Finding is as easy as detecting for quantum walks
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Abstract. We solve an open problem by constructing quantum walks
that not only detect but also find marked vertices in a graph. The number
of steps of the quantum walk is quadratically smaller than the classical
hitting time of any reversible random walk P on the graph.

Our approach is new, simpler and more general than previous ones. We
introduce a notion of interpolation between the walk P and the absorbing
walk P’, whose marked states are absorbing. Then our quantum walk is
simply the quantum analogue of the interpolation. Contrary to previous
approaches, our results remain valid when the random walk P is not
state-transitive, and in the presence of multiple marked vertices.

As a consequence we make a progress on an open problem related to the
spatial search on the 2D-grid.

1 Introduction

Many classical randomized algorithms rely heavily on random walks or Markov
chains. The notion of hitting time is intimately related to the problem of spatial
search, where displacement constraints are modeled by an undirected graph G.
The set of desired vertices, or marked vertices, is denoted by M. Classically, a
simple algorithm to find a marked vertex is to repeatedly apply some random
walk P on G until one of the marked vertices is reached. The hitting time of P,
HT(P, M), is precisely the expected number of repetitions, or steps, necessary
to reach a marked vertex, starting from the stationary distribution of P.

Quantum walks are natural generalizations of classical random walks. Am-
bainis [1] was the first to solve a natural problem — the “element distinctness
problem” — using a quantum walk. Following this, many quantum walk algo-
rithms were discovered [2-4]. Quantum walk algorithms for the spatial search
problem [5] were studied for the hypercube [6] and the grid [7, 8].

The notion of hitting time has been carried over to the quantum case in [8—
13]. Usually, the quantum hitting time has a quadratic improvement over the
classical one. However, until the present paper, several serious restrictions were
imposed: a quantum algorithm could only solve the detection problem of deciding
whether there are marked vertices or not [10], but for being able to find them the
Markov chain had to be reversible, state-transitive, and with a unique marked
vertex [14,13]. The detection algorithm is quite intuitive and well understood,



whereas the finding algorithm requires an elaborate proof whose intuition is not
clear. This is due in part to a modification of the quantum walk, so that the
resulting walk is not a quantum analogue of a Markov chain anymore.

Whether this quadratic speed-up for finding a marked vertex also holds for
any reversible Markov chain and for multiple marked vertices was an open ques-
tion. In this paper, we answer this question in the positive. Here we choose
another approach by modifying directly P, and by considering the quantum ana-
logue of the modified random walk. Doing that we keep some intuition and get
simpler proofs while obtaining more general results. The new walk is simply an
interpolation between the walk P and the absorbing walk P’, where all outgoing
transitions from marked vertices are replaced by self-loops. The interpolation co-
efficient can be used to tune the overlap between the stationary superposition of
the quantum walk and its projection onto marked vertices. For a suitable value,
depending on the relative weight of marked vertices in the stationary distribu-
tion of P, the overlap with marked and unmarked vertices is balanced, leading
to a quantum walk algorithm that finds a marked vertex within /HT (P, M)
steps (Theorem 5). The balancing can also be achieved when limited or even
no information is available on the weight of marked vertices (Theorems 6, 7
and 8). As a consequence, we make a progress on an open problem from [5, 14]
related to the spatial search on the 2D-grid (Corollary 2).

2 Preliminaries

2.1 Spatial search on graphs

We fix throughout the paper an undirected graph G = (X, E) with | X| = n. Let
M C X be a set of marked vertices and let m = |M|. Vertices are encoded in
a distinguished vertex register. Our goal is to find any of the marked vertices in
M wusing only evolutions that preserve the locality of G on the vertex register,
i.e., to perform a spatial search on G [5]. Here we define an even more restricted
notion of locality than the ones in [5], but it is more intuitive and sufficiently
powerful for our purpose. We allow two types of operations on the vertex register:
static transformations (that can be conditioned on the state of the vertex register
but do not modify it) and shift (that exchanges the value of the vertex register
and another register). Nonetheless, we want to restrict the executions of shift to
(x,y) € E.

Definition 1. Let

(y,x), if(z,y) € E,

(x,y), otherwise.

In the first case we say that SHIFT succeeds, but in the second case it fails.

SHIFT (z,y) =

Definition 2 (Problems). Under the restrictions that only static transforma-
tions and SHIFT are allowed, consider the following problems:

— DETECT(G): Detect if there is a marked vertex in G;

— FIND(G): Find any marked vertex in G, with the promise that M # (.



DETECT® (G) (resp. DETECTZ®) (@) will denote the problem DETECT(G) with
the promise that m = 0 or m = k (resp. m > k). Similarly, define FIND®)(G)
(resp. FIND(ZM) (@) as FIND(G) with the promise that m = k (resp. m > k).

A natural approach to searching on a graph consists in using a random walk.
Intuitively, a random walk is an alternation of coin flips and shifts. Namely, a coin
is flipped according to the current state x of the vertex register, its value describes
a target vertex y, and SHIFT is a move from z to y. Let py, be the probability that
x is shifted to y. Then SHIFT always succeeds if p,, = 0 whenever (z,y) ¢ E. In
that case, we say that P = (pyy)z,yex is a Markov chain on G.

We assume from now on that P is an ergodic Markov chain. Therefore P has
a unique stationary distribution 7. We also assume that P is reversible: m;pz, =
TyDyz, for all z,y € X. To measure the complexity of implementing a random
walk corresponding to P, we introduce the following black-box operations:

— Check(M): Check if a given vertex is marked;
— Setup(P): Draw a sample from the stationary distribution 7 of P;
— Update(P): Perform one step of P.

Each of these black-box operations have the corresponding associated imple-
mentation cost. We denote by C,S and U the respective complexities of the
transformations Check(M), Setup(P) and Update(P).

2.2 Quantum version

In the quantum case, the problem extends as follows. Let H = C¥ be a fixed
Hilbert space with basis (|)),ex. Again, a transformation is static if it is con-
trolled by the vertex register, that is of type > v [z) (x| ® V,;, and Definition 1
of SHIFT is simply extended by linearity. Then the generalization of random
walks to quantum walks is as follows.

Definition 3. A quantum walk W on G is a composition of static unitary trans-
formations and SHIFT on an invariant subspace of H ® H, the walk space, such
that SHIFT always succeeds when W is restricted to its walk space.

Implicitly we always restrict a quantum walk to its walk space.

We will only consider quantum walks built from quantum analogues of re-
versible Markov chains. Thus we extend the operations Check, Setup and Update
to the quantum setting as follows. Let |0) € H be a fixed reference state. In the
following, the first register is the vertex register.

— Check(M): Map |z)|b) to |x)|b) if x ¢ M and |x)|b@ 1) if x € M, for b= 0, 1.
— Setup(P): Construct the superposition: |7) = > \/Tz|T);
— Update(P): Apply any of V(P), V(P)" or SHIFT, where V(P) satisfies

V(P)|2)]0) = |2)|pz) = |2) X2, c x \/Payly), for all z € X.

Implicitly, we also allow any controlled version of Check(M), Setup(P) and
Update(P), on which we access via oracle.

In terms of applications of SHIFT, Update has complexity 1, and, Setup

has complexity O(dg) (the diameter of GG). Nonetheless, in many algorithmic



applications, the situation is more complex and the number of applications of
SHIFT is not the only relevant cost, see for instance [1, 2].

2.3 Classical hitting time

From now on we will assume that all the eigenvalues of P are within [0, 1]. This
is without loss of generality by replacing P by (Id + P)/2 if necessary. From the
ergodicity of P, the eigenvalue 1 has multiplicity 1. The classical hitting time,
HT(P, M), is defined as the expected number of applications of the Markov
chain P required to hit a marked vertex when starting from w. This can be
used to design a randomized algorithm for DETECT and FIND based on the
corresponding random walk.

Proposition 1. Let k > 1. DETECTZ)(G) can be solved with high probability
and randomized complexity of order

S+T x(U+C), where T:“rvrjllz‘mkaT(P,M’).

FIND(G) can be solved with high probability and expected randomized complexity
of order
S+Tx(U+C), where T =HT(P,M).

Let P’ be the Markov chain obtained from P by turning all outgoing tran-
sitions from marked vertices into self-loops. We call P’ the absorbing version of
P. If we arrange the elements of X so that the marked vertices are the last ones,
matrices P and P’ have the following block structure:

p._ Pyy Py P Pyu Puwm
) Py Py )’ ) 0 I ’

where Pyy and Py are matrices of size (n — m) X (n —m) and m x m, while
Py and Py are matrices of size (n —m) X m and m x (n —m).

We first present the matrix characterization of HT(P, M). From the re-
versibility of P, we get that D(P) = diag(y/7)P diag(y/7)~! is a symmet-
ric matrix, which is also known as the discriminant of P. The latter was in-
troduced in [10] for symmetric P, and generalized to reversible P in [12].
Set |m) = erx \/ﬂ‘x% P = ZzeM T, and py = erX\M . The re-
spective normalized projections of |r) on marked and unmarked vertices are

|M) =3 en VTa/pulz) and [U) = 3° <5\ ar V/7a/pulz). Then
HT(P, M) = py x (U|(ldy — D(P)yu)~*|U).

For simplicity, we will from now on omit the quantity py in the above defini-
tion. Indeed, we assume that py; < 1/2, so that the the difference between the
two expressions is at most a factor of 2. Note that if pp; > 1/2, then there is no
need for any (classical or quantum) walk to find a marked vertex.

We now introduce the spectral characterization of HT(P, M). Note that the
reversibility of P also implies the alternative definition for the discriminant

(D(P))zy = \/PryPya-



Extending the latter definition of the discriminant to P’, we get that D(P’) =
D(P)yy @ Idps. Let |v1),|va), ..., |v,) be a system of orthonormal eigenvectors
of D(P’) with respective eigenvalues 0 < A\; < Ao < ... < Ao < Ajpmmt1 =
... =X, =1, so that D(P’) = >, Ag|vi)(vg|. Then one can rewrite HT (P, M)
as:

[ (wrlU)[*

HT(P,M) = e

k<n—m

2.4 Quantum hitting time

Quantum walks were successfully used for detecting the presence of marked
vertices quadratically faster than P. Nonetheless, only little is known on the
problem of finding a marked vertex. Below we illustrate the state of the art.

Theorem 1 ([10]). Let k > 1. DETECTZ®)(Q) can be solved with high proba-
bility and quantum complexity of order

SH+T x(U+C), where T:U\r?/zlixk\/HT(RM’).

When P is state-transitive and there is a unique marked vertex z (i.e., m = 1),
HT(P,{z}) is independent of z and one can also find z:

Theorem 2 ([14,13]). Assume that P is state-transitive. FINDM (G) can be
solved with high probability and quantum complexity of order

S+Tx(U+C), where T =+ /HT(P,{z}).

Using standard techniques, such as in [5], Theorem 2 can be generalized to
any number of marked vertices, with an extra logarithmic multiplication factor.
Nonetheless, the complexity of the corresponding algorithms does not decrease
when the size of M increases, contrary to the random walk search algorithm
(Proposition 1) and the quantum walk detecting algorithm (Theorem 1).

Corollary 1. Assume that P is state-transitive. FIND(G) can be solved with
high probability and quantum complexity of order

log(n) x (S +T x (U+ C)), where T = +/HT(P,{z}), for any z.

2.5 Szegedy’s quantum analogue

Following the main lines of Szegedy [10], we define a quantum analogue of a
reversible Markov chain P. Recall that |0) is an arbitrary reference state in H,
and V(P)|x)|0) = |z)|ps). Set X = H ® span {|0)} = span {|z)|0) : € X}, and
refx =23y |)z] ®[0)X0] — Id, the reflection with respect to X.

Definition 4. The quantum analogue of P is
W(P) = V(P)" - SHIFT - V(P) - ref y,
and its walk space is the subspace spanned by X and W (P)X.



Observe that in [10], the quantum walk is actually defined as (V(P)-W(P)-
V(P)h)2. Moreover, W (P) requires 3 calls to Update(P), and SHIFT always suc-
ceeds when W (P) is restricted to its walk space.

Szegedy proved the following useful lemma which relates the spectral de-
composition of W(P) in its walk space to the one of P. Let |v1), [va),...,|v,)
be the normalized eigenvectors of D(P) with respective eigenvalues 0 < A\ <
A2 < ... < Apo1 < A, = 1. From the definition of D(P), observe that |r) is a
1-eigenvector of D(P), and therefore we set |v,) = |7).

Lemma 1 ([10]). Define By = span {|vi)|0), W (P)|vg)|0)}, for k # n, and
B, = span{|v,)|0)}. Then the walk space of W(P) is @, Bk, where W (P)
admits the following spectral decomposition.:

. g _
— On By, k#n: ,uf =i |l:l7,;t>, where cos v = A\ and w = |vg)|0)
— On By pn = 1,|¥,) = |v,)]0). BL).

Therefore, we will also call |¥,,) = |v,)|0) the stationary distribution of W (P).

3 Finding via Quantum Walk

3.1 Classical interpolation

Our starting state is the stationary superposition |v,,)|0) = |7)|0) of W (P). We
would like to end in its projection onto marked vertices, namely |M)|0), which is
also the stationary superposition of W(P'). However, in many cases, including
the 2D-grid, every iteration of W (P’) on |r)|0) may remain far from |M)|0).

Our approach consists in taking a new random walk, namely an interpolation
between P and P’, This technique is drastically different from the approach
of [14,13], and up to our knowledge new.

Definition 5. The classical interpolation of P and P’ is
P(s)=(1-s)P+sP', 0<s<1.

This interpolation has some similarities with adiabatic evolutions, where similar
interpolations are usually defined for Hamiltonians. Here the interpolation is of
different nature after we take the quantum analogue of P(s). Nonetheless, this
interpolation still makes sense for adiabatic evolutions, leading to an interesting
connection between the hitting time and the adiabatic condition [15].
Note that P(0) = P, P(1) = P’, and P(s) has block structure
Pyy Py
P(s) = ((1 — 8)Pyu (1= 8)Paar + sl> :

Decompose the stationary distribution of P as 7 = (7TU 7TM). Remember that
M= er o is the probability to pick a marked vertex from the stationary
distribution. Then )

(s) = ————
=T
is a stationary distribution of P(s), for s € [0,1]. Moreover one can show that:

((1 — S)’/TU ’/TM>

Fact 1 For s € [0,1), the Markov chain P(s) is ergodic and reversible.



For s € [0,1), let D(s) be the discriminant of P(s). Then D(s) and P(s) are
similar and therefore have the same eigenvalues. Let |v1(s)), |va(s)), ..., |va(s))
be a system of orthonormal eigenvectors of D(s) with respective eigenvalues
0 <Ai(s) S Aa(s) < ..o < Ap1(8) < An(s) = 1: D(s) = > Ak(s)|vk(s) ) vk(s)].
We also define W (s) = W(P(s)).

For s = 1, we extend the above for P(1) = P’. Recall that |v,(s)) = |7(s))
is an eigenvector of D(s) with eigenvalue A, (s) = 1. Observe that |v,(s)) is in
the two-dimensional subspace spanned by |M) and |U).

Fact 2 |v,(s)) = cosO(s)|U) + sinf(s)| M), where 6(s) = arcsin , /%,

Intuitively we want |v,(s)) to have a large overlap on both |U) and |M), so
that the algorithm will proceed in two steps: first, map |U) to |v,(s)), using the
quantum walk (using Update); second, map |v,(s)) to |M) by projecting onto
marked vertices (using Check). Therefore, ideally we want s to satisfy sinf(s) =
cos 0(s) = 1/v/2, namely s = s(pyr), where s(pys) = 1 — 24

1—pn”

3.2 Quantum circuit for W (s)

In the following lemma, we assume to know p,, for every x. This is reasonable
since in practice the probability of self-loops is known. In many cases, it is even
independent of x. For the rest of the paper, we assume that this is not an obstacle
(we can assume that one call to Update(P) allows to learn p,, for any x).

Lemma 2. Assuming that p,. is known for every x, Update(P(s)) can be im-
plemented with complezity C 4+ U.

Proof. From Definition 4, the quantum analogue of P(s) is W(s) = V(P(s))" -
SHIFT-V (P(s))-ref x, where V (P(s)) is a unitary that maps |x)|0) to |z)|p.(s)) =
|2) > yex V/Pay(8)|y). Since SHIFT only depends on G, we just need to explain
how to implement V(P(s)) and its inverse. We now explain how to implement
V(P(s)) using one call to V(P) and 2 calls to Check(M). The algorithm for its
inverse is obtained from the reverse algorithm.

Simulation(P, M, s)
1. Let |z)|0) be the current state
2. Use a fresh qubit (marking register) in state |0) and call Check(M).
3. If the marking register is in state |0), call V/(P): |z)|pzy)|0)
4. Otherwise
(a) Use another fresh qubit in state |0): |z}|0)|1)|0)
(b) Apply a rotation of angle arcsiny/s on the fourth register:
)1 (/T = 5[0) + V3/1))
(c) If the fourth register is |0), apply V(P) on the first two registers,
Otherwise XOR the first two registers:
) (VT = 5lp2) [1)[0) + V3l 1)]1))
(d) If the second register is |z), apply a rotation of angle
—arcsin v/8/((1 — s)pax + s) on the fourth register,
Otherwise do nothing: |x)|p=(s))|1)|0)

5. Call Check(M) to uncompute the marking register.




3.3 Hitting time in s

Following [15], we define the hitting time in s, which intuitively corresponds to
the expected time for P(s) to converge to w(s) from 7(0).

Definition 6. HT(s Z ‘ 1 )\
— Ak

In particular, note that HT( ) = HT(P, M) is the usual hitting time of P with
respect to the set of marked vertices M.
The running time of our quantum search algorithms will depend on HT(s)

for some particular value s € [0, 1]. This can be related to the usual hitting time
HT(P, M) thanks to the following explicit expression for HT(s) (see [15]).

Theorem 3. HT(s) = sin* 6(s) - HT(P, M).

4 Quantum search

4.1 Algorithm with known parameters

Theorem 4 (Phase estimation [16,17]). Let W be a unitary operator on
H and t € N. There exists a quantum circuit PhaseEstimation(W,t) using 2
calls to the controlled operator c—W and O(t?) additional gates, and acting on
eigenstates |Wy) of W as

) = 1) o Z e 5 e m),
. lm 0
where €' is the eigenvalue of W corresponding to |&y,).

By linearity, Theorem 4 implies that PhaseEstimation(W, ) resolves any state
along the eigenstates of W, labelling those states with a second register whose
measurement yields an approximation of the first ¢-bit of the binary decomposi-
tion of oy /(27). Here, we will be mostly interested in the |, )-component, with
corresponding phase ¢,, = 0. In that case, the second register is in the state |0°)
and the estimation is exact.

We define our main search algorithm with parameters 0< p <1 (an approx-
imation of pys) and ¢ € N. Recall that s(p*) =
the algorithm outputs a marked vertex with high probablhty, if there is any.

QuantumWalkSearch(P, M, p*, t)
1. Prepare the state |7)|0)
2. Use a fresh qubit in state |0), apply Check(M) and measure the qubit.
3. If the outcome is |1), measure the first register (in the vertex basis) and output
the outcome.
4. Otherwise, apply PhaseEstimation(W (s(p*)),t) on the registers.
Use a fresh qubit in state |0), apply Check(M) and measure the qubit.
6. If the outcome is |1), measure the first register (in the vertex basis) and output
the outcome.
7. Otherwise, output "No marked vertex”

ot




Theorem 5. Let p*,e; € [0,1] be such that cos? (s )bin 0(s) > 61, where
s = s(p*). LetT>1and62€[ 1] x +/HT(s). Then,
QuantumWalkSearch(P, M, p*, [logT|) outputs a marked vertex wzth proba-
bility at least €1 — ea and complezity of order S+ T x (U + C).

In particular, if |p* —py| < par/3 and T > 10/HT(P, M), then the success
probability is at least 1/20.

Proof. Let t = [log T']. First observe that the complexity analysis is direct since

QuantumWalkSearch(P, M, p*,t) has complexity of order S+ 2¢ x (U+C). We

now assume that we reach Step 4. Otherwise a marked vertex is already found.

Then the current state before Step 4 is |U)|0). Let ag(s) = (U|vg(s)). From now

on, we omit to write the dependence on s explicitly, when there is no ambiguity.
In Step 4, PhaseEstimation(W (s),t) is applied on the state

|UY|0) = ap|vn)]0) + Zakh;k 10) = a,|¥,,) Zak @)+ |[2,)) .
k#n \[ k#n
Theorem 4 shows that PhaseEstimation(W (s),t) maps |¥,) to |¥,)|0) and
maps |¥F) to [TF) (6F]0%) + |niF)), where

12t1 2f 1201

5k 5 Z eTiwrl  and |77k 5 Z Z e -2 eii@kl|m>_
1=0 m=1 1=0
By definition, <0t\77k ) = 0. Then, the probability p to obtain a marked vertex by
measuring the first register is at least the probability to obtain both a marked
vertex in the first register and the state |0!) in the last register (i.e., the phase
is estimated to be 0). Since |¥,) = |v,)|0) and using Fact 2, we see that the
probability p is lower bounded as

1 _ .
p >l el P = 5 S lowl? (6714 155 ) = cos? 05?0 — 3 o o7,
where ITp; = 3", s |2)| is the projection onto marked vertices and 8 = |6, =

|6, |. By hypothesis, we already have cos? 0 sin® 0 > €. Therefore, it remains to
prove that the second term in the RHS is at least —es.
. . s in?(2t71

First, using the definition of d;, we get: 67 = ;Q?Si(nz(wffz)) < 22, . We also

have by definition of HT(s):
o |? o |? Iak\
HT(s) = — = _
I;ﬂlfcosgok Z25111 2(pr/2) — %

which together with the above implies that > kotn || 207 < Z- HQTZ(, ) < ey

We now prove the last part of the theorem. The followmg fact is easy to
prove:

Fact 3 Let e; < 1/4 be such that 2\/e;pyr < p* < 2(1 — \Jer)par. Then,
cos? f(s)sin? f(s) > €.

The conditions of Fact 3 are satisfied with e = 1/10. Set e = 1/20. Using
HT(s) < HT(P, M), one can check that the conditions of the theorem are satis-
fied, and therefore the success probability is at least €7 — ea = 1/20. a



4.2 General case

At first, assume we have a correct approximation p* of pys. In that case, even if
we do not know HT(P, M), we can use the following algorithm, and still find a
marked vertex with an expected cost O(y/HT (P, M)).

QuantumWalkSearch’(P, M, p*, k)
1. Let t =1.
2. Call k times QuantumWalkSearch(P, M, p*,t).
3. If no marked vertex is found, set ¢t <~ ¢t + 1 and go back to step 2.

*

Theorem 6. Given  p such that |p* — par] < pam/3,
QuantumWalkSearch’'(P, M, p*,28) solves FIND(G) with expected quan-
tum complexity of order

log(T) xS+T x (U+C), where T =+/HT(P,M).

Proof. The general idea is to use QuantumWalkSearch(P, M, p*,t) with in-
creasing accuracy of the phase estimation (parameter ¢), until it is high enough
so that the algorithm outputs a marked element with high probability.

Set s = s(p*). Let to to be the integer such that my/2at) < 2t <

262 - -

QHGZ(S), and let T = 2" = O(y/HT(s)). By Theorem 5, for any ¢ >

to, QuantumWalkSearch(P, M,p*,t) outputs a marked vertex with prob-
ability at least 1/20. Then, step 3 is reached without finding any marked
vertex with probability at most p < (1 — 1/20)2® < 1/4. Moreover,
QuantumWalkSearch(P, M, p*,t) has complexity of order S + 2¢ x (U + C).
Let t¢ be the value of ¢ when QuantumWalkSearch’(P, M, p*,28) stops,
that is, the number of iterations of step 2. Then, the expected complexity of
QuantumWalkSearch’ (P, M, p*, 28) is of order N; x S+ Ny x (U + C), where
N is the expectation of ¢7, and Ny is the expectation of 2+4 + ... 4 2!/,
First observe that Ny <ty + Z;’itoﬂpt_to = O(tp). For Ny we get

to fe%s) [e’e)
No <D 2t N pittonot = (2-2% —2) 4200 pt 2",
t=1 t=to+1 t=1

Then using the fact that p < 1/4 we finally obtain

™

Ny <2-200 420 % 27" < 3.2%,
t=1
This concludes the proof since 2'¢ = O(,/HT(s)) and HT(s) < HT(P,M). O

For the general case we get two possible situations, depending on whether
a lower bound pmin on py; and/or an upper bound HTy,.x on HT(P, M) is
given. In particular, for FIND(G)(ZF)
HTmaX = maxM/:|M/|:k HT(P, M/)

, We can set Pmin = minM/:‘M/‘:k yavd and

Theorem 7. Given pmin < par, FIND(G) can be solved with expected quantum
complexity of order



10g(1/pmin) X [log(T) x S+ T x (U+C)|, where T =+/HT(P,M).
Moreover, if HT max > HT (P, M) is also given, then FIND(G) can be solved with
expected quantum complexity of order

log(1/pmin) X [S +T x (U+ C)], where T = \/HT jax.

Proof. We simply prove the first part of the theorem. The second
one is similar using QuantumWalkSearch(P, M,p*,T) instead of
QuantumWalkSearch’ (P, M, p*, 28).

From Theorem 6, it is enough to have a good approximation p* of pys, such
that 3p*/4 < pas < 3p* /2. Moreover, since pmin < pp < 1/2, this condition will
be satisfied for some p* € {(2/3) x 27t : 1 =1,..., [log(1/pmin)]}-

Let us incorporate step 2 of QuantumWalkSearch’(P, M,p*,28) into a
loop on the |log(1/pmin)| possible values of p*. Then the analysis is basically
the same, except that now the complexity of step 2 is multiplied by a factor of
order log(1/pmin)- Instead of looping on all possible values of p*, we can search for
the right value using Grover’s algorithm, following the approach of [18], therefore

reducing the multiplication factor to y/10g(1/pmin)- O

Theorem 8. Given HT . > HT(P, M), FIND(G) can be solved with expected
quantum complexity of order
log(1/pam) x [S+T x (U+C)], where T = /HTyax.

Proof. We now use QuantumWalkSearch(P, M, p*,t) with ¢t = [log vV HT max |,
and perform a dichotomic search for an appropriate value of p*. This dichotomic
search uses backtracking since the branching in the dichotomy is with bounded
error, similarly to the situation in [19].

Initially we set a = 0 and b = 1. Then for testing the cur-
rent value of p* = (a + b)/2, we run a constant number of times
QuantumWalkSearch(P, M, p*,t). If a marked vertex is found we stop. Other-
wise, if PhaseEstimation(W (s(p*)),t) outputs a minority of Os, we set a = p*,
otherwise we set b = p*. The details of the analysis are given in [19]. O

4.3 Application to the 2D-grid

Consider a random walk on the 2D-grid of size /n X y/n, with self-loops. In
this section we consider only the complexity in terms of the number of uses of
Check and SHIFT. The previous best known quantum complexity of FIND(G)(*)
and FIND(G)ZF) was O(y/n(logn)®/?), from Corollary 1. Since the grid is a 5-
regular graphs (4 directions and 1 self-loop), P is symmetric, and therefore the
stationary distribution of P is uniform, and we simply have py; = m/n. Then
Setup is realized with \/n uses of SHIFT, and HT (P, {z}) = ©(nlogn), for any
z. Therefore we get the following corollary of Theorem 5 and Theorem 7, by
upper bounding HT(P, M) = O(nlogn).

Corollary 2. Let G be the 2D-grid of size \/n x \/n, and let k > 1. Then
FIND(G) ) can be solved with expected quantum complexity O(y/nlogn), and
FIND(G)(ZF) with expected quantum complexity O(y/n x logn x log(n/k)).
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