
Probabilistic Abstraction for Model Checking:
an Approach Based on Property Testing

Sophie Laplante
LRI, U. Paris-Sud, France

Richard Lassaigne
Equipe de Logique, U. Paris 7, France

Fréd́eric Magniez
CNRS-LRI, France

Sylvain Peyronnet
LRI, U. Paris-Sud, France

Michel de Rougemont
LRI, U. Paris II, France

Abstract

The goal of model checking is to verify the correctness
of a given program, on all its inputs. The main obstacle, in
many cases, is the intractably large size of the program’s
transition system. Property testing is a randomized method
to verify whether some fixed property holds on individual
inputs, by looking at a small random part of that input.
We join the strengths of both approaches by introducing a
new notion of probabilistic abstraction, and by extending
the framework of model checking to include the use of these
abstractions.

Our abstractions map transition systems associated with
large graphs to small transition systems associated with
small random subgraphs. This reduces the original tran-
sition system to a family of small, even constant-size, tran-
sition systems. We prove that with high probability, “suffi-
ciently” incorrect programs will be rejected (ε-robustness).
We also prove that under a certain condition (exactness),
correct programs will never be rejected (soundness).

Our work applies to programs for graph properties such
as bipartiteness,k-colorability, or any∃∀ first order graph
properties. Our main contribution is to show how to apply
the ideas of property testing to syntactic programs for such
properties. We give a concrete example of an abstraction
for a program for bipartiteness. Finally, we show that the
relaxation of the test alone does not yield transition systems
small enough to use the standard model checking method.
More specifically, we prove, using methods from communi-
cation complexity, that the OBDD size remains exponential
for approximate bipartiteness.

1. Introduction

The verification of programs is a fundamental problem
in computer science, where logic, complexity and combina-
torics have brought new ideas which have been influential

in practical applications. We put two general methods to-
gether: model checking, where one formally proves that a
program is correct for all its inputs, up to a given length,
and property testing, where a randomized algorithm makes
random local checks within a particular input to decide if
this input has a given property. Our approach brings the no-
tions of sampling and approximation from property testing
to model checking.

Model checking is an algorithmic method for deciding
if a program with bounded inputs, modeled as a transition
system, satisfies a specification, expressed as a formula of a
temporal logic such asCTL or CTL∗ [9]. This verification
can be carried out, forCTL, in time linear in both the size
of the transition system and of the specification. ForCTL∗

it is still linear in the size of the transition system, but ex-
ponential in the size of the specification [7]. However, a
program given in a classical programming language, like C,
converted to a transition system, typically undergoes an ex-
ponential blowup in the size of the input. Symbolic model
checking [15, 9] addresses this problem by using ordered
binary decision diagrams [5, 6] (OBDDs, or equivalently
read-once branching programs with an ordering restriction
on the variables), which in many practical cases provide a
compact representation of the transition system. Neverthe-
less, in some cases, such as programs for integer multiplica-
tion or bipartiteness, the OBDD size remains exponential.

The abstraction method [8] provides a solution in some
cases when the OBDD size is intractable. By way of an
abstraction, a large transition system is approximated by a
smaller one, on which the specification can be efficiently
verified. A classical example is multiplication, where mod-
ular arithmetic is the basis of the abstraction. Our goal is
to extend the range of abstractions to programs for a large
family of graphs properties using randomized methods.

In the late eighties the theory ofprogram checkingand
self-testing/correctingwas pioneered by the work of Blum
and Kannan [3], and Blum, Luby and Rubinfeld [4]. This
theory addresses the problem of program correctness by
verifying a coherence property (such as linearity) between

the outputs of the program on randomly selected inputs. Ru-
binfeld and Sudan [16] formulated the notion ofproperty
testingwhich arises in every such tester. One is interested
in deciding whether an object has a global propertyφ by
performing random local checks, or queries, on it. The goal
is to distinguish with sufficient confidence between objects
that satisfyφ and those that areε-far from any objects that
satisfyφ, for some confidence parameterε > 0, and some
distance measure. The surprising result is that whenε is
fixed, this relaxation is sufficient to decide many properties
with a sub-linear or even a constant number of queries.

Goldreich, Goldwasser, and Ron [10, 12, 11] investi-
gated property testing for several graph properties such as
k-colorability. Alon, Fischer, Krivelevich, and Szegedy [2]
showed a general result for all first order graph properties
of type∃∀.

We identify a notion which is implicit in many graph
property testers: a graph propertyφ is ε-reducible toψ if
testingψ on small random subgraphs suffices to distinguish
between graphs which satisfyφ, and those that areε-far
from satisfyingφ. Our goal will be to distinguish with suffi-
cient confidence between programs that accept only graphs
that satisfyφ and those which accept some graph that isε-
far from any graph that satisfiesφ. We introduceprobabilis-
tic abstractionswhich to a program associate small random
transition systems. We show that for probabilistic abstrac-
tions based onε-reducibility this goal can be achieved.

In Section 2 we review basic notions of model check-
ing and property testing, and defineε-reducibility (Defini-
tion 5). In Section 3, we introduce the notion of probabilis-
tic abstraction (Definition 6). To be useful, an abstraction
must preserve the behavior of the program. An abstraction
is sound(Definition 8) if it preserves program correctness.
It is ε-robust(Definition 7) if correctness on the abstraction
implies that the original program does not accept any graph
that isε-far from any graph that satisfiesφ. The latter is
an extension to abstraction of robustness introduced in [16].
We show how to derive a probabilistic abstraction usingε-
reducibility (Section 3.4). We give a generic proof ofε-
robustness for a large class of specifications (Theorem 4).
Moreover, we give a sufficient condition for soundness to
hold (Theorem 5). We establish the applicability of our
method by applying it to a program for bipartiteness. On
the one hand, we show how to construct a robust and sound
abstraction on a specific program for testing bipartiteness
(Corollary 1). On the other hand, in Section 4 we show
that abstraction is necessary, in the sense that the relaxation
of the test alone does not yield OBDDs small enough to
use the standard model checking method. More specifi-
cally, we prove, using methods from communication com-
plexity [13], that the OBDD size remains exponential for
approximate bipartiteness (Theorem 6). This lower bound
may also be of independent interest.

2. Framework and preliminaries

2.1. Programs and transition systems

We will use transition systems to represent all possible
executions of a given program.

Definition 1. A transition systemis a tripleM = 〈S, I,R〉
whereS is theset of states, I ⊆ S is theset of initial states
andR ⊆ S × S is thetransition relation.

To simplify the discussion we only consider programs
which implement boolean functions. They will be written
in a simple language that manipulates bit, bounded integer
and finite array variables, using basic instructions: while
statements, conditionals, assignments and aget instruction
which allows the user to interact with the program. Thein-
put variablescorrespond to the function’s input. An implicit
variableack is set tofalse at the beginning of the program
and is set totrue at the end of the computation. An im-
plicit variableret is defined together with the instruction
RETURNwhereRETURN bsetsret to b andack to true.
To verify properties on the behavior of a program, we must
know values of the variables at certain points of the pro-
gram, calledcontrol points. The control points are at the
beginning of lines labeled by integers. An implicit variable
PCcontains the label value of the last visited control point.
Appendix A gives a sample toy program, with its transition
system and a specification of its behavior, as we define in
the following paragraphs.

Let P be such a program with a finite set of variables
{v1, . . . , vn} including the implicit variablesPC, ack , and
ret . Each variablevi ranges over a (finite) domainDi. We
define thetransition system ofP . A state ofP is ann-tuple
s=(s1, . . . , sn) corresponding to an assignment of variables
v1, . . . , vn at a control point during a computation. Theset
of states ofP is S=D1× . . .×Dn. The initial states ofP
are all the possible states before any computation starts, and
the transition relation ofP is the set of all possible transi-
tions of the program between two control points. When the
program terminates, the transition system loops with an in-
finite sequence of transitions on the final state.

Model checking does not manipulate transition system
directly; it manipulates a logical representation of the tran-
sition system, expressed as a set of relational expressions.
A relational expressionis a formula of the first-order logic
built up from the programming language’s constants and ba-
sic operators (such as+,−, and=). We always assume that
relational expressions are in negation normal form, that is,
negations pushed down to the atomic level.

Definition 2. Let I (resp. R) be a relational expression
on S (resp. S × S). Then(I,R) is a representationof
a transition system〈S, I,R〉 if and only if I = {s ∈ S :
I(s)=true} andR = {(s, s′) ∈ S × S : R(s, s′)=true}.

2.2. Temporal logic and model checking

To express the desired behavior of a transition system
(associated with a program), we use a branching-time tem-
poral logic. All our results will be stated for the tempo-
ral logic CTL∗. We refer the reader to [9] for more de-
tails onCTL∗, but briefly, formulas ofCTL∗ are defined
inductively from a set of atomic propositions and built up
by boolean connectives (¬, ∧, ∨), path quantifiers∀ (“for
all paths”) and∃ (“for some path”), temporal operatorsX
(“next”) and U (“until”). In our framework, theatomic
propositionsare (vi = d) wherevi is a variable which corre-
sponds to thei th coordinate of a state, andd is any constant.

LetM be a transition system with representation(I,R)
and letΘ be aCTL∗ formula. Let us briefly review the
symbolic model checking method [9] forM |= Θ (note
that in model checking, the notationM |= Θ is short-
hand forM, s |= Θ for every initial states). The verifi-
cation proceeds in three steps. This process is fully algo-
rithmic, in contrast with methods which require human as-
sistance. First, OBDD representations [5, 6] are constructed
for R andI. Then, an OBDDcheck(R,Θ) is constructed,
whose entries are states ofS, such that for everys ∈ S,
(check(R,Θ)(s) = true) ⇐⇒ (M, s |= Θ). Finally, the
verification ofM |= Θ is achieved by checking the validity
of the OBDD of

(
¬I ∨ check(R,Θ)

)
.

When the resulting OBDD is polynomial in size, the ver-
ification can be carried out in polynomial time. A typical
example where this is not the case is multiplication, since
any OBDD for multiplication has exponential size [5]. In
the next section, we will see how abstraction can overcome
this problem.

2.3. Abstractions

The use of anabstraction[8] helps in some cases to over-
come the problem of intractably large OBDDs. The objec-
tive of abstractions is to replace the transition system with
an abstract version which is smaller, but sufficient for ver-
ifying the specification on original system. For each vari-
able, a surjection is used to reduce the size of the domain,
and transitions are made between the resulting equivalence
classes, as we define below.

Definition 3. ([8]) Let M = 〈S, I,R〉 be a transition sys-
tem, whereS = D1 × . . .×Dn. Anabstraction forM is a
surjectionh : S → Ŝ, such thath can be decomposed into
an n-tupleh = (h1, . . . , hn), wherehi : Di → D̂i is any
surjection, andD̂i is any set. Theminimal transition sys-
tem ofM with respect toh is the transition system̂Mmin =
〈Ŝ, Îmin, R̂min〉 such thatŜ = D̂1×. . .×D̂n, Îmin = h(I),
and(ŝ, ŝ′) ∈ R̂min ⇐⇒ ∃(s, s′) ∈ S2, (h(s) = ŝ)
∧ (h(s′) = ŝ′) ∧

(
(s, s′) ∈ R

)
.

Note that minimal transition systems and all the notions

that follow are defined with respect to a fixed abstractionh.
When it is not clear from the context, we will specify the ab-
stractionh as a superscript. Whenh is applied to a variable,
it is understood that the correspondinghi is applied.

For every abstractionh, define the operator[·] so that for
any first order formulaφ:

[φ](v̂1, . . . , v̂k) def=
∃v1 . . .∃vk

(∧k
i=1 v̂i = h(vi)

)
∧ φ(v1, . . . , vk).

Then observe that̂Rmin = [R]. In general, it is very dif-
ficult to constructM̂min because the full description of the
transition systemM is needed in order to carry out the con-
struction. Nevertheless, one can produce an approximation
directly from its representation. Let us first define the notion
of approximation.

Definition 4. ([8]) Let M = 〈S, I,R〉 be a transition sys-
tem, and leth : S → Ŝ be an abstraction forM . A tran-
sition system̂M = 〈Ŝ, Î, R̂〉 approximatesM with respect
to h (M vh M̂ for short) if and only ifÎmin ⊆ Î and
R̂min ⊆ R̂.

The approximation operator, which is denoted byA, is
inductively defined on formulas that are in negation nor-
mal form by applying[·] only at the atomic level (including
negations). For every transition systemM = 〈S, I,R〉 with
the representation(I,R), we denote byA(M) the transi-
tion system with the set of stateŝS = h(S) and representa-
tion (A(I),A(R)). Clarke, Grumberg and Long [8] show
that the approximation operatorA gives an approximation
for anyM,h, that is,M vh A(M).

Let M̂ be an approximation ofM . Suppose that̂M |=
Θ. What can we conclude on the concrete modelM? To
answer, let us first consider the following transformations
C andD betweenCTL∗ formulas onM and their approxi-
mation onM̂ . These transformations preserve boolean con-
nectives, path quantifiers, and temporal operators, and act
on atomic propositions as follows:

C(v̂i = d̂i)
def=

∨
di:hi(di)= bdi

(vi = di),

D(vi = di)
def= (v̂i = hi(di)).

Denote by∀CTL∗ and∃CTL∗ the universal fragment
and the existential fragment ofCTL∗. The following the-
orem gives correspondences between concrete models and
their approximations.

Theorem 1 ([8]). LetM = 〈S, I,R〉 be a transition sys-
tem. Leth : S → Ŝ be an abstraction forM , and let
M̂ be such thatM vh M̂ . Let Θ be a ∀CTL∗ for-
mula onM̂ , and Θ′ be a ∃CTL∗ formula onM . Then

M̂ |= Θ =⇒ M |= C(Θ),
and M |= Θ′ =⇒ M̂ |= D(Θ′).

The second implication of the theorem is only implicit
in [8]. Notice that the two statements are not reciprocals
of one another. In both cases, reciprocals can be shown

under certain conditions [8]. The first result validates the
usefulness of abstractions in practical model checking. The
second will be used in our proof of Theorem 4.

2.4. Property testing

We consider only undirected, simple graphs (no multiple
edges or self-loops). For a graphG, we denote byVG its
vertex set, byEG its edge set, and byn the cardinality|VG|
of VG. When there is no ambiguity, we will simply writeV
andE instead ofVG andEG. In the remainder of the paper
we will use the following distance measure: for any two
graphsG andG′ on the samen-vertex set,Dist(G,G′) is
the number of edges on which the graphs disagree, divided
by n2. Our theory and our main results (Theorems 4 and 5)
hold for any distance measure.

Letφ be a graph property. We use the notationG |= φ as
a shorthand to meanG has the propertyφ. An ε-testfor φ is
a probabilistic algorithm that accepts every graph with prop-
erty φ, and rejects with probability2/3 every graph which
has distance more thanε from any graph having the prop-
erty.1 Moreover, anε-test can only access the input graph by
querying whether or not any chosen pair of vertices are ad-
jacent. The propertyφ is calledtestableif for every ε > 0,
there exists anε-test forφwhose total number of queries de-
pends onε, but does not depend on the size of the graph. In
several cases, the proof of testability is based on a reduction
between two properties. The notion ofε-reducibility high-
lights this idea. This notion is central to the design of our
abstractions. Denote byGπ the vertex-induced subgraph
of G on the vertex setπ ⊆ VG. For any graph property
φ and any graphG, we denote byG |= φε the property:

∃H, VH = VG, Dist(G,H) ≤ ε, and H |= φ.
For any vertex setV and integerk ≥ 1, let Π denote the
set of allπ ⊆ V such that|π| = k, where it is understood
thatΠ depends on bothk andV . For convenience, we will
always assume that|V | ≥ k.

Definition 5. Let ε > 0 be a real,k ≥ 1 an integer, and
φ, ψ two graph properties. Thenφ is (ε, k)-reducible toψ
if and only if for every graphG,

G |= φ =⇒ ∀π ∈ Π, Gπ |= ψ,

G 6|= φε =⇒ Pr
π∈Π

[Gπ |= ψ] ≤ 1/3,

whereΠ = {π ⊆ VG : |π| = k}.
We say thatφ is ε-reducible toψ if there exists a constant

k such thatφ is (ε, k)-reducible toψ.
We can recast the testability ofc-colorability and bipar-

titeness [10, 1] in terms ofε-reducibility.

Theorem 2 ([1]). For all c ≥ 3, ε > 0,

1We may also consider two-sided error, and the choice of2/3 as the
success probability is of course arbitrary.

1. c-colorability is (ε,O((c ln c)/ε2))-reducible toc-
colorability;

2. bipartiteness is (ε,O((ln4(1
ε) ln ln(1

ε))/ε))-
reducible to bipartiteness.

Recently, Alon, Fischer, Krivelevich, and Szegedy [2]
showed that all first order graph properties of type∃∀ have
an ε-tester. Their results can also be recast in terms ofε-
reducibility, as follows. Note, however, that in this result,
the functionf is a tower of towers.

Theorem 3 ([2]). There exists a functionf : R+ → R+,
such that every first order graph property of type∃∀ with
t bound variables is(ε,O(f(t + 1/ε)))-reducible to some
graph property.

3. Verification of graph properties

3.1. Context and objectives

In order to extend the framework of model checking to
include the use of probabilistic abstractions, we would like
to prove an analogue of Theorem 1. We prove that with high
probability, “sufficiently” incorrect programs (in a sense to
be defined below) will be rejected (ε-robustness). We also
prove a reciprocal, which states that under a certain con-
dition (exactness), correct programs will never be rejected
(soundness).

A second goal is to extend the framework of model
checking to include the verification of programs purport-
edly deciding graph properties. The standard model check-
ing method is not adapted to programs on inputs that are
first-order structures such as graphs. We overcome this by
dealing with the specification of the program, and the prop-
erty of the graph, separately. The former is handled with
standard tools of model checking. The latter will reduce, as
a result of theε-reduction, to verifying a property on con-
stant size graphs, which can be carried out in constant time.

We give an example of a very simple program for bi-
partiteness, together with an abstraction, and show that the
approximation operatorA results in an exact approxima-
tion of the transition system. Hence, this abstraction can be
used to verify the program. One might ask whether the re-
laxation brought about by the use of property testing is in
itself enough to beat the exponential lower bounds on the
original problem. We will show in Section 4 that this is not
the case, by giving a lower bound on the relaxed version of
bipartiteness.

3.2. Handling first order structures

Consider the following example of a formula we would
like to verify, whereP is a program which is supposed to
compute some boolean function on bounded size graphs,

andφ is a graph property:
The programP accepts only graphs which satisfyφ.

Suppose thatG is an input variable ofP , such thatG is in-
terpreted as a graphG (with respect to some fixed encod-
ing): this will be written asG = G. A states of the tran-
sition systemM = 〈S, I,R〉 of P is a finite sequence of
variables(. . . ,G, . . .). For every graphG, we then define
IG = {s ∈ I : G = G}. Formally, what we would like to
check is the following:

∀G
((
∀s ∈ IG M, s |= ∃

(
(¬ack)U(ack ∧ ret)

))
=⇒ G |= φ

)
.

Note that on the right hand side of the implication,φ is inter-
preted in a structure forG which does not include the tran-
sition system. This is because the standard model checking
algorithms are not suited for programs with inputs that are
first order structures. When there is no ambiguity, we will
writeM,G |= Θ instead of∀s ∈ IG, M, s |= Θ.

More generally, our framework applies to the following
type of formulas:

∀G (M,G |= Θ =⇒ G |= φ), (1)

where the input includes the graphG and may also include
auxiliary data,Θ is aCTL∗ formula, andφ is a graph prop-
erty. Henceforth, we always assume a graphG to be an
input variable in the program. SinceG is a bounded size
graph andφ is a formula expressing a property onG, we can
determine whetherG |= φ using an OBDD. Letsat(φ,G)
be such an OBDD. Then verifying (1) can be achieved

by checking the validity of
((
¬IG ∨ check(R,Θ)

)
=⇒

sat(φ,G)
)

, whereIG = I(G/G) (i.e., all occurrences of

the variableGare substituted forG).
For the graph properties that we consider, such as bi-

partiteness, the OBDDs forG |= φ have exponential size.
As we show in Section 4, the relaxation brought about by
property testing is not sufficient to reduce the OBDD size
of bipartiteness. We useε-reducibility to construct prob-
abilistic abstractions, yielding smaller, even constant-size,
OBDDs. Using such OBDDs, we are able to guarantee that
P approximately decidesφ on all its inputs.

3.3. Probabilistic abstractions

Definition 6. LetM be a transition system. Aprobabilistic
abstraction ofM is a triple (H,M, µ), whereH is a set
of abstractions forM ,M is a functional which maps every
h ∈ H to a transition system̂Mh = M(h) such thatM vh

M̂h, andµ is a probability distribution overH.

Let Θ be aCTL∗ formula onM , andψ be a graph prop-
erty. Then any probabilistic abstraction ofM induces the
following probabilistic test, where we require thatĜh be

interpreted as a graph, and the operatorD (see Section 2.3)
is applied with respect to the chosen abstractionh.

Generic Test
(
(H,M, µ),Θ, ψ

)
1. Choose an elementh ∈ H according toµ.
2. Accept if (and only if)
∀Ĝh (M̂h, Ĝh |= D(Θ) =⇒ Ĝh |= ψ).

The probability that the test rejects will be denoted by
Rej

(
(H,M, µ),Θ, ψ

)
. The distributionµ will be omitted

when it denotes the uniform probability distribution. To
be useful in practice, a probabilistic abstraction should be
bothε-robust (programs are rejected with probability2/3 if
the relaxed specification is false for some input) and sound
(no correct programs are rejected), in which case we say
that it is anε-abstraction. When this is the case, checking
the correctness of a program can be easily done on the ab-
stracted model with high confidence usingGeneric Test.
Fix a confidence parameter0<γ<1, and iterateGeneric
Test O(ln 1/γ) times. If the program is correct,Generic
Test always accepts; and if there is an instance on which
the program is not correct with respect to the relaxed speci-
fication,Generic Testrejects at least once with probability
at least(1−γ).
Definition 7. LetM be a transition system,ε > 0, Θ be
a CTL∗ formula, and letφ, ψ be two graph properties. A
probabilistic abstraction(H,M, µ) of M is ε-robust with
respect to(Θ, φ, ψ) if(
∃G (M,G |= Θ and G 6|= φε)

)
=⇒ Rej

(
(H,M, µ),Θ, ψ

)
≥ 2

3 .

Definition 8. LetM be a transition system,Θ be aCTL∗

formula, and letφ, ψ be two graph properties. A proba-
bilistic abstraction(H,M, µ) of M is sound with respect
to (Θ, φ, ψ) if(
∀G (M,G |= Θ =⇒ G |= φ)

)
=⇒ Rej

(
(H,M, µ),Θ, ψ

)
= 0.

Definition 9. Let M be a transition system,ε > 0, Θ
be a CTL∗ formula, and letφ, ψ be two graph proper-
ties. A probabilistic abstraction(H,M, µ) of M is an ε-
abstraction for(Θ, φ, ψ) if it is bothε-robust and sound with
respect to(Θ, φ, ψ).

3.4. Constructingε-abstractions

We now explain how to constructε-abstractions based
on ε-reducibility. Fix ε > 0, and assume thatφ is (ε, k)-
reducible toψ, for somek ≥ 1. We give a generic proof of
robustness of our probabilistic abstraction, and we isolate
a sufficient condition which implies soundness. Under this
condition, we obtain anε-abstraction. As in Section 2.4, for
any fixedk and any fixed vertex setV , we letΠ be the set of
all subsetsπ of V with |π| = k, and for any graphG with
VG = V , the vertex-induced subgraph on the vertex setπ is

denoted byGπ.
Since we relaxφ with respect toε, we can decompose

our initial specification (1) into the following family of re-
duced specifications:

{∀G (M,G |= Θ =⇒ Gπ |= ψ) : π ∈ Π}.
For everyπ, the corresponding reduced specification can
now be subject to an abstractionhπ. Every correspond-
ing abstracted variablev and constantd will be denoted
respectively bŷvπ and d̂π. We require that the abstrac-
tion of G be exactlyGπ, that is,Ĝπ = Gπ. Let M̂π be
such thatM vhπ

M̂π. We define the (uniform) prob-
abilistic abstraction(H,M) (also denoted by(Π,M)) as
H = {hπ : π ∈ Π} andM(hπ) = M̂π, for everyπ ∈ Π.
This leads to the following test, derived fromGeneric Test
for this family of abstractions:

Graph Test
(
(Π,M),Θ, ψ

)
1. Randomly choose a subset of verticesπ ∈ Π.
2. Accept if (and only if)
∀Ĝπ (M̂π, Ĝπ |= D(Θ) =⇒ Ĝπ |= ψ).

We show that ifΘ is an ∃CTL∗ formula andφ is ε-
reducible toψ, then our probabilistic abstraction isε-robust.
This, together with its conditional reciprocal in Theorem 5,
establishes the validity of the method.

Theorem 4. Let Θ be a∃CTL∗ formula. Letε > 0 be a
real,k ≥ 1 an integer, and letφ be(ε, k)-reducible toψ. Let
(Π,M) be a probabilistic abstraction such that̂Gπ = Gπ,
for everyπ ∈ Π. Then(Π,M) is ε-robust with respect to
(Θ, φ, ψ).

Proof. Let G be such thatM,G |= Θ and G 6|= φε.
By Theorem 1,M̂π, Ĝπ |= D(Θ), for every π ∈ Π.
Moreover, by definition of(ε, k)-reducibility we know that

Prπ∈Π

[
Ĝπ |= ψ

]
≤ 1/3. Therefore,

Prπ∈Π

[
M̂π, Ĝπ |= D(Θ) =⇒ Ĝπ |= ψ

]
≤ 1

3 .

We conclude by observing that1−Rej(M) (in Graph
Test) is bounded above by the term on the left hand side of
the inequality.

Having shown that the abstraction isε-robust, we give a
sufficient condition for soundness: exactness.

Definition 10. LetM be a transition system,Θ be aCTL∗

formula,h be an abstraction, and let̂M be such thatM vh

M̂ . Then the approximation̂M is exact with respect toΘ if
and only if for every grapĥG:
M̂, Ĝ |= D(Θ) =⇒ ∃H , Ĥ = Ĝ and M,H |= Θ.
Theorem 5. Let Θ be a∃CTL∗ formula. Letε > 0 be a
real,k ≥ 1 an integer, and letφ be(ε, k)-reducible toψ. Let
(Π,M) be a probabilistic abstraction such that̂Gπ = Gπ

andM̂π is an exact approximation with respect toΘ, for ev-
eryπ ∈ Π. Then(Π,M) is sound with respect to(Θ, φ, ψ).

Proof. Fix π ∈ Π. Let Ĝπ be ak-vertex graph such that
M̂π, Ĝπ |= D(Θ). From the exactness of̂Mπ, there exists
a graphH such thatĤπ = Ĝπ andM,H |= Θ. Therefore,
from the hypotheses we getH |= φ. The(ε, k)-reducibility
of φ to ψ implies thatHπ |= ψ, that is,Ĝπ |= ψ. Thus, for
all π ∈ Π andĜπ: M̂π, Ĝπ |= D(Θ) =⇒ Ĝπ |= ψ.

3.5. An ε-abstraction for bipartiteness

In this section, we give a short program for bipartiteness,
and anε-abstraction for this program. We consider a func-
tion which decides, given a graphG and a coloringColor
(entered by the user), ifColor is a bipartition forG. The
graphG is represented in the program in the natural way by
the upper triangular entries of a boolean matrix variableG
andColor by a boolean array variableColor .
FUNCTION CHECK-PARTITION

CONSTANT INTEGER n=10000
INPUT G : ARRAY[n,n] of BOOLEAN
VAR Color : ARRAY[n] of BOOLEAN
VAR u,v : INTEGER 1..n+1

1: get(Color)
2: u=2
3: WHILE u<=n DO {

v=1
4: WHILE v<=u-1 DO {
5: IF G[u,v]&&(Color[u]=Color[v]) RETURN false

v=v+1 }
u=u+1 }

6: RETURN true

We want to verify that, for every inputG, if there exists
an input value forColor for which the program accepts,
thenGrepresents a bipartite graph. More formally, we want
to verify the following property:

∀G
(
M,G |= ∃

(
(¬ack)U(ack ∧ ret)

)
=⇒ G is bipartite

)
. (2)

Note that ∃ ranges over all the possible initial values
of Color which the user can enter with the instruction
get(Color) . For eachπ we define the abstraction which
mapsG to the subgraphGπ, Color to the coloring on the
subset of vertices induced byπ, andu, v refer to the ver-
tices as follows:̂uπ is u if u ∈ π, and ismin{w : ∀t (w ≤
t ≤ u =⇒ t 6∈ π)} otherwise.

For this abstraction, the following lemma holds.

Lemma 1. For everyπ ∈ Π, Aπ(M) is exact with respect
to the∃CTL∗ formula of Equation(2).

Proof. The proof is in two parts. First, we will prove that
the abstraction which mapsG 7→ Gπ, and preserves the
other variables, is sound for everyπ. This is the most dif-
ficult part. Then we show how it can be extended to the
complete abstraction.

For convenience, we use a compact representation of
relational expressions representing the transition relation.

Each line corresponds to a transition between two control
points. The transition relation is represented by the disjunc-
tion of these lines. We use ‘i 7→ j :’ as an abbreviation
for (PC = i) ∧ (PC′ = j). On any given line, for any pair
(v , v ′) of program variables, ifv ′ does not occur in the re-
lational expression, then the atomic proposition(v ′ = v)
is understood, but omitted from the compact form. Further-
more, the expression(v ′ = ∗) is used when the value ofv ′

is unspecified. This typically occurs after aget instruction,
and corresponds to a nondeterministic transition.

The initial states of the transition system of
CHECK-PARTITION are (ack =false) ∧ (PC=1).
The relational expression of the transition system of
CHECK-PARTITION is given in compact form by the
disjunction of the following boolean formulas.
1 7→ 2 : (Color’ =∗)
2 7→ 3 : (u’ =2)
3 7→ 4 : (u ≤ n) ∧ (v’ =1)
3 7→ 6 : (u=n + 1)
4 7→ 3 : (v=u) ∧ (u’ =u + 1)
4 7→ 5 : (v ≤ u − 1)
5 7→ 5 : G(u,v) ∧ (Color[u] =Color[v])
∧ (ack’ =true) ∧ (ret’ =false)
5 7→ 4 : ((¬G(u,v)) ∨ (Color[u] 6=Color[v]))
∧ (v’ =v + 1)
6 7→ 6 : (ack’ =true) ∧ (ret’ =true)

We first suppose that onlyG is abstracted. Then the op-
eratorA transforms only the relational expression part of
transitions5 7→ 5 and5 7→ 4 into:
5 π7→ 5 :

(
∃H (Hπ=Gπ) ∧H(u, v)

)
∧ (ack’ =true)

∧ (Color[u] =Color[v]) ∧ (ret’ =false)
5 π7→ 4 :

(
∃H (Hπ=Gπ) ∧ ((¬H(u, v))

∨ (Color[u] 6=Color[v]))
)
∧ (v’ =v + 1)

Fix somen-vertex graphG = (V,E). Suppose there is
an accepting path in the abstracted transition system when
the graph input is set toG, that is, the program variable
G takes the valueG. Along the path, when the program
counter is 5, there always exists a graphH such thatHπ =
Gπ, so the system makes the transition5 π7→ 4. LetG0 =
(V,E0) be then-vertex graph whose vertices are defined by

(u, v) ∈ E0 ⇐⇒ (u, v) ∈ E andu, v ∈ π.
Observe that the transition is also made when the input is
G0. Thus there is an accepting path in the concrete system
when the input graph isG0.

In the general case, consider an accepting path in the
completely abstracted transition system. Again, the ab-
stracted transition5 π7→ 4 is still made when the input is
G0. Then observe that only the indices ofColor in π are
relevant for this transition. Therefore, one can fix any value

Color , such thatĈolor
π

= Ĉolor
π
. Thus the path of the

concrete model which starts from the initial stateG = G0

andColor = Color , is again an accepting path.

Since the size ofπ is fixed, our abstraction induces a con-
stant size OBDD. By Lemma 1, Theorems 2, 4, and 5, we
know that our probabilistic abstraction is anε-abstraction,
soGraph Test can be used for checking the validity of (2).

Corollary 1. Let ε > 0. Using previous probabilistic ab-
straction,Graph Test onCHECK-PARTITIONsatisfies:

1. If CHECK-PARTITION satisfies specification(2),
Graph Test always accepts;

2. If there exists a graphG which has distance more
thanε from any bipartite graph, but which is accepted
by CHECK-PARTITION for some coloringColor ,
thenGraph Test rejects with probability at least2/3;

3. The time complexity ofGraph Test is exponential in
poly(1/ε) and does not depend onn, the input size.

4. Lower bound for approximate bipartiteness

In this section, we show how the communication com-
plexity lower bound of Hajnal, Maass, and Turán [13] can
be extended to yield a lower bound on OBDD size for the
relaxed version of bipartiteness. This establishes that in the
case of bipartiteness, reducing the size of the OBDD cannot
be achieved solely by relaxing the exactness of the result. A
lower bound for the relaxed version of connectivity can also
be obtained using similar arguments.

A graphG = (V,E) is k-bipartite if there is a set of
edgesF ⊆ E with |F | ≤ k such thatG′ = (V,E \ F) is
bipartite. In particular, a graph is0-bipartite if and only if
it is bipartite. Thek-bipartiteness is the following partially
defined problem.

Definition 11 (k-bipartiteness). Let k ∈ N . The k-
bipartiteness problem is a partial functionf on graphsG:

f(G) =

{
1 if G is bipartite,

0 if G is notk-bipartite.

An OBDD solves the k-bipartiteness problem forn-
vertex graphs if its output agrees withf wheneverf is de-
fined. The rest of this section is devoted to proving the fol-
lowing theorem.

Theorem 6. Any OBDD solving the k-
bipartiteness problem forn-vertex graphs has width
2Ω((n−2

√
k+1) log (n−2

√
k+1)). Whenk = εn2, the width is

2Ω((1−2
√

ε)n log((1−2
√

ε)n)).

4.1. Preliminaries

We denote byS∪̇T the disjoint union of sets S and T. A
partition of a finite setS is a (finite) set of non-empty parts
S1, S2, ... whose disjoint unionS1∪̇S2∪̇ · · · equalsS. The
number of partitions of a setS containingn elements isBn,
thenth Bell number, whereBn is 2Ω(n log n).

Two kinds of partitions will be considered: partitions of
a subset of vertices in the HMT graphs (defined below), and

partitions of the edge variables of the graph (also explained
below). To avoid confusion we call the latter a coloring
instead of a partition, and use the lettersR (red variables
given to Player I) andY (yellow variables given to Player II)
to denote the color sets. In the remainder, we only consider
colorings which divide the edge variables into two sets of
equal size (plus or minus one).

Let f : {0, 1}N → {0, 1} be a boolean function which
two players wish to compute. LetR∪̇Y be a coloring of
theN input variables. Player I’s inputx corresponds to
the variables ofR, Player II’s inputy corresponds to the
variables ofY . In a one-way communication protocol for
f , Player I sends one message to Player II, who outputs the
value off(x, y), where it is understood that the variables are
reordered appropriately according toR, Y . Thecommuni-
cationκR:Y

→ (P;x, y) incurred by a one way-communication
protocolP on inputx, y for the coloringR, Y is the number
of bits sent by Player I.

For a fixed input lengthN , theone-way communication
complexity off for coloringR, Y is denotedκR:Y

→ (f), and
is the minimum ofmaxx,y{κR:Y

→ (P;x, y)}, over all one-
way communication protocolsP for f . Theone-way com-
munication complexity for the best-case coloring of vari-
ablesis κbest

→ (f) = minR∪̇Y {κR:Y
→ (f)}.

Let f be a boolean function whose variables are colored
by R, Y . The communication matrix associated withf is
the matrix representationMf of f , that isMf,x,y = f(x, y).
The lower bound on the width of OBDDs that computef is
related to the communication matrix off by the following
proposition. We state the result for one-way communication
complexity, which can be easily derived from [14].

Proposition 1 (follows from [14, Page 144]).
1. If f has an OBDD of width at mostw, then
κbest
→ (f) ≤ logw.

2. Let Mf be the communication matrix associated
with the boolean functionf whose variables are col-
ored byR, Y . ThenκR:Y

→ (f) ≥ log(l), wherel is the
number of distinct lines inMf .

Since we will study partially defined problems the com-
munication matrices we consider will have entries0 and1
when the problem is defined, and? when the computation
can output either0 or 1. Therefore, when we prove that
there is a large number of distinct lines, we only consider
two lines to be distinct if on some column, one line con-
tains a0 and the other contains a1.

4.2. Thek-partition problem

We introduce thek-partition problem. In Section 4.3
we will show that its communication matrix appears as a
sub-matrix of thek-bipartiteness communication matrix.
Hence, it will suffice to show a lower bound for thek-
partition problem.

Figure 1. Three examples of Hk
P graphs.

We denote by[m] the set{1, . . . ,m}. In the rest of the
paper, for every integerk ≥ 1, we fix in some canonical way
a setEk of k+1 bipartite edges from vertices of[2d

√
k+1e]

in such a way that these new edges only go between even
and odd vertices.

Definition 12 (Figure 1). Letk,m ≥ 0 be two integers. For
any partitionP of [m], Hk

P denotes the multigraph (where
multiple edges are allowed) such that

1. vertices are the parts ofP ,

2. there is an edge inHk
P between two partsQ,Q′ ∈ P

if and only if some edgee ∈ Ek “crosses over”Q,Q′,
that is,e = {a, b}, with a ∈ Q andb ∈ Q′.

These graphs lead to the following partially defined
problem.

Definition 13 (k-partition problem). Letk,m ≥ 0 be two
integers. Thek-partition problem is a partial functiong on
partitionsP of [m]:

g(P) =

1
if Hk(P) containsk+1 edges

and no odd cycle,

0 if Hk(P) is empty.

For any two partitionsP, P ′ of a setX, P∨P ′ is the
finest partition which is refined both byP andP ′. For the
k-partition problem, the input of Player I is (an encoding of)
some partitionP , and the input of Player II is (an encoding
of) a partitionP ′. The goal of the communication game is
to computeg(P ∨ P ′). The corresponding communication
matrix isM , whose rows and columns are labeled by par-
titionsP andP ′ of [m]. The number of rows and columns
isBm, themth Bell number (Bm = 2Ω(m log m)). We show
thatM has an exponential number of distinct lines.

Lemma 2. The communication matrix for thek-partition
problem has2Ω((m−2

√
k+1) log (m−2

√
k+1)) distinct lines.

Proof. Let P be a partition of the setS. The expression
P + l denotes the partition of{x+ l|x ∈ S} obtained from
P by addingl to each element in all parts ofP .

We show that the partitions of the form
{{1}, . . . , {2

√
k+1}}∪(P ∗+2

√
k+1), where P ∗ range

over the partitions of[m−2
√
k+1], correspond to a large

set of pairwise distinct lines inM .
ConsiderP1={{1}, . . . , {2

√
k+1}} ∪ (P ∗1 + 2

√
k+1)

andP2={{1}, . . . , {2
√
k+1}} ∪ (P ∗2 + 2

√
k+1) two such

distinct partitions. SinceP1 6=P2, it must be the case that
P ∗1 6=P ∗2 . Therefore, there must be some pairx, y such that
(without loss of generality)x, y are in the same part ofP ∗1 ,
but are in different parts inP ∗2 . We will use the notation
Qx,y to mean the part ofP ∗1 that containsx andy, andQx

(resp.Qy) to mean the part ofP ∗2 that containsx (resp.y).
We exhibit a partitionP ′ such thatMP1,P ′ differs from

MP2,P ′ . Recall that the new edgesEk connect only odd
vertices to even vertices. LetEVENk = ∪1≤i<

√
k+1{2i}

andODDk = ∪1≤i<
√

k+1{2i−1}. LetP ′ contain the parts
EVENk∪{x},ODDk∪{y} plus all the remaining vertices
in singletons. Then,
P1∨P ′=EVEN∪ODD∪Qx,y, {2

√
k+1+1, ...,m}\Qx,y

P2 ∨ P ′=EVEN ∪Qx,ODD ∪Qy, {2
√
k+1+1, ...,m} \

(Qx ∪Qy).
Now Hk

P1∨P ′ contains no edges, because all the new
edges go between odd and even vertices. Likewise,Hk

P2∨P ′

contains a single edge of multiplicityk+1. Therefore the
lines indexed byP1 andP2 are different at columnP ′.

The number of distinct lines must be at least the number
of partitionsP ∗ of [m− 2

√
k+1]. This concludes the proof

of the lemma.

4.3. Reduction tok-bipartiteness

In this section, we show that the communication matrix
associated with thek-partition problem appears as a sub-
matrix of the communication matrix of thek-bipartiteness
problem (Lemma 4).

For thek-bipartiteness problem, the variables in the com-
munication problem are pairs of vertices: the variable is 1
whenever the corresponding edge is in the graph, and 0 oth-
erwise. Each player is given half of the variables partitioned
according to some coloring. The input of the communica-
tion protocol is the graph formed by the union of edges from
the players’ variables.

Hajnal, Maass and Turán [13] give a reduction from bi-
partiteness to a property on partitions. We show how this
reduction can be extended to show a reduction fromk-
bipartiteness to thek-partition problem. We re-use the main
technical component of [13], namely, HMT graphs.

4.3.1. HMT graphs

The construction of [13] produces a large family of graphs
(parameterized byP, P ′) that can be embedded into a col-
oring of the edge variables, in such a way that Player I’s
(red) edges represent a partitionP of a set of vertices of
sizeΩ(n), and Player II’s (yellow) edges represent a parti-
tion P ′ of the same set.

Definition 14 ([13], Figure 2). Let n ≥ 1 be an integer,
andA∪̇B∪̇C ⊆ [n] with |B| = Ω(n). Let {GP,P ′} be

Figure 2. An HMT graph: Q ∈ P , Q′, Q′′ ∈ P ′.

a graph family with vertices[n], whereP, P ′ ranges over
the pairs of partitions ofB. {GP,P ′} is an HMT graph
family on A,B,C for a coloringR, Y if for any pair of
verticesx, y ∈ B included in some part ofP (resp.P ′), the
only edges of the graphGP,P ′ are vertex-disjoint red (resp.
yellow) paths inA ∪ {x, y} (resp.C ∪ {x, y}) of length4.

Lemma 3 ([13]). Fix any coloring of the edge variable of
graphs with vertices[n], with half the edges colored red and
half the edges colored yellow. Then ifn is large enough,
there exists setsA,B,C such that there is an HMT graph
family onA,B,C for this coloring of the edge variables.

4.3.2. Bipartiteness and partitions

For a coloringR, Y of the edge variables, we show how
to construct a large family of instances of thek-partition
problem from a family of HMT graphs for this coloring.

Proposition 2 ([13]). Let{GP,P ′} be an HMT graph family
on A,B,C for a coloringR, Y . Let v1, v2 ∈ B be two
distinct vertices. For any pair of partitionsP, P ′ of B, let
G0

P,P ′ beGP,P ′ to which the single edge{v1, v2} has been
added. ThenG0

P,P ′ is bipartite if and only if{v1, v2} is not
included in any partQ ∈ P∨P ′.

A key observation is that the connected components of
an HMT graphGP,P ′ correspond exactly to the parts of
P∨P ′. The proposition follows because the addition of
an edge within a partQ ∈ P∨P ′ creates an odd cycle in
the graph, and furthermore no cycle is created if the edge
“crosses over” two parts ofP∨P ′.

Without loss of generality, we now renumber the vertices
so thatB = {1, 2, . . .}. For thek-bipartiteness problem,
instead of adding a single, fixed, edge ofB × B to each
graphGP,P ′ , we add the fixed bipartite setEk of k+1 edges
(see Section 4.2). We call the resulting graphGk

P,P ′ .
There are two ways in which an odd cycle can be created

inGP,P ′ when adding thek+1 new edges: either by adding
an edge within a part ofP∨P ′, or by creating an odd cycle
in Hk

P∨P ′ (see Definition 12).

Lemma 4. Let {Gk
P,P ′} be an HMT graph family on

A,B,C for a coloringR, Y .
1. Gk

P,P ′ is bipartite if and only ifHk
P∨P ′ has k+1

edges and no odd cycle.
2. Gk

P,P ′ is notk-bipartite if and only ifHk
P∨P ′ has no

edges.

Proof. For the implication of Part 1, we show the contra-
positive. First, ifHk

P∨P ′ has fewer thank+1 edges, then
some edge inEk lies within a part ofP∨P ′. By definition
ofGk

P,P ′ , this creates a cycle of length5. Second, ifHk
P∨P ′

contains an odd cycle of lengtht, then this forms a cycle
in Gk

P,P ′ of lengtht plus a multiple of 4. For the converse,
notice that the new edges form a bipartite subgraph so they
cannot form an odd cycle on their own.

For the implication of Part 2, we show the contraposi-
tive. Assume that some edgee ∈ Ek gave rise to an edge
in Hk

P∨P ′ . Removingk edges suffices to makeGk
P,P ′ bi-

partite, because it is enough to remove all the new edges
excepte. For the converse, assumeHk

P∨P ′ is empty. By
definition the paths inGk

P,P ′ are vertex disjoint. Further-
more, thek+1 new edges form a bipartite graph. Therefore
k+1 edges must be removed fromGk

P,P ′ to remove thek+1
odd cycles.

Lemma 4 establishes that thek-partition communication
matrix appears as a sub-matrix of thek-bipartiteness
communication matrix. Theorem 6 therefore follows, by
Proposition 1, from the lower bound on the number of
distinct lines, proven in Lemma 2.

Acknowledgments. We would like to thank Lokam V.
Satyanarayana for discussions on the proof in Section 4, and
Miklos Santha for many comments.

References

[1] N. Alon and M. Krivelevich. Testingk-colorability. To appear
in SIAM Journal on Discrete Mathematics.

[2] N. Alon, E. Fischer, M. Krivelevich, and M. Szegedy. Ef-
ficient testing of large graphs.Combinatorica, 20:451–476,
2000.

[3] M. Blum and S. Kannan. Designing programs that check their
work. Journal of the ACM, 42(1):269–291, 1995.

[4] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting
with applications to numerical problems.Journal of Com-
puter and System Sciences, 47(3):549–595, 1993.

[5] R. Bryant. Graph-based algorithms for boolean function ma-
nipulation. IEEE Transactions on Computers, C-35(8):677–
691, 1986.

[6] R. Bryant. Symbolic Boolean Manipulation with Ordered
Binary Decision Diagrams. ACM Computing Surveys,
24(3):293–318,1992.

[7] E. Clarke, E. Emerson, and A. Sistla. Automatic verification
of finite-state concurrent systems using temporal logic speci-
fications.ACM Transactions on Programming Languages and
Systems, 8(2):244–263, 1986.

[8] E. Clarke, O. Grumberg, and D. Long. Model checking and
abstraction.ACM Transactions on Programming Languages
and Systems, 16(5):1512–1542, 1994.

[9] E. Clarke, O. Grumberg, and D. Peled.Model Checking. MIT
Press, 1999.

[10] O. Goldreich, S. Goldwasser, and D. Ron. Property testing
and its connection to learning and approximation.Journal of
the ACM, 45(4):653–750, 1998.

[11] O. Goldreich and D. Ron. A sublinear bipartiteness tester for
bounded degree graphs.Combinatorica19:335–373, 1999.

[12] O. Goldreich and D. Ron. Property testing in bounded degree
graphs.Algorithmica32(2):302–343, 2002.

[13] A. Hajnal, W. Maass, and G. Turán. On the communica-
tion complexity of graph properties.Proceedings of the 20th
ACM Symposium on the Theory of Computing, pages 186–
191, 1988.

[14] E. Kushilevitz and N. Nisan.Communication Complexity.
Cambridge University Press, 1997.

[15] K. McMillan. Symbolic Model Checking. Kluwer Academic
Publishers, 1993.

[16] R. Rubinfeld and M. Sudan. Robust characterizations of
polynomials with applications to program testing.SIAM Jour-
nal on Computing, 25(2):23–32, 1996.

[17] E. Szemeŕedi. Regular partitions of graphs. IńEditions
du CNRS,Problèmes combinatoires et théorie des graphes,
pages 399–401, 1978.

A. Programs and transitions systems

FUNCTION GUESS
INPUT a : BOOLEAN
VAR b : BOOLEAN

1: get(b)
2: IF (a=b) RETURN true

ELSE RETURN false

The program variables area andb with the implicit vari-
ablesPC, ack , andret . A state of the program is a5-tuple
(PC,ack , ret ,a,b). A transition of the program is a pair
of states

(
(PC,ack , ret ,a,b), (PC′,ack ′, ret ′,a′,b′)

)
.

The relational expression for the initial states of the program
is (PC= 1)∧ (ack = false). The relational expression for
the transition relation of the program is defined as the dis-
junction of the following three formulas:
• (PC= 1) ∧ (PC′ = 2) ∧ (ack ′ = ack)
∧ (ret ′ = ret) ∧ (a′ = a),
• (PC= 2) ∧ (PC′ = 2) ∧ (ack ′ = true)
∧ (ret ′ = true) ∧ (a = b) ∧ (a′ = a) ∧ (b′ = b),
• (PC= 2) ∧ (PC′ = 2) ∧ (ack ′ = true)
∧ (ret ′ = false) ∧ (a 6= b) ∧ (a′ = a) ∧ (b′ = b).

Due to user interaction,b′ does not appear in the first
formula, and the first transition is therefore nondeterminis-
tic. The following CTL∗ formula is a specification of the
behavior of the programGUESS:

∀
(
¬ack U ack ∧

((
ret ∧(a=b)

)
∨

(
¬ret ∧(a 6=b)

)))

