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LOWER BOUNDS FOR RANDOMIZED AND QUANTUM QUERY
COMPLEXITY USING KOLMOGOROV ARGUMENTS*
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Abstract. We prove a very general lower bound technique for quantum and randomized query
complexity that is easy to prove as well as to apply. To achieve this, we introduce the use of Kol-
mogorov complexity to query complexity. Our technique generalizes the weighted and unweighted
methods of Ambainis and the spectral method of Barnum, Saks, and Szegedy. As an immediate con-
sequence of our main theorem, it can be shown that adversary methods can only prove lower bounds

for Boolean functions f in O(min(y/nCo(f),/nC1(f))), where Co,C1 is the certificate complexity
and n is the size of the input.
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1. Introduction.

1.1. Overview. In this paper, we study lower bounds for randomized and quan-
tum query complexity. In the query model, the input is accessed using oracle queries,
and the query complexity of an algorithm is the number of calls to the oracle. Since
it is difficult to obtain lower bounds on time directly, the query model is often used
to prove concrete lower bounds, in classical as well as quantum computation.

The two main tools for proving lower bounds on randomized query complexity,
the polynomial method [7] and the adversary method [2], were successfully extended
to quantum computation. In the randomized setting, the adversary method is most
often applied using Yao’s minimax principle [21]. Using a different approach, which
introduces the notion of quantum adversaries, Ambainis developed a general scheme
in which it suffices to analyze combinatorial properties of the function in order to
obtain a quantum lower bound. Recently, Aaronson [1] brought these combinatorial
properties back to randomized computation, using Yao’s minimax principle.

The most general method for proving lower bounds in quantum query complex-
ity is the semidefinite programming method of Barnum, Saks, and Szegedy [5]. This
method is in fact an exact characterization of the query complexity. However, the
method is so general that it is very difficult to apply to obtain concrete lower bounds.
Barnum, Saks, and Szegedy gave a weaker method derived from the semidefinite pro-
gramming approach, using weight matrices and their largest eigenvalue. This spectral
method can be thought of as a generalization of Ambainis’s unweighted method.
Other generalizations of Ambainis’s unweighted method have been previously intro-
duced [6, 3]. All of them use a weight function on the instances. The difficulty in
applying these methods is finding a good weight function on the instances. Hgyer,
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LOWER BOUNDS FOR RANDOMIZED AND QUANTUM QUERIES 47

Neerbek, and Shi [15] were the first to use such weight assignments to prove lower
bounds for searching in ordered lists and sorting.

This paper presents a new, very general adversary technique (Theorem 1.1) to
prove lower bounds in quantum and randomized query complexity. We believed that
this technique is simpler to prove and to apply. It is based on the framework of
Kolmogorov complexity. This framework has proven to be very useful for proving
negative results in other models of computation, for example, for the number of rounds
and length of advice in random-self-reductions in [13, 4]. The techniques we use
here are an adaptation of those techniques to the framework of query complexity.
We expect that this framework will prove to be useful for negative results in other
quantum models of computation, for instance, communication complexity, where we
hope to give lower bounds for bounded round query complexity.

The proof of Theorem 1.1 is in two parts. The first part (divergence lemma)
shows how fast the computations can diverge when they start on different inputs.
This part depends on the model of computation (randomized or quantum). The
quantum case of this lemma was first proven by Ambainis [2]. The second part (query
information lemma) does not depend on the model of computation. It establishes the
relationship between the Kolmogorov complexity of individual positions of the input
and the probability that a given algorithm makes a query to this position. Whereas
Aaronson [1] used a different approach to prove a version of Ambainis’s method for
randomized algorithms, here we use the same framework to establish lower bounds
for both quantum and randomized query complexities (QQC and RQC).

We show that our method encompasses all previous adversary methods, including
the quantum and randomized weighted methods [3, 1] (Theorem 4.2) and the spectral
method [5] (Theorem 4.3). As an immediate consequence of our main theorem (ob-
served by Troy Lee), our method can only prove lower bounds for arbitrary Boolean
functions in O(min(\/nCo(f), v/nC1(f))), where Cy and Cj is the certificate complex-
ity of negative and positive instances, respectively, of f and n is the size of the input
(Theorem 5.2). Prior to our work, it was known [3] that the unweighted Ambainis
method [2, Theorem 5.1] could not prove bounds better than Q(,/Co(f)C1(f)) for
total functions; Szegedy [20] also proved independently that the semidefinite program-
ming method could not prove lower bounds better than O(min(y/nCo(f), /nC1(f))),
and Zhang [22] proved the same thing for Ambainis’s weighted method.

We end the paper by giving some applications of our method to prove lower
bounds for some graph properties: bipartiteness (Theorem 5.4) and connectivity
(Theorem 5.3). The lower bound on connectivity was proven in [12] and the one
on bipartiteness by Diirr and independently in [22]. We reprove it here to illustrate
the simplicity of our method.

In recent developments, Spalek and Szegedy [19] showed that our method is equiv-
alent to both the spectral method [5] as well as Ambainis’s weighted method [3].
Subsequently, Laplante, Lee, and Szegedy showed that the square of the quantum
adversary method was also a lower bound on formula size [16].

1.2. Main result. The conditional Kolmogorov complexity K(a|b) (defined for-
mally in section 2.1) is the length of the shortest program which prints a given b as
input. Our main result relates the query complexity of an algorithm A for f to the
quantities {K(i|z, A), K(ily, A) : x; # y;} for any x,y such that f(z) # f(y).

THEOREM 1.1. There ezists a constant C' > 0 such that the following holds.
Let X be a finite set, let n > 1 be an integer, and let S C X™ and S’ be sets. Let
f:8— 8" Let A be an algorithm that for all x € S computes f, with bounded error
e and at most T' queries to the input. Then for every x,y € S with f(x) # f(y):
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48 SOPHIE LAPLANTE AND FREDERIC MAGNIEZ

1. if A is a quantum algorithm, then
1-24/e(l—¢) )
va#y’_ Vo —K(ilz,A)=K(ily,A)’

T>C x

2. if A is a randomized algorithm, then
1—2¢
Zi:w,_iyv min (2*"(ilrﬁf1)7 2*K(i\y,A)) )

T>C x

We briefly describe the intuition behind the proof of Theorem 1.1. Consider an
algorithm that purports to compute f, presented with two inputs z,y that lead to
different outputs. The algorithm must query those positions where x and y differ with
average probability of the order of %, or it will not successfully compute the function.
On the other hand, the queries that are made with high average probability can be
described succinctly given the input and the algorithm, by using the Shannon—Fano
code. If we exhibit a pair of strings x,y for which there is no succinct description of
any of the positions where = and y differ, then the number of queries must be large.

The same reasoning can be applied to classical and to quantum computing; the
only difference is how fast two different input states cause the outputs to diverge to
different outcomes.

To conclude the introduction we give a very simple application, for Grover search.

Example 1. Fix n and a quantum algorithm A for a Grover search for instances
of length n. Let z be a binary string of length logn, with K(z|A) > logn. Let j be
the integer between 0 and n — 1 whose binary expansion is z. Consider x, the all 0’s
string, and let y be everywhere 0 except at position ¢ = j + 1, where it is 1. Then
K(i|z, A) > logn — O(1) and K(ily, A) > 0; therefore, QQC(SEARCH) = Q(1/n).

2. Preliminaries.

2.1. Kolmogorov complexity. We use a few standard results in Kolmogorov
complexity and information theory in this paper. We briefly review these here. The
reader is invited to consult standard textbooks such as [17] for more background
on Kolmogorov complexity and [9] for more on information theory. We denote the
length of a finite string « by |z|. We assume that the Turing machine’s alphabet is the
same finite alphabet as the alphabet used to encode instances of the function under
consideration. Letters x,y typically represent instances; ¢ is an index into the binary
representation of the instance; and p, g are probability distributions. Programs are
denoted P, and the output of a Turing machine M on input z is written M (z). When
there are multiple inputs, we assume that a standard encoding of tuples is used.

DEFINITION 2.1.

1. A set of strings is prefix-free if no string is a prefizx of another string in the
set.

2. A wuniversal Turing machine M is prefix-free if the set of programs {P :
Jx M (P, x) # €}, where € is the empty string, is prefiz-free.

3. Let M be a universal prefix-free Turing machine. Let x and y be finite strings.
The prefix-free Kolmogorov complexity of x given y with respect to M is
denoted Ky (zly) and defined as follows:

Kar(z|y) = min(|P| such that M(P,y) = x).

In the rest of the paper M is a fixed universal prefix-free Turing machine, and
we will write K instead of Ky;. When y is the empty string, we write K(z) instead of

K(zly)-
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LOWER BOUNDS FOR RANDOMIZED AND QUANTUM QUERIES 49

We first state standard bounds on conditional Kolmogorov complexity, where the
last one is from [17, Theorem 3.9.1, p. 232].

PROPOSITION 2.2. There exists a constant ¢ > 0 such that, for every finite
string o,

(2.1) K(z|o) < K(z) + ¢,
(2.2) K(z) < K(o) + K(x|o) + ¢,
(2.3) Kz, y) — K(z) = K(ylz, K(z)) < c.

We shall also use the following bound.
ProprosITION 2.3. There is a constant ¢ > 0 such that, for any three strings

x’y7z’
K(Z"T) 2 K(Z‘,y) - K(l‘) - K(y\z,x) + K(Z|$’y7 K(Q)‘,y)) - ¢

Proof. Using the third bound of Proposition 2.2, there is a constant ¢; > 0 such
that

|K(a,b) — K(a) — K(bla, K(a))| < .
Substituting z, y for a and z for b:
K(z,y) + K(z|z,y,K(z,9)) — c1 < K(z,y,2) < K(z) + K(z]z) + K(y|z, 2) + c2,

which gives the result, where the second inequality follows from the first and third
bounds of Proposition 2.2. ]

The main motivation for using prefix-free Kolmogrov complexity is the bound
known as Kraft’s inequality together with the last two bounds of Proposition 2.2.

PROPOSITION 2.4 (Kraft’s inequality). Let T be any prefiz-free set of finite
strings. Then Y pcp 2-IPl < 1. In particular, for any set of finite strings S and any
finite string o, > . 2-Kzlo) < 1.

A source S of finite strings is a pair (S, p), where S is a set of finite strings and p
is a probability distribution over S.

PROPOSITION 2.5 (Shannon’s coding theorem). Consider a source S of finite
strings where x occurs with probability p(x). Then for any code for S the average code
length is bounded below by the entropy of the source; that is, if x is encoded by the code
word C(Z‘) Of length |C(l‘>|, H(S) = Zx:p(z);éo p(x) 1Og<ﬁ) < Zx:p(z);éo p(.T)|C(J))|

LEMMA 2.6. Let S be a source as above. Then for any fized finite string o there
exists a string x such that p(z) # 0 and K(z|o) > log(ﬁ).

Proof. By Shannon’s coding theorem,

HES) = Y p<m>log(p(1x))s S p@)K(lo).

@:p(2)#0 @:p(2)#0

because K(xz|o) is the length of an encoding of . Therefore there exists « such that
p(z) # 0 and K(z) > log(ﬁ). O

The Shannon-Fano code is a prefix-free code that encodes each word x with p(x) #
0, using [log(ﬁ)] bits. We will write log(ﬁ) to simplify notation. The code can
easily be computed given a description of the probability distribution. We formalize
this in the following proposition, letting K(x|S) denote the prefix-free Kolmogorov
complexity of x given a finite description of S.

PROPOSITION 2.7 (Shannon-Fano code). There exists a constant ¢ > 0 such that,
for every source S as above, for all x such that p(z) # 0, K(z|S) < log(ﬁ) +c.
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50 SOPHIE LAPLANTE AND FREDERIC MAGNIEZ

2.2. Query models. The quantum query model was implicitly introduced by
Deutsch, Jozsa, Simon, Bernstein, Vazirani, and Grover [11, 10, 18, 8, 14] and ex-
plicitly by Beals et al. [7]. In this model, as in its classical counterpart, we pay for
accessing the oracle, but unlike the classical case, the machine can use the power of
quantum parallelism to make queries in superposition. Access to the input x € X",
where ¥ is a finite set, is achieved by way of a query operator O,. The query com-
plexity of an algorithm is the number of calls to O,.

The state of a computation is represented by a register R composed of three
subregisters: the query register i € {0,...,n}, the answer register z € X, and the
work register w. We denote a register using the ket notation |R) = |i)|z)|w), or simply
i, z,w). In the quantum (resp., randomized) setting, the state of the computation is
a complex (resp., nonnegative real) combination of all possible values of the registers.
Let H denote the corresponding finite-dimensional vector space. We denote the state
of the computation by a vector |¢) € H over the basis (|¢, 2z, w)); » . Furthermore,
the state vectors are unit length for the ¢5 norm in the quantum setting and for
the /1 norm in the randomized setting.

A T-query algorithm A is specified by a (T+1)-tuple (Uy, Uy, ..., Ur) of matrices.
When A is quantum (resp., randomized), the matrices U; are unitary (resp., stochas-
tic). The computation takes place as follows. The query operator is the unitary (resp.,
stochastic) matrix O, that satisfies O,|i, z,w) = |i, z ® z;, w) for every 4, z, w, where
by convention xy = 0. Initially the state is set to some fixed value |0,0,0). Then the
sequence of transformations Uy, O, Uy, Oy, ..., Ur_1, 0., Ur is applied.

We say that the algorithm A e-computes a function f : S — S’, for some sets
S C X" and S, if the observation of the last bits of the work register equals f(z)
with probability at least 1 — ¢ for every x € S. Then QQC(f) (resp., RQC(f)) is the
minimum query complexity of quantum (resp., randomized) query algorithms that
go-compute f, where g9 = 1/3.

3. Proof of the main theorem. This section is devoted to the proof of the main
theorem. We prove Theorem 1.1 in two main steps. Lemma 3.1 shows how fast the
computations diverge when they start on different individual inputs, in terms of the
query probabilities. This lemma depends on the model of computation. Lemma 3.2
establishes the relationship between the Kolmogorov complexity of individual posi-
tions of the input and the probability that a given algorithm makes a query to this
position. This lemma is independent of the model of computation. Theorem 1.1
follows immediately by combining these two lemmas.

In the following two lemmas, let A be an e-bounded error algorithm for f that
makes at most T queries to the input. When A is a randomized algorithm, let p¥ (%)
be the probability that A queries z; at query ¢ on input z. By analogy, when A is a
quantum algorithm, the probability p¥ (¢) is interpreted as the probability of observing
1 if the query register were measured at query t, that is, the square of the norm of
the part of the state that queries x;. Let p*(i) = & ZtT:I p¥ (i) be the average query
probability over all of the time steps up to time 7. We assume henceforth without
loss of generality that p*(i) > 0. (For example, we start by uniformly querying all
positions and reverse the process.)

LEMMA 3.1 (divergence lemma). For every input x,y € S such that f(x) # f(y)
the following hold.

1. For quantum algorithms:

2T > VP ()pY(i) > 1—-2\/=(1—¢).

1T £ Y
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2. For randomized algorithms:

27 ) min (p"(i),pY(i) > 1 — 2.
1L AY;

We defer the proof of Lemma 3.1 to the end of this section.

The next lemma relates the query probabilities to the Kolmogorov complexity
of the strings. In this lemma and the results that follow, we assume that a finite
description of the algorithm is given. Using the knowledge of A, we may assume
without loss of generality that the function f that it computes is also given, as is
the length n of the inputs. With additional care, the additive constants in all of the
proofs can be made very small by adding to the auxiliary information made available
to the description algorithms those constant-size programs that are described within
the proofs.

LEMMA 3.2 (query information lemma). There exists an absolute constant ¢ > 0
such that, for every input x € S and position i € {1,...n},

K(ilz, A) < log (pzl(i)) te

Proof. Let S, be the source where i occurs with probability p*(:). By Proposi-
1

tion 2.7, K(i|S;) < log(57qy) + ¢ for some absolute constant ¢. To complete the proof,
it suffices to show that K(S|z, A) = O(1) and apply the second bound of Proposi-
tion 2.2. Use x and A to compute the probabilities (5 (7))1<i<n. The probabilities
can be computed in a finite number of steps because the dimension is finite, and the
number of queries is bounded by T'. 0

From these two lemmas we derive the main theorem.

Proof of Theorem 1.1. By Lemma 3.2, there is a constant ¢ > 0 such that, for

any algorithm that makes at most T' queries and any x, vy, %,
ﬁT(l) < 2—K(i|fc,A)+c and ﬁy(l) < 2—K(i\y,A)+c.

This is true in particular for all those ¢ where z; # y;. Combining this with Lemma 3.1
concludes the proof of the main theorem with C' = 2-¢~1. O

We now give the proof of Lemma 3.1. The proof of the quantum case is very
similar to the proofs found in many papers which give quantum lower bounds on query
complexity. To our knowledge, the randomized case is new despite the simplicity
of its proof. Whereas Aaronson [1] used a different approach to prove a version
of Ambainis’s method for randomized algorithms, our lemma allows us to use the
same framework to establish lower bounds for both quantum and randomized query
complexities.

Proof of Lemma 3.1. Let |1)¥) be the state of the e-bounded error algorithm A
just before the tth oracle query, on input x. By convention, [¢)7. ;) is the final state.
When A is a quantum algorithm, [¢F) is a unit vector for the ¢3 norm; otherwise, it
is a probabilistic distribution, that is, a nonnegative and unit vector for the £; norm.
Observe that the ¢; distance is the total variation distance.

First we prove the quantum case. The starting state of A does not depend on
the input, and thus before the first question we have [¢¥) = |[¢7), so (Yf|yY) = 1.
At the end of the computation, if the algorithm is correct with probability €, then
|(WF 1 [0F 1) < 24/e(1 =€) [2]. At each time step, we consider how much the two
states can diverge in the following claim, which we will prove after the end of this
proof.
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52 SOPHIE LAPLANTE AND FREDERIC MAGNIEZ

Claim 1 (quantum divergence).
[(WF10Y) — (Whaletid| <2 ) y/pE(@)p} (D).
1 FYi

Over T time steps, the two states diverge as follows. The proof uses only Claim 1
and the Cauchy—Schwartz inequality.

1—2ye(l—¢) < [FIY) — (W |vh, )]
< ZKd’fW% — (i lvi)]

Now we prove the randomized case. We use the ket notation for real-valued
normalized vectors, for consistency in notation. Again, initially [¢7) = |[¢7). At
the end of the computation, if the algorithm is correct with probability €, then
I [9F,1) = 1%, ) [1> 1 —2e. At each time step, the distribution states now di-
verge according to the following claim, which we will prove after the end of this proof.

Claim 2 (randomized divergence).

IE ) — [9Ea) s
< 1f) =197 h +2 Y min(pf (i), p} (7))

1T AY;

We now conclude the proof.

=

1-2e< ) W50 = [ Il = I 1E) = [9¢) [h
1

~
Il

] =

2 ) min (pf (i), p} (i)

1 gy

2T > min (p*(i),p¥(7)). O

LT AYq

t

IN

Proof of Claim 1. Let

[vF) = Z Q4 2wt 2, w), and

1,2,w

lvy) = Z Bizwlis 2, w).

1,2,W

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



LOWER BOUNDS FOR RANDOMIZED AND QUANTUM QUERIES 53

After the tth query is made, the states [1/%) = O, |¢F) and [1,Y) = O, |¢}) are

= Z ai,z,w‘ia z @ xi7w>a and

1,2,W

= Z ﬂi,z,w'ia z Dy, w>

1,2,W
Now, since the inner product is invariant under unitary transformations, we get

<¢f+1|¢f+1> = <¢£m|¢£y>a

and therefore
(D7 1Y) — (Wil

= § ai,z,wﬁi,z,w_g ai,z@axi,wﬁi,z@yi,w

1,2,W 1,2,W

= g QG wﬁz zaw — O zpa,, wﬂz 2By, w

§ A 2@y, wﬁz 2@y, w

zZ,w

<2 (Dauww) <Z|ﬂm )
T AYi R

d

Proof of Claim 2. Let us write the distributions using the same formalism as
above, that is,

[vf) = Z Q4 2wt 2, w), and

1,2,Ww

W) = Bizwlis 2, w).

1,2,W

Note that now the vectors are unit for the ¢; norm. After the tth query is made, the

states [¢)7) = O, |4f) and [¢”) = O, [¢) are

= Z 5wty 2 ® x;,w), and

1,2, W

= Z ﬂi,z,wh’v z D Yi, w>

1,2,W
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Now, since the ¢; distance does not increase under stochastic matrices, we get

1) = [fen) <l i) = 1) Il

and therefore

IE) = 19

- Z(ai,z,w‘iaz@mi7w> _ﬁi,z,w“v'z@th»
1,2,W

R

1

Z(ai,z,w|i7 z&d T,y w>_ﬁi,z,w|i7 z &® Yiy w>)

ERT)

1
We now bound each term of the last sum separately. Fix any ¢. If 2; = y;, then

D @iz wli, 2@ zi,w) = Bi 2 wli, 2 & i, w))

ERT)

= § |ai,z,w - ﬁi,z,w|'
1 PR

If X, 7& Yis then

Z,w

Z(ai,z,w”; zD Ty, U}> - Bi,z,wlia z® Yi, w>)

1
<

Z(ai,z,w|i7 z D Yi, w>_ﬂi,z,w|i7 z D Yi, w>)

ER)

1
+

Z,w

Z(ai,z,w ‘7’7 z&® L, w>*ai,z,w|ia FAS] Yi, w>)

1

§ Z|ai,z,w - 6i,z,w| + 2 Z|ai,z,w‘
Z,w Z,w

= Z|ai,z,w - ﬁi,z,w| + 2p;’(l)

z,w

In the same way we can prove that

Z(ai,z,w‘ia FAS) Ty, w> - ﬁi,z,w'iv z® Yiy w>)

zZ,w

1

S Z|ai7z,w - ﬁi,z,w| + 2pzt/(z)
zZ,w

We group together these upper bounds and conclude that
I Ee) — i)
S Z |ai,z,w - ﬁi,z,w| + 2 Z min (pf(l),p?(l))

1,2,W X AYi
= 1wf) = ¢f) Il +2 > min(pf(i),p{(i). O
1T AYi
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4. Comparison with previous adversary methods. In this section, we re-
prove, as a corollary of Theorem 1.1, the previously known adversary lower bounds.
Our framework also allows us to obtain somewhat stronger statements for free.

To obtain the previously known adversary methods as a corollary of Theorem 1.1,
we must give a lower bound on terms K(i|z, A) and K(i|y, A). To this end, we apply
Proposition 2.3 and give a lower bound on K(z,y) and upper bounds on K(z|i,y)
and K(yli,xz). The lower bound on K(z,y) is obtained by applying Lemma 2.6, a
consequence of Shannon’s coding theorem, for an appropriate distribution. The up-
per bounds on K(z|i,y) and K(y|é,z) are obtained using the Shannon—Fano code for
appropriate distributions.

The following lemma is the general formulation of the sketch above.

LEMMA 4.1. There exists a constant C' > 0 such that the following holds. Let ¥ be
a finite set, let n > 1 be an integer, and let S C X™. Let q be a probability distribution
on S2, let p be a probability distribution on S, and let i e81<i<n}bea
family of probability distributions on S. Assume that whenever q(x,y) # 0, then p(x),
p(y), v, i(z), and p, ;(y) are nonzero for every i such that x; # y;. Then for every
finite string o there exist x,y € S, with q(x,y) # 0, such that

1
Zl’l‘;&y \/27K(i|$»‘7)*|'<(i\y,o')

V@, (v) )P, ()
> C X min
BT FYi Q(xv y)

and (for the same x,y € S)

1
Zi:x#yi min (2—K(i\m,o)7 2—K(i‘y7o-))

> Cx min (max (p(x)p;,i(y) p(y)p;,i(ﬂs)».

T AYi q(I,y) ’ Q('ra y)

Proof. In this proof, cq,...,c5 are some appropriate nonnegative constants. By
Lemma 2.6, there exists a pair (x,y) such that ¢(z,y) # 0 and

K(z,ylo,p,p’) > log (

q(; y)) ’

where p’ stands for a complete description of all of the p;z
Fix « and y so that this holds. By using the Shannon—Fano code (Proposition 2.5),

K(zlp) < log (@) to

and

1
Kyl‘7iap;/pi Slog +Cl
wl i) Py (y)
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for any i such that z; # y;. By Proposition 2.3,

K(i|z, o)

> K(ilz,0,p,p') — 3

> K(z,ylo,p,p') — K(zlp) — K(yli, =, p,, ;)
+K(ilz,y, K(z,y),0,p,p") — c4

(
> log (Q(; ) 8 (p(lx)> s (pﬁ:l(?!)>

+ K(Z|$7y, K(%Q)#ﬂ?yﬂ) — Cs
)

Similarly,

K(ily, o) > log (W)

+K(ilz, y,K(2,y),0,p, ') = c5.
To conclude, consider the sum
1
> iwistys V2 —K(ilz,0)—K(ily,o)

1
>

—log p(x)ff’i(y) —log p(y)l;yl( & 2K (i@, y,K(2,y),0,p,p")+2¢5
> 9 a(z,y) q(z,y)
LT FYq

1

e a(.y) q(@,y) K(ilz,y,K(,y),0,pp’
Zi:xﬁéyi2 \/ (ar)pw(y) p(y)pyl(x)Z (ilz,y,K(2,y),0,p,p")

_ . @r, Wr)p, @ 1
>27% min VEOL o ) - R
- i Ay ( q(z,y) Zz’:xﬁéyi 27K(Z‘179’K(I’y)»07p7p )
We apply Kraft’s inequality (Proposition 2.4) to show that >, Ly:

K(ilz,y.K(z,y).0.p:p") < 1. This concludes the proof of the first part of the lemma
using Kraft’s inequality and letting C' = 27. The second part is similar. O

>

4.1. Ambainis’s weighted scheme.

THEOREM 4.2 (Ambainis’s weighted method). Let X be a finite set, let n > 1 be
an integer, and let S C X" and S’ be sets. Let f : S — S’'. Consider a weight scheme
as follows:

e Every pair (x,y) € S? is assigned a nonnegative weight w(x,y) such that
w(z,y) =0 whenever f(z) = f(y).
o Fuery triple (x,y,i) is assigned a nonnegative weight w'(x,y,i) such that
w'(z,y,1) = 0 whenever x; = y; or f(z) = f(y).
For all z,1, let

wt(as)—z w(z,y) and
o(a, i)=Y _w'(z,y,i)
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If w'(z,y,))w' (y, z,i) > w?(x,y) for all x,y,i such that x; # y;, then

e =a  min (wt()wt(y))

2! v(z,i)v(y,
W(x’y);O,z#yi (z,1)v(y, 1)

Furthermore, if w'(x,y,1),w (y,x,1) > w(x,y) for all x,y,i such that x; # y;, then

RQC(f) = © min (max (wt(x.) wi(y) )>

@,y v(z, 1) v(y,1
w(z ) 20,02y, (,9) vy, 9)

The relation in Ambainis’s original statement is implicit in this formulation, since
it corresponds to the nonzero-weight pairs. A weaker version of the randomized case
was proven independently by Aaronson [1] using a completely different approach. We
show that Theorem 4.2 follows from Theorem 1.1.

Proof. We derive probability distributions ¢, p,p’ from the weight schemes as
follows. Let W =} w(z,y). Define

_ w(z,y)
a(x,y) = —5—
~ wt(x)
p($) - W ’
/ .
Poily) = W) gy any .y, i.
’ v(z, 1)

It is easy to check that, by construction and hypothesis, these distributions satisfy the
conditions of Lemma 4.1. We may now rearrange and simplify the terms as follows:

) W o)
q(z,y) wizy)

e R L A

w(z,y)

\/p(x)p;,,-(y) p(y)p, (@) B \/wf/‘(/m) W (2,9,0) wi(y) w (9,2,

A%
€
=

=
€
=
<

The final line follows from the hypothesis w’(z,y,i)w’ (y,z,i) > w?(x,y). The
second part of the theorem is obtained by similar rearrangement and
simplification. 0

We conclude this section by sketching the proof of the unweighted version of
Ambainis’s adversary method, as it affords a simpler combinatorial proof that does
not require Lemma 4.1. To simplify notation we omit additive constants and the usual
auxiliary strings including A.

Let R C Sx S be arelation on pairs of instances, where (z,y) € R = f(x)#f(y),
and let R; be the restriction of R to pairs z,y for which x; # y;. Viewing the relation
R as a bipartite graph, let [,1', m,m’ be as follows:

e m is a lower bound on the degree of all z € X,

e m/ is a lower bound on the degree of all y € Y,

e for any fixed z and 7,1 < i < n, the number of y adjacent to x for which
x; # y; is at most [,
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e for any fixed y and 7,1 < ¢ < n, the number of x adjacent to y for which
x; # y; is at most I’
We make the following observations:
1. |R| > max{m|X|,m'|Y|}, so 3x,y € R such that K(z,y) > max(log(m|X|),
log(m/[Y)).
2. For all z € X, K(z) < log(]X|), and K(y) <log(|Y]|) forally € Y.
3. For all z,y,: with (z,y) € R;,K(y|i,z) < log(l) and similarly K(z|i,y) <
log(1").
For any ¢ with x; # y;, by Proposition 2.3,

K(ilz) > K(z,y) — K(z) — K(yli, z)
+ K(ilz,y, K(z, y))
> log(m|X|) — log(|X]) — log(1)
+ K(ilz, y, K(z, y))

— log (%) +K(ilz, y, Kz, y)).

The same proof works to show that K(i|y) > log(T—,’/) + K(ilz, y, K(z,y)). By Theo-
rem 1.1 and Kraft’s inequality,

QQC(f) =Q< o )

4.2. Spectral lower bound. We now show how to prove the spectral lower
bound of Barnum, Saks, and Szegedy [5] as a corollary of Theorem 1.1. Recall that
for any matrix T', A(T") is the largest eigenvalue of T'.

THEOREM 4.3 (Barnum-Saks—Szegedy spectral method). Let ¥ be a finite set,
let n > 1 be an integer, and let S C X" and S’ be sets. Let f: S — S'. Let T be an
arbitrary S x S nonnegative real symmetric matriz that satisfies T'(x,y) = 0 whenever
f@)=fly). Fori=1,...,n letT; be the matriz:

Ti(z,y) = 0 if ©i =y,
Y= [(z,y) otherwise.

Then

aac(s) = (20 ).

max; )\(Fz)

Proof. Since I' and I'; are nonnegative real symmetric matrices, they have an
eigenvector with only nonnegative real entries for their respective largest eigenvalues.
Let |a) (resp., |a;)) be this unit eigenvector of I" (resp., I';). We define the probability
distributions g, p, p’ as follows:

Lz, y)(zla)(yla)

Q(aj?y) =

(@lla) 7
p(x) = (z|a)?,
! = 7F¢(x,y)<y|ai) or any x,vy,?
pm,z(y> - <x|Fz‘az> ) fi Y Z,Y,1.

First we check that these are probability distributions. Distribution p also has
weight 1 because |«) is a unit vector. Since |a) and |y) have real entries, (y|a) = (a|y).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



LOWER BOUNDS FOR RANDOMIZED AND QUANTUM QUERIES 59

Then the distribution ¢ has weight mzw,ymw)ﬂx,y)(ﬂa}, which is 1 since
> . L(z,y){(z]a) = (y|T|a). Using the same argument, p;, ; also has weight 1.

Now, fix any x,y,¢ such that z; # y; and ¢g(z,y) # 0. Note that («|T|a) = \(T),
[i|a;) = M(Ty)|ei), and T'(2,y) = I';(z,y). Then the fractions P@P W) ) q POIPy ()

q(z,y) q(z,y)
are, respectively, ;‘((12_)) E‘Zﬁ,i EZ!Z; and ;‘((12)) EZ:Z; égm Taking the square root of their

product gives the result using Lemma 4.1.

5. Certificate complexity and adversary techniques. Let f be a Boolean
function. For any positive instance x € X" of f (f(z)=1), a positive certificate for
f(z) is the smallest subset of indices I C [n] of = such that, for any y with z; = y; for
alli eI, f(y)=1.

The 1-certificate complezity of f, denoted C1(f), is the size of the largest positive
certificate for f(z), over all positive instances x. The 0-certificate complezity is defined
similarly for negative instances z of f (f(z) =0).

Prior to our work, it was known that the best possible bound that could be
proven using the unweighted adversary technique for total functions [2, Theorem 5.1]
is O(v/Co(f)C1(f)). Independently, Szegedy [20] showed that the best possible lower

bound using the spectral method is O(min(\/nCo(f), /nC1(f))) for arbitrary func-
tions, and Zhang [22] proved the same for Ambainis’s weighted method.

The following lemma, due to Troy Lee, results in a very simple proof of the fact
that our method and, hence, all of the known variants of the adversary method have
lower bounds larger than min(/nCo(f), /nC1(f)) for arbitrary functions.

LEMMA 5.1. There exists a constant ¢ > 0 such that the following holds. Let
be a finite set, let n > 1 be an integer, and let S C X™ be a set. Let f: S — {0,1}.
For every x,y € S with f(x) = 0 and f(y) = 1, there is an ig with z;, # yi, for
which K(ig|z, f) < log(Co(f)) + ¢, and similarly there is an iy with x;, # y;, such
that K(ixly, f) < log(C1(f)) + c.

Proof. Among the negative certificates for f(x), let I be the lexicographically
smallest one. By definition of the O-certificate complexity, the size of I is at most
Co(f). Since f(x) # f(y), z and y must differ on some iy € I. To describe i given
x, it suffices to give an index into I, which requires at most log(Co(f)) + ¢ bits. The
same can also be done for y and Cy(f). O

THEOREM 5.2. Let X be a finite set, let n > 1 be an integer, and let S C X"
be a set. Let f : S — {0,1}. Then any quantum query lower bound for f given by
Theorem 1.1 is in O(min(\/nCo(f), /nC1(f))).

Proof. Let A be a quantum algorithm that computes f with bounded error
by making at most T queries to the input and z,y € S such that f(z) = 0 and
fly) = 1. Then a description of f can be obtained from a description of A, so
K(i|z, A) < K(i|z, f) + O(1). By Lemma 5.1, there exists iy such that z;, # v;,, and
K(ig|z, f) < log(Co(f)) + O(1). For any 4,1 < i < n, K(ily,A) < log(n) + O(1).
Therefore K (ig|z, A) + K (ioly, A) < log(nCo(f)) + O(1).

The lower bound given by Theorem 1.1 is O(

Since
] —K(ilw,A)—K(i|1 ,A))'
Z'L::L'i#yi 2 Y

Sy, V2 KRR, A) > /2= K(iole, A)—K{ioly,4) | the bound is O(y/nCo(f)) Sim-
ilarly, it can be shown that the bound is O(y/nC1(f)). d

In recent work, Spalek and Szegedy showed that, for total functions, the best
lower bound one can achieve with any of the adversary methods is 1/Co(f)C1(f) for
any total function [19].
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5.1. Applications to graph properties. Theorem 1.1 provides a simple and
intuitive method to prove lower bounds for specific problems. We illustrate this by
giving lower bounds for two graph properties: connectivity and bipartiteness. These
are direct applications of Theorem 1.1 in that we analyze directly the complexity
K(i|z, A) without defining relations or weights or distributions: We need only to
consider a “typical” hard pair of instances. In this section, we omit additive and
multiplicative constants that result from using small, constant-size programs, as well
as the constant length auxiliary string A to simplify the proofs.

We consider graphs over n vertices {0, 1,...,n—1}, where the graph is represented
as an adjacency matrix.

5.1.1. Graph connectivity.

THEOREM 5.3 (see [12]). QQC(GRAPHCONNECTIVITY) = Q(n?/?).

Proof. We construct one negative and one positive instance of graph connectivity,
using the incompressibility method, using the ideas of [12]. Let S be an incompressible
string of length log(n — 1)! + log (5), chopped into two pieces S; and S» of length
log(n —1)! and log (}), respectively. We think of Sy as representing a Hamilton cycle
C = (n(0),n(1)...7(n—1),7(0)) through the n vertices, where 7 is a permutation over
{0,1,...,n—1} such that 7(0) = 0. Let G contain the cycle C, so that K(G) = K(x).
We also think of S as representing a pair of distinct vertices s,t. Let H be obtained
from G by breaking the cycle into two cycles at s and ¢, that is, H = G\ {(7(s), 7(s+
D), (7 (t), 7t + 1)} U{(x(s),n(t+ 1)), (x(s+ 1), 7w(¢))}, where addition is modulo n.

We show that, for the four edges e where G and H differ, K(e|G) + K(e|H) >
3logn — 4. Let e_, e be the edges removed from G and ey, €/, be the edges added
to G. Observe that, up to an additive constant, K(e,|G) = K(e/,|G) and K(e_|H) =
K(e'|H).

Assume without loss of generality that e_ = (7(s),7(s+1)) and that the smallest
cycle of H contains 7(s). Let I be the length of this cycle. Observe that K(s|G) =
K(e_|G) and K(e_|H) = K(w, s, t|H).

log(n — 1)! + log (Z) < K(9)
< K(G) + K(s|G) + K(t|G)
< K(GQ) + K(e—|G) + logn,

n—1
2

K(e—|G) > log (Z) —logn = log

Furthermore,

(n }))!! + log(n—I—-1)!

< log (%) +log(n — 1)! —log(n — 1)

<log(n —1)!.

K(H) < K(l) + log

(n
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m(2) w(3) m(2) w(3)
w(1) w(1)

X}\—. a(t4+1)

w(t) aw(t)

Fic. 5.1. Graphs G, H for the graph lower bounds.

Therefore,

log(n — 1)! + log (Z) < K(S)

< K(H) + K(, s, t|H)

<K(H)+K(e_|H)
<log(n — !+ K(e_|H),

K(e_|H) > log <Z)

For the added edges, e, €., consider without loss of generality e, = (7(s), m(t +
1)). Since S is incompressible, K(e4|G) = K(s, t|G) > log (3). Furthermore, K(S) <
K(H) + K(ex|H) + K(€/,|H) and K(e/.|H) < logn, so K(eq|H) > log () — logn =
log “5+. The same proof shows that K(e/, |H) > log “7+. o

5.1.2. Bipartiteness. The following lower bound was proven by Diirr and in-
dependently in [22].

THEOREM 5.4. QQC(BIPARTITENESS) = Q(n?/2).

Proof. The proof is similar to the one of Theorem 5.3 except that we construct
G to be an even cycle on n = 2m vertices and H will be composed of two odd cycles
on the same vertex set (see Figure 5.1).

Let S be an incompressible string of length log(n — 1)! + log((g) — 1), chopped
into two pieces S7 and Sy of length log(n — 1)! and log((}) — 1), respectively. We
think of S7 as representing a Hamilton cycle C' = (7(0) = 0,7(1)...7(n — 1), 7(0))
through the n vertices and Sy as representing a pair of distinct vertices s, ¢, with s Z ¢
(mod 2). Let G contain the cycle C, and let H be obtained from G by breaking the
cycle into two odd cycles at s and ¢, that is, H = G\ {(7(s),7(s + 1)), (7 (¢), 7 (t +
1)} U {(r(s), w(t + 1)), (e(s + 1), m(D)}.

The same analysis as Theorem 5.3 yields the lower bound QQC(BIPARTITENESS) =
Q(n?/?), as claimed. |
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