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Abstract. We prove that a quantum circuit together with measurement
apparatuses and EPR sources can be self-tested, i.e. fully verified without
any reference to some trusted set of quantum devices.
To achieve our goal we define the notions of simulation and equivalence.
Using these two concepts, we construct sets of simulation conditions
which imply that the physical device of interest is equivalent to the one
it is supposed to implement. Another benefit of our formalism is that
our statements can be proved to be robust.
Finally, we design a test for quantum circuits whose complexity is poly-
nomial in the number of gates and qubits, and the required precision.

1 Introduction

The purpose of this paper is to address the issue of deciding whether an imple-
mentation of a quantum circuit follows its specification. The precise setting in
which we ask this question is that of self-testing. In such setting, the sources, the
gates as well as the measurement apparatuses that are used, are considered as
black-boxes. Moreover, none of them will be trusted to implement the quantum
operator it is supposed to implement. As a consequence, the tests cannot make
reference to another set of trusted and already characterized quantum devices.
Such notion of self-testing follows quite closely the one defined initially for clas-
sical programs [1, 2], and is indeed based on its extension to quantum devices [3,
4] and to quantum testers of logical properties [5, 6].

The task of self-testing a set of quantum devices has been the focus of atten-
tion of two papers [3, 4], each of which considers a very particular set of assump-
tions. The work by Mayers and Yao [3] focuses on testing entangled EPR states
shared between two distinguishable locations, A and B. The main assumptions
they exploit are (1) locality, in the sense that the measurements at A commute
with the measurements at B; and that (2) one can perform independent repe-
titions of the same experiments, in order to gather statistics (i.e., apparatuses
have no memory of previous runs of the experiments). However, they do not as-
sess the robustness of their results, i.e. if a state satisfies only approximately the
required statistics then it is still close to an EPR state. Robustness is nonetheless
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an important property very much worth studying for practical reasons: first, one
can never learn any statistics with infinite precision by sampling only; second,
by their very nature, physical implementations are only approximate.

The work of Van Dam, Magniez, Mosca and Santha [4] focuses instead on
testing gates. They make a number of assumptions, in addition to the above,
(3) the ability to use the same gate in different places of the same experiment;
(4) the ability to prepare and measure ‘0’ and ‘1’; and (5) the dimension of
the physical qubits (i.e., 2-level systems). Of these assumptions, the last one is
certainly the most unrealistic one, but also the most crucial one. Relaxing it
allows for “conspiracies” that can spoof the test.

Our work improves upon the results of [3] by making them robust. We also
improve upon the paper [4] by removing the need for assumptions (3), (4) and (5).
Let us detail the assumptions that we make. We assume that, (H1) the physical
system we are working with consists of several identifiable sub-systems; that
(H2) two subsystems interact only if we are applying a gate that has both those
subsystems as input; (H3) each gate will behave identically in each experiment
it is used in; and (H4) classical computation and control can be trusted.

First (Section 2), we define a precise mathematical framework for testing
quantum devices. This is done by introducing the concept of simulation which
amounts to producing the expected probability distribution for the outcomes
of the measurements that are performed at the end of the computation. This
alone will not be sufficient to propose efficient tests of quantum circuits. For this
purpose, we introduce the concept of equivalence which relates the action of the
devices on physical quantum systems used in the implementation, to the action
of the unitary operators specifying the circuit on logical qubits.

Second (Section 3), we characterize unitary gates and circuits in terms of
simulation. We explain how simulation implies equivalence, and how by compos-
ing equivalences one can derive the correctness of a physical implementation of
a circuit. The main tool used in this section is the Mayers-Yao test of an EPR
pair, which provides the most simple example in which simulation implies equiv-
alence. We will then show that this test can be generalized and yields trusted
input states to be used in conjunction with self-testable quantum circuits.

Last (Section 4), we prove the robustness of our characterization. In partic-
ular, we show that the EPR test of [3] can tolerate ε inaccuracy in the statistics
and still yields states and measurements that are within O(ε1/4) of their specifi-
cation. Using the concepts of simulation and equivalence, such proofs are not so
difficult although the robustness of the EPR test had been left open. The crucial
point is to realize that the robustness of our characterization needs only to be
stated on a rather small subspace in order for it to be of practical interest.

The important consequence of our study is the design of an efficient self-tester
(Section 5) for quantum circuits with some specific input. Contrary to tomogra-
phy which requires trusted measurement devices and an exponential number of
statistics to be checked, our test has a complexity linear in the number of qubits
and gates involved in the circuit, and polynomial in the required precision. We
describe our tester in a general context and illustrate it with an example.



2 Testing Concepts

Notation. Set HN = CN , whose computational basis is (|i〉)0≤i<N . For α ∈ R,
let |α〉 = cosα|0〉+sinα|1〉. In particular |π2 〉 = |1〉. Denote by |φ+〉 the EPR state
1√
2
(|0〉⊗|0〉+ |1〉⊗|1〉), and by |Φ+

n 〉 the tensor product of n EPR states: |Φ+
n 〉 =

1√
2n

∑
x∈{0,1}n |x〉⊗|x〉. Let U(H) be the set of unitary transformations onH, and

I(H,H ′) the set of isomorphisms between H and H ′ which preserve the inner
product. When H = HN we let U(N) = U(HN ). In case of transformations over
real spaces, we use the notations O(N) and O(H) instead of U(N) and U(H).
For transformations M and M ′ on H, and S ⊆ H, the notation M =S M

′ means
that the equality holds when restricted to S. When M is a linear transformation
on A, we extend M on any tensor product A⊗B by M ⊗ IdB .

Simulation. Two states simulate one another when they produce the same
probability distributions of outcomes for two families of projectors. Here, the
projectors are used in the same way measurement devices are used in a labora-
tory: they act as reference systems against which systems are tested.

More precisely, we are given a family of projectors (Pw)w∈W acting on a
physical space H and a state |ψ〉 ∈ H, whose purpose is to implement some
given and fixed projectors |w〉〈w| on the logical space HN and a state |φ〉 ∈ HN .

Definition 1. A quantum state |ψ〉 ∈ H simulates the quantum state |φ〉 ∈ HN

(with respect to (Pw)w∈W), if ‖Pw|ψ〉‖2 = |〈w|φ〉|2, for every w ∈ W.

The notion of simulation can be rephrased for the whole space H. Assume
we are given a family of states (|ψi〉)i of H that respectively simulate the basis
states (|i〉)i) (with respect to fixed set of projectors (Pw)w∈W). Then we say
that H simulates HN .

We now extend the simulation notion to gates.

Definition 2. Assume that H simulates HN : (|ψi〉)i simulates (|i〉)i (with re-
spect to (Pw)w∈W). A unitary transformation G ∈ U(H) simulates the unitary
transformation T ∈ U(HN ) (with respect to (|ψi〉)i and (Pw)w∈W), if G|ψi〉
simulates T |i〉 (with respect to (Pw)w∈W), for every i.

Equivalence. Testing a circuit as a single unitary operation is not an option.
Indeed, this would require checking a simulation condition by sampling a prob-
ability distribution with a number of realizations exponential in the number of
qubits involved in the circuit. Rather, we would like to test each of the physical
devices that constitute the circuit individually in order to conclude that their
composition simulates the whole circuit. Unfortunately, statements about sim-
ulation cannot be composed. This is the reason for the introduction of another
concept, the concept of equivalence.

The equivalence notion we introduce is motivated by results of Mayers and
Yao [3], but was not explicitly stated in their work. It is a mathematical notion



based on the possibility of transferring states which lie within a physical space
into a logical system.

For a Hilbert space H, that will describe our physical system, we set a logical
space Hc = HN for some given integer N , and define H̄ = Hc ⊗ H. We now
identify H with |0〉 ⊗H, and consider H as a subspace of H̄.

First, we define the equivalence between a subspace of H and the logical
system Hc with respect to a set of projectors. As for the notion of simulation,
these projectors act as reference systems.

Definition 3. Let U ∈ U(H̄). A subspace S of H is U -equivalent to Hc (with
respect to (Pw)w∈W), if for every w ∈ W, Pw =S U

†(|w〉〈w| ⊗ IdH)U .

The above definition is equivalent to the commutative diagram:
S

P w

−−→ S

U ↓ ↑ U†

H̄
|w〉〈w|⊗IdH−−−−−−−−→ H̄

. Intuitively, the unitary transformation U ensures that the

correspondence between the physical system H and the logical system Hc is
well defined on S. As a consequence, the projectors Pw satisfy Pw(S) ⊆ S.

Define now the U -equivalence for states and gates that implies the simulation.

Definition 4. Let S be a subspace of H. A state |ψ〉 ∈ S is U -equivalent to
|φ〉 ∈ Hc on S (with respect to (Pw)w∈W), if
1. S is U -equivalent to Hc,
2. |ψ〉 = U†(|φ〉 ⊗ |χ〉), for some |χ〉 ∈ H.

Definition 5. Let S be a subspace of H. A unitary transformation G ∈ U(H)
is (U, V )-equivalent to T ∈ U(Hc) on S (with respect to (Pw)w∈W), if
1. S is U -equivalent to Hc,
2. S′ = G(S) is V -equivalent to Hc,
3. G =S V

†(T ⊗W )U , for some W ∈ U(H).

This equivalence can be summarized by the following commutative diagram:
S

P w

←−− S
G−→ S′ P w

−−→ S′

U† ↑ ↓ U V † ↑↓ V ↑ V †

H̄
|w〉〈w|⊗IdH←−−−−−−−− H̄

T⊗W−−−−→ H̄
|w〉〈w|⊗IdH−−−−−−−−→ H̄

.

Proposition 1. Assume that {0, 1, . . . , N − 1} ⊆ W. Let (|ψi〉)0≤i<N be a unit
vector of P i(S). If G ∈ U(H) is equivalent to T ∈ U(Hc) on S, then G simulates
T with respect to (|ψi〉)i.

When H =
⊗n

i=1H
i, and Pw =

⊗n
i=1 P

wi

Hi , where w = (w1, w2, . . . , wn) ∈
W1 ×W2 . . .Wn, we will often use the equivalence for matrices U that can be
tensor product decomposed as U =

⊗
i U

i, for some U i ∈ U(H̄i). In that case,
we will say that G is tensor equivalent to T . Notice that |χ〉 and W are not
required to be also tensor product decomposable. This is because we want to
encompass situations where the physical implementation G of the gate creates or
destroys entanglement in the hidden degrees of freedom of the quantum register.
Finally, note that the tensor equivalence on H implies the equivalence for each
factor Hi, if the projectors Pwi

Hi are complete, namely if they linearly generate
the identity in Hi. This will be the case in the rest of the paper.



Norm and approximation We consider the `2 norm ‖·‖ for states, and the
corresponding operator ‖·‖ norm for linear transformations. These norms are
stable by tensor product composition in the following sense: ‖u⊗v‖ = ‖u‖×‖v‖,
if u and v denote either vectors or linear transformations. We note |ψ〉 =ε |ψ′〉
when two vectors |ψ〉, |ψ′〉 are such that ‖|ψ〉 − |ψ′〉‖ ≤ ε. We extend the `2-
operator norm for restrictions of linear transformations on H. Namely if M is
a linear transformation on H, and S is a subspace of H we define by ‖M‖S =
sup(‖M |ψ〉‖ : |ψ〉 ∈ S and ‖|ψ〉‖ = 1). Similarly to states, we will write M =ε

S N
when ‖M −N‖S ≤ ε. We introduce the notion of ε-simulation by extending the
notion of simulation where statistics equalities are only approximately valid up
to some additive term ≤ ε. The notions of equivalence can be similarly extended
to ε-equivalence, by replacing each equality =S by =ε

S .

3 Building a Test from Simulation

We consider a test as a set of simulation conditions, each of which can be checked
through sampling. We show how to design efficient tests for quantum circuits by
studying elementary tests that characterize sources and gates, and proving that
the elementary tests are enough to characterize the whole circuit.

3.1 EPR State Testing

We rephrase Mayers and Yao [3] in our framework of quantum testing we just in-
troduced. This is the simplest situation in which simulation implies equivalence.
Their main result will be stated in an extended form that is most convenient for
testing several registers successively. We will then use this result as a building
block for finding other situations in which simulation implies equivalence.

From now and until the end of the paper, let A0 = {0, π
8 ,

π
4 }, A1 = {a+ π

2 :
a ∈ A0}, and A = A0 ∪A1. We fix orthogonal measurements (P a

A, P
a+π/2
A )a∈A0

and (P b
B , P

b+π/2
B )b∈A0 respectively on two Hilbert spaces A and B. Namely, we

assume that P a
A + P

a+π/2
A = IdA and P a

B + P
a+π/2
B = IdB , for every a ∈ A0.

Theorem 1. Let H = A⊗B⊗C, and |ψ〉 ∈ H that simulates |φ+〉 with respect
to (P a

A ⊗ P b
B ⊗ IdC)a,b∈A. Then there exist two unitary transformations UĀ ∈

U(Ā) and UB̄ ∈ U(B̄) such that |ψ〉 is (UĀ ⊗ UB̄)-equivalent to |φ+〉 on S =
span{P a

A ⊗ P b
B ⊗ IdC |ψ〉 : a, b ∈ A}. Moreover the dimension of S is 4.

In [3], the theorem was initially extended from S to the supports of |ψ〉 on each
side. Nonetheless our results will be stated on S since this is sufficient for our
purpose, and because their respective robustness can only be stated on S.

From Theorem 1 we derive by induction over n our main tool for test-
ing n-qubit registers. Let A =

⊗n
i=1A

i and B =
⊗n

i=1B
i. We now fix

(P ai

Ai , P
ai+π/2
Ai )ai∈A0 and (P bi

Bi , P
bi+π/2
Bi )bi∈A0 to be orthogonal measurements on

Ai and Bi respectively for every i. We denote P a
A =

⊗n
i=1 P

ai

Ai , with a = (ai)n
i=1

and P b
B =

⊗n
i=1 P

bi

Bi with b = (bi)n
i=1.



Corollary 1. Let H = A ⊗ B ⊗ C, and |Ψ〉 ∈ H that simulates |φ+〉 with
respect to (P ai

Ai ⊗P bi

Bi ⊗ IdC)ai,bi∈A for every i = 1, 2, . . . , n. Then there exist two
unitary transformations UĀ ∈

⊗
i U(Āi) and UB̄ ∈

⊗
i U(B̄i) such that |Ψ〉 is

(UĀ ⊗ UB̄)-equivalent to |Φ+
n 〉 on S = span{P a

A ⊗ P b
B |ψ〉 : a, b ∈ An}. Moreover

the dimension of S is 4n.

Therefore, testing a 2n-qubit EPR state can be done by checking the probabilities
of O(n) outcomes, whereas there are 2O(n) possible joint measurement outcomes.

3.2 Gate Testing

One-qubit Gate Testing. As a first attempt, we state how to check that a
gate is equivalent to the identity.

Proposition 2. Let H = A⊗B and G ∈ U(A). Let |ψ〉 ∈ H be such that |ψ〉 and
G|ψ〉 simulate |φ+〉 with respect to some projectors (P a

A)a∈A and (P b
B)b∈A. Then,

G⊗ IdB is tensor equivalent to IdAc
⊗ IdBc

on S = span{P a
A⊗P b

B |ψ〉 : a, b ∈ A}.

Stating the above result allows us to exhibit simple characteristics of the
general method used for proving that gates can be self-tested. First, any gate
testing requires two EPR tests. These are used to ensure that the input and
output states together with the measurements act properly before and after the
gate. These are conspiracy tests. Second, the fundamental properties of EPR
states is used in order to show that the gate G and the measurements commute
on the input state. This allows to perform tomography of the gate G. These tests
will be referred to as tomography tests.

We can now state the general result concerning any 1-qubit real gate. We use
the fact that any real gate on one qubit of the EPR state |φ+〉 can be undone
by doing the same real gate on the other qubit.

Theorem 2. Let T ∈ O(2). Let H = A ⊗ B, GA ∈ U(A), and GB ∈ U(B).
Let |ψ〉 ∈ H be such that |ψ〉 and GAGB |ψ〉 simulate |φ+〉, and such that GA|ψ〉
simulates (T ⊗ Id2)|φ+〉. Then, GA is tensor equivalent to T on S = span{P a

A ⊗
P b

B |ψ〉 : a, b ∈ A}.

Proof. The proof proceeds in two steps. First, we show that S and GA(S) are
resp. (UĀ ⊗ UB̄)- and (VĀ ⊗ UB̄)-equivalent to Ac ⊗ Bc. Second, we prove that
there existsW ∈ U(A) such that GA⊗IdB =S (V †

Ā
⊗U†

B̄
)(T⊗W⊗IdB̄)(UĀ⊗UB̄).

Theorem 1 applied to |ψ〉 and GAGB |ψ〉 gives UĀ, VĀ ∈ U(Ā) and UB̄ , VB̄ ∈
U(B̄) such that S and (GA⊗GB)(S) are respectively (UĀ⊗UB̄)- and (VĀ⊗VB̄)-
equivalent to Ac ⊗Bc. This implies that (GA ⊗ IdB)(S) is (VĀ ⊗UB̄)-equivalent
to Ac ⊗Bc. That is, we have the required tensor equivalences for S and GA(S).
If we define |χ〉AB as UĀ ⊗ UB̄ |ψ〉 = |φ+〉AcBc

⊗ |χ〉AB , we then have S =
U†

A ⊗ U†
B(Ac ⊗Bc ⊗ |χ〉AB).

The simulation of T |φ+〉 by GA|ψ〉 can be rewritten within
the density matrix formalism as: tr

(
(P a

A ⊗ P b
B)GA|ψ〉〈ψ|G†A

)
=

tr
(
(|a〉〈a| ⊗ |b〉〈b|)(T ⊗ Id2)|φ+〉〈φ+|(T † ⊗ Id2)

)
. Using the commutativity



of the trace operator and (Id2 ⊗ |b〉〈b|)|φ+〉〈φ+| = 1
2 |b〉〈b| ⊗ |b〉〈b|, we get:

tr
(
(G†AP

a
AGA ⊗ P b

B)|ψ〉〈ψ|
)

= 1
2 tr

(
T †|a〉〈a|T |b〉〈b|

)
.

Define the positive semi-definite operator Ra
ĀB̄

= (UĀ ⊗
UB̄)G†

AP
a
AGA(U†

Ā
⊗ U†

B̄
). Since |ψ〉 is tensor equivalent to |φ+〉, we have:

tr
(
Ra

ĀB̄
(|b〉〈b|Ac

⊗ |b〉〈b|Bc
⊗ |χ〉〈χ|AB)

)
= tr

(
T †|a〉〈a|T |b〉〈b|

)
.

Observe that the operators UB̄ and U†
B̄

can be removed from the definition of
Ra

ĀB̄
without modifying it. Therefore the previous equation can be extended for

all b, b′ ∈ A to tr
(
Ra

ĀB̄
(|b〉〈b|Ac

⊗ |b′〉〈b′|Bc
⊗ |χ〉〈χ|AB)

)
= tr

(
T †|a〉〈a|T

)
, since

the value of the left hand side does not depend on b′.
Now applying standard techniques of tomography, we get that

AB〈χ|Bc
〈b′|Ra

ĀB̄
|b′〉Bc

|χ〉AB = (T †|a〉〈a|T ), for every b′ ∈ A. Since Ra
ĀB̄

is
a semi-definite operator, the above conclusion can be rewritten as

Ra
ĀB̄ =Ac⊗Bc⊗|χ〉AB

(T †|a〉〈a|T )⊗ IdA⊗B̄ . (1)

The tensor-equivalence of GA(S) with Ac ⊗ Bc also gives P a
A =GA(S) (V †

Ā
⊗

U†
B̄

)(|a〉〈a|⊗IdA⊗B̄)(VĀ⊗UB̄). Since S = U†
A⊗U

†
B(Ac⊗Bc⊗|χ〉), this can be used

to replace P a
A inside Equation (1). We obtain (|a〉〈a|⊗IdA⊗B̄)(VĀ⊗UB̄)GA(U†

Ā
⊗

U†
B̄

)(T † ⊗ IdA⊗B̄) =Ac⊗Bc⊗|χ〉 (VĀ ⊗ UB̄)GA(U†
Ā
⊗ U†

B̄
)(T † ⊗ IdA⊗B̄)(|a〉〈a| ⊗

IdA⊗B̄). Then, we can conclude using standard linear algebra techniques that
there exists W ∈ U(A) such that GA =S (V †

Ā
⊗U†

B̄
)(T ⊗W ⊗ IdB̄)(UĀ⊗UB̄). ut

Many-qubit Gate Testing. We now consider n-qubit real gates. We present
our main result for testing gates using a slightly different formulation than in
Theorem 2, which will be useful for the proof of Theorem 4. The proof is omitted
since it is similar to the second step of the proof of Theorem 2.

Note that we will use that any real gate on one register of the state |Φ+
n 〉 can

be undone by doing the same real gate on the other register.

Theorem 3. Let T ∈ O(2n). Let H = A⊗ B ⊗ C, where A =
⊗

iA
i and B =⊗

iB
i. Let GA ∈ U(A) and GB ∈ U(B). Let |Ψ〉 ∈ H and UĀ, VĀ ∈

⊗
i U(Āi)

and UB̄ , VB̄ ∈
⊗

i U(B̄i) be such that:
1. |Ψ〉 is (UĀ ⊗ UB̄)-equivalent to |Φ+

n 〉 on S with respect to (P a
A ⊗ P b

B)a,b∈An ,
2. GAGB |Ψ〉 is (VĀ ⊗ VB̄)-equivalent to |Φ+

n 〉 on (GA ⊗GB)(S) with respect to
(P a

A ⊗ P b
B)a,b∈An ,

3. GA|Ψ〉 simulates (T ⊗ Id2n)|Φ+
n 〉 with respect to (P a

A ⊗ P b
B ⊗ IdC)a,b∈An ,

where S = span{P a
A ⊗ P b

B |ψ〉 : a, b ∈ An}. Then GA is (UĀ ⊗ UB̄ , VĀ ⊗ UB̄)-
equivalent to T on S.

As Theorems 2 & 3 exemplify, there is one restriction to the class of gates
we are able to test. The ideal gates must have real-valued coefficients. Note that
we are not making any assumptions about the physical implementation of gates,
but rather on the ideal gates they are supposed to simulate. The problem lies
in the fact that any complex gate of dimension d can be simulated using real



gates and appropriate measurement devices on a 2d-dimensional Hilbert space,
in a rather standard way [7]. On the positive side, this remark means that our
restriction is not a limitation, as any quantum computation can be performed
with real gates and real gates can be tested.

3.3 Circuit Testing

Now we state our main theorem and its corollary which relates elementary tests
of sources and gates with the simulation of a whole circuit. They derive from
Corollary 1 and Theorem 3, in the sense that (i) under certain conditions simu-
lation implies equivalence, (ii) equivalence statements can be composed and (iii)
that equivalence implies simulation.

Assume that some Hilbert space H has a tensor product decomposition H =⊗n
i=1A

i
⊗
Bi. For any subset I ⊆ {1, 2, . . . , n}, let HI denote the Hilbert space⊗

i∈I A
i
⊗

i∈I B
i, and |Φ+〉I the EPR state |Φ+

|I|〉 over
⊗

i∈I A
i
c

⊗
i∈I B

i
c.

Theorem 4. Let H = A ⊗ B, where A =
⊗

iA
i and B =

⊗
iB

i. Let
I1, I2, . . . , It ⊆ {1, 2, . . . , n}. Let Gj

A ∈ U(AIj

), Gj
B ∈ U(BIj

) and T j ∈ O(AIj

c ).
Let |Ψ〉 ∈ A ⊗ B. Define inductively |Ψ ′j〉 = (Gj

A ⊗ IdB)|Ψ j−1〉 and |Ψ j〉 =
(Gj

A ⊗Gj
B)|Ψ j−1〉, where |Ψ0〉 = |Ψ ′0〉 = |Ψ〉. Assume:

1. |Ψ〉 simulates |φ+〉 with respect to (P ai

Ai⊗P bi

Bi)ai,bi∈A, for every i = 1, 2, . . . , n.
2. For j = 1, . . . , t: |Ψ j〉 simulates |φ+〉 with respect to (P ai

Ai ⊗ P bi

Bi)ai,bi∈A, for
every i ∈ Ij.
3. For j = 1, . . . , t: |Ψ ′j〉 simulates T j |Φ+〉Ij w.r.t. (P a

AIj ⊗ P b
BIj )a,b∈AIj .

Then Gt
AG

t−1
A · · ·G1

A is tensor equivalent to T tT t−1 · · ·T 1 on S = span(P a
A ⊗

P b
B |Ψ〉 : a, b ∈ An).

Corollary 2. Let |Ψ〉 ∈ H satisfy the hypothesis of Theorem 4 for some decom-
position of GA ∈ U(A) and T ∈ U(Ac) into t gates acting only on a constant
number of qubits. Then, for every x ∈ {0, 1}n, the state

√
2n trB(P x

B |Ψ〉) simu-
lates |x〉Ac with respect to (Pw

A )w∈An . Moreover GA simulates T with respect to
the above identification, and the number of statistics to be checked is in O(t).

4 Robustness of Testing

Until now, our interest has been focused on the possibility of self-testing a quan-
tum circuit when outcome probabilities are known with perfect accuracy. To
be of practical interest, our results must be extended to the situation of finite
accuracy. We show below that it is possible and that the relevant results for
testing are robust in the following way: if the statistics are close to the ideal
ones, then the states, the measurements and the gates are also close to ones that
are equivalent to the ideal ones. This notion of robustness follows the ones of [8,
9] for classical computing and of [4] for quantum computing.

The proofs of this section follow the structure of the exact case, and are
omitted due to the lack of space. They will be in the full version of the paper.
We first state the robustness of Theorem 1.



Theorem 5. Let H = A ⊗ B ⊗ C, and |ψ〉 ∈ H that ε-simulates |φ+〉 with
respect to (P a

A ⊗ P b
B ⊗ IdC)a,b∈A. Then there exist UĀ ∈ U(Ā) and UB̄ ∈ U(B̄)

such that |ψ〉 is (O(ε1/4), (UĀ ⊗ UB̄))-equivalent to |φ+〉 on S.

This result can be generalized to the case of a source producing a state |Ψ〉
that simulates n EPR pairs. In such case equivalence holds within O(4nε1/4).

Corollary 3. Let H = A ⊗ B ⊗ C, where A =
⊗

iA
i and B =

⊗
iB

i. Let
|Ψ〉 ∈ H be a state that ε-simulates |φ+〉 with respect to (P ai

Ai ⊗ P bi

Bi)ai,bi∈A, for
every i = 1, 2, . . . , n. Then, |Ψ〉 is O(4nε1/4)-equivalent to |Φ+

n 〉.

Another corollary we will use in the context of circuit testing concerns the case
of n sources of EPR pairs that are tested simultaneously. This is qualitatively
different from the previous situation as the state |Ψ〉 that is tested is assumed to
be separable across the tensor product decomposition of H into Hi = Ai ⊗Bi.

Corollary 4. Let H = A ⊗ B ⊗ C, where A =
⊗

iA
i and B =

⊗
iB

i. Let
|Ψ〉 ∈ H be a separable state across the tensor product decomposition of H into
Ai⊗Bi, and such that it ε-simulates |φ+〉 with respect to (P ai

Ai ⊗P bi

Bi)ai,bi∈A, for
every i = 1, 2, . . . , n. Then, |Ψ〉 is O(nε1/4)-equivalent to |Φ+

n 〉.

Now we concentrate on the robustness of Theorem 3. Note that the exponential
dependency in the number n of qubits is not a problem, since we will use this
theorem for constant n only (typically n ≤ 3).

Theorem 6. Let T ∈ O(2n). Let H = A⊗ B ⊗ C, where A =
⊗

iA
i and B =⊗

iB
i. Let GA ∈ U(A) and GB ∈ U(B). Let |Ψ〉 ∈ H and UĀ, VĀ ∈

⊗
i U(Āi)

and UB̄ , VB̄ ∈
⊗

i U(B̄i) be such that:
1. |Ψ〉 is (ε, (UĀ⊗UB̄))-equivalent to |Φ+

n 〉 on S with respect to (P a
A⊗P b

B)a,b∈An ,
2. GA⊗GB |Ψ〉 is (ε, (VĀ⊗VB̄))-equivalent to |Φ+

n 〉 on (GA⊗GB)(S) with respect
to (P a

A ⊗ P b
B)a,b∈An ,

3. GA|Ψ〉 ε-simulates (T ⊗ Id2n)|Φ+
n 〉 with respect to (P a

A ⊗ P b
B ⊗ IdC)a,b∈An .

Then GA ⊗ IdB is (2O(n)
√
ε, (UĀ ⊗UB̄ , VĀ ⊗UB̄))-equivalent to T ⊗ IdB̄c

on S.

5 Testing a Circuit on a Specific Input

We have seen in Section 3 how to test the implementation of a circuit on a whole
subspace S of the input space. Surprisingly, this is much easier than to test a
circuit on a particular input. In fact, using EPR pairs allows for the simultaneous
testing of all possible inputs, while making the selection of a particular one
difficult. The obvious choice would be to post-select the outcome of the B-side
measurements of the EPR pairs. Unfortunately, the selected input state would
then be prepared with exponentially small probability.

We circumvent the aforementioned difficulty using the fact that our circuits
can have classically controlled feedback that decides which gates need to be
applied based on some measurement results. Given a circuit for a unitary trans-
formation T and an input x, we first measure the B-side of the (alleged) EPR



states. This yields a classical state y on the A-side. Second, we design a circuit
Tx,y whose purpose is to flip the corresponding bits of y in order to get the input
x, and to apply the original circuit for T . Third, we run the modified circuit on
the state y that was prepared on the A-side. Finally, we test that this modified
circuit implemented the correct computation. This includes verifying the gates
and the preparation of all input states |x′〉—and in particular the preparation
of |x〉—obtained by measuring |Ψ〉 on the B-side. See Figure 1 for an example.

Fig. 1. The experiments to test the circuit consisting of gates G3
AG2

AG1
A on input |00〉.

We first run the computation (Experiment 1) once on the modified circuit, where the
intermediate measurements on the B-side yield the outcomes M1, M2. We now wish to
check that the output of the circuit is correct. We carry on implementing Experiments
2 through 8 each a number of times in log(n/γ)/ε8, where ε is the required precision
and γ is some confidence parameter.

The parameters of our test is a circuit for T ∈ U(2n), that is a gate decom-
position T tT t−1 · · ·T 1 = T ; a binary string x ∈ {0, 1}n; a precision ε > 0; and
a confidence γ > 0. We assume that each gate T i acts on a constant number of
qubits (say ≤ 3). The input is a source of quantum states |Ψ〉 spread over n pairs
of quantum registers; gates Gj

A and Gj
B acting on the same register numbers as

T j , for every j; auxiliary gates N i
A acting on the i-th register of A; and orthogo-

nal measurements (P a
Ai , P

a+π/2
Ai )a∈A0 and (P b

Bi , P
b+π/2
Bi )b∈A0 . The goal is to test

that, firstly,
√

2n trB(P b
B |Ψ〉) simulates |b〉 and that, secondly, the implemented

circuit GA simulates T .

Circuit Test (T 1, T 2, . . . , T t ∈ U(2n), x ∈ {0, 1}n, ε > 0, γ > 0)

1. Prepare a state |Ψ〉 of n EPR states into n pairs on A1⊗B1, . . . , An⊗Bn

2. Measure the B-side of |Ψ〉 using (P b
B)b∈{0,π/2}n and let y be the outcome

3. Let Tx,y be the circuit that changes the input |y〉 into |x〉 and applies T



4. Prepare on the A-side the circuit GA implementing Tx,y using the t gates
Gj

A and at most n gates N i
A. Let t′ ≤ t + n be the total number of gates

5. Run the circuit on the A-side and measure using (P a
A)a∈{0,π/2}n

6. Approximate all the following statistics by repeating O( log(n/γ)
ε

) times the
following measurements (where we use the notation of Theorem 4):

(a) Measure |Ψ〉 using (P ai

Ai ⊗ P bi

Bi)ai,bi∈A0
, for every i = 1, 2, . . . , n

(b) For j = 1, . . . , t′: Measure |Ψ j〉 using (P ai

Ai ⊗ P bi

Bi)ai,bi∈A, for every i ∈ Ij

(c) For j = 1, . . . , t′: Measure |Ψ ′j〉 using (P a

AIj ⊗ P b

BIj )
a,b∈AIj

0

7. Accept if all the statistics are correct up to an additive error ε

Theorem 7. Let T 1, T 2, . . . , T t ∈ U(2n), x ∈ {0, 1}n, ε > 0, γ > 0.
If Circuit Test(T 1, T 2, . . . , T t, x, ε, γ) accepts then, with probability 1−O(γ),

the outcome probability distribution of the circuit (in step 5) is at total variance
distance O((t+ n)ε1/8) from the distribution that comes from the measurement
of T tT t−1 · · ·T 1|x〉 by (|a〉〈a|)a∈{0,π/2}n .

Conversely, if Circuit Test(T 1, T 2, . . . , T t, x, ε, γ) rejects then, with proba-
bility 1 − O(γ), at least one of the state |Ψ〉, the gates Gi

A, G
i
B and N i

A is not
O(ε)-equivalent to respectively either |Φ+

n 〉, (|a〉〈a|Ai
c
)a∈A, (|b〉〈b|Bi

c
)b∈A), T i, t(T i)

and NOTAi
c
, on S = span(P a

A⊗P b
B |Ψ〉 : a, b ∈ An) with respect to the projections

(P a
A ⊗ P b

B)a,b∈An .
Moreover Circuit Test(T 1, T 2, . . . , T t, x, ε, γ) consists of O( tn

ε log(n/γ))
samplings.

Proof. We first describe the use of the hypotheses we made in Section 1. The
assumption (H4) of trusted classical control is used to ensure that the circuit has
the same behavior on P y

B |Ψ〉 as it would have on |Ψ〉. Hypothesis (H3) implies
that we can repeat several times the same experiment, and hypotheses (H1) and
(H2) allow us to state which parts of our system are separated from the others.

First, using the Chernoff-Hoeffding bound, we know that the expectation
of any bounded random variable can be approximated within precision O(ε)
with probability 1 − O(γ) by log(1/γ)

ε2 independent samplings. Moreover if the
expectation is lower bounded by a constant, then log(1/γ)

ε independent samplings
are enough. In our case, the random variable is the two possible outcomes of a
measurement. Call them 0 or 1. Since we can count both 0 and 1 outcomes, one of
the corresponding probabilities is necessarily at least 1/2. Therefore we get that
each statistics we have from Circuit Test are approximated within precision
O(ε) with probability 1−O(γ). From now on, we assume that all statistics are
given within this precision.

First, we prove the robustness of Circuit Test. We derive the correct simu-
lation of the implemented circuit using the approximate version of Corollary 2,
that we get using Theorems 5 and 6. More precisely, using Corollary 4 for the ini-
tial source we get that |Ψ〉 is O(nε1/4)-equivalent to |Φ+

n 〉 on S. For other steps,
due to the application of the j-th gate, the state |Ψ j〉 is not necessarily a sepa-
rable state across the n-registers. So we apply Corollary 3 on the registers where
the j-th gate is applied, that is on a constant number of register, which gives



the required O(ε1/4)-equivalence on the corresponding registers. Then, Theo-
rem 6 concludes that the j-th gate is O(jε1/8)-equivalent to the expected one,
similarly for the intermediate states of the circuit and for the measurements.
Note the error propagation is controlled by two properties: the stability of the
`2 operator-norm by tensor product composition, and the triangle inequality.

Then, we focus on the run of Tx,y in Step 5. We have to justify that the (nor-
malized) outcome state

√
2nP y

B |Ψ〉 ∈ S of the measurement (P b
B)b∈{0,π/2}n is

O(nε1/4)-equivalent to |y〉 with respect to (P a
A)a∈{0,π/2}n on P y

B(S). Recall that
by assumption the initial state |Ψ〉 is separable across the n pairs of registers,
namely |Ψ〉 =

⊗
i|ψi〉 with |ψi〉 ∈ Ai ⊗ Bi. For each pair of registers Ai ⊗ Bi,

using Theorem 5 we get that |ψi〉 is O(ε1/4)-equivalent to |φ+〉 with respect
to (P ai

Ai ⊗ P bi

Bi)ai,bi∈A on Si = span(P ai

Ai ⊗ P bi

Bi |ψi〉 : ai, bi ∈ A). In particular
the projections P ai

Ai ⊗ P bi

Bi are also O(ε1/4)-equivalent to |ai〉〈ai| ⊗ |bi〉〈bi| on Si.

Therefore the normalized outcome state
√

2P yi

B |ψi〉 (which is in Si) is O(ε1/4)-
equivalent to |yi〉 with respect to (P ai

Ai)ai∈{0,π/2} on P yi

Bi(Si). We then get our
equivalence for the whole outcome state using those intermediate equivalences
together with the stability of the `2 operator-norm by tensor product compo-
sition, and the triangle inequality of the norm. Finally, we combine the above
approximate equivalences, one for the circuit and one for the input, and get that
the outcome distribution is at total variation distance at most O((t + n)ε1/8)
from the expected one.

The second part of the theorem is the soundness of Circuit Test. Since `2-
distance between states bounds the statistics bias of their measures, the proof
of the contraposition directly follows: if our objects are ε-equivalent to the spec-
ification, then their statistics have a bias which is upper bounded by O(ε).

ut
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