Probabilistic Abstraction for Model Checking:
an Approach Based on Property Testing

Sophie Laplante Richard Lassaigne Frederic Magniez
LRI, U. Paris-Sud, France Equipe de Logique, U. Paris 7, France CNRS-LRI, France

Sylvain Peyronnet Michel de Rougemont
LRI, U. Paris-Sud, France LRI, U. Paris Il, France

Abstract in practical applications. We put two general methods to-
gether: model checking, where one formally proves that a
The goal of model checking is to verify the correctness program is correct for all its inputs, up to a given length,
of a given program, on all its inputs. The main obstacle, in and property testing, where a randomized algorithm makes
many cases, is the intractably large size of the program’s random local checks within a particular input to decide if
transition system. Property testing is a randomized methodthis input has a given property. Our approach brings the no-
to verify whether some fixed property holds on individual tions of sampling and approximation from property testing
inputs, by looking at a small random part of that input. to model checking.
We join the strengths of both approaches by introducing a Model checking is an algorithmic method for deciding
new notion of probabilistic abstraction, and by extending if a program with bounded inputs, modeled as a transition
the framework of model checking to include the use of thesesystem, satisfies a specification, expressed as a formula of a
abstractions. temporal logic such a8TL or CTL* [9]. This verification
Our abstractions map transition systems associated with can be carried out, fo£ TL, in time linear in both the size
large graphs to small transition systems associated with of the transition system and of the specification. €arL"
small random subgraphs. This reduces the original tran- it is still linear in the size of the transition system, but ex-
sition system to a family of small, even constant-size, tran-ponential in the size of the specification [7]. However, a
sition systems. We prove that with high probability, “suffi- program given in a classical programming language, like C,
ciently” incorrect programs will be rejected{robustness). converted to a transition system, typically undergoes an ex-
We also prove that under a certain condition (exactness), ponential blowup in the size of the input. Symbolic model
correct programs will never be rejected (soundness). checking [15, 9] addresses this problem by using ordered
Our work applies to programs for graph properties such binary decision diagrams [5, 6] (OBDDs, or equivalently
as bipartitenessk-colorability, or any3V first order graph read-once branching programs with an ordering restriction
properties. Our main contribution is to show how to apply on the variables), which in many practical cases provide a
the ideas of property testing to syntactic programs for such compact representation of the transition system. Neverthe-
properties. We give a concrete example of an abstractionless, in some cases, such as programs for integer multiplica-
for a program for bipartiteness. Finally, we show that the tion or bipartiteness, the OBDD size remains exponential.
relaxation of the test alone does not yield transition systems The abstraction method [8] provides a solution in some
small enough to use the standard model checking methodcases when the OBDD size is intractable. By way of an
More specifically, we prove, using methods from communi- abstraction, a large transition system is approximated by a
cation complexity, that the OBDD size remains exponential smaller one, on which the specification can be efficiently
for approximate bipartiteness. verified. A classical example is multiplication, where mod-
ular arithmetic is the basis of the abstraction. Our goal is
to extend the range of abstractions to programs for a large
family of graphs properties using randomized methods.
In the late eighties the theory pfogram checkingand
self-testing/correctingvas pioneered by the work of Blum
The verification of programs is a fundamental problem and Kannan [3], and Blum, Luby and Rubinfeld [4]. This
in computer science, where logic, complexity and combina- theory addresses the problem of program correctness by
torics have brought new ideas which have been influential verifying a coherence property (such as linearity) between

1. Introduction

the outputs of the program on randomly selected inputs. Ru-2. Framework and preliminaries

binfeld and Sudan [16] formulated the notion rbperty

_testing_w_hich arises in every such tester. One is interested 2.1. Programs and transition systems

in deciding whether an object has a global propertigy

performing random local checks, or queries, on it. The goal) N)

is to distinguish with sufficient confidence between objects W& Will use transition systems to represent all possible
that satisfy¢ and those that arefar from any objects that ~€*€cutions of a given program.

satisfy ¢, for some confidence parameter- 0, and some Definition 1. Atransition systenis a triple M = (S, I, R)
distance measure. The surprising result is that whén whereS is theset of states/ C S is theset of initial states
fixed, this relaxation is sufficient to decide many properties andR C S x S'is thetransition relation

with a sub-linear or even a constant number of queries. To S|mp||fy the discussion we 0n|y consider programs
Goldreich, Goldwasser, and Ron [10, 12, 11] investi- which implement boolean functions. They will be written
gated property testing for several graph properties such asn a simple language that manipulates bit, bounded integer
k-colorability. Alon, Fischer, Krivelevich, and Szegedy [2] and finite array variables, using basic instructions: while
showed a general result for all first order graph properties statements, conditionals, assignments agettainstruction

of type3v. . S which allows the user to interact with the program. Tie
We identify a notion which is implicit in many graph put variablecorrespond to the function’s input. Animplicit
property testers: a graph propertyis e-reducible toy if variableack is set tofalse at the beginning of the program

testing» on small random subgraphs suffices to distinguish and is set totrue at the end of the computation. An im-
between graphs which satisfy, and those that are-far plicit variableret is defined together with the instruction
from satisfyingp. Our goal will be to distinguish with suffi- RETURNvhereRETURN ksetsret tob andack to true.
cient confidence between programs that accept only graphsro verify properties on the behavior of a program, we must
that satisfy$ and those which accept some graph thatis know values of the variables at certain points of the pro-
far from any graph that satisfies We introduceprobabilis- gram), calledcontrol points The control points are at the
tic abstractionswhich to a program associate small random peginning of lines labeled by integers. An implicit variable
transition systems. We show that for probabilistic abstrac- pCcontains the label value of the last visited control point.
tions based oa-reducibility this goal can be achieved. Appendix A gives a sample toy program, with its transition
In Section 2 we review basic notions of model check- system and a specification of its behavior, as we define in
ing and property testing, and defingeducibility (Defini- the following paragraphs.
tion 5). In Section 3, we introduce the notion of probabilis- Let P be such a program with a finite set of variables
tic abstraction Definition 6). To be useful, an abstraction {v1,...,v,} including the implicit variable®C, ack , and
must preserve the behavior of the program. An abstractionret . Each variable; ranges over a (finite) domaii;. We
is sound(Definition 8) if it preserves program correctness. define theransition system oP. A state ofP is ann-tuple
Itis e-robust(Definition 7) if correctness on the abstraction s—(s,, ..., s,) corresponding to an assignment of variables
implies that the original program does not accept any graphy, ... v, at a control point during a computation. Thet
that ise-far from any graph that satisfies The latter is of states ofP is S=D; x ... xD,,. Theinitial states ofP
an extension to abstraction of robustness introduced in [16].are all the possib|e states before any Computation starts, and
We show how to derive a probabilistic abstraction using the transition relation ofP is the set of all possible transi-
reducibility (Section 3.4). We give a generic proofof tjons of the program between two control points. When the

robustness for a large class of specificatiofiseprem 4). program terminates, the transition system loops with an in-
Moreover, we give a sufficient condition for soundness to finjte sequence of transitions on the final state.
hold (Theorem 5. We establish the applicability of our Model checking does not manipulate transition system

method by applying it to a program for bipartiteness. On directly; it manipulates a logical representation of the tran-
the one hand, we show how to construct a robust and soundition system, expressed as a set of relational expressions.
abstraction on a specific program for testing bipartitenessa relational expressioiis a formula of the first-order logic
(Corollary 1). On the other hand, in Section 4 we show pyilt up from the programming language’s constants and ba-
that abstraction is necessary, in the sense that the relaxatiosjc operators (such as, —, and=). We always assume that

of the test alone does not yield OBDDs small enough to relational expressions are in negation normal form, that is,
use the standard model checking method. More specifi-negations pushed down to the atomic level.

caIIy_, We prove, using method.s from cc.)mmun|cat|or'1 COM" pefinition 2. Let T (resp. R) be a relational expression
plexity [13], that the OBDD size remains exponential for on S (resp. S x S). Then(Z,R) is a representatiorf
approximate bipartitenes3ijeorem 6). This lower bound a transition systenis, 7, R) if r’:md onlyifl = {s € S :

may also be of independent interest. T(s)=true} andR = {(5,5) € S x S : R(s, ') =true}.

2.2. Temporal logic and model checking

that follow are defined with respect to a fixed abstraction
When it is not clear from the context, we will specify the ab-

To express the desired behavior of a transition systemstractionk as a superscript. Whehnis applied to a variable,

(associated with a program), we use a branching-time tem-

poral logic. All our results will be stated for the tempo-
ral logic CTL*. We refer the reader to [9] for more de-
tails on CTL*, but briefly, formulas ofCTL* are defined
inductively from a set of atomic propositions and built up
by boolean connectives-(A, V), path quantifiers’ (“for
all paths”) and3 (“for some path”), temporal operatod§
(“next”) and U (“until”). In our framework, theatomic
propositionsare (; = d) wherew; is a variable which corre-
sponds to théth coordinate of a state, amds any constant.
Let M be a transition system with representati@R)
and let® be aCTL* formula. Let us briefly review the
symbolic model checking method [9] fdv/ | © (note
that in model checking, the notatial/ = © is short-
hand forM,s = © for every initial states). The verifi-
cation proceeds in three steps. This process is fully algo-

it is understood that the correspondilgis applied.

For every abstractioh, define the operatdr] so that for
any first order formulap:
()@,)

For ... 3o (AL B = h(0) A (v, ..., op).

Then observe thaf%min = [R]. In general, it is very dif-
ficult to construct]ﬁmin because the full description of the
transition systend/ is needed in order to carry out the con-
struction. Nevertheless, one can produce an approximation
directly from its representation. Let us first define the notion
of approximation.
Definition 4. ([8]) Let M = (S, I, R) be a transition sys-
tem, and let: : S — S be an abstraction fod/. A tran-
sition system/\/f <§ f 1§> approximatesM with respect
to h (M = M for short) if and only n‘Imln - 7 and

rithmic, in contrast with methods which require human as- ¢ . ' R

sistance. First, OBDD representations [5, 6] are constructed

for R andZ. Then, an OBDDxheck(R, ©) is constructed,
whose entries are states 8f such that for every < S,
(check(R,©)(s) = true) < (M,s = O). Finally, the
verification of M = © is achieved by checking the validity
of the OBDD of (—Z V check(R, ©)).

When the resulting OBDD is polynomial in size, the ver-
ification can be carried out in polynomial time. A typical
example where this is not the case is multiplication, since
any OBDD for multiplication has exponential size [5]. In

the next section, we will see how abstraction can overcome

this problem.
2.3. Abstractions

The use of ambstraction8] helps in some cases to over-
come the problem of intractably large OBDDs. The objec-
tive of abstractions is to replace the transition system with
an abstract version which is smaller, but sufficient for ver-
ifying the specification on original system. For each vari-

able, a surjection is used to reduce the size of the domain,
and transitions are made between the resulting equivalencé

classes, as we define below.
Definition 3. ([8]) Let M = (S, I, R) be a transition sys-
tem, whereS = D; x ... x D,,. Anabstraction fol/ is a
surjectionh : S — S, such thath can be decomposed into
ann-tupleh = (hq,...,h,), whereh; : D; — D, is any
surjection, andD; is any set. Theninimal transition sys-
tem of M with respect td: is the transition systerMmm =
(S Tnin, mm) suchthatS = Dy x...x Dy, Iin = h(I),
and(3,5) € Ry~ < 3(s,)652, (h(s) =3)
A(h(s") =F) A ((s,5") € R).

Note that minimal transition systems and all the notions

The approximation operator, which is denoted Byis
inductively defined on formulas that are in negation nor-
mal form by applying-] only at the atomic level (including
negations). For every transition systéd= (S, I, R) with
the representatio(iZ, R), we denote byd(M) the transi-
tion system with the set of stat@s= h(S) and representa-
tion (A(Z),.A(R)). Clarke, Grumberg and Long [8] show
that the approximation operatot gives an approximation
for any M, h, that is,M C; A(M).

Let M be an approximation a#/. Suppose thad/ =
©. What can we conclude on the concrete mot€? To
answer, let us first consider the following transformations
C andD betweenCTL* formulas on)M and their approxi-
mation on}. These transformations preserve boolean con-
nectives, path quantifiers, and temporal operators, and act
on atomic propositions as follows:

;= di) = Vain,(a)=a,(vi = di),
D(v; = di) < (8 = hi(d;).

Denote byvVCTL* and 3CTL* the universal fragment
nd the existential fragment 6fTL*. The following the-
orem gives correspondences between concrete models and
their approximations.

Theorem 1 ([8]). Let M = (S, I, R) be a transition sys-
tem. Leth : S — S be an abstraction for/, and let
M be such thatM Ch M. Let© be aVCTL* for-
mula on M, and © be a3CTL* formula on}. Then
MEO = M EC(0),
and MO = M DO

The second implication of the theorem is only implicit
in [8]. Notice that the two statements are not reciprocals
of one another. In both cases, reciprocals can be shown

under certain conditions [8]. The first result validates the
usefulness of abstractions in practical model checking. The

second will be used in our proof of Theorem 4.

2.4. Property testing

1. c-colorability is (¢,0((cInc)/s?))-reducible toc-
colorability;
2. bipartiteness is (¢,0((In*(1)Inln(1))/e))-
reducible to bipartiteness.
Recently, Alon, Fischer, Krivelevich, and Szegedy [2]
showed that all first order graph properties of tyfwehave

We consider only undirected, simple graphs (no multiple an c-tester. Their results can also be recast in terms-of

edges or self-loops). For a gragh we denote by its
vertex set, byF. its edge set, and by the cardinalityl V|
of V. When there is no ambiguity, we will simply writé
andE instead ofi/; and E¢. In the remainder of the paper

we will use the following distance measure: for any two

graphsG and G’ on the samei-vertex setDist(G, G') is

the number of edges on which the graphs disagree, divide
by n2. Our theory and our main results (Theorems 4 and 5)

hold for any distance measure.
Let ¢ be a graph property. We use the notatiom= ¢ as
a shorthand to mea has the property. An e-testfor ¢ is

a probabilistic algorithm that accepts every graph with prop-

erty ¢, and rejects with probabilitg/3 every graph which
has distance more thanfrom any graph having the prop-

reducibility, as follows. Note, however, that in this result,
the functionf is a tower of towers.
Theorem 3 ([2]). There exists a functiofi : R, — R,

such that every first order graph property of type with
t bound variables ige, O(f(¢t + 1/¢)))-reducible to some

dgraph property.

3. Verification of graph properties
3.1. Context and objectives

In order to extend the framework of model checking to
include the use of probabilistic abstractions, we would like

erty! Moreover, ar-test can only access the inputgraph by to prove an analogue of Theorem 1. We prove that with high
querying whether or not any chosen pair of vertices are ad-probability, “sufficiently” incorrect programs (in a sense to

jacent. The property is calledtestableif for everye > 0,

there exists an-test forg whose total number of queries de-

be defined below) will be rejected-(obustness We also
prove a reciprocal, which states that under a certain con-

pends orx, but does not depend on the size of the graph. In dition (exactness correct programs will never be rejected
several cases, the proof of testability is based on a reductionsoundness

between two properties. The notionsfeducibility high-

A second goal is to extend the framework of model

lights this idea. This notion is central to the design of our checking to include the verification of programs purport-

abstractions. Denote b§/, the vertex-induced subgraph
of G on the vertex setr C V. For any graph property
¢ and any graplG, we denote byG = ¢. the property:
JH, Vg = Vg, Dist(G,H) < ¢, and H = ¢.

For any vertex seV’ and integerk > 1, let II denote the
set of allm C V such thatix| = k, where it is understood
thatII depends on both andV'. For convenience, we will
always assume thé’| > k.

Definition 5. Lete > 0 be a real,k > 1 an integer, and
¢, two graph properties. Thea is (g, k)-reducible toy
if and only if for every grapltz,

GeE¢ = Vrell, G, =1,
GHo. = PrlG.Eul<1/s,

wherell = {7 C Vi : |7| = k}.

We say that) is e-reducible toy if there exists a constant
k such thatp is (e, k)-reducible toy.

We can recast the testability efcolorability and bipar-
titeness [10, 1] in terms af-reducibility.

Theorem 2 ([1]). Forall ¢ > 3,¢ > 0,

lwe may also consider two-sided error, and the choicg/gfas the
success probability is of course arbitrary.

edly deciding graph properties. The standard model check-
ing method is not adapted to programs on inputs that are
first-order structures such as graphs. We overcome this by
dealing with the specification of the program, and the prop-
erty of the graph, separately. The former is handled with
standard tools of model checking. The latter will reduce, as
a result of thes-reduction, to verifying a property on con-
stant size graphs, which can be carried out in constant time.

We give an example of a very simple program for bi-
partiteness, together with an abstraction, and show that the
approximation operatodl results in an exact approxima-
tion of the transition system. Hence, this abstraction can be
used to verify the program. One might ask whether the re-
laxation brought about by the use of property testing is in
itself enough to beat the exponential lower bounds on the
original problem. We will show in Section 4 that this is not
the case, by giving a lower bound on the relaxed version of
bipartiteness.

3.2. Handling first order structures
Consider the following example of a formula we would

like to verify, whereP is a program which is supposed to
compute some boolean function on bounded size graphs,

and¢ is a graph property:

The programP accepts only graphs which satisfy
Suppose thaGis an input variable o, such thatGis in-
terpreted as a grapfi (with respect to some fixed encod-
ing): this will be written asG = G. A states of the tran-
sition systemM = (S, I, R) of P is a finite sequence of
variables(...,G,...). For every graplG, we then define
Ig = {s € I : G= G}. Formally, what we would like to
check is the following:

VG((VS €lg M,sE=3((-ack)U(ack Aret)))
— GRo9).

Note that on the right hand side of the implicatigris inter-
preted in a structure fa& which does not include the tran-

interpreted as a graph, and the oper&disee Section 2.3)
is applied with respect to the chosen abstraction

Generic Test{(H, M,), ©, 1))

1. Choose an elemehte H according tqu.

2. Accep/t\if (and only if)

VG (M",GM =DO) = G'E=v).

The probability that the test rejects will be denoted by

Rej((H, M, p),0,%). The distributiony will be omitted
when it denotes the uniform probability distribution. To
be useful in practice, a probabilistic abstraction should be
bothe-robust (programs are rejected with probabifiA if
the relaxed specification is false for some input) and sound
(no correct programs are rejected), in which case we say

sition system. This is because the standard model checkinghat it is ans-abstraction. When this is the case, checking
algorithms are not suited for programs with inputs that are the correctness of a program can be easily done on the ab-
first order structures. When there is no ambiguity, we will stracted model with high confidence usiGgneric Test

write M, G = © instead ofvs € I, M,s = ©.
More generally, our framework applies to the following
type of formulas:

VG (M,GE® = GE9), @
where the input includes the graghand may also include
auxiliary data® is aCTL* formula, andyp is a graph prop-
erty. Henceforth, we always assume a gr@pho be an
input variable in the program. Sineg is a bounded size
graph and is a formula expressing a property Ghwe can
determine whethe@ |= ¢ using an OBDD. Letat(¢, G)
be such an OBDD. Then verifying (1) can be achieved

by checking the validity oi((ﬂIG V check(R,©)) =

sat(¢,G)), whereZs = Z(G/G) (i.e., all occurrences of
the variableGare substituted fof).

For the graph properties that we consider, such as bi-

partiteness, the OBDDs fdr = ¢ have exponential size.

Fix a confidence parametéxy<1, and iterateGeneric
Test O(In1/v) times. If the program is correcGeneric
Test always accepts; and if there is an instance on which
the program is not correct with respect to the relaxed speci-
fication,Generic Testrejects at least once with probability
at least(1—~).

Definition 7. Let M be a transition systenz, > 0, © be
a CTL* formula, and letp,) be two graph properties. A
probabilistic abstraction(H, M, u) of M is e-robust with
respect tq®, ¢, v) if
(EIG (M,GEO and Gl (;55))

= Rej((H, M, p),0,¢) > 2.
Definition 8. Let M be a transition systen®) be aCTL"
formula, and letp, ¢ be two graph properties. A proba-
bilistic abstraction(H, M, i) of M is sound with respect
to (0, ¢,) if
¥G (MGE® = GE9)

= Rej((H,M,pn),0,v) =0.

As we show in Section 4, the relaxation brought about by Definition 9. Let M be a transition systeng > 0, ©
property testing is not sufficient to reduce the OBDD size be a CTL* formula, and letg, v be two graph proper-
of bipartiteness. We usereducibility to construct prob- ties. A probabilistic abstractioti*, M, 1) of M is ane-
abilistic abstractions, yielding smaller, even constant-size, abstraction fof©, ¢, ¢) if it is bothe-robust and sound with

OBDDs. Using such OBDDs, we are able to guarantee thatrespect a0, ¢, 7).

P approximately decides on all its inputs.
3.3. Probabilistic abstractions

Definition 6. Let M be a transition system. grobabilistic
abstraction ofM is a triple (H, M, p), where’H is a set
of abstractions fotM, M is a functional which maps every
h € H to atransition system/" = M(h) such thatM/ C,,
Mh, andy is a probability distribution ovefH.

Let © be aCTL* formula onM, andy be a graph prop-
erty. Then any probabilistic abstraction df induces the
following probabilistic test, where we require th@t* be

3.4. Constructinge-abstractions

We now explain how to construetabstractions based
on e-reducibility. Fixe > 0, and assume that is (¢, k)-
reducible toy, for somek > 1. We give a generic proof of
robustness of our probabilistic abstraction, and we isolate
a sufficient condition which implies soundness. Under this
condition, we obtain an-abstraction. As in Section 2.4, for
any fixedk and any fixed vertex séf, we letlI be the set of
all subsetsr of V' with || = k, and for any graplt: with
Ve =V, the vertex-induced subgraph on the vertexsist

denoted byG.

Since we relaxp with respect tee, we can decompose
our initial specification (1) into the following family of re-
duced specifications:

VG (M,GEO = G,Ev¢):7ell}.
For every, the corresponding reduced specification can
now be subject to an abstractidry. Every correspond-
ing abstracted variable and constant/ will be denoted
respectively byv™ and dr. We require that the abstrac-
tion of G be exactlyG,, that is,@’f = G,. Let MT™ be
such thatM C;_ M~™. We define the (uniform) prob-
abilistic abstraction(H, M) (also denoted byII, M)) as
H = {h, :meIl}andM(h,) = M, for everyr € II.
This leads to the following test, derived froBeneric Test
for this family of abstractions:

Graph Test((II, M), ©, 1))
1. Randomly choose a subset of vertiges II.
2. Accep/t\if (and only if)
VG (M™,G" =D©O) = G =1).
We show that if© is an 3CTL* formula and¢ is e-
reducible tay, then our probabilistic abstractiondsobust.
This, together with its conditional reciprocal in Theorem 5,
establishes the validity of the method.

Theorem 4. Let© be a3aCTL" formula. Lets > 0 be a
real, k > 1 aninteger, and lep be(e, k)-reducible toy. Let

(I, M) be a probabilistic abstraction such th&t™ = G,
for everyr € II. Then(II, M) is e-robust with respect to

(©,9,9).

Proof. Let G be such thatM,G = © and G [¢..
By Theorem 1,M™,G™ = D(©), for everym € II.
Moreover, by definition ofe, k)-reducibility we know that

Prrco [@” = 1/)} < 1/3. Therefore,
Prrcm [J\/Z’T,@” LDO) — Ok 14 <L
We conclude by observing that-Rej(M) (in Graph

Tes!) is bounded above by the term on the left hand side of get(Color)
O

the inequality.

Having shown that the abstractionsisobust, we give a
sufficient condition for soundness: exactness.
Definition 10. Let M be a transition systen®) be aCTL"
formula, be an abstraction, and |6¥ be such thafl/ Cy
M. Then the approximatioh/f is exact with respect t® if
and only if for every grapl@:

M,G=D®©) = 3H,H=G and M, HE®.
Theorem 5. Let © be a3CTL* formula. Lete > 0 be a
real, k > 1aninteger, and lep be(e, k)-reducible toy. Let
(I, M) be a probabilistic abstraction such th&f™ = G,
and)™ is an exact approximation with respectd@g for ev-
eryw € II. Then(II, M) is sound with respect t®, ¢, 1).

Proof. Fix 7 € IL. Let G™ be ak-vertex graph such that
M~ G™ E D(O). From the exactness af'™, there exists
a graphH such thatd™ = G™ andM, H = ©. Therefore,
from the hypotheses we gét = ¢. The(e, k)-reducibility
of ¢ to ¢ implies thatH . = v, that is, G E ¢. Thus, for
allw € TandG™: M™,G" =D(O) = G"=¢. O

3.5. An¢-abstraction for bipartiteness

In this section, we give a short program for bipartiteness,
and ane-abstraction for this program. We consider a func-
tion which decides, given a grapgh and a coloringColor
(entered by the user), if'olor is a bipartition forG. The
graphG is represented in the program in the natural way by
the upper triangular entries of a boolean matrix variable

and Color by a boolean array variabfeolor .
FUNCTION CHECK-PARTITION

CONSTANT INTEGER n=10000

INPUT G : ARRAY[n,n] of BOOLEAN

VAR Color : ARRAY[n] of BOOLEAN
VAR uyv : INTEGER 1..n+1
1: get(Color)
2: u=2
3: WHILE u<=n DO {
v=1
4: WHILE v<=u-1 DO {

al

IF G[u,v]&&(Color[u]=Color[v]) RETURN false

v=v+1

u=u+1 }
RETURN true
We want to verify that, for every inpu, if there exists
an input value forColor for which the program accepts,
thenGrepresents a bipartite graph. More formally, we want
to verify the following property:

6:

VG (M,G = 3((—ack) U(ack Aret))
— Gis bipartite).)

Note that 3 ranges over all the possible initial values
of Color which the user can enter with the instruction
. For eachr we define the abstraction which
mapsG to the subgrapld,., Color to the coloring on the
subset of vertices induced by, andu,v refer to the ver-
tices as followsz™ is w if u € 7, and ismin{w : V¢ (w <
t<u = t ¢m)} otherwise.

For this abstraction, the following lemma holds.

Lemma 1. For everyr € II, A™ (M) is exact with respect
to theaCTL" formula of Equation(2).

Proof. The proof is in two parts. First, we will prove that
the abstraction which maps — G;, and preserves the
other variables, is sound for every This is the most dif-
ficult part. Then we show how it can be extended to the
complete abstraction.

For convenience, we use a compact representation of
relational expressions representing the transition relation.

Each line corresponds to a transition between two control
points. The transition relation is represented by the disjunc-

tion of these lines. We useé — j " as an abbreviation
for (PC= i) A (PC = j). On any given line, for any pair
(v,v’) of program variables, it’ does not occur in the re-
lational expression, then the atomic propositien = v)

is understood, but omitted from the compact form. Further-
more, the expressiofv’ = x) is used when the value of

is unspecified. This typically occurs aftegat instruction,
and corresponds to a nondeterministic transition.

The initial states of the transition system of
CHECK-PARTITION are (ack=false) A (PC=1).
The relational expression of the transition system of
CHECK-PARTITION is given in compact form by the
disjunction of the following boolean formulas.

1+ 2:(Color =x)

2+ 3: (U =2)
3—4:(u<n)A(V =1)
3—6:(u=n+1)
4—3:(Vv=Uu)A (U =u+1)

4—5:(v<u-—1)

5+—5:G(uyv) A (Colorfu] =Color[v])

A (ack’ =true) A (ret’ =false)
5+—4:((-G(u,v))V (Colorfu] #Color[v]))
AV =v+1)

6+— 6:(ack’ =true) A (ret’ =true)

We first suppose that oni@is abstracted. Then the op-
erator A transforms only the relational expression part of
transitionss — 5 and5 — 4 into:
5+ 5: (3H (H-=G;) A H(u,v)) A (ack’ =true)

A (Colorfu] =Color[v]) A (ret’ =false)
5+ 4: (3H (H-=G;) A ((~H (u,V))
V (Color[u] ~ #Color[v]))) A (V' =v +1)
Fix somen-vertex graphG = (V, E). Suppose there is

an accepting path in the abstracted transition system when

the graph input is set t67, that is, the program variable

G takes the valug7. Along the path, when the program

counter is 5, there always exists a graptsuch thatH, =

G, so the system makes the transitior> 4. Let Gy =

(V, Ey) be then-vertex graph whose vertices are defined by
(u,v) € By <= (u,v) € Eandu,v € .

Observe that the transition is also made when the input is
Gy. Thus there is an accepting path in the concrete systemQQ((l_zﬁ)" log((1—2/&)n))

when the input graph i§.

In the general case, consider an accepting path in the4
completely abstracted transition system. Again, the ab-

stracted transitiors +~ 4 is still made when the input is
Gy. Then observe that only the indices@blor in 7 are
relevant for this transition. Therefore, one can fix any value
Color, such thaColor ~ = Color . Thus the path of the
concrete model which starts from the initial st@e= Gy
andColor = Color, is again an accepting path. O

Since the size of is fixed, our abstraction induces a con-
stant size OBDD. By Lemma 1, Theorems 2, 4, and 5, we
know that our probabilistic abstraction is arabstraction,
soGraph Test can be used for checking the validity of (2).

Corollary 1. Lete > 0. Using previous probabilistic ab-
straction,Graph Teston CHECK-PARTITIONsatisfies:

1. If CHECK-PARTITION satisfies specificatiof2),
Graph Test always accepts;

2. If there exists a grapld; which has distance more
thane from any bipartite graph, but which is accepted
by CHECK-PARTITION for some coloringColor,
thenGraph Test rejects with probability at leas?/3;

3. The time complexity @raph Test is exponential in
poly(1/¢) and does not depend am the input size.

4. Lower bound for approximate bipartiteness

In this section, we show how the communication com-
plexity lower bound of Hajnal, Maass, and &nr[13] can
be extended to yield a lower bound on OBDD size for the
relaxed version of bipartiteness. This establishes that in the
case of bipartiteness, reducing the size of the OBDD cannot
be achieved solely by relaxing the exactness of the result. A
lower bound for the relaxed version of connectivity can also
be obtained using similar arguments.

A graphG = (V, E) is k-bipartite if there is a set of
edgesF’ C E with |F| < k such thatG’ = (V,E\ F) is
bipartite. In particular, a graph &bipartite if and only if
it is bipartite. Thek-bipartiteness is the following partially
defined problem.

Definition 11 (k-bipartiteness). Let k € N . The k-
bipartiteness problem is a partial functighon graphsG:
F(G) = {1 !f G !s blpart|t.e, .

0 if G is notk-bipartite.

An OBDD solvesthe k-bipartiteness problem fon-
vertex graphs if its output agrees withwheneverf is de-
fined. The rest of this section is devoted to proving the fol-
lowing theorem.

Theorem 6. Any OBDD solving the &-

bipartiteness problem forn-vertex graphs has width
22((n=2vkt1)log (n=2Vk+1)) “Whenk = en?, the width is

1. Preliminaries

We denote bySUT the disjoint union of sets Sand T. A
partition of a finite setS is a (finite) set of non-empty parts
51,55, ... whose disjoint unior5;US,U - - - equalsS. The
number of partitions of a sét containingn elements isB,,,
thenth Bell number, where3,, is 2¢X(nlogn)

Two kinds of partitions will be considered: partitions of
a subset of vertices in the HMT graphs (defined below), and

partitions of the edge variables of the graph (also explained
below). To avoid confusion we call the latter a coloring
instead of a partition, and use the lettétqred variables
given to Player I) and” (yellow variables given to Player I1)
to denote the color sets. In the remainder, we only consider
colorings which divide the edge variables into two sets of
equal size (plus or minus one).
Let f : {0,1}"¥ — {0,1} be a boolean function which
two players wish to compute. LétUY be a coloring of Figure 1. Three examples of H}% graphs.
the N input variables. Player I's input corresponds to
the variables ofR, Player II's inputy corresponds to the
variables ofY". In aone-way communication protocol for We denote bym]| the set{1,...,m}. In the rest of the
f, Player | sends one message to Player Il, who outputs thepaper, for every integdr > 1, we fix in some canonical way
value of f(x,), where itis understood that the variables are a setE;, of k+1 bipartite edges from vertices (f] v/A+-11]
reordered appropriately according®Y. Thecommuni- in such a way that these new edges only go between even
cationx®Y (P; x,y) incurred by a one way-communication and odd vertices.

protocol P on inputz, y for the coloringR, Y is the number Definition 12 (Figure 1). Letk, m > 0 be two integers. For

of bits sent by Player I. any partition P of [m], H}; denotes the multigraph (where
For a fixed input lengthV, theone-way communication multiple edges are allowed) such that
complexity off for coloring R, Y is denoted:”Y (f), and 1. vertices are the parts @?,

is the minimum ofmax, , {x'2"(P; z,)}, over all one- 2. there is an edge il 5, between two part§), Q' € P
way communication protocolB for f. Theone-way com- if and only if some edge € E;, “crosses over'Q, ¢/,
munication complexity for the best-case coloring of vari- thatis,e = {a, b}, witha € Q andb € Q.

ablesis k2 (f) = minpy {5 (f)}.) Lo

Let f be a boolean function whose variables are colored These graphs lead to the following partially defined

by R,Y. Thecommunication matrix associated withis pro?k‘arn. N

the matrix representatiaii ; of f, thatisM; .., = f(z,y). Definition 13 (k-partition problem). Letk,m > 0 be two
The lower bound on the width of OBDDs that comptis integers. The-partition problem is a partial functiog on
related to the communication matrix gfby the following ~ partitions P of [m]:

proposition. We state the result for one-way communication 1 if H*(P) containsk+1 edges

complexity, which can be easily derived from [14]. g(P) = and no odd cycle,

Proposition 1 (follows from [14, Page 144]). 0 if H*(P)is empty.

1. b'jstf has an OBDD of width at most, then For any two partitionsP, P’ of a setX, PVP’ is the
R2(S) < logw. o , _ finest partition which is refined both b and P’. For the
2. Let My be the communication matrix associated j._nartition problem, the input of Player | is (an encoding of)
with the boolean fun}gt;orf whose variables are col- gome partitionP, and the input of Player Il is (an encoding
ored byR, Y. Thenx " (f) > log(l), wherel isthe of) 5 partitionP’. The goal of the communication game is
number of distinct lines in/;. to computey(P Vv P'). The corresponding communication
Since we will study partially defined problems the com- matrix is M/, whose rows and columns are labeled by par-
munication matrices we consider will have entrieand 1 titions P and P’ of [m]. The number of rows and columns
when the problem is defined, ardvhen the computation s B,,, themth Bell number B,, = 220" 1°s™)) We show
can output eithed or 1. Therefore, when we prove that that M has an exponential number of distinct lines.
there is a large number of distinct lines, we only consider | oiyma 2. The communication matrix for the-partition
two lines to be distinct if on some column, one line con- problem hag@((m—2vE+1) log (m—-2VE+1)) distinct lines.
tains a0 and the other containsla

Proof. Let P be a partition of the sef. The expression

4.2. Thek-partition problem P + [denotes the partition dfx + |« € S} obtained from
P by addingl to each element in all parts &f.
We introduce thek-partition problem. In Section 4.3 We show that the partitions of the form

we will show that its communication matrix appears as a {{1},...,{2Vk+1}}U(P*+2vk+1), where P* range
sub-matrix of thek-bipartiteness communication matrix. over the partitions ofm—2+/k+1], correspond to a large
Hence, it will suffice to show a lower bound for the set of pairwise distinct lines i/ .

partition problem. ConsiderP;={{1}, ..., {2Vk+1}} U (P} + 2vk+1)

andP,={{1},...,{2vVk+1}} U (P5 + 2/k+1) two such
distinct partitions. Since? #£P», it must be the case that
Pf#P;. Therefore, there must be some paj such that
(without loss of generality), y are in the same part d@?},
but are in different parts i®;. We will use the notation
Qz,y to mean the part oP}" that contains: andy, and@,
(resp.Q,) to mean the part aP; that contains: (resp.y).
We exhibit a partitionP’ such thatMp, p differs from
Mp, pr. Recall that the new edgds;, connect only odd
vertices to even vertices. LEIVEN, = U, ., z77{2i}
andODDy, = U, ., z7712i—1}. Let P’ contain the parts
EVEN, U{z}, ODD;U{y} plus all the remaining vertices
in singletons. Then,
P,V P'=EVENUODDUQ, ,,, {2VE+141, ..., m}\ Qu
P, Vv PP’=EVENU Q.,0ODD U Q,, {2V k+1+1, ...,m} \
(Q2UQy)-

Figure 2. An HMT graph: Q € P, Q’,Q" € P'.

a graph family with vertice$n|, where P, P’ ranges over
the pairs of partitions ofB. {Gp p/} is an HMT graph
family on A, B, C for a coloring R, Y if for any pair of
verticesz, y € B included in some part aP (resp.P’), the
only edges of the grapfi p, p- are vertex-disjoint red (resp.

Now H’;,lvp, contains no edges, because all the new yellow) paths inA U {z,y} (resp.C U {x, y}) of length4.

edges go between odd and even vertices. Likewige,, 5,
contains a single edge of multiplicity+-1. Therefore the
lines indexed byP; and P, are different at colum®’.

The number of distinct lines must be at least the number

of partitionsP* of [m — 2v/k+1]. This concludes the proof
of the lemma. O

4.3. Reduction tok-bipartiteness

In this section, we show that the communication matrix
associated with thé-partition problem appears as a sub-

matrix of the communication matrix of the-bipartiteness
problem (Lemma 4).

Lemma 3 ([13]). Fix any coloring of the edge variable of
graphs with vertice$n], with half the edges colored red and
half the edges colored yellow. Thenrifis large enough,
there exists setd, B, C such that there is an HMT graph
family on A, B, C for this coloring of the edge variables.

4.3.2. Bipartiteness and partitions

For a coloringR, Y of the edge variables, we show how
to construct a large family of instances of thepartition
problem from a family of HMT graphs for this coloring.

Proposition 2 ([13]). Let{G p p+ } be an HMT graph family

For thek-bipartiteness problem, the variables in the com- °N 4, B, C for a coloring R, Y. Letvy, vz € /B be two
munication problem are pairs of vertices: the variable is 1 d'St'nCt vertices. For.any pair of partitions’ P’ of B, let
whenever the corresponding edge is in the graph, and 0 oth&'p.p bEGP P 10 Wh'(?h th? S|.ngle edg@l, vz} has-, been
erwise. Each player is given half of the variables partitioned @dded. Thei&, ., is bipartite if and only if{v;, v2} is not
according to some coloring. The input of the communica- included in any part) € PVP".
tion protocol is the graph formed by the union of edges from A key observation is that the connected components of
the players’ variables. an HMT graphGp p: correspond exactly to the parts of

Hajnal, Maass and Tan [13] give a reduction from bi- PVP’. The proposition follows because the addition of
partiteness to a property on partitions. We show how this an edge within a par) € PVvP’ creates an odd cycle in
reduction can be extended to show a reduction fiem the graph, and furthermore no cycle is created if the edge
bipartiteness to the-partition problem. We re-use the main “crosses over” two parts dPVv P’.
technical component of [13], namely, HMT graphs. Without loss of generality, we now renumber the vertices
so thatB = {1,2,...}. For thek-bipartiteness problem,
instead of adding a single, fixed, edge Bfx B to each
graphGp p/, we add the fixed bipartite sé, of k+1 edges
The construction of [13] produces a large family of graphs (see Section 4.2). We call the resulting gra:é’gp,.
(parameterized by, P’) that can be embedded into a col- There are two ways in which an odd cycle can be created
oring of the edge variables, in such a way that Player I's in Gp p- when adding thé&+1 new edges: either by adding
(red) edges represent a partitiéhof a set of vertices of an edge within a part aPVP’, or by creating an odd cycle
sizeQ(n), and Player II's (yellow) edges represent a parti- in H,, . (see Definition 12).

tion P’ of the same set. Lemma 4. Let {G%, »,} be an HMT graph family on

Definition 14 ([13], Figure 2). Letn > 1 be an integer, A, B, C for a coloringR, Y.
and AUBUC C [n] with |B| = Q(n). Let{Gpp:} be 1. Gk, p, is bipartite if and only ifH%, ,, has k+1

4.3.1. HMT graphs

edges and no odd cycle.
2. G p, is notk-bipartite if and only i/}, », has no
edges.

Proof. For the implication of Part 1, we show the contra-
positive. First, if H%,, ., has fewer thark+1 edges, then
some edge iy, lies within a part ofPVv P’. By definition

of G p,, this creates a cycle of length Second, ifH £, p,
contains an odd cycle of length then this forms a cycle
in G’;’P, of lengtht plus a multiple of 4. For the converse,

notice that the new edges form a bipartite subgraph so they

cannot form an odd cycle on their own.

For the implication of Part 2, we show the contraposi-
tive. Assume that some edgec FEj gave rise to an edge
in H,, »,. Removingk edges suffices to mak@%, ., bi-

partite, because it is enough to remove all the new edges

excepte. For the converse, assunig, ,, is empty. By
definition the paths irG}, ,, are vertex disjoint. Further-
more, thek+1 new edges form a bipartite graph. Therefore
k+1 edges must be removed frcﬂiﬁp/ to remove theés+1
odd cycles. O

Lemma 4 establishes that thepartition communication
matrix appears as a sub-matrix of thebipartiteness
communication matrix. Theorem 6 therefore follows, by
Proposition 1, from the lower bound on the number of
distinct lines, proven in Lemma 2.

Acknowledgments We would like to thank Lokam V.

Satyanarayana for discussions on the proof in Section 4, and

Miklos Santha for many comments.

References

[1] N. Alon and M. Krivelevich. Testing:-colorability. To appear

in SIAM Journal on Discrete Mathematics
[2] N. Alon, E. Fischer, M. Krivelevich, and M. Szegedy. Ef-
ficient testing of large graphsCombinatorica 20:451-476,
2000.
[3] M. Blum and S. Kannan. Designing programs that check their
work. Journal of the ACM42(1):269-291, 1995.
[4] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting
with applications to numerical problemslournal of Com-
puter and System Scien¢d§(3):549-595, 1993.
R. Bryant. Graph-based algorithms for boolean function ma-
nipulation. IEEE Transactions on Computer§-35(8):677—
691, 1986.
R. Bryant. Symbolic Boolean Manipulation with Ordered
Binary Decision Diagrams. ACM Computing Surveys
24(3):293-318,1992.
E. Clarke, E. Emerson, and A. Sistla. Automatic verification
of finite-state concurrent systems using temporal logic speci-
fications.ACM Transactions on Programming Languages and
SystemsB3(2):244-263, 1986.
E. Clarke, O. Grumberg, and D. Long. Model checking and
abstraction.ACM Transactions on Programming Languages
and Systemd 6(5):1512-1542, 1994.

(5]

(6]

(7]

(8]

[9] E. Clarke, O. Grumberg, and D. Pelddodel CheckingMIT
Press, 1999.

[10] O. Goldreich, S. Goldwasser, and D. Ron. Property testing
and its connection to learning and approximatidaurnal of
the ACM 45(4):653-750, 1998.

[11] O. Goldreich and D. Ron. A sublinear bipartiteness tester for
bounded degree graphSombinatorical9:335-373, 1999.

[12] O. Goldreich and D. Ron. Property testing in bounded degree
graphs.Algorithmica32(2):302-343, 2002.

[13] A. Hajnal, W. Maass, and G. Tan. On the communica-

tion complexity of graph propertie®roceedings of the 20th

ACM Symposium on the Theory of Computipgges 186—

191, 1988.

[14] E. Kushilevitz and N. Nisan.Communication Complexity
Cambridge University Press, 1997.

[15] K. McMillan. Symbolic Model Checkindluwer Academic

Publishers, 1993.

[16] R. Rubinfeld and M. Sudan. Robust characterizations of
polynomials with applications to program testit®) AM Jour-
nal on Computing25(2):23-32, 1996.

[17] E. Szemekdi. Regular partitions of graphs. Editions
du CNRS,Problemes combinatoires etéhrie des graphes
pages 399-401, 1978.

A. Programs and transitions systems

FUNCTION GUESS

INPUT a : BOOLEAN
VAR b : BOOLEAN
1: get(b)

2: IF (a=b) RETURN true

ELSE RETURN false
The program variables a andb with the implicit vari-
ablesPC ack , andret . A state of the program is@&tuple
(PCack ,ret ,a,b). A transition of the program is a pair
of states((PC ack ,ret ,a,b),(PC,ack’,ret ’,a’,b’)).
The relational expression for the initial states of the program
is (PC=1) A (ack = false). The relational expression for
the transition relation of the program is defined as the dis-
junction of the following three formulas:
e (PC=1)A(PC =2) A (ack’ = ack)
A(ret " =ret YA (@ =a),
(PC=2) A (PC =2) A (ack’ = true)
(ret " =true) A (a=b) A(a’ =a) A (b’ =b),
(PC=2) A (PC =2) A (ack’ = true)
(ret ' = false) A (a £ b) A (@' =a) A (b =b).
Due to user interactiory’ does not appear in the first
formula, and the first transition is therefore nondeterminis-
tic. The following CTL* formula is a specification of the
behavior of the prografBUESS

v(ﬁack U ack /\((ret A(a=b))Vv(-ret /\(a;éb))))

)
A
°
A\

