(s) = πy(s)Pyx(s). (113)

Proof First, notice that the absorbing walk P ′ is reversible7 since diag(π′)P ′ is a symmetric
matrix:

diag(π′)P ′ =

(
0 0
0 diag(πM )

)(
PUU PUM

0 I

)
=

(
0 0
0 diag(πM )

)
= diag(π′). (114)

Next, notice that

diag(π − π′)(P − P ′) =

(
diag(πU ) 0

0 0

)(
0 0

PMU PMM − I

)
= 0 (115)

which gives us an analogue of Eq. (105):

diag(π′)P + diag(π)P ′ = diag(π)P + diag(π′)P ′. (116)

Here the right-hand side is symmetric due to reversibility of P and P ′, thus so is the left-hand
side. Using this we can check that P (s) is reversible:

diag
(
(1− s)π + sπ′

)(
(1− s)P + sP ′

)
(117)

= (1− s)2 diag(π)P + (1− s)s
(
diag(π)P ′ + diag(π′)P

)
+ s2 diag(π′)P ′ (118)

where the first and last terms are symmetric since P and P ′ are reversible, but the middle
term is symmetric due to Eq. (116). ut

A.2 Discriminant matrix

Recall from Definition 6 that the discriminant matrix of a Markov chain P (s) is

D(s) :=
√
P (s) ◦ P (s)T, (119)

where the Hadamard product “◦” and the square root are computed entry-wise. This matrix
was introduced by Szegedy in [10]. We prefer to work with D(s) rather than P (s) since the
matrix of transition probabilities is not necessarily symmetric while its discriminant matrix
is.

Proposition 13 If P is reversible then

D(s) = diag
(√
π(s)

)
P (s) diag

(√
π(s)

)−1
, ∀s ∈ [0, 1); (120)

D(1) =

(
diag

(√
πU
)
PUU diag

(√
πU
)−1

0
0 I

)
. (121)

Here the square roots are also computed entry-wise and M−1 denotes the matrix inverse
of M . Notice that for s ∈ [0, 1) the right-hand side of Eq. (120) is well-defined, since P (s) is
ergodic by Prop. 7 and thus according to the Perron–Frobenius Theorem has a unique and
non-vanishing stationary distribution. However, recall from Prop. 11 that π(1) vanishes on
U , so the right-hand side of Eq. (120) is no longer well-defined at s = 1. For this reason we
have an alternative expression for D(1).

7 Strictly speaking, the definition of reversibility also includes ergodicity for the stationary
distribution to be uniquely defined. However, we will relax this requirement for P ′ since, by
continuity, π′ is the natural choice of the “unique” stationary distribution.
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Proof (of Prop. 13) For a reversible Markov chain P the interpolated detailed balance
condition in Eq. (113) implies that Dxy(s) =

√
Pxy(s)Pyx(s) = Pxy(s)

√
πx(s)/πy(s). This

is equivalent to Eq. (120).
At s = 1 from Eq. (119) we have:

D(1) =
√
P (1) ◦ P (1)T =

√(
PUU ◦ PT

UU 0
0 I

)
=

(√
PUU ◦ PT

UU 0

0 I

)
. (122)

It remains to verify that the upper left block of D(1) agrees with Eq. (121). Using Eq. (119)
we compute that

DUU (s) =
√
PUU ◦ PT

UU = DUU (0) = diag
(√
πU
)
PUU diag

(√
πU
)−1

(123)

where the last equality follows from Eq. (120) at s = 0. Together with Eq. (122) this gives
us the desired expression in Eq. (121). ut

A.2.1 Spectral decomposition

Recall from Eq. (119) that D(s) is real and symmetric. Therefore, its eigenvalues are real
and it has an orthonormal set of real eigenvectors. Let

D(s) =
n∑
i=1

λi(s)|vi(s)〉〈vi(s)| (124)

be the spectral decomposition of D(s) with eigenvalues λi(s) and eigenvectors8 |vi(s)〉.
Moreover, let us arrange the eigenvalues so that

λ1(s) ≤ λ2(s) ≤ · · · ≤ λn(s). (125)

From now on we will assume that P is reversible (and hence ergodic) without explicitly
mentioning it. Under this assumption the matrices P (s) and D(s) are similar (see Prop. 14
below). This means that D(s) essentially has the same properties as P (s), but in addition it
also admits a spectral decomposition with orthogonal eigenvectors. This will be very useful
in Appendix B.1, where we find the spectral decomposition of the quantum walk operator
W (s) in terms of that of D(s), and use it to relate properties of W (s) and P (s).

Proposition 14 Assume P is reversible. The matrices P (s) and D(s) are similar for any
s ∈ [0, 1] and therefore have the same eigenvalues. In particular, the eigenvalues of P (s)
are real.

Proof From Eq. (120) we see that the matrices D(s) and P (s) are similar for s ∈ [0, 1).
From Eq. (121) we see that D(1) is similar to P̃ :=

(
PUU 0

0 I

)
. To verify that P̃ and P (1) =(

PUU PUM
0 I

)
are similar, let M :=

(
PUU−I PUM

0 I

)
. One can check that MP (1)M−1 = P̃

where M−1 =
(
(PUU−I)−1 −(PUU−I)−1PUM

0 I

)
exists, since PUU − I is invertible according

to Prop. 10. By transitivity, D(1) is also similar to P (1). ut

Proposition 15 The largest eigenvalue of D(s) is 1. It has multiplicity 1 when s ∈ [0, 1)
and multiplicity m when s = 1. In other words,

λn−1(s) < λn(s) = 1, ∀s ∈ [0, 1), (126)

λn−m(1) < λn−m+1(1) = · · · = λn(1) = 1. (127)

8 There is no need to use bra-ket notation at this point; nevertheless we adopt it since
vectors |vi(s)〉 later will be used as quantum states.
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Proof Let us argue about P (s), since it has the same eigenvalues as D(s) by Prop. 14. From
the Perron–Frobenius Theorem we have that ∀i : λi(s) ≤ 1 and λn(s) = 1. In addition,
by Prop. 7 the Markov chain P (s) is ergodic for any s ∈ [0, 1), so ∀i 6= n : λi(s) < 1.
Finally, note by Eq. (121) that for s = 1 eigenvalue 1 has multiplicity at least m. Recall
from Eq. (123) that DUU (1) and PUU are similar. From Prop. 10 we conclude that all
eigenvalues of PUU are strictly less than 1. Thus the multiplicity of eigenvalue 1 of D(1) is
exactly m. ut

A.2.2 Principal eigenvector

Let us prove an analogue of Prop. 11 for the matrix D(s).

Proposition 16
√
π(s)T is the unique (+1)-eigenvector of D(s) for s ∈ [0, 1). At s = 1

any vector with support only on marked states is a (+1)-eigenvector, including
√
π(1)T.

Proof Since P (s) is row-stochastic, P (s)1TX = 1TX where 1X is the all-ones row vector. Thus
we can check that for s ∈ [0, 1),

D(s)
√
π(s)T = diag

(√
π(s)

)
P (s) diag

(√
π(s)

)−1
√
π(s)T (128)

= diag
(√

π(s)
)
P (s) 1TX (129)

= diag
(√

π(s)
)

1TX (130)

=
√
π(s)T. (131)

Uniqueness for s ∈ [0, 1) follows by the uniqueness of π(s) and Prop. 14. For the s = 1 case,
notice from Eq. (121) that D(1) acts trivially on marked elements and recall from Eq. (103)
that π(1) = (0U πM )/pM . ut

According to the above Proposition, for any s ∈ [0, 1] we can choose the principal
eigenvector |vn(s)〉 in the spectral decomposition of D(s) in Eq. (124) to be

|vn(s)〉 :=
√
π(s)T. (132)

We would like to have an intuitive understanding of how |vn(s)〉 evolves as a function of s.
Let us introduce some useful notation that we will also need later.

Let 0U and 1U (respectively, 0M and 1M ) be the all-zeros and all-ones row vectors of
dimension n−m (respectively, m) whose entries are indexed by elements of U (respectively,
M). Furthermore, let

π̃U := πU/(1− pM ), π̃M := πM/pM (133)

be the normalized row vectors describing the stationary distribution π restricted to un-
marked and marked states. Let us also define the following unit vectors in Rn:

|U〉 :=
√

(π̃U 0M )T =
1

√
1− pM

∑
x∈U

√
πx|x〉, (134)

|M〉 :=
√

(0U π̃M )T =
1
√
pM

∑
x∈M

√
πx|x〉. (135)

Then we can express |vn(s)〉 as a linear combination of |U〉 and |M〉.
Now we prove Prop. 4.
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Proof By substituting π(s) from Eq. (103) into Eq. (132) we get

|vn(s)〉 =
√
π(s)T =

√√√√(
(1− s)πU πM

)T
1− s(1− pM )

=

√√√√(
(1− s)(1− pM )π̃U pM π̃M

)T
1− s(1− pM )

(136)

which is the desired expression. ut

Thus |vn(s)〉 lies in the two-dimensional subspace span{|U〉, |M〉} and is subject to a
rotation as we change the parameter s (see Fig. 5). In particular,

|vn(0)〉 =
√

1− pM |U〉+
√
pM |M〉, |vn(1)〉 = |M〉. (137)

|U〉

|M〉 = |vn(1)〉

|vn(0)〉

Fig. 5 As s changes from zero to one, the evolution of the principal eigenvector |vn(s)〉
corresponds to a rotation in the two-dimensional subspace span{|U〉, |M〉}.

Proposition 17 θ(s) and its derivative θ̇(s) := d
ds
θ(s) are related as follows:

2θ̇(s) =
sin θ(s) cos θ(s)

1− s
. (138)

Proof Notice that
d

ds

(
sin2 θ(s)

)
= 2θ̇(s) sin θ(s) cos θ(s). (139)

On the other hand, according to Eq. (21) we have

d

ds

(
sin2 θ(s)

)
=

d

ds

(
pM

1− s(1− pM )

)
=

pM (1− pM )

(1− s(1− pM ))2
=

sin2 θ(s) cos2 θ(s)

1− s
. (140)

By comparing both equations we get the desired result. ut

A.2.3 Derivative

Proposition 18 D(s) and its derivative Ḋ(s) := d
ds
D(s) are related as follows:

Ḋ(s) =
1

2(1− s)
{
ΠM , I −D(s)

}
(141)

where {X,Y } := XY + Y X is the anticommutator of X and Y , and ΠM :=
∑
x∈M |x〉〈x|

is the projector onto the m-dimensional subspace spanned by marked states M .
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Proof Recall from Eq. (119) that D(s) =
√
P (s) ◦ P (s)T. The block structure of P (s) is

given in Eq. (99). First, let us derive an expression for DMM (s), the lower right block of
D(s):

DMM (s) =
√
PMM (s) ◦ PMM (s)T (142)

=
√(

(1− s)PMM + sI
)
◦
(
(1− s)PT

MM + sI
)
. (143)

Let us separately consider the diagonal and off-diagonal entries of DMM (s). For x, y ∈ M
we have

Dxy(s) =

{
(1− s)

√
PxyPyx if x 6= y,

(1− s)Pxx + s if x = y.
(144)

Thus we can write DMM (s) as

DMM (s) = (1− s)
√
PMM ◦ PT

MM + sI. (145)

Expressions for the remaining blocks of D(s) can be derived in a straightforward way.
By putting all blocks together we get

D(s) =

 √
PUU ◦ PT

UU

√
(1− s)(PUM ◦ PT

MU )√
(1− s)(PMU ◦ PT

UM ) (1− s)
√
PMM ◦ PT

MM + sI

 . (146)

When we take the derivative with respect to s we find

Ḋ(s) =

 0 − 1
2
√
1−s

√
PUM ◦ PT

MU

− 1
2
√
1−s

√
PMU ◦ PT

UM I −
√
PMM ◦ PT

MM

 . (147)

To relate Ḋ(s) and the original matrix D(s), observe that

ΠMD(s) +D(s)ΠM =

 0
√

(1− s)(PUM ◦ PT
MU )√

(1− s)(PMU ◦ PT
UM ) 2(1− s)

√
PMM ◦ PT

MM + 2sI

 (148)

which can be seen by overlaying the second column and row of D(s) given in Eq. (146).
When we rescale this by an appropriate constant, we get

−
1

2(1− s)
{ΠM , D(s)} =

 0 − 1
2
√
1−s

√
PUM ◦ PT

MU

− 1
2
√
1−s

√
PMU ◦ PT

UM −
√
PMM ◦ PT

MM −
s

1−s I

 . (149)

This is very similar to the expression for Ḋ(s) in Eq. (147), except for a slightly different
coefficient for the identity matrix in the lower right corner. We can correct this by adding
ΠM with an appropriate constant: − 1

2(1−s){ΠM , D(s)}+ 1
1−sΠM = Ḋ(s). ut

A.3 Hitting time

From now on we assume that P is ergodic and reversible. Recall from Definition 4 that
HT(P,M) is the expected number of steps it takes for the Random Walk Algorithm to
find a marked vertex, starting from the stationary distribution of P restricted to unmarked
vertices. We now prove Prop. 2 which expresses the hitting time of P in terms of the spectral
properties of the discriminant matrix of the absorbing walk P ′.
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Proposition 2 The hitting time of Markov chain P with respect to marked set M is given
by

HT(P,M) =

n−|M|∑
k=1

|〈v′k|U〉|
2

1− λ′k
, (9)

where λ′k are the eigenvalues of the discriminant matrix D′ = D(P ′) in nondecreasing
order, |v′k〉 are the corresponding eigenvectors, and |U〉 is the unit vector

|U〉 :=
1

√
1− pM

∑
x/∈M

√
πx|x〉, (10)

pM being the probability to draw a marked vertex from the stationary distribution π of P .

Proposition 19 The hitting time of Markov chain P with respect to marked set M is given
by

HT(P,M) =

n−|M|∑
k=1

|〈v′k|U〉|
2

1− λ′k
, (150)

where λ′k are the eigenvalues of the discriminant matrix D′ = D(P ′) in nondecreasing
order, |v′k〉 are the corresponding eigenvectors, and |U〉 is the unit vector

|U〉 :=
1

√
1− pM

∑
x/∈M

√
πx|x〉, (151)

pM being the probability to draw a marked vertex from the stationary distribution π of P .

Proof The expected number of iterations in the Random Walk Algorithm is

HT(P,M) :=
∞∑
l=1

l · Pr[need exactly l steps] (152)

=

∞∑
l=1

l∑
t=1

Pr[need exactly l steps] (153)

=

∞∑
t=1

∞∑
l=t

Pr[need exactly l steps] (154)

=

∞∑
t=1

Pr[need at least t steps] (155)

=

∞∑
t=0

Pr[need more than t steps]. (156)

The region corresponding to the double sums in Eqs. (153) and (154) is shown in Fig. 6.
It remains to determine the probability that no marked vertex is found after t steps,

starting from an unmarked vertex distributed according to π̃U = πU/(1 − pM ). The dis-
tribution of vertices at the first execution of step 3 of the Random Walk Algorithm is
(π̃U 0M ), hence

Pr[need more than t steps] = (π̃U 0M )P ′ t(1U 0M )T. (157)

Recall from Prop. 8 that (P ′ t)UU = P tUU so we can simplify Eq. (157) as follows:

Pr[need more than t steps] = (π̃U 0M )P ′ t(1U 0M )T (158)

=
πU

1− pM
P tUU1TU (159)

=
√

πU
1−pM

diag
(√
πU
)
P tUU diag

(√
πU
)−1

√
πT
U

1−pM
(160)

= 〈U |D′t|U〉, (161)
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l

t

1 2 3 4 . . .

1

2

3

4

...

Fig. 6 Range of variables l and t in the double sums of Eqs. (153) and (154).

where the last equality follows from the expression for the discriminant matrix D′ = D(1)
in Eq. (121). By plugging this back in Eq. (156) we get

HT(P,M) =
∞∑
t=0

〈U |D′t|U〉. (162)

From the spectral decomposition D′ =
∑n
k=1 λ

′
k|v
′
k〉, this may be rewritten as

HT(P,M) =

∞∑
t=0

n∑
k=1

λ′tk |〈v
′
k|U〉|

2. (163)

Let m := |M | be the number of marked elements. Recall from Eq. (121) that D′ = D(1) is
block-diagonal and acts as identity matrix in the m-dimensional marked subspace. Further-
more, all 1-eigenvectors of D′ lie in the marked subspace, since eigenvalue 1 has multiplicity
m (recall from Prop. 15 that λ′k = 1 when k > n −m). Therefore, the terms in Eq. (163)
with k > n−m disappear since 〈v′k|U〉 = 0, and we get the desired expression by exchanging
the two sums in Eq. (163) and using the expansion (1− x)−1 =

∑∞
t=0 x

t where |x| < 1. ut

Note that the two sums in Eq. (163) may not be exchanged before removing the terms
with k > n −m: they do not commute in the presence of these extra terms since λ′k = 1

for k > n − m and therefore
∑∞
t=0|λ′k|

t diverges. This subtlety had unfortunately been
overlooked in [19, 16], and is at the source of the distinction between the hitting time
HT(P,M) and the extended hitting time HT+(P ,M ) (see Appendix C).

A.3.1 Extended hitting time

We now prove Prop. 3, which states that the extended hitting time reduces to the usual
hitting time in the case of a single marked element, even though they may differ in general.

Proof The fact that HT+(P ,M ) = HT(P,M) when |M | = 1 follows immediately from the
expression for HT(P,M) in Prop. 2 and Definition 9.

For the second part, choose

P =
1

4

3 1 0
1 2 1
0 1 3

 (164)

and let the last two elements be marked. If we explicitly compute the eigenvalues and
eigenvectors of D(s), then from Definition 9 we get that HT(s) = 20

(3−s)2 for s ∈ [0, 1)

and thus HT+(P ,M ) = 5. However, HT(P,M) = 4. One can also use the formulas from
Lemma 4 in Appendix C to verify this. ut
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This proposition implies that in the case of a single marked element, the quantum
search algorithms in Sect. 3 provide a quadratic speedup over the classical hitting time.
In the general case of multiple marked elements, these quantum algorithms still solve the
search problems but their cost is given in terms of the extended hitting time rather than
the standard one.

A.3.2 Lazy walk

For technical reasons, in Sect. 3 it is important that all eigenvalues of P (s) are non-negative.
We can guarantee this using a standard trick—replacing the original Markov chain P with
a “lazy” walk (P +I)/2 where I is the n×n identity matrix. In fact, we can assume without
loss of generality that the original Markov chain already is “lazy”, since this affects the
hitting time only by a constant factor, as shown below.

Proposition 20 Let P be an ergodic and reversible Markov chain. Then for any s ∈ [0, 1]
the eigenvalues of (P (s) + I)/2 are between 0 and 1. Moreover, if the interpolated hitting
time of P is HT(s), then the interpolated hitting time of (P + I)/2 is 2 HT(s).

Proof Since P is reversible, so is P (s) by Prop. 12. Thus the eigenvalues of P (s) are real by
Prop. 14. If λk(s) is an eigenvalue of P (s) then λk(s) ∈ [−1, 1] according to Perron–Frobenius
Theorem. Thus, the eigenvalues of (P (s) + I)/2 satisfy (λk(s) + 1)/2 ∈ [0, 1].

Recall from Prop. 14 that P (s) and D(s) are similar. Thus, the discriminant matrix of
(P (s) + I)/2 is (D(s) + I)/2, which has the same eigenvectors as D(s). By Definition 9, the
interpolated hitting time of (P (s) + I)/2 is

n−1∑
k=1

|〈vk(s)|U〉|2

1− λk(s)+1
2

. (165)

Since 1− λk(s)+1
2

=
1−λk(s)

2
, the above expression is equal to 2 HT(s) as claimed. ut

A.3.3 Relationship between HT(s) and HT+(P ,M )

In this section we express HT(s) as a function of s and HT+(P ,M ), which is the main result
of this appendix. The main idea is to relate d

ds
HT(s) to HT(s). When we solve the resulting

differential equation, the boundary condition at s = 1 gives the desired result.
First, note that by Definition 9, HT(s) may be written as HT(s) = 〈U |A(s)|U〉, where

A(s) :=

n−1∑
k=1

|vk(s)〉〈vk(s)|
1− λk(s)

. (166)

The following property of A(s) will be useful on several occasions.

Proposition 21 A(s)|M〉 = − cos θ(s)
sin θ(s)

A(s)|U〉.

Proof Recall from Prop. 15 that |vn(s)〉 is orthogonal to |vk(s)〉 for all k 6= n. So, we have
A(s)|vn(s)〉 = 0 by the definition of A(s). If we substitute |vn(s)〉 = cos θ(s)|U〉+sin θ(s)|M〉
from Prop. 4 in this equation, we get the desired formula. ut

Lemma 1 For s < 1, the derivative of HT(s) is related to HT(s) as

d

ds
HT(s) =

2(1− pM )

1− s(1− pM )
HT(s) (167)

where pM is the probability to pick a marked state from the stationary distribution π of P .
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Proof Recall that HT(s) = 〈U |A(s)|U〉 where A(s) may be written as

A(s) = B(s)−1 −Πn(s) where B(s) := I −D(s) +Πn(s), Πn(s) := |vn(s)〉〈vn(s)|. (168)

Recall from Appendix A.2.1 that |vn(s)〉 is the unique (+1)-eigenvector of D(s) for s ∈ [0, 1),
thus B(s) is indeed invertible when s is in this range.

From now on we will not write the dependence on s explicitly. We will also often use
ḟ(s) as a shorthand form of d

ds
f(s). Let us start with

d

ds
HT = 〈U |Ȧ|U〉 (169)

and expand Ȧ using Eq. (168). To find d
ds

(B−1), take the derivative of both sides of B−1B =

I and get d
ds

(B−1) ·B +B−1 · d
ds
B = 0. Thus d

ds
(B−1) = −B−1ḂB−1 and

Ȧ = −B−1ḂB−1 − Π̇n. (170)

Notice from Eq. (168) that Ḃ = −Ḋ + Π̇n, thus Ȧ = −B−1(−Ḋ + Π̇n)B−1 − Π̇n and
d
ds

HT = h1 + h2 + h3 where

h1 := 〈U |B−1ḊB−1|U〉, (171)

h2 := −〈U |B−1Π̇nB
−1|U〉, (172)

h3 := −〈U |Π̇n|U〉. (173)

Let us evaluate each of these terms separately.
To evaluate the first term h1, we substitute Ḋ = 1

2(1−s)
{
ΠM , I − D

}
from Prop. 18

and replace I −D by B −Πn according to Eq. (168):

2(1− s)h1 = 〈U |B−1{ΠM , B −Πn}B−1|U〉 (174)

= 〈U |B−1
(
{ΠM , B} − {ΠM , Πn}

)
B−1|U〉 (175)

= 〈U |{B−1, ΠM}|U〉 − 〈U |B−1{ΠM , Πn}B−1|U〉. (176)

Recall that ΠM =
∑
x∈M |x〉〈x| is the projector onto the marked states. Thus ΠM |U〉 = 0

and the first term vanishes. Note that B has the same eigenvectors as D. In particular,
B−1|vn〉 = |vn〉 and thus B−1Πn = Πn = ΠnB−1. Using this we can expand the anti-
commutator in the second term: B−1{ΠM , Πn}B−1 = B−1ΠMΠn+ΠnΠMB

−1. Since all
three matrices in this expression are real and symmetric and |U〉 is also real, both terms of
the anti-commutator have the same contribution, so we get

2(1− s)h1 = −2〈U |B−1ΠMΠn|U〉. (177)

Recall from Prop. 4 that |vn〉 = cos θ|U〉+ sin θ|M〉, so we see that ΠMΠn|U〉 = ΠM |vn〉 ·
〈vn|U〉 = sin θ|M〉 · cos θ. Moreover, B−1 = A+Πn according to Eq. (168), so

2(1− s)h1 = −2 sin θ cos θ〈U |(A+Πn)|M〉. (178)

Recall from Prop. 21 that sin θ〈U |A|M〉 = cos θ〈U |A|U〉. To simplify the second term, notice
that 〈U |Πn|M〉 = 〈U |vn〉 · 〈vn|M〉 = cos θ · sin θ. When we put this together, we get

2(1− s)h1 = 2 cos2 θ〈U |A|U〉 − 2 sin2 θ cos2 θ (179)

or simply

h1 =
cos2 θ

1− s
(
〈U |A|U〉 − sin2 θ

)
. (180)

Let us now consider the second term h2 = −〈U |B−1Π̇nB−1|U〉. First, we compute Π̇n =
|v̇n〉〈vn|+|vn〉〈v̇n|. Using B−1|vn〉 = |vn〉 we get B−1Π̇nB−1 = B−1|v̇n〉〈vn|+|vn〉〈v̇n|B−1.
Since 〈vn|U〉 = cos θ we have

h2 = −2〈U |B−1|v̇n〉 cos θ (181)
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where the factor two comes from the fact that all vectors involved are real and matrix B−1

is real and symmetric. Let us compute

|v̇n〉 = θ̇
(
− sin θ|U〉+ cos θ|M〉

)
. (182)

Notice that 〈vn|v̇n〉 = 0 and thus Πn|v̇n〉 = 0. By substituting B−1 = A+Πn from Eq. (168)
we get

h2 = −2〈U |A|v̇n〉 cos θ. (183)

Next, we substitute |v̇n〉 and get

h2 = −2θ̇
(
− sin θ〈U |A|U〉+ cos θ〈U |A|M〉

)
cos θ. (184)

Now we use Prop. 21 to substitute A|M〉 by A|U〉:

h2 = −2θ̇

(
− sin θ −

cos2 θ

sin θ

)
〈U |A|U〉 cos θ = 2θ̇

cos θ

sin θ
〈U |A|U〉. (185)

Finally, we substitute 2θ̇ = sin θ cos θ
1−s from Eq. (138) and get

h2 =
cos2 θ

1− s
〈U |A|U〉. (186)

For the last term h3 = −〈U |Π̇n|U〉 we observe that 〈U |v̇n〉〈vn|U〉 = −θ̇ sin θ · cos θ thus
h3 = 2θ̇ sin θ cos θ where the factor two comes from symmetry. After substituting 2θ̇ from
Eq. (138) we get

h3 =
cos2 θ

1− s
sin2 θ. (187)

When we compare Eqs. (180), (186), and (187) we notice that h2 = h1 + h3. Thus the
derivative of the hitting time is d

ds
HT = h1 + h2 + h3 = 2h2. Recall from Definition 9 that

HT = 〈U |A|U〉. Thus
d

ds
HT(s) = 2

cos2 θ(s)

1− s
HT(s). (188)

By substituting cos θ(s) from Eq. (21) we get the desired result. ut

We now prove Theorem 4, which relates HT(s) to HT+(P ,M ).

Proof When the marked element is unique, HT+(P ,M ) = HT(P,M) by Prop. 3. This gives
the second part.

We will prove the first part by solving the differential equation obtained in Lemma 1.
Consider Eq. (188) and recall from Eq. (138) that 2θ̇ = sin θ cos θ

1−s . We can rewrite the

coefficient in Eq. (188) as

2
cos2 θ

1− s
= 2 ·

sin θ cos θ

1− s
·

cos θ

sin θ
= 4θ̇

cos θ

sin θ
= 4

d
ds

(sin θ)

sin θ
. (189)

Then the differential equation becomes

d
ds

HT(s)

HT(s)
= 4

d
ds

(sin θ(s))

sin θ(s)
. (190)

By integrating both sides we get

ln |HT(s)| = 4 ln |sin θ(s)|+ C (191)

for some constant C. Recall from Eq. (21) that sin θ(1) = 1, so the boundary condition at
s = 1 gives us C = ln |HT+(P ,M )|. Since all quantities are non-negative, we can omit the
absolute value signs. After exponentiating both sides we get

HT(s) = sin4 θ(s) ·HT+(P ,M ) . (192)

We get the desired expression when we substitute sin θ(s) from Eq. (21). ut
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In Sect. 3 we consider several quantum search algorithms whose running time depends on
HT(s) for some values of s. Theorem 4 is a crucial ingredient in analysis of these algorithms:
when the marked element is unique, it expresses HT(s) as a function of s and the usual
hitting time HT(P,M). In particular, we see that HT(s) is monotonically increasing as a
function of s and it reaches maximum value at s = 1 (some example plots of HT(s) are
shown in Fig. 7). This observation is crucial, for example, in the proof of Theorem 7.

s

HT(s)

pM = 1.0

pM = 0.2

pM = 0.4

pM = 0.6

pM = 0.8

0 1
0

HT+(P ,M )

Fig. 7 The interpolated hitting time HT(s) as a function of s for several values of pM
according to Theorem 4.

B Spectrum and implementation of W (s)

Szegedy [10] proposed a general method to map a random walk to a unitary operator that
defines a quantum walk. The first step of Szegedy’s construction is to map the rows of P (s)
to quantum states. Let X be the state space of P (s) and H := span{|x〉 : x ∈ X} be a
complex Euclidean space of dimension n := |X| with basis states labelled by elements of X.
For every x ∈ X we define the following state in H:

|px(s)〉 :=
∑
y∈X

√
Pxy(s)|y〉. (193)

Notice that these states are correctly normalized, since P (s) is row-stochastic. Following the
approach of Szegedy [10], we define a unitary operator V (s) acting on H⊗H as

V (s)|x, 0̄〉 := |x〉|px(s)〉 =
∑
y∈X

√
Pxy(s)|x, y〉, (194)

when the second register is in some reference state |0̄〉 ∈ H, and arbitrarily otherwise. It will
not be relevant to us how V (s) is extended from H⊗ |0̄〉 to H⊗H. The only constraint we
impose is that V (s) is continuous as a function of s, which is a reasonable assumption from
a physical point of view.

Let Shift be the operation defined in Eq. (2). Let Π0 := I⊗|0̄〉〈0̄| be the projector that
keeps only the component containing the reference state |0̄〉 in the second register and let
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refX := 2Π0 − I ⊗ I. The goal of this section is to find the spectral decomposition of the
quantum walk operator corresponding to P (s):

W (s) := V (s)† · Shift · V (s) · refX (195)

where V (s) := V (P (s)). Recall from Appendix A.2.1 that λk(s) and |vk(s)〉 are the eigen-
values and eigenvectors of the discriminant matrix D(s) of P (s).

B.1 Spectral decomposition of W (s)

In this section we determine the invariant subspaces of W (s) and find its eigenvectors and
eigenvalues. First, observe that on certain states Shift acts as the swap gate.

Proposition 22 If P is a Markov chain on graph G then Shift |x, px(s)〉 = |px(s), x〉, i.e.,
Shift always succeeds on states of the form |x, px(s)〉 for any x ∈ X.

Proof From Eq. (194) we get

Shift |x, px(s)〉 = Shift
∑
y∈X

√
Pxy(s)|x, y〉 (196)

=
∑
y∈X

√
Pxy(s)|y, x〉 (197)

= |px(s), x〉, (198)

where the second equality holds since P (s) is a Markov chain on G and thus Pxy(s) = 0
when xy is not an edge of G. ut

It follows from Prop. 22 that Shift always succeeds when V †(s)ShiftV (s) acts on any
state that has |0̄〉 in the second register. In fact, we can say even more.

Proposition 23 If P is a Markov chain on graph G then the operator V †(s)ShiftV (s)
acts as the discriminant matrix D(s) (see Appendix A.2) when restricted to |0̄〉 in the second
register, i.e.,

Π0V
†(s)ShiftV (s)Π0 = D(s)⊗ |0̄〉〈0̄|. (199)

Proof From Eq. (194) and Prop. 22 we get

〈x, 0̄|V †(s)ShiftV (s)|y, 0̄〉 = 〈x, px(s)|Shift |y, py(s)〉 (200)

= 〈x, px(s)|py(s), y〉 (201)

= 〈px(s)|y〉〈x|py(s)〉 (202)

=
√
Pxy(s)Pyx(s) (203)

= Dxy(s) (204)

where last equality follows from Eq. (119). ut

This suggests a close relationship between the operators D(s) and V †(s)ShiftV (s). We
want to extend this and relate the spectral decompositions of D(s) and W (s) from Eq. (195).
Recall from Eq. (124) the spectral decomposition D(s) =

∑n
k=1 λk(s)|vk(s)〉〈vk(s)|.

Definition 11 We define the following subspaces of H⊗H in terms of the eigenvectors of
D(s) and the operator V †(s)ShiftV (s):

Bk(s) := span{|vk(s), 0̄〉, V †(s)ShiftV (s)|vk(s), 0̄〉}, k ∈ {1, . . . , n− 1}, (205)

Bn(s) := span{|vn(s), 0̄〉}, (206)

B⊥(s) :=
(⊕n

k=1 Bk(s)
)⊥
. (207)
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Let us first understand how V †(s)ShiftV (s) acts on vectors defining the subspaces in
Definition 11. Let us consider s < 1 and k < n. Then λk(s) 6= 1 by Prop. 15. By unitarity
of V †(s)ShiftV (s) and Prop. 23,

V †(s)ShiftV (s)|vk(s), 0̄〉 = λk(s)|vk(s), 0̄〉+
√

1− λk(s)2|vk(s), 0̄〉⊥ (208)

for some unit vector |vk(s), 0̄〉⊥ orthogonal to |vk(s), 0̄〉 and lying in the subspace Bk(s).
In particular, Bk(s) is two-dimensional. Note that |vk(s), 0̄〉⊥ depends on how the operator
V (s), defined in Eq. (194), is extended to the rest of the space H⊗H.

Let us also find how V †(s)ShiftV (s) acts on |vk(s), 0̄〉⊥. If we apply V †(s)ShiftV (s)
to both sides of Eq. (208), we get

|vk(s), 0̄〉 = λk(s)V †(s)ShiftV (s)|vk(s), 0̄〉+
√

1− λk(s)2V †(s)ShiftV (s)|vk(s), 0̄〉⊥.
(209)

We regroup the terms and substitute Eq. (208):√
1− λk(s)2V †(s)ShiftV (s)|vk(s), 0̄〉⊥ (210)

= |vk(s), 0̄〉 − λk(s)V †(s)ShiftV (s)|vk(s), 0̄〉 (211)

= |vk(s), 0̄〉 − λk(s)
(
λk(s)|vk(s), 0̄〉+

√
1− λk(s)2|vk(s), 0̄〉⊥

)
. (212)

After cancellation we get

V †(s)ShiftV (s)|vk(s), 0̄〉⊥ =
√

1− λk(s)2|vk(s), 0̄〉 − λk(s)|vk(s), 0̄〉⊥. (213)

Proposition 24 Subspaces B1(s), . . . ,Bn(s), and B⊥(s) are mutually orthogonal and in-
variant under W (s) for all s ∈ [0, 1].

Proof Clearly, B⊥(s) is orthogonal to the other subspaces. Vectors |vk(s), 0̄〉 are also mutu-
ally orthogonal for k ∈ {1, . . . , n}, since they form an orthonormal basis of H⊗ |0̄〉. Finally,
note from Prop. 23 that

〈vj(s), 0̄| · V †(s)ShiftV (s)|vk(s), 0̄〉 = 〈vj(s)|D(s)|vk(s)〉 = δjkλk(s), (214)

so V †(s)ShiftV (s)|vk(s), 0̄〉 is orthogonal to |vj(s), 0̄〉 for any j 6= k. Thus all of the above
subspaces are mutually orthogonal.

Let us show that these subspaces are invariant under W (s). From the definition of
W (s) in Eq. (195) we see that it suffices to check the invariance of each subspace under
V †(s)ShiftV (s) and Π0 separately.

First, let us argue the invariance under V †(s)ShiftV (s). Since Shift2 acts as identity
according to Eq. (2), then so does V †(s)ShiftV (s) and hence Bk(s) is invariant under
V †(s)ShiftV (s) for any k < n. Next, Bn(s) is invariant, since V †(s)ShiftV (s) acts trivially
on |vn(s), 0̄〉 by Prop. 23. Finally, B⊥(s) is invariant, since it is the orthogonal complement
of invariant subspaces.

Let us now show the invariance under Π0. First, let us argue that

〈vj(s), 0̄|vk(s), 0̄〉⊥ = 0, ∀j ∈ {1, . . . , n}. (215)

These vectors lie in subspaces Bj(s) and Bk(s) that are mutually orthogonal when j 6= k.
For j = k this holds by definition of |vk(s), 0̄〉⊥. Since span{|vk(s), 0̄〉}nk=1 = H ⊗ |0̄〉, we
conclude that

Π0|vk(s), 0̄〉⊥ = 0. (216)

From Eq. (208) we get

Π0V
†(s)ShiftV (s)|vk(s), 0̄〉 = λk(s)|vk(s), 0̄〉, (217)

hence Bk(s) is invariant under Π0 for k < n. Next, Bn(s) is invariant since Π0|vn(s), 0̄〉 =
|vn(s), 0̄〉. Finally, B⊥(s) is invariant by being the orthogonal complement of invariant sub-
spaces. ut
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We now prove Lemma 2 by Szegedy [10], which provides the spectral decomposition of
W (s) in terms of that of D(s). Note that we can guarantee that all eigenvalues of D(s) are
in [0, 1] via Prop. 20.

Lemma 2 (Szegedy [10]) Let Bk(s) for k = 1, . . . , n be the subspaces from Definition 11.
Assume that all eigenvalues λk(s) of D(s) are between 0 and 1, and let ϕk(s) ∈ [0, π] be
such that

λk(s) = cosϕk(s). (218)

Then W (s) has the following eigenvalues and eigenvectors.

On Bk(s): e±iϕk(s), |Ψ±k (s)〉 :=
|vk(s), 0̄〉 ± i|vk(s), 0̄〉⊥

√
2

. (219)

On Bn(s): 1, |Ψn(s)〉 := |vn(s), 0̄〉. (220)

In particular,
⋃n
k=1 Bk(s) is the walk space of W (s) and the remaining eigenvectors of W (s)

lie in the orthogonal complement B⊥(s).

Proof Recall Eqs. (208) and (213):

V †(s)ShiftV (s) · |vk(s), 0̄〉 = λk(s)|vk(s), 0̄〉+
√

1− λk(s)2|vk(s), 0̄〉⊥, (221)

V †(s)ShiftV (s) · |vk(s), 0̄〉⊥ =
√

1− λk(s)2|vk(s), 0̄〉 − λk(s)|vk(s), 0̄〉⊥. (222)

Clearly, refX |vk(s), 0̄〉 = |vk(s), 0̄〉 from Eq. (4). Recall from Eq. (216) that Π0|vk(s), 0̄〉⊥ =
0, so refX |vk(s), 0̄〉⊥ = −|vk(s), 0̄〉⊥. Thus, Eqs. (221) and (222) give us

W (s) · |vk(s), 0̄〉 = λk(s)|vk(s), 0̄〉+
√

1− λk(s)2|vk(s), 0̄〉⊥, (223)

W (s) · |vk(s), 0̄〉⊥ = −
√

1− λk(s)2|vk(s), 0̄〉+ λk(s)|vk(s), 0̄〉⊥. (224)

Recall from Prop. 24 that subspaces Bk(s) are mutually orthogonal and invariant under
W (s). In fact, W (s) acts in the basis {|vk(s), 0̄〉, |vk(s), 0̄〉⊥} of Bk(s) as(

λk(s) −
√

1− λk(s)2√
1− λk(s)2 λk(s)

)
= λk(s)I + i

√
1− λk(s)2 σy (225)

where σy :=
(
0 −i
i 0

)
is the Pauli y matrix. The matrix in Eq. (225) has the same eigenvectors

as σy and its eigenvalues are given by

λk(s)± i
√

1− λk(s)2 = e±iϕk(s). (226)

This shows Eq. (219). To obtain Eq. (220), we use Prop. 23:

〈vn(s), 0̄| · V †(s)ShiftV (s) · |vn(s), 0̄〉 = 1, (227)

so |vn(s), 0̄〉 is an eigenvector of W (s) with eigenvalue 1. ut

B.2 Quantum circuit for W (s)

Recall that Update(P ) can be used to implement the quantum walk operatorW (P ). However,
we would also like to be able to implement the quantum analogue of P (s) for any s ∈ [0, 1].
Recall from Eq. (195) that it is given by

W (s) = V (s)† ShiftV (s) · refX . (228)
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We know how to implement Shift and refX , so we only need to understand how to implement
V (s) using V (P ). Recall from Eq. (3) that

V (s)|x〉|0̄〉 = |x〉|px(s)〉 = |x〉
∑
y∈X

√
Pxy(s)|y〉. (229)

In the following lemma, we assume that we know pxx for every x. This is reasonable
since in practice the probability of self-loops is known. In many cases, it is even independent
of x. For the rest of this chapter, we assume that this is not an obstacle (we can assume
that one call to Update(P ) allows to learn pxx for any x).

Lemma 3 Assuming that pxx is known for every x, Interpolation(P,M, s) implements
V (s) with quantum complexity 2C + U. Thus, Update(P (s)) has quantum complexity of
order C + U.

Proof We explain only how to implement V (s) using one call to V (P ) and two calls to
Check(M). The algorithm for V (s)† is obtained from the reverse algorithm.

Our algorithm uses four registers: R1, R2, R3, R4. The first two registers have underlying
state space H each, but the last two store a qubit in C2 each. Register R3 is used to store
if the current vertex x is marked, but R4 is used for performing rotations. Let

Rα :=

(
cosα − sinα
sinα cosα

)
(230)

denote the rotation by angle α. An algorithm for implementing the transformation |x〉|0̄〉 7→
|x〉|px(s)〉 is given below.

Interpolation(P,M, s)

1. Let the initial state be |x〉|0̄〉|0〉|0〉.
2. Apply Check(M) to R1R3 (then R3 = 1 if and only if x ∈M).
3. If R3 = 0, apply V (P ) to R1R2 and get |x〉|px〉|0〉|0〉.
4. Otherwise:

(a) The state is |x〉|0̄〉|1〉|0〉 where x ∈M .
(b) Apply Rα with α = arcsin

√
s on R4: |x〉|0̄〉|1〉(

√
1− s|0〉+

√
s|1〉).

(c) If R4 = 0, apply V (P ) on R1R2. Otherwise, use CNOT to copy R1 to R2

in the standard basis: |x〉(
√

1− s|px〉|1〉|0〉+
√
s|x〉|1〉|1〉).

(d) If R1 = R2, apply Rα with α = − arcsin
√
s/((1− s)Pxx + s) to R4. Oth-

erwise, do nothing: |x〉|px(s)〉|1〉|0〉.
5. Apply Check(M) to R1R3 to uncompute R3 and get |x〉|px(s)〉|0〉|0〉.

Recall from Eq. (98) that P (s) has the following block structure:

P (s) =

(
PUU PUM

(1− s)PMU (1− s)PMM + sI

)
. (231)

We will analyze the cases x ∈ M and x ∈ U separately. Then the general case will hold by
linearity.

If x ∈ U then the corresponding row of P (s) does not depend on s, so |px(s)〉 = |px〉. In
this case step 4 of the above algorithm is never executed and the remaining steps effectively
apply V (P ) to produce the correct state.

When x ∈M the algorithm is more involved. Let us analyze only step 4 where most of
the work is done. During this step the state gets transformed as follows:

|x〉|0̄〉|1〉|0〉 7→ |x〉|0̄〉|1〉(
√

1− s|0〉+
√
s|1〉) (232)

7→ |x〉
(√

1− s|px〉|1〉|0〉+
√
s|x〉|1〉|1〉

)
(233)

7→ |x〉|px(s)〉|1〉|0〉. (234)
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The first two transformations are straightforward, so let us focus only on the last one which
corresponds to step 4d. The state at the beginning of this step is

|x〉
(√

1− s|px〉|1〉|0〉+
√
s|x〉|1〉|1〉

)
(235)

= |x〉
[
√

1− s
∑

y∈X\{x}

√
Pxy |y〉|1〉|0〉+ |x〉|1〉

(√
(1− s)Pxx|0〉+

√
s|1〉

)]
. (236)

Note from the second row of matrix P (s) in Eq. (231) that all its elements have acquired a
factor of 1− s, except the diagonal ones. Thus in step 4d we perform a rotation only when
R1 = R2. This rotation affects only the second half of the state in Eq. (236) and transfers
all amplitude to |0〉 in the last register:

|x〉
[
√

1− s
∑

y∈X\{x}

√
Pxy |y〉+

√
(1− s)Pxx + s|x〉

]
|1〉|0〉 = |x〉|px(s)〉|1〉|0〉. (237)

Finally, step 5 uncomputes R3 to |0〉 and the final state is |x〉|px(s)〉|0〉|0〉 as desired. ut

C An explicit formula for HT+(P ,M )

Recall from Definition 9 that HT+(P ,M ) is defined as the s→ 1 limit of HT(s). In this ap-
pendix we derive an alternative expression for HT+(P ,M ). This formula explicitly expresses
HT+(P ,M ) in terms of the Markov chain P and its stationary distribution π, and makes it
easier to evaluate this quantity and compare it to the regular hitting time HT(P,M).

Let us define unit vectors |Ũ〉 ∈ R|U| and |M̃〉 ∈ R|M| as follows:

|Ũ〉 :=
√
π̃T
U , |M̃〉 :=

√
π̃T
M , (238)

where π̃U and π̃M are defined in Eq. (133) in terms of the stationary distribution π =
(πU πM ) of P . Note from Eq. (134) that |Ũ〉 and |M̃〉 are the restrictions of |U〉 and |M〉
to the unmarked and marked subspaces. Furthermore, let

(
DUU DUM
DMU DMM

)
:=

√PUU ◦ PT
UU

√
PUM ◦ PT

MU√
PMU ◦ PT

UM

√
PMM ◦ PT

MM

 (239)

be the blocks of the discriminant matrix D(P ) of P (see Definition 6).

Lemma 4 If HT(P,M) is the hitting time of P (see Definition 4) and HT+(P ,M ) is the
extended hitting time (see Definition 9) then

HT(P,M) = 〈Ũ |(I −DUU )−1|Ũ〉, (240)

HT+(P ,M ) = 〈Ũ |(I −DUU − S)−1|Ũ〉, (241)

where

S := DUM

[
(I −DMM )−1 −

(I −DMM )−1|M̃〉〈M̃ |(I −DMM )−1

〈M̃ |(I −DMM )−1|M̃〉

]
DMU . (242)

Vectors |Ũ〉 and |M̃〉 are defined in Eq. (238) and matrices DUU , DUM , DMU , DMM in
Eq. (239).
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Proof Let us first derive Eq. (240). Recall from Eq. (162) that HT(P,M) can be written as

HT(P,M) =

∞∑
t=0

〈U |D(1)t|U〉, (243)

where D(1) is the discriminant matrix of P (1) = P ′. Recall from Eq. (122) that

D(1) =

(√
PUU ◦ PT

UU 0

0 I

)
. (244)

Since D(1) is block diagonal and |U〉 acts only on the unmarked states U , we can restrict
each term in Eq. (243) to the unmarked subspace and bring the summation inside:

HT(P,M) = 〈Ũ |
∞∑
t=0

D(1)tUU |Ũ〉. (245)

Recall from Eq. (146) that the UU block of D(s) is independent of s, hence D(1)UU = DUU ,
the UU block of D(0) given in Eq. (239). Recall from Prop. 10 that I − PUU is invertible.
Furthermore, due to Prop. 9 we can write (I−PUU )−1 =

∑∞
t=0 P

t
UU . As DUU and PUU are

similar according to Eq. (123), I−DUU is also invertible and (I−DUU )−1 =
∑∞
t=0D

t
UU . If

we substitute this in Eq. (245), we get Eq. (240) and thus prove the first half of the lemma.
For the second half, recall from Eq. (16) that for s ∈ [0, 1),

HT(s) =

n−1∑
k=1

|〈vk(s)|U〉|2

1− λk(s)
, (246)

where λk(s) and |vk(s)〉 are the eigenvalues and eigenvectors of the discriminant matrix
D(s). By Prop. 15, for any s ∈ [0, 1), λn(s) = 1 and λk(s) < 1 for all k 6= n. Let Πn(s) :=
|vn(s)〉〈vn(s)|, where |vn(s)〉 is given by Prop. 4:

|vn(s)〉 = cos θ(s)|U〉+ sin θ(s)|M〉. (247)

With this in mind, we can rewrite Eq. (246) as follows:

HT(s) = 〈U |
[
n−1∑
k=1

∞∑
t=0

λtk(s)|vk(s)〉〈vk(s)|
]
|U〉 (248)

= 〈U |
∞∑
t=0

(
Dt(s)−Πn(s)

)
|U〉 (249)

= 〈U |
[
I +

∞∑
t=1

(
D(s)−Πn(s)

)t −Πn(s)

]
|U〉 (250)

= 〈U |
[(
I −D(s) +Πn(s)

)−1 −Πn(s)
]
|U〉 (251)

= 〈U |
(
I −D(s) +Πn(s)

)−1|U〉 − cos2 θ(s), (252)

where the last equality follows from Eq. (247).
Our goal is to compute lims→1 HT(s). Recall from Prop. 15 that D(1) has eigenvalue

1 with multiplicity |M |. Thus, if |M | > 1, the matrix I −D(s) +Πn(s) in Eq. (252) is not
invertible at s = 1, hence we cannot compute the limit by simply substituting s = 1. Let us
rewrite this expression before we take the limit.

Note that the discriminant matrix D(s) at s = 0 agrees with D(P ). Using Eq. (146)
that relates D(s) and D(P ), we can write

I −D(s) =

(
I −DUU −

√
1− sDUM

−
√

1− sDMU (1− s)(I −DMM )

)
, (253)



50 Hari Krovi et al.

where
( DUU DUM
DMU DMM

)
are the blocks of D(P ) given in Eq. (239). Next, note that

|vn(s)〉 =

(
cos θ(s)|Ũ〉
sin θ(s)|M̃〉

)
, (254)

so we can write

Πn(s) =

(
cos2 θ(s)|Ũ〉〈Ũ | cos θ(s) sin θ(s)|Ũ〉〈M̃ |

cos θ(s) sin θ(s)|M̃〉〈Ũ | sin2 θ(s)|M̃〉〈M̃ |

)
. (255)

Putting the two equations together, we can write I −D(s) +Πn(s) as(
I −DUU + cos2 θ(s)|Ũ〉〈Ũ | −

√
1− sDUM + cos θ(s) sin θ(s)|Ũ〉〈M̃ |

−
√

1− sDMU + cos θ(s) sin θ(s)|M̃〉〈Ũ | (1− s)(I −DMM ) + sin2 θ(s)|M̃〉〈M̃ |

)
.

(256)
In Eq. (252) we need only the upper left block of the inverse of the above matrix, since |U〉
is non-zero only on the U block. According to the block-wise inversion formula,(

A B
BT C

)−1

=

(
(A−BC−1BT)−1 . . .

. . . . . .

)
. (257)

Thus, Eq. (252) becomes

HT(s) = 〈Ũ |
(
A(s)−B(s)C(s)−1B(s)T

)−1|Ũ〉 − cos2 θ(s), (258)

where A(s), B(s), and C(s) are the blocks in Eq. (256). We can further rewrite this as
follows:

HT(s) = 〈Ũ |
[
A(s)−

B(s)
√

1− s

(
C(s)

1− s

)−1 B(s)T
√

1− s

]−1

|Ũ〉 − cos2 θ(s), (259)

where the extra factors will allows us to deal with the fact that C(1) is singular.
Now we can compute lims→1 HT(s) for each piece of Eq. (259) separately. Note from

Eq. (21) that cos2 θ(s) vanishes as s→ 1. Similarly, we also get that

A′ := lim
s→1

A(s) = I −DUU , (260)

B′ := lim
s→1

B(s)
√

1− s
= −DUM +

√
1− pM
pM

|Ũ〉〈M̃ |. (261)

Finally, notice that lims→1 C(s)/(1−s) does not exist. Nevertheless, the limit of the inverse
exists (in particular, it is a singular matrix) and we can compute it using the Sherman–
Morrison formula: (

X + |ψ〉〈ψ|
)−1

= X−1 −
X−1|ψ〉〈ψ|X−1

1 + 〈ψ|X−1|ψ〉
. (262)

For s < 1, we get(
C(s)

1− s

)−1

=

(
I −DMM +

sin2 θ(s)

1− s
|M̃〉〈M̃ |

)−1

(263)

= (I −DMM )−1 −
(I −DMM )−1|M̃〉〈M̃ |(I −DMM )−1

1−s
sin2 θ(s)

+ 〈M̃ |(I −DMM )−1|M̃〉
, (264)

so the limit is

C′ := lim
s→1

(
C(s)

1− s

)−1

= (I −DMM )−1 −
(I −DMM )−1|M̃〉〈M̃ |(I −DMM )−1

〈M̃ |(I −DMM )−1|M̃〉
. (265)
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Let S(s) := B(s)C(s)−1B(s)T be the matrix that appears in Eq. (258). Since it also
appears in Eq. (259), we find that

S′ := lim
s→1

S(s) = B′C′B′
T

(266)

by substituting B′ and C′ from Eqs. (261) and (265), respectively. Note from Eq. (265) that
C′|M̃〉 = 0, so Eq. (266) simplifies to

S′ = DUMC
′DMU (267)

after we substitute B′ from Eq. (261). Note that S′ agrees with Eq. (242) and that

HT+(P ,M ) = lim
s→1

HT(s) = 〈Ũ |(A′ − S′)−1|Ũ〉, (268)

where A′ and S′ are given in Eqs. (260) and (267), respectively. ut
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