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RECOGNIZING WELL-PARENTHESIZED EXPRESSIONS
IN THE STREAMING MODEL∗

FRÉDÉRIC MAGNIEZ† , CLAIRE MATHIEU‡ , AND ASHWIN NAYAK§

Abstract. Motivated by a concrete problem and with the goal of understanding the relation-
ship between the complexity of streaming algorithms and the computational complexity of formal
languages, we investigate the problem Dyck(s) of checking matching parentheses, with s different
types of parentheses. We present a one-pass randomized streaming algorithm for Dyck(2) with
space of O(

√
n logn ) bits, time per letter polylog(n), and one-sided error. We prove that this

one-pass algorithm is optimal, up to a logn factor, even when two-sided error is allowed. Surpris-
ingly, the space requirement shrinks drastically if we have access to the input stream in reverse.
We present a two-pass randomized streaming algorithm for Dyck(2) with space of O((log n)2),
time polylog(n) and one-sided error, where the second pass is in the reverse direction. Both al-
gorithms can be extended to Dyck(s) since this problem is reducible to Dyck(2) for a suitable
notion of reduction in the streaming model. Except for an extra O(

√
log s ) multiplicative over-

head in the space required in the one-pass algorithm, the resource requirements are of the same
order. For the lower bound, we exhibit hard instances Ascension(m) of Dyck(2) with length in
Θ(mn). We embed these in what we call a “one-pass” communication problem with 2m-players,
where m ∈ Õ(n). To establish the hardness of Ascension(m), we follow the “information cost”
approach, but with a few twists. We prove a direct sum result that reduces Ascension(m) to a
two-player protocol for Mountain, which is in fact a variant of Index, a fundamental problem
in communication complexity. We finish the argument with a new information cost lower bound
for Mountain.
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1. Introduction. The area of streaming algorithms has experienced tremendous
growth in many applications since the late 1990s. Streaming algorithms sequentially
scan the whole input piece by piece in one pass, or in a small number of passes (i.e.,
they do not have random access to the input), while using sublinear memory space,
ideally polylogarithmic in the size of the input. The design of streaming algorithms
is motivated by the explosion in the size of the data that algorithms are called upon
to process in everyday real-time applications. Examples of such applications occur in
bioinformatics for genome decoding, in Web databases for the search of documents,
or in network monitoring. The analysis of Internet traffic [2], in which traffic logs are
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queried, was one of the first applications of this kind of algorithm. Although these
would have ramifications for massive data such as DNA sequences and large XML
files, few studies have been made in the context of formal languages. For instance,
in the context of databases, properties decidable by streaming algorithms have been
studied [39, 38], but only in the restricted case of deterministic and constant memory
space algorithms.

Motivated by a concrete problem and with the goal of understanding the rela-
tionship between the complexity of streaming algorithms and the computational com-
plexity of formal languages, we investigate the problemDyck(s) of checking matching
parentheses, with s different types of parentheses. Regular languages are by definition
decidable by deterministic streaming algorithms with constant space. The Dyck lan-
guages are some of the simplest context-free languages and yet already are powerful.
These languages play a central role in the theory of context-free languages, since every
context-free language L can be mapped to a subset of Dyck(s) [16], for some s. In
addition to its theoretical importance, the problem of checking matching parentheses
is encountered frequently in database applications, for instance, in verifying that an
XML file is well-formed.

The problem of deciding membership in Dyck(s) has already been addressed in
the massive data setting, more precisely through property testing algorithms. An
ε-property tester [10, 11, 22] for a language L accepts all strings of L and rejects all
strings which are ε-far from strings in L with respect to the normalized Hamming
distance. For every fixed ε > 0, Dyck(1) is ε-testable in constant time [1], whereas
for s > 1, Dyck(s) is ε-testable in time Õ(n2/3), with a lower bound of Ω̃(n1/11) [36].
Feigenbaum et al. [20] have compared property testers and streaming algorithms.
Property testers are constrained to read only small portions of the input due to
expectation of small processing time. In contrast, streaming algorithms have the
advantage of access to the entire string, albeit not in a random access fashion.

With random access to the input, context-free languages are known to be recog-
nizable in space O((log n)2) [23]. In the special case of Dyck(s), logarithmic space
is sufficient, as we may run through all possible levels of nesting, and check paren-
theses at the same level. This scheme does not seem to translate easily to streaming
algorithms, even with a small number of passes over the input.

In the streaming model, Dyck(1) has a one-pass streaming algorithm with log-
arithmic space, using a height counter. Using the linear lower bound for two-way
deterministic communication protocols for Equality, we can deduce that Dyck(2)
requires space Ω(n/T ) for deterministic streaming algorithms with T passes. In partic-
ular, Dyck(2) requires linear space for deterministic one-pass streaming algorithms.
A relaxation of Dyck(s) is Identity(s) in the free group with s generators, where
local simplifications aa = ε are allowed in addition to aa = ε, for every type of paren-
thesis (a, a). There is a logarithmic space algorithm for recognizing the language
Identity(s) [32] that can easily be massaged into a one-pass streaming algorithm
with polylogarithmic space. Again, this algorithm does not extend to Dyck(s).

We show that Dyck(s) is reducible to Dyck(2), for a suitable notion of reduction
in the streaming model, with a log s factor expansion in the input length. First, we
present a one-pass randomized streaming algorithm for Dyck(2).

Theorem 3.9. Let c > 0 be any constant. There is a one-pass randomized
streaming algorithm that checks if a stream of length n belongs to Dyck(2) and uses
space O(

√
n logn ) and time polylog(n) per letter. If the stream belongs to Dyck(2)

then the algorithm accepts it with certainty; otherwise it rejects it with probability at
least 1− n−c.
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If the length of the stream x is not known in advance, we may use standard
techniques to extend the algorithm. Namely, we use an estimate for the length that is
scaled geometrically as needed. The extended algorithm continues to accept streams
in Dyck(2) with certainty. The error probability of the resulting algorithm when x �∈
Dyck(2) is guaranteed to be smaller than δ for any prespecified constant δ > 0.

If we had no space constraints, deciding Dyck(2) would be very simple: when we
encounter an upstep (a or b), we push it on a stack; when we encounter a downstep (a
or b), we pop the top item from the stack and check that they match. However, the
stack may grow to linear size in this process. To avoid this growth, the basic strategy of
our algorithm is to use a linear hash function to periodically (every

√
n/ logn letters)

compress stack information. As long as we compress sequences of only upsteps or
only downsteps, all at different heights, we are able to detect mismatches with high
probability. The algorithm has one-sided error; it accepts words that belong to the
language with certainty. Although it is simple, we show that this appealing algorithm
is nearly optimal in its space usage, even when two-sided error is allowed.

Corollary 4.7. Every one-pass randomized streaming algorithm for Dyck(2)
with (two-sided) error O(1/n logn) on inputs of length n uses Ω(

√
n logn) space.

In the preliminary version of this article [33], we conjectured that a similar lower
bound continues to hold if we read the stream several times, but always in the same
direction. This conjecture has since been confirmed; we elaborate on this in section 5.
Surprisingly, the situation is drastically different if we can read the data stream in
reverse. We present a second algorithm, a randomized two-pass streaming algorithm
for Dyck(2) with polylogarithmic space and time, where the second pass is in the
reverse direction.

Theorem 1. Let c > 0 be a constant. There is a bidirectional two-pass random-
ized streaming algorithm for Dyck(2) with space O((logn)2) and time polylog(n) for
inputs of length n. If the input belongs to Dyck(2), then the algorithm accepts it with
certainty; otherwise it rejects it with probability at least 1− n−c.

The above algorithm may be extended to streams of unknown length in the same
manner as the unidirectional one. The rejection probability for inputs not in Dyck(2)
is then only guaranteed to be at least 1 − δ for any prespecified constant δ, whereas
inputs in Dyck(2) are accepted with certainty.

The bidirectional algorithm uses a hierarchical decomposition of the stream into
blocks; whenever the algorithm reaches the end of a block, it compresses the infor-
mation about subwords from within the block. This compression is what reduces the
stack size from Θ(

√
n logn ) down to O(logn) but prevents us from checking that

certain matching pairs of parentheses are well-formed. However, given the profile of
the word (i.e., the sequence of heights), we can pinpoint exactly the matching pairs
that do not get checked. As it turns out, a pair that does not get checked when
scanning the input left to right is necessarily checked when scanning in the reverse
direction. Like the one-pass algorithm, this algorithm has only a one-sided error and
always accepts words that belong to the language. We note that it is straightforward
to extend the algorithms so that they recognize the language of substrings (which are
subwords of consecutive letters) of Dyck(2).

As mentioned above, we also investigate the lower bound on the space required
for any one-pass randomized streaming algorithm. Such a lower bound is by nature
hard to prove because of the connection of the problem with Identity(2). Moreover,
proving a nontrivial lower bound based on two-party communication complexity is
hopeless: the related communication problem automatically reduces to Equality
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after local checks and simplifications by both players, leading to only an Ω(logn) lower
bound. Instead, we build hard instances Ascension(m) of Dyck(2) with length in
Θ(mn), which we embed in a “one-pass” communication problem with 2m players,
where m ∈ Θ̃(n). The constraint is that the length of each message in the protocol be
less than σ, a function of n. Our main lower bound result (Theorem 4.6) is that such
a protocol requires σ ∈ Ω(n), which proves that our one-pass algorithm is optimal
for probability of error of order 1/n logn and within an O(logn) factor of optimal for
constant error (Corollary 4.7).

To establish the hardness of Ascension(m), we follow the “information cost”
approach taken in [15, 37, 8, 28, 26], among other works before and since. The
technique comes with a few twists in our case. We prove a direct sum result that
captures the relationship of 2m-player problem Ascension(m) to solving m instances
of an intermediate problem Mountain, which involves only two players. Mountain

is a variant of Index, a fundamental problem in communication complexity. This
variant has been studied in the one-way communication model as “serial encoding”
[3, 35] and in later works on streaming and sketching as an “augmented index” (see,
e.g., [29, 19]).

We adapt the notion of information cost to suit the nature of both stream-
ing algorithms and our problem. The idea is to focus on the information about a
part of the input contained in a part of the protocol transcript, given the remain-
ing inputs. Using this notion of information cost, we prove the direct sum result
(Lemma 4.5). A remarkable device here, originally developed by Bar-Yossef et al. [8],
is the use of an “easy” distribution for the information cost for protocols that are
correct with high probability in the worst case. The use of an easy distribution
“collapses” Ascension(m) to an instance of Mountain, which may be planted in
any one of the m coordinates. Finally, we prove a new information cost lower
bound for Mountain using a medley of combinatorial and information-theoretic
means.

In protocols for Ascension(m) we allow access to only public coins by all players,
whereas in protocols for Mountain we allow one of the players, Bob, access also
to private coins (while Alice, the other player, may access only public coins). This
mixture of public and private coins forMountain arises from a balancing act between
the direct sum result and our lower bound for Mountain (Theorem 4.4). Namely, we
prove the lower bound for Mountain when Alice uses only public coins, whereas the
direct sum holds, with our definition of information cost, only when Bob has access
to additional private coins. The mixing of public and private coins in the analysis of
information cost has also been observed and similarly tackled in earlier works (see,
e.g., [14]).

We note that as a bonus, our lower bound (Theorem 4.6) provides a Ω̃(
√
n) lower

bound for the problem of checking priority queues in the one-pass streaming model,
solving an open problem posed by Chu, Kannan, and McGregor [17].

2. Definitions and preliminaries.
Definition 2.1 (Dyck). Let s be a positive integer. Then Dyck(s) denotes the

language over alphabet Σ = {a1, a1, . . . , as, as} defined recursively by

Dyck(s) = ε+
∑
i≤s

ai ·Dyck(s) · ai ·Dyck(s).

We also denote by Dyck(s) the problem of deciding whether a word w ∈ Σ∗ is
in the language Dyck(s).
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In streaming algorithms, a pass on an input x ∈ Σn means that x is presented as
an input stream x1, x2, . . . , xn, which arrives sequentially, i.e., letter by letter in this
order. For simplicity, we assume throughout this article that the length n of the input
is always given to the algorithm in advance. Nonetheless, all our algorithms can be
adapted using standard techniques to the case in which n is unknown until the end
of a pass. See [34] for an introduction to streaming algorithms.

Definition 2.2 (streaming algorithm). Fix an alphabet Σ. A k-pass determin-
istic (resp., randomized) streaming algorithm A with space s(n) and time t(n) is a
deterministic (resp., randomized) algorithm such that for every input stream x ∈ Σn,

1. A performs k sequential passes on x;
2. A maintains a memory space of size s(n) bits while reading x;
3. A has running time at most t(n) per letter xi;
4. A has preprocessing and postprocessing time t(n).

We say that A is bidirectional if it is allowed to access the input in the reverse order,
after reaching the end of the input. Then the parameter k is the total number of passes
in either direction.

Definition 2.3 (streaming reduction). Fix two alphabets Σ1 and Σ2. A problem
P1 is f(n)-streaming reducible to a problem P2 with space s(n) and time t(n) if for

every input x ∈ Σn
1 , there exists y = y1y2 . . . yn, with yi ∈ Σ

f(n)
2 , such that

1. yi can be computed deterministically from xi using space s(n) and time t(n);
2. from a solution of P2 with input y, a solution on P1 with input x can be

computed with space s(n) and time t(n).
The following is immediate.
Proposition 2.4. Let P1 be f(n)-streaming reducible to a problem P2 with space

s0(n) and time t0(n). Let A be a k-pass streaming algorithm for P2 with space
s(n) and time t(n). Then there is a k-pass streaming algorithm for P1 with space
s(n × f(n)) + s0(n) and time t(n × f(n)) + t0(n) with the same properties as A
(deterministic/randomized, unidirectional/bidirectional).

Moreover, we need only study Dyck(s) with s = 2.
Proposition 2.5. Dyck(s) is �log s�-streaming reducible to Dyck(2) with space

and time O(log s).
Proof. We encode a parenthesis ai by a word of length l = �log s� with only

parentheses of type b, c. We let f(ai) be the binary expansion of i over l bits where
0 is replaced by b and 1 by c. Then f(ai) is defined similarly, except that we write
the binary expansion of i in the opposite order and replace 0 by b̄ and 1 by c̄. Then
x1 . . . xn is in Dyck(s) if and only f(x1) . . . f(xn) is in Dyck(2).

Since the parameter s is a constant independent of the length of the input stream,
the above reduction can be implemented with constant space and time. For example,
in parsing XML files, given an upstep (start-tag) <w> (resp., a downstep (end-tag)
</w>), where w is an ASCII string denoting the type of parenthesis (tag), we can
generate the above encoding of w into b, c (resp., into b, c), while reading w as a
stream itself, i.e., character by character.

By Proposition 2.5, it is enough to design streaming algorithms for Dyck(2).
That is the objective of the next section.

3. Algorithms. From now on we consider Dyck(2) where the input is a stream
of n letters x1x2 . . . xn in the alphabet Σ = {a, a, b, b}. We first introduce a few
definitions. An upstep is a letter a or b, and a downstep is a letter a or b. For integers
i ≤ j, we denote by [i, j] the set of integers {i, i+1, . . . , j} and by x[i, j] the subword
xixi+1 . . . xj . We also use the notation x[i] for xi when we also consider sequences
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of words. For ease of notation, we identify an increasing sequence i1 < i2 < · · · <
im of indices with the corresponding subword xi1xi2 . . . xim of x. We also use this
correspondence in reverse when the indices of the subword are clear from the context.
The number of occurrences of the letter p in a word x is denoted by |x|p. In the
absence of any subscript, |x| denotes the length of the word.

Definition 3.1 (height, matching pair, well-formed). Let x ∈ Σn. The height
of x is height(x) = |x|a + |x|b − |x|a − |x|b. For 1 ≤ i < j ≤ n, (i, j) is a matching
pair for x if height(x[1, i−1]) = height(x[1, j]) and height(x[1, k]) > height(x[1, i−1])
for all k ∈ {i, . . . , j − 1}. The height of a matching pair (i, j) is height(x[1, i − 1]).
A matching pair (i, j) for x is well-formed if (x[i], x[j]) equals (a, a) or (b, b) and is
ill-formed otherwise.

It follows that any index i forms a matching pair with at most one other index
and that a matching pair consists of an upstep and a downstep. These definitions are
extended to subsets I ⊆ [1, n] of indices of letters of x. For instance, we say that I
is a matching set for x if I is the union of {i, j} over the matching pairs (i, j) for x.
Observe that when i < j we have the following equivalence: (i, j) is a matching pair
for x if and only if {i, i+ 1, i+ 2, . . . , j} is a matching set for x.

Define a partial order ≺ between words such that u ≺ v if and only if u is
obtained from v by removing zero or more of its matching pairs. This order is well
defined, and in particular transitive, since matching pairs of u are still matching
pairs of v, up to reindexing. (This may be proved by a straightforward inductive
argument.)

Proposition 3.2. Let u, v be words such that u ≺ v and u = u1u2 · · ·um =
vi1vi2 · · · vim is obtained by removing the matching set [1, n]\ {i1, i2, . . . , im} from v.
If (j, k) ∈ [1,m]2 is a matching pair for u, then (ij , ik) is a matching pair for v.

To prove correctness of our algorithms, we use the following characterization of
Dyck(2).

Proposition 3.3. Let x ∈ Σn. Then
1. [1, n] is a (possibly ill-formed) matching set for x if and only if height(x) = 0

and the height of every prefix of x is nonnegative;
2. [1, n] is a well-formed matching set for x if and only if x ∈ Dyck(2).

Proof. The proof is by induction on the length n of x. The first part may be
established by a straightforward induction on n. We prove the second part. For n = 0
the result is true since the empty word is in Dyck(2) and ∅ is a well-formed set.

Let x ∈ Dyck(2) of length n. By Definition 2.1, there exist y, z ∈ Dyck(2)
such that x = cycz, where c ∈ {a, b}. Then (1, 2 + |y|) is a well-formed pair. By
the inductive hypothesis, [1, |y|] and [1, |z|] are well-formed matching sets for y and z,
respectively. All together this gives the well-formed set [1, n] for x, after appropriate
translation.

Conversely, assume that [1, n] is a well-formed set for x. Let j1 be such that (1, j1)
is a (well-formed) matching pair for x. We prove that every matching pair (i, j) for
x satisfies 1 < i, j < j1 or j1 < i, j ≤ n. Thus the matching set [1, n] is partitioned
into {1, j1}, [2, j1 − 1] (which is a translation of the matching set for x[2, j1 − 1])
and [j1 + 1, n] (which is a translation of the matching set for x[j1 + 1, n]). By the
inductive hypothesis, x[2, j1 − 1], x[j1 + 1, n] ∈ Dyck(2), and the statement follows.

We return to the property of matching pairs (i, j) described above. Assume, for
a contradiction, that there is a matching pair (i, j) such that i < j1 < j. Then,
by Definition 3.1, height(x[1, j1]) > height(x[1, i − 1]) and also height(x[1, j1]) =
height(x[1, 0]) = 0. Thus height(x[1, i − 1]) < 0, a contradiction to the first part of
the proposition.
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Observe that checking that [1, n] is a (possibly ill-formed) matching set, or equiv-
alently that height(x) = 0 and the height of every prefix of x is nonnegative, can
be done deterministically within one pass over stream x, using logn memory. Our
algorithms do not explicitly check this but nonetheless ensure this property when ac-
cepting x. During the computation our algorithms implicitly keep track of the height
of the word read so far. They reject when the height of any prefix is negative, so for
ease of exposition, we assume that the height of the stream is always nonnegative.

Let p be a prime number such that n1+γ ≤ p < 2n1+γ for some fixed constant
γ > 0. The algorithm uses a random function hash(·) that maps subwords v of x to
integers in [0, p− 1], as follows: hash(xi1xi2 . . . xim ) =

∑
j hash(xij ) with

hash(xi) =

⎧⎨
⎩

αheight(x[1,i−1]) mod p if xi = a,

−αheight(x[1,i]) mod p if xi = a,
0 otherwise,

where α is a uniformly random integer in [0, p − 1]. Note that the computation of
hash(v) depends not just on v but also on the height of its letters within x.

Given x and v, the value of hash(v) is a polynomial in α of degree bounded by
the maximum height of a prefix of x, which is at most n. A polynomial of degree d
over Fp has at most d roots. Therefore, if the polynomial corresponding to hash(v) is
not identically zero, for a uniformly random α, the probability that hash(v) = 0 is at
most n/p ≤ n−γ . In particular, we have the following.

Proposition 3.4. Let x ∈ Σn be such that every prefix of x has nonnegative
height, and let v = xi1xi2 . . . be a subword of x. If v ∈ Dyck(2), then hash(v) = 0
for all α. Moreover, if there is a height d at which v has a single ill-formed pair
(and possibly other ill-formed matching pairs at heights �= d), then hash(v) �= 0 with
probability at least 1− n−γ , for a uniformly random integer α ∈ [0, p− 1].

Proof. If v ∈ Dyck(2), then by Proposition 3.3 the set [1, n] is well-formed, and
then each well-formed matching pair (i, j) at height d contributes{

αd − αd = 0 if (xi, xj) = (a, a);

0− 0 = 0 if (xi, xj) = (b, b).

Therefore, we get hash(v) = 0.
Now, assume there is a height d at which v has a single ill-formed pair. Since every

prefix of x has nonnegative height, the value hash(v) is a polynomial q(z) evaluated
at z = α. Every well-formed pair at height d cancels, and so the coefficient of zd in
q is +1 if (xi, xj) = (a, b) and −1 if (xi, xj) = (b, a). Thus q is not identically zero.
The claim follows from the uniformly random choice of α.

For any letter xi, we may compute hash(xi) in time polylogn and space O(logn).
Moreover, for any word v the value of hash(v) can be maintained with O(logn)
space.

3.1. The one-pass algorithm. The algorithm is easiest to understand if x =
uv, where u has only upsteps and v has only downsteps, in equal numbers. To check
whether uv ∈ Dyck(2), the naive algorithm would grow a stack of size n/2. Here is
a simple alternative. We read the input in blocks of length q. For simplicity, assume
that n is divisible by 2q. While the algorithm is reading letters of u, the stack stores
the values of hash(x[iq + 1, (i + 1)q]), one stack item for each i ∈ {0, . . . , n/2q − 1},
and notes that height(x[iq + 1, (i + 1)q]) = q. While the algorithm is reading letters
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B1

B2

B3

B4
B5 B6

B7

B8

t0 t1 t2 t3 t4t5 t6t7

Fig. 1. Example of execution of Algorithm 1. Here there are eight blocks, and they are shown
after the internal simplifications have already been done. The dotted vertical lines mark times at
which the stack changes size, either starting a new stack item (for example, at time t0) or discarding
a stack item (for example, at time t4). Note that blocks and stack items are staggered: the first item
incorporates the first block and the downsteps of the second block, the second item incorporates the
upsteps of the second block and the downsteps of the third block, etc. The bullets mark times when
the algorithm checks and discards an item if the hash value is 0. The horizontal lines go from the
time when a stack item is created to the time when it is checked and discarded. For example, at
time t7 the algorithm checks and discards an item (hm, �m) such that hm incorporates the upsteps
marked in bold on the figure, namely, x(t1, t2], and incorporates the downsteps marked in bold on
the figure, namely, x(t2, t3], x(t4, t5], and x(t6, t7].

of v, it adds hash(x[jq+1, (j+1)q]) to hash(x[iq+1, (i+1)q]) for j = n/q− i− 1 and
checks whether their sum is 0. The input x is ill-formed if any of the sums is nonzero.
Our algorithm is a generalization of this stack compression idea, and the block length
is chosen to be q = �√n logn � to minimize the space used.

Algorithm 1 attempts to collect a sequence of � = �√n logn � upsteps while doing
obvious checks. Using a straightforward stack-based algorithm, any upstep followed
by a downstep is checked for well-formedness, and once checked, the pair is discarded.
The stack, called Stemp in the algorithm, allows us to apply this check for every
matching pair that is encountered before reaching the limit of � upsteps. When the
stack Stemp collects a sequence v of � upsteps, the algorithm hashes v to hash(v) and
empties Stemp. The hash value is pushed to a second stack S. The stack S encodes
the subword given by the letters seen so far that remain to be checked. Each item of S
of the form (h, �) encodes a subword v of the stream x, in the sense that h = hash(v)
and � = height(v). The algorithm accesses S to look up information about the blocks
previously read.

To process a downstep y, the algorithm either checks for a match in Stemp or
incorporates it into the topmost stack item of S. More precisely for the second case,
given a downstep y and given (h, �) = (hash(v), height(v)), it computes hash(vy) =
h + hash(y) and height(vy) = � − 1, thus encoding vy without explicit knowledge
of v. Note that this relies on the linearity of the hash function. When the encoded
subword v has height 0, to test whether it is well-formed, the algorithm checks whether
hash(v) = 0. If this test succeeds, the entry of the stack encoding v is removed. An
example execution of the algorithm is presented in Figure 1.

For the analysis, we start with the following invariants of Algorithm 1.

Proposition 3.5. Let (h, �) be an item of S that encodes a subword v. Then
v = v1v2, where v1 has only upsteps, v2 has only downsteps, � = |v1| − |v2|, and
� > 0.

The proof is by a straightforward induction on the number of operations on S
and is omitted.
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ALGORITHM 1. One-pass algorithm (when the length n of the stream is known
in advance).

1: Stemp ← empty stack of upsteps; S ← empty stack of items (h, �)
2: (htemp, �temp)← (0, 0) {This pair encodes the subword contained in Stemp.}
3: Compute a prime p such that n1+γ ≤ p < 2n1+γ ; Pick a uniformly random α ∈

[0, p− 1]
{The pair (p, α) are used in the function hash; γ > 0 is a constant of our choice.}

4: while stream is not empty do
5: read next letter y from stream
6: if y is an upstep then
7: push y on Stemp

8: update (htemp, �temp) with y: htemp ← (htemp + hash(y) mod p); �temp ←
�temp + 1

9: if Stemp has size �√n logn � then
10: push (htemp, �temp) on to S and reset Stemp to empty; (htemp, �temp) ←

(0, 0)
11: end if
12: else {y is a downstep}
13: if Stemp is not empty then
14: pop z from Stemp

15: check that zy is well-formed: zy ∈ {aa, bb} (if not, reject: “mismatch”)
16: update (htemp, �temp) for removal of z: htemp ← (htemp− hash(z) mod p);

�temp ← �temp − 1
17: else {Stemp is empty}
18: pop (h, �) from S (if empty, reject: “extra closing parenthesis”)
19: update (h, �) with y: h← (h+ hash(y) mod p); �← �− 1
20: if � = 0 then check that h = 0 (if not, reject: “mismatch”)
21: else push (h, �) on S
22: end if
23: end if
24: end while
25: if S and Stemp are not both empty then reject: “missing closing parenthesis”
26: accept

We say that the pair of stacks (S, Stemp) encodes v if v = v1v2 . . . vmvtemp, where
v1, v2, . . . , vm are the subwords encoded by S (in bottom-up order), and vtemp is the
sequence of upsteps in Stemp (in bottom-up order).

Proposition 3.6. Let v be the subword encoded by (S, Stemp) just before pro-
cessing xj , at line 23, assuming that the algorithm has not already rejected x. Then
v ≺ x[1, j − 1].

Proof. The proof is by induction on the number of letters (k− 1) processed from
the stream. Initially, k = 1 and the statement holds since both stacks are empty.
Let v = v1v2 . . . vmvtemp be the subword encoded by (S, Stemp) just before processing
xk. We assume as our inductive hypothesis that v ≺ x[1, k − 1] and prove that the
analogous statement holds after xk has been processed.

We have vxk ≺ x[1, k]. If xk is an upstep, then after processing xk, the stacks are
modified such that they encode vxk. Therefore the propositions still hold just before
processing xk+1.
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Suppose now that xk is a downstep. We assume that (S, Stemp) are not both
empty, otherwise the algorithm rejects at line 18 before processing xk+1. We analyze
the processing of xk in order to complete the induction step.

First, if vtemp �= ε, then the last letter of v is the last letter of vtemp, which is an
upstep. Therefore (v|v|, xk+1) is a matching pair for vxk, and v[1, |v| − 1] ≺ vxk ≺
x[1, k]. If the algorithm does not reject at this point, the last upstep of vtemp is deleted
at line 14, and (S, Stemp) encodes v[1, |v| − 1]. So the statement holds in this case.

Second, if vtemp = ε and height(vmxk) > 0. The item (h, �) popped from S
encodes vm and satisfies height(vm) = � from Proposition 3.5. Therefore � > 1, and
(h, �) is updated in order to encode vmxk, and then pushed back to S. Now (S, Stemp)
encodes vxk which satisfies vxk ≺ x[1, k]. So the statement holds in this case as well.

The last case is when vtemp = ε and height(vmxk) = 0. By Proposition 3.5,
the item (h, �) popped from S encodes vm and satisfies height(vm) = � = 1. If the
algorithm does not reject after processing xk, this item is deleted from S and (S, Stemp)
now encodes v1v2 . . . vm−1. Recall that xk is a downstep. From Proposition 3.5, the
subword vmxk is a sequence of upsteps followed by the same number of downsteps.
Therefore ε ≺ vmxk. Since vmxk is also the suffix of vxk, we get that it is a matching
set for vxk, that is, v1v2 . . . vm−1 ≺ vxk ≺ x[1, k], and the statement holds.

Lemma 3.7. Algorithm 1 satisfies the following invariants:

1. At line 15, the pair (z, y) is a matching pair for x.
2. At line 20, if � = 0, then (h, 0) encodes a subword v which is a matching set

for x.

Proof. For both properties, let y be the letter xj that the algorithm is currently
processing. Let (S, Stemp) be the stacks just before processing xj , and let v be the
subword encoded by (S, Stemp). Since we consider properties at line 15 and line 20,
xj is necessarily a downstep.

We start with the first property. Therefore stack Stemp is not empty before
processing xj and the upstep z is on its top. Therefore v ends with z, and (z, xj) is
a matching pair for vxj . By Proposition 3.6, subword v satisfies v ≺ x[1, j − 1], so
vxj ≺ x[1, j]. By Proposition 3.2, (z, xj) is also a matching pair for x[1, j], and for x.

For the second property, Stemp = ∅ and S �= ∅. Let vm be the subword encoded by
the topmost element of S. Then (h, 0) encodes vmxj . Moreover, by Proposition 3.5,
vmxj is a sequence of upsteps followed by the same number of downsteps. Therefore
vmxj is a matching set for vxj . By Proposition 3.6, subword v satisfies v ≺ x[1, j−1],
so vxj ≺ x[1, j]. By Proposition 3.2, vmxj corresponds to a matching set for x[1, j],
and therefore for x.

Lemma 3.8. Let (i, j) be a matching pair for x. Then just before processing xj ,
the stacks S and Stemp of Algorithm 1 satisfy one of the following properties, if the
algorithm has not already rejected x:

1. Stemp is not empty and has xi on top.
2. Stemp is empty but not S, and the topmost item of S encodes a subword

containing xi.

Proof. Fix some matching pair (i, j). Let (S, Stemp) be the stacks of the algorithm
just before processing xj . By Proposition 3.6, the subword encoded by (S, Stemp)
contains xi. Therefore the stacks are not both empty.

If Stemp �= ∅ just before processing xj , then, by Lemma 3.7, xj matches, possibly
as an ill-formed pair, the topmost element of Stemp. Since any index (in our case, j)
may form a matching pair with at most one other index (in our case, i), the second
property is satisfied.
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Assume now that Stemp = ∅ and S �= ∅. All upsteps in the stream, including
xi, were first pushed onto Stemp, unless the algorithm rejected before reading them.
Since Stemp is now empty, the upstep xi was later popped. By Lemma 3.7, xi was not
popped from Stemp at line 15. (Otherwise i would match another index k �= j, which
is impossible.) Therefore xi was encoded into a stack element and pushed on to S at
line 10. By Lemma 3.7 it follows that this stack element was not popped from S at
line 20 and therefore is still in S just before xj is read.

It remains to be proved that the stack element containing xi is at the top of S.
Let v1v2 . . . vm be the subwords encoded by S. By Propositions 3.5 and 3.6, we have
v1v2 . . . vmxj ≺ x[1, j], and height(vk) > 0, for k = 1, 2, . . . ,m. Since (xi, xj) is a
matching pair for both v1v2 . . . vmxj and x[1, j], we have that xi is in vm.

We conclude with the correctness of our algorithm.

Theorem 3.9. Algorithm 1 is a one-pass randomized streaming algorithm for
Dyck(2) with space O(

√
n logn ) and time polylog(n). If the stream belongs to

Dyck(2), then the algorithm accepts it with certainty; otherwise it rejects it with
probability at least 1− n−c, where c > 0 is a constant.

Proof. The stack elements of Stemp and S take space O(1) and O(logn) bits,
respectively. Stack Stemp has size bounded by �√n logn � and therefore uses space
O(
√
n logn ). A new element is pushed on to S only when Stemp is full (has size

�√n logn �), after which Stemp is emptied. Therefore the algorithm processes at least
�√n logn � letters between each increase of the size of S, bounding the number of
stack elements of S by n/

√
n logn. Hence S also uses space O(

√
n logn ).

Using well-known results in algorithmic number theory [7, sections 8.2 and 9.7],
the prime p used for the hash function may be computed probabilistically in time
polylog(n). The probability that the procedure returns a prime is at least 1 − n−γ

for a constant γ > 0 of our choice. The processing time of any letter in the stream
is dominated by the computation of the hash function, specifically by the modular
exponentiation. Since the modular exponentiation involves (logn)-bit integers, the
time taken is polylog(n).

With probability n−γ , the number returned by the prime number generation
procedure may be composite. We analyze the algorithm assuming that the number is
prime, and then consider the case when it is composite.

To prove correctness, we first argue that the algorithm rejects when [1, n] is not
a matching set for x. We prove this property by contraposition. Assume that the
algorithm accepts x. Then the stacks S, Stemp are both empty after processing x and
therefore encode the empty word. By Proposition 3.6, we have that ∅ ≺ [1, n], i.e.,
[1, n] is a matching set for x.

We assume in the rest of the proof that [1, n] is a matching set for x. By Propo-
sition 3.6, S and Stemp are never both empty while processing a downstep. The
proposition also implies that if the algorithm processes the full stream, then it ac-
cepts. Therefore, the algorithm only rejects after processing a downstep at either
line 15 or line 20. Let xj be any downstep, and let i be the unique integer such that
(i, j) is a matching pair. We prove that the algorithm does not reject after processing
xj if x ∈ Dyck(2), whereas it rejects with high probability if (i, j) is ill-formed.

Consider first the case x ∈ Dyck(2). By Lemma 3.7, the tests at lines 15 and 20
check whether a matching pair or set of x is well-formed. Since x is well-formed,
those matching sets are all well-formed. Therefore the tests always succeed (thanks
to Proposition 3.4 for the test at line 20).
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k-block

(k − 1)-block

1-block

(k − 1)-block

(k − 2)-block (k − 2)-block (k − 2)-block (k − 2)-block

. . . . . . . . .

Fig. 2. Block-structure decomposition. The figure illustrates the binary block decomposition of
an input word of length 2k into all the blocks that will be activated during one full pass. They are
identical in the left-to-right pass and the right-to-left pass as the input length is a power of 2. At
every instant, there is at most one active i-block for any i.

We consider the remaining case, where (i, j) is ill-formed and the algorithm has
not already rejected before processing xj . Consider the stacks S and Stemp just be-
fore xj is processed. They are not both empty since [1, n] is a matching set. By
Lemma 3.8, the topmost element of Stemp is xi when Stemp �= ∅, and the topmost
element of S encodes a subword containing xi when Stemp = ∅. In the first case, the
algorithm checks the well-formedness of (xi, xj) at line 15 and rejects with probabil-
ity 1. In the second case, the algorithm updates the stack element so that it contains
both xi and xj at line 19. This element either is checked at line 20 or is pushed
back to the stack at line 21. In the latter case, the algorithm either rejects while
processing subsequent letters or eventually checks this stack element at line 20. We
consider the first time (if any) that this stack element is checked. Recall that the stack
element encodes a subword v that contains xi and xj and that v is a matching set
by Lemma 3.7. The crucial observation is that, by Proposition 3.5, (i, j) is the only
ill-formed matching pair in v at the corresponding height. Therefore Proposition 3.4
implies that the probability that the algorithm rejects is at least 1− n−γ .

We point out that the algorithm continues to accept streams x ∈ Dyck(2) with
certainty even if the modulus used in the hash function is composite. When the
stream x �∈ Dyck(2), the union bound tells us that the probability that the algorithm
does not reject is at most 2n−γ .

3.2. The bidirectional algorithm. The second algorithm uses a (virtual)
hierarchical decomposition of the stream x into nested blocks of 2i letters for i ≤
k = �logn� (see Figure 2). We define an i-block to be any substring of the form
x[(q − 1)2i + 1, q2i] for 1 ≤ q ≤ n/2i. We may omit the parameter i when refer-
ring to an i-block if its precise value is not important. The algorithm maintains a
decomposition of the prefix x[1, j] read so far into m ≤ �log j� contiguous blocks of
decreasing sizes. The decomposition is given by the binary decomposition of j. Let
0 ≤ i1 < · · · < im ≤ k be such that j =

∑m
t=1 2

it . Then x[1, j] is partitioned from left
to right into adjacent blocks of decreasing lengths 2im , 2im−1 , . . . , 2i1 . We call such
a decomposition the binary partition of x[1, j] and call the block of size 2i1 the last
block of the binary partition. We extend the definition and notation related to blocks
to intervals [1, j] as well. The binary partition and the last block of an interval [1, j]
play an important role in the bidirectional algorithm (see line 13 of Algorithm 3).

We assume that n = 2k, for some k ≥ 1. Thanks to this assumption, the algorithm
uses the same hierarchical decomposition whether we read the stream from left to right



1892 FRÉDÉRIC MAGNIEZ, CLAIRE MATHIEU, ASHWIN NAYAK

or from right to left. The assumption is without loss of generality, as we can append
to x the word (aā)i for a suitable i ≥ 1. This is required only if |x| is even; otherwise
x �∈ Dyck(2). At the end of the first pass, we use O(logn) bits of memory to store
the number of letters added. Algorithm 2, the bidirectional algorithm, simply runs
Algorithm 3 twice, once reading the stream in the forward direction, and a second
time in reverse. The algorithm accepts if there is no rejection during either pass.
During the right-to-left pass, letters a, b are interpreted as a, b, respectively (and vice
versa).

ALGORITHM 2. Bidirectional algorithm (when the length n of the stream is a
power of 2, and is known in advance).

Compute a prime p such that n1+γ ≤ p < 2n1+γ ; Pick a uniformly random α ∈
[0, p− 1]
{The pair (p, α) are used in the function hash; γ > 0 is a constant of our choice.}
Run Algorithm 3, reading the stream from left to right
Run Algorithm 3, reading the stream from right to left
{While reading the stream right to left, a, b are interpreted as a, b, respectively (and vice-versa)}
accept

Algorithm 3 continuously maintains the binary partition of the prefix x[1, j] of the
stream that has been read so far. We use a stack data structure to encode the entire
prefix x[1, j]. Each stack item is now of the form (h, �, f) and encodes a subword v of
x, in the sense that h = hash(v), � = height(v), and f is the position in x of the first
letter of v. An item remains in the stack while � > 0.

The main difference between Algorithm 3 and Algorithm 1 is that whenever the
algorithm reaches the end of a block, it “compresses” without checking the stack items
encoding subwords from within the block. This compression is what reduces the stack
size from

√
n/ logn down to O(logn), but now Proposition 3.5 no longer holds for this

stack; since hash is commutative, we may lose information. For example, compressing
hash(baa) with hash(bbbaa) gives hash(baabbbaa), which is equal to hash(babbabaa):
one word is in Dyck(2), the other one is not, but after compressing we can no longer
distinguish between them. In processing the ill-formed word babbabaa from left to
right, the algorithm compresses the first four letters to hash(ba) and consequently
does not detect ill-formedness. The crux of the analysis is that such information loss
does not occur both when reading the stream from left to right and when reading it
from right to left (see Figure 3). Every matching pair is checked in at least one of the
two passes. In the example above, in processing the word babbabaa from right to left
(with upsteps interpreted as downsteps and vice versa), a mismatch is detected when
the seventh letter is read.

For the analysis of Algorithm 3, we first derive the following invariant that is
weaker than Proposition 3.5. The proof follows from induction and is omitted.

Proposition 3.10. Let (h, �, f) be an item of S encoding a subword v. Then
� = height(v) > 0, and every prefix of v has positive height.

We can adapt Lemmas 3.7 and 3.8 to our new algorithm. The proofs are straight-
forward and are omitted.

Lemma 3.11. At line 10 of Algorithm 3, if � = 0, then (h, 0, f) encodes a subword
v that is a matching set for x.
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j j′
m′
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Block Bi

Fig. 3. Asymmetry of the two passes. The bold lines represent matching pairs between the
two (i− 1)-blocks B,B′ within the same i-block Bi. In this example, these pairs are checked during
the left-to-right pass, since the minimum height m within the left (i− 1)-block B is larger than the
minimum height m′ with the right (i−1)-block B′ (during the right-to-left pass, they are compressed
without any checks when Bi is processed).

ALGORITHM 3. One pass of the bidirectional algorithm.

1: S ← empty stack of items (h, �, f)
2: j ← 0 {This records the length of the stream read so far}
3: while stream is not empty do
4: read next letter y, and set j ← j + 1
5: if y is an upstep then
6: push the item (hash(y), 1, j) on to S {This encodes the letter y}
7: else {y is a downstep}
8: pop (h, �, f) from S (if empty, reject: “extra closing parenthesis”)
9: update (h, �, f) with h: h← (h+ hash(y) mod p); �← �− 1

10: if � = 0 then check that h = 0 (if not, reject: “mismatch”)
11: else push (h, �, f) on S
12: end if
13: while the top 2 elements of S both start in the last block of the binary partition

of [1, j] do
14: combine them into one element: pop (h2, �2, f2); pop (h1, �1, f1); push (h1 +

h2, �1 + �2, f1)
15: end while
16: end while
17: if S is not empty then reject: “missing closing parenthesis”

Lemma 3.12. Let (j, j′) be a matching pair for x. Then, either Algorithm 3
rejects before processing xj′ , or the stack S just before processing xj′ is not empty and
its topmost item encodes a subword containing xj .

We now state a simple observation from the definition of matching pairs. Re-
call from the convention introduced before Definition 3.1 that we identify a sub-
word xi1xi2 . . . xim of x with the set of indices {i1, i2, . . . , im} corresponding to it.

Proposition 3.13. Let v = uu′ be a subword of x, and let d ≥ 0. Then u × u′

has at most one matching pair at height d. In other words, in v there exists at most
one matching pair (j, j′) at height d such that j ∈ u and j′ ∈ u′.

Proof. By contradiction, assume that (i, i′) and (j, j′) are two matching pairs in
u×u′ at height d. For simplicity suppose that i < j. From the definition of matching
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pair for (i, i′), we get that height(x[1, k]) > height(x[1, i − 1]) for all i ≤ k < i′.
Since (i, i′) and (j, j′) are both at height d, indices i, j satisfy height(x[1, i − 1]) =
height(x[1, j − 1]) = d. Therefore j > i′, leading to j �∈ u, which contradicts that
(j, j′) is in u× u′.

We conclude with the correctness of our algorithm.

Theorem 3.14. Let c > 0. Algorithm 2 is a bidirectional two-pass randomized
streaming algorithm for Dyck(2) with space O((logn)2) and time polylog(n). If the
input belongs to Dyck(2), then the algorithm accepts it with certainty; otherwise it
rejects it with probability at least 1− n−c.

Proof. As before, we use well-known results in algorithmic number theory [7,
sections 8.2 and 9.7] to compute the prime p for the hash function. This computation
is probabilistic, takes time polylog(n), and takes space at most O(log2 n). With
probability n−γ , for a constant γ > 0 of our choice, the number returned may be
composite. We first analyze the algorithm assuming the number is prime and discuss
the composite case later.

Each stack element takes space O(logn) and the stack has size at most 2k =
2 logn, hence space O(log2 n). The processing time is dominated by the computation
of the hash function and the compression of stack elements. Each letter read generates
at most one new stack item, after which Algorithm 3 may combine the elements on
top of the stack (at most logn times). The net time is therefore polylog(n) per letter.

To analyze the algorithm, observe by induction, and Proposition 3.3, that the
algorithm rejects in either direction with probability 1 if [1, n] is not a matching set.
A matching set may be ill-formed, and in the rest of the proof we focus on proving
that the algorithm detects this with high probability.

The above observation implies that we may assume that [1, n] is a matching set.
In particular, it implies that S is never empty while processing a downstep. Moreover,
if the algorithm processes the full stream in one direction, then the stack is empty at
the end and Algorithm 3 does not reject.

By Lemma 3.11, each check at line 10 consists of verifying that a matching set is
well-formed. Therefore the algorithm always accepts whenever x ∈ Dyck(2).

Consider now the case when x has an ill-formed matching pair. Let i be a mini-
mum number such that some i-block Bi contains an ill-formed matching pair (j, j′).
By minimality, xj and xj′ are in different (i − 1)-blocks B and B′. Let m be the
minimum, over upsteps xl of B, of height(x[1, l − 1]). Let m′ be the minimum, over
downsteps xl of B

′, of height(x[1, l]) (see Figure 3). Up to swapping left-to-right and
right-to-left directions, we may assume that m ≥ m′.

Assume that the algorithm does not reject before processing xj′ . The stack S is
empty since [1, n] is a matching set. Then, by Lemma 3.12, the topmost element of
S encodes a subword containing xj . Moreover, since all compressions in B involve
items with the first letter in B, the first letter f of that word is in B and hence
starts at height ≥ m. Since m ≥ m′, the letter f ′ matching f is in Bi, and so from
Proposition 3.10 by the end of reading B′ that item is discarded. Let (h, 0, f) be that
discarded item, encoding a subword v containing both xj and xj′ .

Since the first letter f of v is in B, all the letters of v are in B ∪B′. Recall that
v is a matching set, and, by Proposition 3.13, its matching pairs in B ×B′ are all at
different heights. So, at the height d of pair (j, j′), v only contains (j, j′), which is
ill-formed, plus possibly some matching pairs coming from B × B or from B′ × B′,
pairs that are all well-formed by minimality of i. Altogether, at height d the word v
has exactly one ill-formed matching pair, so by Proposition 3.4, the probability that v
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passes the hash test of Algorithm 3 is at most n−γ for a uniformly random choice of
α. So the algorithm is correct with probability 1− n−γ .

The algorithm continues to accept streams x ∈ Dyck(2) with certainty even if
the modulus used in the hash function is composite. When the stream x �∈ Dyck(2),
the union bound tells us that the probability that the algorithm does not reject is at
most 2n−γ .

4. Lower bounds. In this section, we prove a space lower bound for Dyck(2).
We start with a family of hard instances that we embed in a communication prob-
lem Ascension(m). A streaming algorithm that uses space σ (a function of m,n)
implies a multiparty communication protocol for Ascension(m) with 2m players, in
which every message has length σ. We then appeal to a direct sum argument to de-
rive a two-party communication protocol for Mountain with “low” information cost.
Finally, we show that such a protocol is impossible, unless σ ∈ Ω(n).

4.1. Reduction from Dyck(2), and an overview. We define the family of
hard instances for Dyck(2) as follows. For any word z ∈ {a, b}n, let z be the mini-
mal matching word associated with z (so that zz is well-formed). For positive inte-
gers m,n, consider the following instances of length in Θ(mn):

w = x1y1c1c1y1 x2y2c2c2y2 . . . xmymcmcmym xm . . . x2 x1,

where for every i, xi ∈ {a, b}n, yi = xi[n− ki + 2, n] for some ki ∈ {1, 2, . . . , n}, and
ci ∈ {a, b}. The word w is in Dyck(2) if and only if, for every i, ci = xi[n− ki + 1].

Intuitively, for m = n/ logn recognizing w is difficult with space o(n). After
reading xi, the streaming algorithm does not have enough space to store information
about the bit at unknown index (n−ki+1). When it reads ci it is therefore unable to
decide whether ci = xi[n−ki+1]. Moreover, after reading ym it does not have enough
space to store information about all indices k1, k2, . . . , km. When it reads xm . . . x2 x1

it therefore misses out on its second chance to check whether ci = xi[n − ki + 1] for
every i. The formal proof contains several subtleties and is executed in the language
of communication complexity.

We define a communication problem Ascension(m) (see Figure 4) associated
with the hard instances described above. For convenience, we replace suffixes by
prefixes and identify a with 0 and b with 1. Formally, in the problem Ascension(m)
there are 2m players A1,A2, . . . ,Am and B1,B2, . . . ,Bm. Player Ai has xi ∈ {0, 1}n,
Bi has ki ∈ [n], a bit ci, and the prefix xi[1, ki − 1] of xi. Let x = (x1, x2, . . . , xm),
k = (k1, k2, . . . , km), and c = (c1, c2, . . . , cm). The goal is to compute fm(x,k, c) =∨m

i=1 f(xi, ki, ci) =
∨m

i=1(xi[ki]⊕ ci), which is 0 if xi[ki] = ci for all i and 1 otherwise.
Motivated by the streaming model, we require each message to have length at

most σ bits, where the parameter σ is a function of m and n and corresponds to the
space used in the streaming algorithm. We also require the communication between
the 2m participants in a one-pass protocol to be in the following order:
Round 1:
– For i from 1 to m − 1, player Ai sends message MAi to Bi, then Bi sends mes-

sage MBi to Ai+1;
– Am sends message MAm to Bm;
Round 2:
– Bm sends message MBm to Am;
– For i from m down to 2, Ai sends message M ′

Ai
to Ai−1;

– A1 computes the output.



1896 FRÉDÉRIC MAGNIEZ, CLAIRE MATHIEU, ASHWIN NAYAK

Fig. 4. Problem Ascension(m). The figure presents the m-fold nesting of streams of the form
depicted in Figure 5. The stream is divided between 2m players. There are m potential mismatches,
the ith one caused by the letter ci in Bi’s input. The word is well-formed if and only ci = xi[ki],
for all i.

A streaming algorithm for Dyck(2) with space σ implies a communication pro-
tocol for Ascension(m) as described above. So a lower bound on σ follows from a
lower bound on the communication complexity of Ascension(m).

To establish the hardness of solving Ascension(m), we prove a direct sum re-
sult that captures its relationship to solving m instances of a “primitive” problem
Mountain. In the problem Mountain (see Figure 5), Alice has an n-bit string
x ∈ {0, 1}n, and Bob has an integer k ∈ [n], a bit c, and the prefix x[1, k − 1] of
x. The goal is to compute the Boolean function f(x, k, c) = (x[k] ⊕ c) which is 0 if
x[k] = c and 1 otherwise. In a one-pass protocol for Mountain, the communication
occurs in the following order: Alice sends a message MA to Bob, Bob sends a message
MB to Alice, then Alice outputs f(x, k, c).

As mentioned in section 1, we follow the “information cost” approach, a method
that has been particularly successful in recent works on direct sum results. The
method comes in a variety of flavors, each crafted to suit the application at hand.
We describe the approach as adapted for Ascension(m). Information cost is often
defined in terms of the entire input and the full transcript of the protocol. We enforce
the nature of both streaming algorithms and our problem by restricting our attention
to only one message MBm from the transcript. We also split the input into two parts
and measure the information in the message MBm about one part (k, c), conditioned
on the other part x. In our case, the conditioning corresponds to information that is
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Fig. 5. Problem Mountain. The figure presents an input stream with its division between
players Alice and Bob. The horizontal axis represents the length of the stream seen so far, and
the vertical axis represents the corresponding height. We introduce a potential mismatch denoted by
letter c in Bob’s input, with y[1, k − 1] = x[1, k − 1]. Therefore, the word is well-formed if and only
if c = x[k].

in the hands of the subsequent players. The closest such measures of which we are
aware were considered in [28, 9].

The direct sum result is proven using the superadditivity of mutual information for
inputs (ki, ci) picked independently from a carefully chosen distribution. In the defin-
ing information cost, we measure mutual information with respect to a distribution on
which the Mountain function is the constant 0, even though we consider protocols
for the problem that are correct with high probability in the worst case (or, equiva-
lently, when the inputs are chosen from a “hard” distribution). The use of this easy
distribution collapses the function Ascension(m) to an instance of Mountain in any
chosen coordinate. We massage this technique into a form that is better suited to the
streaming model and to proving lower bounds for the primitive function Mountain.

We finish by giving a combinatorial argument that protocols computing
Mountain in the worst case necessarily reveal a lot of information even when its
inputs are chosen according to the easy distribution. Privacy loss, a measure similar
to information cost, has been studied previously in protocols for Index (see, e.g.,
[27, 25] and the references therein). Although this communication problem is closely
related to Mountain, prior works study Index under hard distributions and do not
seem to extend directly to our case.

4.2. Information cost. We now implement the program laid out above. We
use standard notions from information theory such as Shannon entropy H(A), mutual
information I(A : B), and their conditional variants H(A|C), I(A : B|C), respectively
(where A,B,C are jointly distributed random variables). For a primer on these no-
tions and their properties, we refer the reader to the text [18].

We measure the information cost of a one-pass public coin randomized protocol
P for Ascension(m) (of the form described in the previous section), with respect to
some distribution ν by ICν(P ) = I(K,C : MBm |X, R), where (X,K,C) are inputs
drawn from ν, and R denotes the public coins of P . From this we define the infor-
mation cost of the problem Ascension(m) itself with respect to a distribution ν and
error parameter δ as follows: ICpub

ν (Ascension(m), δ) = min
(
ICν(P )

)
, where the

minimum is over one-pass public coin randomized protocols P for the problem, with
worst-case error at most δ. Note that the information cost implicitly depends on σ,
the length of each message.
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For the problem Mountain we play a subtle game between public and pri-
vate coins. We consider protocols in which Alice has access only to public coins
R, whereas Bob additionally has access to some independent private coins RB. We
define ICν(P ) = I(K,C : MB|X,R), where R denotes only the public coins of P . Fur-
ther, we define ICmix

ν (Mountain, δ) = min
(
ICν(P )

)
, where P ranges over “mixed”

public and private coin randomized protocols with worst-case error at most δ where
Alice and Bob share public coins, and only Bob has access to extra private coins.

We also make use of a related measure of complexity for Mountain when P
ranges over protocols where Alice’s message is deterministic, and Bob has access
to private coins RB: DICmix

ν (Mountain, μ, δ) = min
(
ICν(P )

)
, i.e., the minimum

information cost with respect to ν, where P ranges over protocols for Mountain,
in which Alice’s message MA is deterministic given her input X , while Bob may use
his private coins RB to generate his message. Further, the distributional error of P
is at most δ when the inputs are chosen according to μ. Note that in general, and
certainly in our application, ν and μ may be different, meaning that we measure
the information cost of the protocol with respect to some distribution ν, while we
measure its error under a potentially different distribution μ. For later use, we recall
that the distributional error under μ is E(X,K,C)∼μ

(
Pr(P fails on (X,K,C))

)
, where

the probability is over the private coins RB of Bob.
We begin by relating the information cost for protocols in which Alice is deter-

ministic to that of mixed randomized protocols. A similar argument for eliminating
public randomness is seen in [14, Lemma 3.3].

Lemma 4.1.

DICmix
ν (Mountain, μ, 2δ) ≤ 2× ICmix

ν (Mountain, δ).

Proof. Consider a randomized protocol P for Mountain with worst-case error at
most δ such that ICmix

ν (Mountain, δ) = ICν(P ). We further assume that Alice and
Bob have uniformly distributed public coins R, and only Bob has extra private coins
RB. Then

ICmix
ν (Mountain, δ) = E

r

(
I(K,C : MBm |X,R = r)

)
.

Since P has worst-case error at most δ, it has distributional error at most δ under μ:

E
r

(
E

(X,K,C)∼μ

(
Pr(P fails on (X,K,C)|R = r)

)) ≤ δ.

Therefore, by the Markov inequality, there is a set R with Pr(R ∈ R) ≥ 1
2 such that

∀r ∈ R, E
(X,K,C)∼μ

(
Pr(P fails on (X,K,C)|R = r)

) ≤ 2δ.

Now consider the information cost of P under the distribution ν over inputs. Let U(R)
denote the uniform distribution on R. We have

E
r∼U(R)

(
I(k, c : MBm |X,R = r)

) ≤ 2× ICmix
ν (Mountain, δ),

since the event R has probability at least 1/2. Therefore, there exists an r ∈ R such
that I(K,C : MBm |X,R = r) ≤ 2 × ICmix

ν (Mountain, δ). Let Pr be the protocol
obtained by fixing the public coins used in P to r. Then Alice’s message MA is
deterministic. By definition of R, the protocol Pr has distributional error at most 2δ
under μ, and ICν(Pr) ≤ 2× ICmix

ν (Mountain, δ).
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4.3. Information cost of MOUNTAIN. As explained before, and formally
proved in the next section, the information cost approach entails showing that the
Mountain problem is “hard” even when we restrict our attention to an easy distri-
bution. We prove such a result here.

Let μ be the distribution over inputs (x, k, c) in which X is a uniformly random
n-bit string, K is a uniformly random integer in [n], and C is a uniformly random bit.
This is a hard distribution for Mountain (as is implicit in [35, 4]). We consider the
information cost of Mountain under the distribution μ0 obtained by conditioning μ
on the event that the function value is 0: μ0(x, k, c) = μ(x, k, c|X [K] = C).

Lemma 4.2. If σ ≤ n/100, then

DICmix
μ0

(Mountain, μ, 1/16n2) ∈ Ω(log n).

Proof. Let P be a randomized protocol for Mountain, where Alice’s message
MA is deterministic, with distributional error at most 1/16n2 under the distribution
μ, such that |MA| ≤ n/100. We prove that ICμ0(P ) ∈ Ω(logn). In the following,
all expressions involving mutual information and entropy are with respect to the
distribution μ0.

By the Markov inequality, there are at least 2n−1 strings u on which P fails
with error at most 1/8n2 on average on input (u,K,C), where (K,C) are uniformly
distributed. Let S ⊆ {0, 1}n of size at least 2n−1 be the set of such strings u. When u ∈
S, the protocol P has error probability at most 1/4n on input (u, k, c) for every (k, c).

Let α be a possible message MA from Alice to Bob when her inputs range in S,
and let Sα = {u ∈ S : MA(u) = α}. For every string v ∈ Sα, we bound from below
the mutual information of K and MB, the randomized message that Bob sends back
to Alice. For this we construct a set Jv ⊆ [n] such that the message distributions

Mk
def
= MB(α, v[1, k − 1], k, v[k]) for k ∈ Jv are pairwise well-separated in �1 distance.

This is in turn established by exhibiting, for each k ∈ Jv, a string uk ∈ Sα such that
uk[1, k − 1] = v[1, k − 1] and uk[k] �= v[k]. The details follow.

Associate with Sα its dictionary T , a 2-rank tree (a tree with either one or two
children at any internal node), all of whose nodes except the root are labeled by bits;
the root has an empty label. Each string v in Sα is in one-to-one correspondence
with a top-down path π in T from the root to one of its leaves, where the label of the
(i+ 1)th node in π is v[i]. We identify v ∈ Sα with the path π in T and refer to this
path as v.

The tree T has |Sα| leaves, each at depth n. For a fixed v ∈ Sα, let Jv be the set of
integers k such that the (k+1)th node in path v has out-degree 2. By construction, for
every k ∈ Jv there exists another string, say, uk ∈ Sα, such that uk[1, k−1] = v[1, k−1]
and uk[k] �= v[k]. Set ck = v[k] for every k ∈ [n]. Then the message distribu-
tions satisfy MB(α, v[1, k − 1], k, ck) = MB(α, uk[1, k − 1], k, ck) for all k ∈ Jv. Let
Mk = MB(α, v[1, k − 1], k, ck). Let k, k′ ∈ Jv be distinct indices such that k < k′.
As uk′ [1, k′ − 1] = v[1, k′ − 1], the message distribution MB(α, uk′ [1, k − 1], k, ck) on
input (uk′ , k, ck) equals Mk, and also MB(α, uk′ [1, k′−1], k′, ck′ ) on input (uk′ , k′, ck′)
equals Mk′ . However, uk′ [k] = v[k] = ck, so the function evaluates to 0 on in-
put (uk′ , k, ck), and uk′ [k′] �= v[k′] = ck′ , so the function value is 1 on (uk′ , k′, ck′).
The protocol P computes its outputs fromMk, uk′ and Mk′ , uk′ , respectively, on these
instances and errs with probability at most 1/4n.

We use the above property of the distributions {Mk} to bound from below the
mutual information of K and the message MB, given v.
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Proposition 4.3.

I(K : MB|X = v) ≥
(4|Jv| − n

4n

)
logn− 2.

We prove this below.

Next, we observe from the properties of 2-rank trees that the number of strings
v ∈ Sα for which |Jv| = l is at most 2l. The number of v for which |Jv| ≤ l − 2 is
therefore at most 2l−1. Now fix l = log |Sα|, and note that the proportion of v ∈ Sα

with |Jv| ≥ l − 1 is at least 1/2. Therefore Ev∼U(Sα) |Jv| ≥ l−1
2 .

We now concentrate on the messages α such that PrX uniform(MA(X) = α|X ∈
S) ≥ 2−n/10. Then l = log |Sα| ≥ n − 1 − n/10 = 0.9n − 1, and by Proposition 4.3
for n ≥ 3,

E
V ∼U(Sα)

(I(K,C : MB|X = V )) ≥
[
1

n
E

V∼U(Sα)
|JV | − 1

4

]
logn− 2

≥
[
l − 1

2n
− 1

4

]
logn− 2

≥
[
0.9n− 2

2n
− 1

4

]
logn− 2

≥ 1

10
logn− 2.

Consider the set A of messages α which have probability at most 2−n/10 given
X ∈ S. These messages occur with probability at most 2n/1002−n/10 = 2−9n/10, which
is negligible. Therefore we conclude that I(K,C : MB|X) ∈ Ω(logn).

Proof of Proposition 4.3. Fix a string v and the corresponding set of indices Jv.
Suppose we are given as input a distribution M = Mk for some k ∈ Jv. We recover
k using the following procedure Π:

1. For each k′ ∈ Jv, simulate Alice’s computation of the output in the protocol P
by setting MB = M , the distribution given as input to Π, and X = uk′ .

2. Let (Dk′)k′∈Jv be the sequence of outputs Alice generates from the above
simulation. Output the largest k′ for which Dk′ = 1. This is our guess for k.

On input Mk, the procedure Π above generates Dk = 1, and Dk′ = 0 for k′ > k,
each with probability at least 1− 1/4n for any fixed k′ ≥ k. Therefore, the procedure
outputs k with probablity at least 3/4.

We now argue that the entropy of K is significantly reduced when given MB, X =
v, under the distribution μ0 (i.e., when ck = v[k]). This is equivalent to saying that
the mutual information of k and MB is high. When the inputs are picked according
to the distribution μ0, we have

I(K,C : MB|X = v) = H(K|X = v)−H(K|MB, X = v)

= logn−H(K|MB, X = v).

We bound from above the conditional entropy H(K|MB, X = v). We first separate the
values of k �∈ Jv as follows. Let p = |Jv|/n, and define the Boolean random variable L
as 1 if and only if K ∈ Jv. We have
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H(K|MB, X = v)

= H(KL|MB, X = v)

= H(L|MB, X = v) + H(K|MB, X = v, L)

= H(p) + (1 − p)H(K|MB, X = v,K �∈ Jv)

+ pH(K|MB, X = v,K ∈ Jv)

≤ 1 + (1 − p) logn+H(K|MB, X = v,K ∈ Jv)

≤ 1 + (1 − p) logn+H(K|KΠ, X = v, k ∈ Jv),

where KΠ is the random variable output by the procedure Π. The second equality
follows from the chain rule for entropy [18, Theorem 2.2.1, p. 16], and the final step
follows from the data processing inequality [18, Theorem 2.8.1, p. 32]. For any fixed
k ∈ Jv, given Mk the procedure Π computes KΠ = k with probability at least 3/4.
By the Fano inequality [18, Theorem 2.11.1, p. 39], we have

H(K|KΠ, X = v,K ∈ Jv) ≤ H

(
1

4

)
+

1

4
log(|Jv| − 1)

≤ 1 +
1

4
logn.

By combining Lemmas 4.1 and 4.2 we get the next theorem.
Theorem 4.4.

ICmix
μ0

(Mountain, 1/32n2) ∈ Ω(logn).

4.4. Reduction from ASCENSION to MOUNTAIN. We now study the infor-
mation cost of Ascension(m) for the distribution μm

0 over ({0, 1}n × [n] × {0, 1})m
for the inputs x = (x1, x2, . . . , xm), k = (k1, k2, . . . , km), and c = (c1, c2, . . . , cm). We
state a direct sum property that relates this cost to that of one instance ofMountain,
and then conclude.

Lemma 4.5.

ICpub
μm
0
(Ascension(m), δ) ≥ m× ICmix

μ0
(Mountain, δ).

Proof. Let P be a public coin randomized protocol for Ascension(m) with worst-

case error δ such that ICμm
0
(P ) = ICpub

μm
0
(Ascension(m), δ).

From P , we construct the following protocol P ′
j for Mountain, where j ∈ [n].

Let (x, k, c) be the input for Mountain.
1. Alice sets Aj ’s input xj to her input x.
2. Bob sets Bj ’s input (kj , xj [1, kj − 1], cj) to his input (k, x[1, k − 1], c).
3. Alice and Bob generate, using public coins, (Xi,Ki, Ci) according to μ0,

independently for all i < j, and Xi uniformly independently for i > j.
4. Bob generates (Ki) uniformly independently for i > j, but using his pri-

vate coins. Then Bob sets Ci = Xi[Ki] for i > j (so that (Xi,Ki, Ci) are
distributed according to μ0, independently for all i > j).

5. Alice and Bob run the protocol P by simulating the players (Ai,Bi)
m
i=1 as

follows:
(a) Alice runs P until she generates the message MAj from player Aj . She

sends this message to Bob.
(b) Bob continues running P until he generates the message MBm from

player Bm. He sends this message to Alice.
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(c) Alice completes the rest of the protocol P until the end and produces as
output for P ′

j the output of player A1 in P .
By definition of the distribution μ0, we have f(Xi,Ki, Ci) = 0 for all i �= j. So
fm(X,K,C) = f(x, k, c), and each protocol P ′

j computes the function f , i.e., solves
Mountain, with worst-case error δ.

We prove that ICμm
0
(P ) =

∑
j ICμ0(P

′
j), which implies the result, since only Bob

uses private coins in P ′
j .

Let R denote the public coins used in the protocol P . By applying the chain
rule [18, Theorem 2.5.2, p. 22] to ICμm

0
(P ), we get

ICμm
0
(P ) = I(K,C : MBm |X, R)

=
∑
j

I(Kj , Cj : MBm |X,K1, C1, . . . ,Kj−1, Cj−1, R).

Let Rj = (R, (Xi)j �=i, (Ki, Ci)i<j). These are all the public random coins used
in the protocol P ′

j , and any further random coins (Ki, Ci)i>j are used only by Bob.
Since for all j

ICμ0(P
′
j) = I(Kj, Cj : MBm |Xj , Rj),

which is the same as

I(Kj, Cj : MBm |X,K1, C1, . . . ,Kj−1, Cj−1, R),

the direct sum result follows.
We can now conclude a lower bound for Ascension(m).
Theorem 4.6. Let P be a public coin randomized protocol for Ascension

(n/ logn) with worst-case error probability 1/32n2; then σ ∈ Ω(n).
Proof. Let m = n/ logn and δ = 1/32n2, and let P be a public coin randomized

protocol for Ascension(m) with worst-case error probability δ. ICμm
0
(P ) is at most

σ, and by definition ICpub
μm
0
(Ascension(m), δ) is less than or equal to ICμm

0
(P ). By

Lemma 4.5, we have ICpub
μm
0
(Ascension(m), δ) ≥ m× ICmix

μ0
(Mountain, δ). By Theo-

rem 4.4, we get ICmix
μ0

(Mountain, δ) ∈ Ω(logn). Combining yields σ ∈ Ω(m logn) ∈
Ω(n).

Corollary 4.7. Every one-pass randomized streaming algorithm for Dyck(2)
with (two-sided) error O(1/n′ logn′) uses Ω(

√
n′ logn′) space, where n′ is the input

length.
Proof. Assume we have a one-pass randomized streaming algorithm for Dyck(2)

with (two-sided) error O(1/n′ logn′) that uses space σ, where n′ is the input length.
Then, by the discussion at the beginning of section 4, there is a public coin randomized
protocol for Ascension(n/ logn) with n ∈ Θ(

√
n′ logn′) and with worst-case error

probability 1/32n2. By Theorem 4.6, the messages have length Ω(n), and therefore
the streaming algorithm has space Ω(n) = Ω(

√
n′ logn′ ).

5. Concluding remarks. Existing computing infrastructure typically supports
unidirectional streams. A question that naturally arises from our work is whether we
can achieve the performance of the bidirectional algorithm in Theorem 3.14 by making
multiple passes in the same direction. Two sets of authors, Chakrabarti et al. [12, 13]
and Jain and Nayak [24], independently and concurrently proved that allowing a
larger constant number of passes in the same direction does not help. More precisely,
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they showed that for any T ≥ 1, any unidirectional randomized T -pass streaming
algorithm that recognizes length n instances of Dyck(2) with a constant probability
of error uses space Ω(

√
n/T ). The lower bound in both works goes via an extension of

the reduction from Ascension(m) to Mountain (cf. section 4.4). When specialized
to one-pass algorithms, the above gives us a bound that is a factor of

√
log n better

than the one in Corollary 4.7 for constant error probability. However, it falls short of
optimal (by the same factor) for polynomially small error.

A number of later works have explored applications of the fingerprinting tech-
nique in streaming algorithms, the relationship of formal language theory to stream-
ing, or the advantage of bidirectional streams over unidirectional ones. Chakrabarti
et al. [12, 13] use fingerprinting in a one-pass streaming algorithm for checking prior-
ity queues. They also observe that the algorithms in this article extend to checking
stacks, queues, and double-ended queues. Konrad and Magniez [30] show a qualita-
tively similar dichotomy between one-pass and bidrectional two-pass algorithms as in
this article for validating XML documents. In addition, they present an algorithm
when access to external memory is available. The multipass lower bound for Dyck(2)
described above [12, 24] extends to the problem of checking priority queues. François
and Magniez [21] prove a lower bound of Ω(

√
n/T ) for this problem even in the pres-

ence of timestamps, with T passing in the same direction. They complement this
with a polylogarithmic space bidirectional algorithm, thus providing another example
of a language for which bidirectional streams are exponentially more powerful than
unidirectional ones. Krebs, Limaye, and Srinivasan [31] give streaming algorithms for
nearly well-parenthesized “one-turn” expressions, and Babu, Limaye, and Varma [6]
(see also [5]) study the streaming complexity of subclasses of context-free languages.
We expect the ideas in this article to have further such ramifications.
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