
Recognizing Well-Parenthesized Expressions
in the Streaming Model

Frédéric Magniez
∗

LRI, Univ. Paris-Sud, CNRS
F-91405 Orsay, France

magniez@lri.fr

Claire Mathieu
†

Computer Science Dept.
Brown University

Providence RI 02912, U.S.A
claire@cs.brown.edu

Ashwin Nayak
‡

C&O and IQC, U. Waterloo
and Perimeter Institute

Waterloo ON N2L 3G1, Canada
anayak@math.uwaterloo.ca

ABSTRACT
Motivated by a concrete problem and with the goal of under-
standing the relationship between the complexity of stream-
ing algorithms and the computational complexity of formal
languages, we investigate the problem Dyck(s) of checking
matching parentheses, with s different types of parenthesis.

We present a one-pass randomized streaming algorithm
for Dyck(2) with space O(

√
n logn) bits, time per letter

polylog(n), and one-sided error. We prove that this one-pass
algorithm is optimal, up to a logn factor, even when two-
sided error is allowed, and conjecture that a similar bound
holds for any constant number of passes over the input.

Surprisingly, the space requirement shrinks drastically if
we have access to the input stream in reverse. We present
a two-pass randomized streaming algorithm for Dyck(2)
with space O((logn)2), time polylog(n) and one-sided er-
ror, where the second pass is in the reverse direction. Both
algorithms can be extended to Dyck(s) since this problem
is reducible to Dyck(2) for a suitable notion of reduction in
the streaming model. Except for an extra O(

√
log s) mul-

tiplicative overhead in the space required in the one-pass
algorithm, the resource requirements are of the same order.

For the lower bound, we exhibit hard instances
Ascension(m) of Dyck(2) with length Θ(mn). We em-
bed these in what we call a “one-pass” communication prob-
lem with 2m-players, where m = Õ(n). To establish the
hardness of Ascension(m), we prove a direct sum result by
following the “information cost” approach, but with a few

∗Supported in part by French ANR grants ANR-08-EMER-
012 and ANR-07-SESU-013.
†Part of this work was funded by NSF grant CCF-0728816.
‡Work done in part while visiting the Center for Computa-
tional Intractability, Rutgers University and DIMACS, with
support from NSF grants CCF-832797 and CCF 832787.
Research also supported in part by NSERC Canada. Re-
search at Perimeter Institute is supported in part by the
Government of Canada through Industry Canada and by
the Province of Ontario through MRI.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’10, June 5–8, 2010, Cambridge, Massachusetts, USA.
Copyright 2010 ACM 978-1-4503-0050-6/10/06 ...$10.00.

twists. Indeed, we play a subtle game between public and
private coins for Mountain, which corresponds to a prim-
itive instance Ascension(1). This mixture between public
and private coins for Mountain results from a balancing
act between the direct sum result and a combinatorial lower
bound for Mountain.

Categories and Subject Descriptors
F.2.0 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity—General ; E.4 [Data]: Coding
and Information Theory

General Terms
Algorithms, Languages, Theory

Keywords
Streaming Algorithm, Communication Complexity, Paren-
thesis Expression, Linear Hashing, Information Cost

1. INTRODUCTION
The area of streaming algorithms has experienced tremen-

dous growth over the last decade in many applications.
Streaming algorithms sequentially scan the whole input
piece by piece in one pass, or in a small number of passes
(i.e., they do not have random access to the input), while us-
ing sublinear memory space, ideally polylogarithmic in the
size of the input. The design of streaming algorithms is
motivated by the explosion in the size of the data that al-
gorithms are called upon to process in everyday real-time
applications. Examples of such applications occur in bioin-
formatics for genome decoding, in Web databases for the
search of documents, or in network monitoring. The anal-
ysis of Internet traffic [2], in which traffic logs are queried,
was one of the first applications of this kind of algorithm.
Few studies have been made in the context of formal lan-
guages, although these would have ramifications for massive
data such as DNA sequences and large XML files. For in-
stance, in the context of databases, properties decidable by
streaming algorithm have been studied [21, 20], but only
in the restricted case of deterministic and constant memory
space algorithms.

Motivated by a concrete problem and with the goal of
understanding the relationship between the complexity of
streaming algorithms and the computational complexity of
formal languages, we investigate the problem Dyck(s) of

checking matching parentheses, with s different types of
parenthesis. Regular languages are by definition decidable
by deterministic streaming algorithms with constant space.
The Dyck languages are some of the simplest context-free
languages and yet already powerful. These languages play
a central role in the theory of context-free languages, since
every context-free language L can be mapped to a subset of
Dyck(s) [8], for some s. In addition to its theoretical im-
portance, the problem of checking matching parentheses is
enountered frequently in database applications, for instance
in verifying that an XML file is well-formed.

Deciding membership in Dyck(s) has already been ad-
dressed in the massive data setting, more precisely through
property testing algorithms. An ε-property tester [5, 6, 11]
for a language L accepts all strings of L and rejects all
strings which are ε-far from strings in L, for the normal-
ized Hamming distance. For every fixed ε > 0, Dyck(1) is
ε-testable in constant time [1], whereas in general Dyck(s)

are ε-testable in time Õ(n2/3), with a lower bound of

Ω̃(n1/11) [18]. In [10], a comparison between property testers
and streaming algorithms has been made. Streaming al-
gorithms have the advantage of access to the entire string,
albeit not in a random access fashion.

With random access to the input, context-free languages
are known to be recognizable in space O((logn)2) [12]. In
the special case of Dyck(s), logarithmic space is sufficient,
as we may run through all possible heights, and check paren-
theses at the same height. This scheme does not seem to
easily translate to streaming algorithms, even with a small
number of passes over the input.

In the streaming model, Dyck(1) has a one-pass stream-
ing algorithm with logarithmic space, using a height counter.
Using a straightforward one-way communication complexity
argument for Equality, we can deduce that Dyck(2) re-
quires linear space for deterministic one-pass streaming al-
gorithms. A relaxation of Dyck(s) is Identity(s) in the free
group with s generators, where local simplifications aa = ε
are allowed in addition to aa = ε, for every type of paren-
thesis (a, a). There is a logarithmic space algorithm for rec-
ognizing the language Identity(s) [15] that can easily be
massaged into a one-pass streaming algorithm with polylog-
arithmic space. Again, this algorithm does not extend to
Dyck(s).

We show that Dyck(s) is reducible to Dyck(2), for a suit-
able notion of reduction in the streaming model, with a log s
factor expansion in the input length. Our first algorithm is a
one-pass randomized streaming algorithm for Dyck(2) with
space O(

√
n logn) bits and time polylog(n) (Theorem 1).

If we had no space constraints the algorithm would be very
simple: when we encounter an upstep (a or b), push it on
a stack, when we encounter a downstep (a or b), pop the
top item from the stack and check that they match. How-
ever the stack may grow to linear size in this process. To
avoid this growth, the basic strategy of our algorithm is to
use a linear hash function to periodically (every

√
n/ logn

letters) compress stack information. As long as we compress
only upsteps or only downsteps, all at different heights, we
are able to detect mismatches with high probability. The
algorithm has one-sided error; it accepts words that belong
to the language with certainty. Although simple, we show
that this appealing algorithm is nearly optimal in its space
usage, even when two-sided error is allowed (Corollary 1).

We conjecture that our lower bound still holds if we read

the stream several times, but always in the same direction.
Surprisingly, the situation is drastically different if we can
read the data stream in reverse. We present a second al-
gorithm, a randomized two-pass streaming algorithm for
Dyck(2) with O((logn)2) space and time polylog(n), where
the second pass is in the reverse direction (Theorem 2).
This algorithm uses a hierarchical decomposition of the
stream into blocks; whenever the algorithm reaches the end
of a block, it compresses the information about subwords
from within the block. This compression is what reduces the
stack size from Θ(

√
n logn) down to O(log n), but prevents

us from checking that certain matching pairs of parenthe-
ses are well-formed. However, given the profile of the word
(i.e., the sequence of heights), we can pinpoint exactly the
matching pairs that do not get checked. As it turns out,
a pair that does not get checked when scanning the input
left to right is necessarily checked when scanning in the re-
verse direction. Like the one-pass algorithm, this algorithm
has only one-sided error, and always accepts words that be-
long to the language. We note that it is straightforward to
extend the algorithms so that they recognize the language
of substrings (which are subwords of consecutive letters) of
Dyck(2).

As mentioned above, we also investigate the lower bound
on the space required for any one-pass randomized streaming
algorithm. Such a lower bound is by nature hard to prove
because of the connection of the problem with Identity(2).
Moreover, proving a non-trivial lower bound based on two-
party communication complexity is hopeless: the related
communication problem automatically reduces to Equality
after local checks and simplifications by both players, leading
to only an Ω(logn) lower bound. Instead, we build hard in-
stances Ascension(m) of Dyck(2) with length Θ(mn), that
we embed in a “one-pass” communication problem with 2m
players, where m = Θ̃(n). The constraint is that the length
of each message in the protocol be less than size, a function
of n. Our main result (Theorem 4) is that such a protocol
requires size = Ω(n), which proves that our one-pass algo-
rithm is optimal for probability of error of order 1/n logn,
and within an O(logn) factor of optimal for constant error
(Corollary 1).

To establish the hardness of Ascension(m), we prove a
direct sum result that captures its relationship to solving m
instances of the intermediate problem Mountain, which in-
volves only two players. We follow the “information cost”
approach taken in [7, 19, 4, 14, 13], among other works be-
fore and since. We adapt this notion to suit both the nature
of streaming algorithms and of our problem. The idea is to
focus on the information about a part of the input contained
in a part of the protocol transcript, given the remaining in-
puts.

Using this notion of information cost, we prove a direct
sum result (Lemma 3). A remarkable device here is the use
of an “easy” distribution for the information cost for proto-
cols, that are correct with high probability in the worst case.
The use of an easy distribution“collapses”Ascension(m) to
an instance of Mountain, which may be planted in any one
of the m coordinates. This technique was developed in [4],
but comes with a few twists in our case. Indeed, we play a
subtle game between public and private coins. Namely, in
protocols for Ascension(m) only public coins are allowed
for all players, whereas for Mountain one of the players,
Bob, can also access private coins, while Alice, the other

player, cannot. This mixture between public and private
coins for Mountain arises from a balancing act between
the direct sum result and our combinatorial lower bound
for Mountain (Theorem 3). Namely, we are only able
to prove the lower bound for Mountain when Alice only
uses public coins, whereas the direct sum only holds, with
our definition of information cost, when Bob has access to
additional private coins.

We note that as a bonus, our lower bound provides a
Ω̃(
√
n) lower bound for the problem of checking priority

queues in the one-pass streaming model, solving an open
problem of [9].

2. DEFINITIONS AND PRELIMINARIES

Definition 1 (Dyck). Let s be a positive integer.
Then Dyck(s) denotes the language over alphabet Σ =
{a1, a1, . . . , as, as} defined recursively by:

Dyck(s) = ε+
∑
i≤s

ai ·Dyck(s) · ai ·Dyck(s).

We also denote by Dyck(s) the problem of deciding whether
a word w ∈ Σ∗ is in the language Dyck(s).

In streaming algorithms, a pass on an input x ∈ Σn means
that x is given as an input stream x1, x2, . . . , xn, which ar-
rives sequentially, i.e., letter by letter in this order. For sim-
plicity, we assume throughout this article that the length
n of the input is always given to the algorithm in advance.
Nonetheless, all our algorithms can be adapted to the case
in which n is unknown until the end of a pass. See [16] for
an introduction to streaming algorithms.

Definition 2 (Streaming algorithm). Fix an al-
phabet Σ. A k-pass streaming algorithm A with space s(n)
and time t(n) is an algorithm such that for every input
stream x ∈ Σn: (1) A performs k sequential passes on x;
(2) A maintains a memory space of size s(n) bits while read-
ing x; (3) A has running time at most t(n) per letter xi;
(4) A has preprocessing and postprocessing time t(n).
We say that A is bidirectional if it is allowed to access to
the input in the reverse order, after reaching the end of the
input. Then the parameter k is the total number of passes
in either direction.

Definition 3 (Streaming reduction). Fix two al-
phabets Σ1 and Σ2. A problem P1 is f(n)-streaming re-
ducible to a problem P2 with space s(n) and time t(n), if
for every input x ∈ Σn1 , there exists y = y1y2 . . . yn, with

yi ∈ Σ
f(n)
2 , such that: (1) yi can be computed determinis-

tically from xi using space s(n) and time t(n); (2) From a
solution of P2 with input y, a solution on P1 with input x
can be computed with space s(n) and time t(n).

Fact 1. Let P1 be f(n)-streaming reducible to a prob-
lem P2 with space s0(n) and time t0(n). Let A be a k-pass
streaming algorithm for P2 with space s(n) and time t(n).
Then there is a k-pass streaming algorithm for P1 with space
s(n × f(n)) + s0(n) and time t(n × f(n)) + t0(n) with the
same properties as A (deterministic/randomized, unidirec-
tional/bidirectional).

Proposition 1. Dyck(s) is dlog se-streaming reducible
to Dyck(2) with space and time O(log s).

Proof. We encode a parenthesis ai by a word of length
l = dlog se with only parentheses of type a1, a2. We let f(ai)
be the binary expansion of i over l bits where 0 is replaced
by a1 and 1 by a2. Then f(ai) is defined similarly, except
that we write the binary expansion of i in the opposite order.
Then x1 . . . xn is in Dyck(s) if and only f(x1) . . . f(xn) is
in Dyck(2).

Typically, such as in parsing XML files, the above reduc-
tion can be implemented with constant space and time. In-
deed, given an upstate (start-tag) <w> (respectively, a down-
step (end-tag) </w>), where w is an ASCII string denoting
the type of parenthesis (tag), we can generate the above
encoding of w into a1, a2 (respectively, into a1, a2), while
reading w as a stream itself, i.e., character by character.

By Proposition 1, it is enough to design streaming al-
gorithms for Dyck(2). That is the objective of the next
section.

3. ALGORITHMS
From now on we consider Dyck(2) where the input is

a stream of n letters x1x2 . . . xn in the alphabet Σ =
{a, a, b, b}. We first introduce a few definitions. An upstep
is a letter a or b, a downstep is a letter a or b.

Definition 4. Let x ∈ Σn.
The height of x is height(x) = |x|a + |x|b − |x|a − |x|b.
For 1 ≤ i < j ≤ n, (i, j) is a matching pair for x if
height(x[1, i − 1]) = height(x[1, j]) and height(x[1, k]) >
height(x[1, i− 1]) for all k ∈ {i, . . . , j − 1}.
The height of a matching pair (i, j) is height(x[1, i− 1]).
A matching pair (i, j) for x is well-formed, if (x[i], x[j])
equals (a, a) or (b, b), ill-formed otherwise.

It follows that any index i forms a matching pair with at
most one other index, and that a matching pair consists of
an upstep and a downstep. These definitions are extended
to subsets I ⊆ [1, n] of indices of letters of x. For instance,
we say that I is a matching set for x, if I = ∪{i, j}, where
the union is over a subset of the matching pairs (i, j) for x.
To prove correctness of our algorithms, we use the following
well-known characterization of Dyck(2).

Fact 2. Let x ∈ Σn. Then x ∈ Dyck(2) if and only if:
height(x) = 0, the height of every prefix of x is nonnegative,
and [1, n] is a well-formed (matching) set for x.

For ease of notation, we identify an increasing se-
quence i1 < i2 < · · · < im of indices with the corresponding
subword xi1xi2 . . . xim of x. We also use this correspondence
in reverse when the indices of the subword are clear from the
context.

During the computation the algorithm implicitly keeps
track of the height of the word read so far. Let p be a prime
number such that n1+c ≤ p < 2n1+c, for some fixed constant
c ≥ 1. We assume that the algorithm can access a random
function hash(·) that maps subwords v of x to integers in
[0, p − 1], as follows: hash(xi1xi2 . . . xim) =

∑
j hash(xij),

with

hash(xi) =

 αheight(x[1,i−1]) mod p if xi = a,

−αheight(x[1,i]) mod p if xi = a,
0 otherwise,

where α is a uniformly random integer in [0, p − 1]. Note
that the computation of hash(v) depends not just on v but
also on the height of its letters within x.

Given x and v, the value of hash(v) is a polynomial in α
of degree at most n. By the Schwartz-Zippel lemma, if it
is not identically zero then, for a random α, the probability
that hash(v) = 0 is at most n/p ≤ n−c. In particular:

Fact 3. Let x ∈ Σn and v = xi1xi2 . . . be a subword of
x. If v ∈ Dyck(2), then hash(v) = 0 for all α. If v has
exactly one ill-formed matching pair at some height, then
hash(v) 6= 0 with probability at least 1−n−c, for a uniformly
random integer α ∈ [0, p− 1].

For any letter xi, we may compute hash(xi) in time polylogn
and space O(logn). Moreover, for any word v the value of
hash(v) can be maintained with O(logn) space.

3.1 The one-pass algorithm
Algorithm 1 reads the stream in blocks of

√
n logn let-

ters. It uses a stack data structure encoding the subword
formed by the letters seen so far that belong to matching
pairs that have not yet been checked.

Algorithm 1 One-pass algorithm

S ← empty stack
for i← 1 to

√
n/ logn do

Algorithm 2 (S) {reads
√
n logn letters from stream}

end for
if S not empty, reject: “missing closing parenthesis”
return accept

For clarity, we describe an “off-line” version of Algo-
rithm 2 that executes once the entire block has been read.
It can easily be converted to an“online”algorithm that takes
polylogn time per letter.

Within a block, Algorithm 2 first does the obvious
checks with a straightforward stack-based algorithm—any
upstep followed by a downstep must match and, once
checked, can be discarded. The block is now reduced to
a sequence w′ of only downsteps followed by a sequence w′′

of only upsteps. To look up needed information about the
blocks that have previously been read, the algorithm ac-
cesses a stack. Each stack item is of the form (h, `) encoding
a subword v of the stream x, in the sense that h = hash(v)
and ` = height(v).

As the algorithm processes the letters in w′, it incorpo-
rates them into the last stack item. More precisely, given a
downstep xj and given (h, `) = (hash(v), height(v)), it can
compute hash(vxj) = h+ hash(xj) and height(vxj) = `− 1,
thus encoding vxj without explicit knowledge of v. Note
that this relies on the linearity of the hash function.

Once the encoded subword v has height 0, to test whether
it is well-formed, the algorithm checks whether hash(v) = 0.
If this test succeeds, the entry of the stack encoding v can
now be removed. Finally the subword w′′ is processed in a
straightforward manner by creating a new stack item. An
example execution of the algorithm is shown in Appendix A.

For the analysis, we first start with the following observa-
tions about Algorithm 1.

Fact 4. Let (h, `) be a stack item encoding a subword v.
Then v = vuvd, where vu has only upsteps and vd has only
downsteps.

Define a partial order between words by taking the transitive
closure of uv ≺ ull′v, where l, l′ ∈ {a, b}, i.e., w ≺ x if w is

Algorithm 2 One-pass subroutine: reading one block

input: stack S
read w = next

√
n logn letters (or less if stream ends)

check that matching pairs in w are well-formed (else re-
ject: “mismatch”)
simplify w into w′w′′, where w′ has only downsteps and
w′′ has only upsteps
for i← 1 to |w′| do

pop (h, `) from S (if empty, reject: “extra closing
parenthesis”)
{(h, `) encodes a v s.t. h = hash(v) and ` = height(v)}
h← h+ hash(w′i) and `← `− 1
push (h, `) on S
{(h, `) now encodes vw′i}
if ` = 0 then

check that h = 0 (else reject: “mismatch”)
pop and discard (h, `)

end if
end for
if w′′ 6= ε then push (hash(w′′), |w′′|) on S
{(hash(w′′), |w′′|) encodes w′′}
output: stack S

a subword of x obtained by removing some (well-formed or
not) matching pairs in x.

Fact 5. Consider S right after pushing the encoding of a
subword ending with xj. Let v1, v2, . . . , vm be the subwords
encoded by the current stack (in bottom-up order). Then
v1v2 . . . vm � x[1, j], height(vi) ≥ 0 for every i, and only vm
may have height 0. Moreover, if (h, `) is a stack item en-
coding a subword v, then for every downstep j ∈ v there is
a unique upstep i ∈ v such that (i, j) is a matching pair for
x.

Then, we conclude with the correctness of our algorithm.

Theorem 1. Algorithm 1 is a one-pass randomized
streaming algorithm for Dyck(2) with space O(

√
n logn)

and time polylog(n). If the stream belongs to Dyck(2) then
the algorithm accepts it with certainty; otherwise it rejects it
with probability at least 1− n−c.

Proof. Each stack element takes space O(logn) bits and
each execution of Algorithm 2 adds at most one element to
the stack. There are at most

√
n/ logn stack items at any

time, hence the space used is O(
√
n logn). The processing

time is easy by inspection.
To prove correctness, first assume that x ∈ Dyck(2). By

Fact 2 the height of every prefix is non-negative, so the algo-
rithm does not reject because of an extra closing parenthesis;
and the height of x is 0, so the algorithm does not reject be-
cause of a missing closing parenthesis. For each block w,
the matching pairs within w are all well-formed, so the al-
gorithm does not reject them either. Finally, whenever the
algorithm checks h = 0 for a stack item such that ` = 0,
by Fact 5 the corresponding subword v is a matching set
for x and since x ∈ Dyck(2), v is well-formed. Then by
Fact 3, it passes the hash test in Algorithm 2. Therefore
the algorithm is correct in this case.

Second, assume that x 6∈ Dyck(2). By Fact 2, x fails to
be in Dyck(2) for one of the following reasons. Either some
prefix of x has negative height (too many closing parenthe-
ses): then the algorithm detects the problem when it tries to

pop an item from an empty stack. Or, height(x) > 0: then
the algorithm detects the problem at the very end when it
sees that the stack is not empty. Or, there is at least one
matching pair (i, j) where x is ill-formed: that is the only
non trivial case. If i, j are within the same block, then the al-
gorithm rejects during the internal checks within the block.
Assume now that i and j are in different blocks. If the
algorithm stops before getting to xj , it does so after cor-
rectly rejecting the word. Assume it examines xj . Then,
since xi is in a different block, xj is in w′, and thus is en-
coded and pushed on S. If the algorithm never checks the
stack item whose subword v contains xj , then the final stack
is not empty and the algorithm rejects the word. Finally,
assume that at some point the algorithm checks the stack
item encoding v. By Fact 5, v also contains xi. By Fact 4,
this is the only ill-formed matching pair at that height, so
by Fact 3, the probability that v fails the hash test in Algo-
rithm 2 is at least 1− n−c, for a uniformly random choice
of α. So the algorithm is correct with high probability.

3.2 The bidirectional algorithm
The second algorithm uses a hierarchical decomposition

of the stream x into nested blocks of 2i letters for i ≤ k =
dlogne. Up to padding we can assume that n = 2k: we ap-
pend to x the word (aā)i of suitable length (assuming that
x is of even size, otherwise x 6∈ Dyck(2)). We use O(log n)
bits of memory to store, after the first pass, the number of
letters padded. Thanks to this assumption, the algorithm
uses the same hierarchical decomposition, whether we read
the stream from left to right or from right to left. Dur-
ing the right to left pass, letters a, b are interpreted as a, b,
respectively (and vice-versa).

As before, we use a stack data structure in such a way that
Fact 5 still holds. Each stack item is now of the form (h, `, f)
encoding a subword v of x, in the sense that h = hash(v),
` = height(v), and in addition f = first(v) is the index in x
of the first letter in v.

Algorithm 3 Bi-directional algorithm

S ← empty stack
Algorithm 4 (k, S), reading stream from left to right {
k = dlogne }
if S is not empty, reject: “missing closing parenthesis”
Algorithm 4 (k, S), reading stream from right to left
{Right to left, a, b are interpreted as a, b (and vice-versa)}
return accept

Algorithm 4 recursively decomposes x into nested blocks
(Figure 2 in Appendix A). An i-block is a substring of the
form x[(q− 1)2i + 1, q2i] for 1 ≤ q ≤ n/2i. The main differ-
ence between Algorithm 4(k, S) and Algorithm 2(S) is
that whenever in a recursive call the algorithm reaches the
end of the current block, it compresses without checking the
stack items encoding subwords from within the block. This
compression is what reduces the stack size from

√
n/ logn

down to O(logn), but now Fact 4 no longer holds. Since
hash at a given height is commutative, we may lose infor-
mation. For example compressing hash(baa) with hash(bbb)
gives hash(baabbb), which is equal to hash(babbab): one word
is in Dyck(2), the other one is not, but after compress-
ing we can no longer distinguish between them. The crux
of the analysis is that such information loss cannot occur
both when reading the stream from left to right and when

reading it from right to left (Fact 6 below, and Figure 3 in
Appendix A).

Algorithm 4 Block algorithm (i, stack S) { reads i-block
Bi, increases stack size by at most 1 }

if i ≥ 1 then
{read two (i− 1)-blocks B and B′}
Algorithm 4(i− 1, S)
Algorithm 4(i− 1, S)
if S has two items with first letters in Bi then
{there are at most two such items, necessarily on top}
pop (h2, `2, f2) from S {encodes v2}
pop (h1, `1, f1) from S {encodes v1}
push (h1 + h2, `1 + `2, f1) on S {encodes v1v2}

end if
else

read one letter y
if y is a downstep then

pop (h, `, f) from S (if empty, reject: “extra closing
parenthesis”)
{encodes some subword v}
h← h+ hash(y) and `← `− 1
push (h, `, f) on S { now encodes vy}
if ` = 0 then

check that h = 0 (if not, reject: “mismatch”)
pop and discard (h, `, f)

end if
else

push(hash(y), 1, first(y)) on S { encodes y}
end if

end if

For the analysis, noting that Fact 5 remains valid for Al-
gorithm 3, we derive the following invariant of Algo-
rithm 3 that is weaker than Fact 4.

Fact 6. A stack item encoding a subword that starts with
letter f is discarded exactly when the algorithm reads the
letter f ′ such that (f, f ′) is a matching pair.

We now state a simple observation from the definition of
matching pairs.

Fact 7. Let v = uu′ be a subword of x, and let d ≥ 0.
Then u× u′ has at most one matching pair at height d.

We conclude with the correctness of our algorithm.

Theorem 2. Algorithm 3 is a bidirectional two-pass
randomized streaming algorithm for Dyck(2) with space
O((logn)2) and time polylog(n). If the input belongs to
Dyck(2) then the algorithm accepts it with certainty; oth-
erwise it rejects it with probability at least 1− n−c.

Proof. In terms of space requirements, each stack ele-
ment takes space O(logn) and the stack has size at most
2k = 2 logn, hence space O((logn)2). The processing time
is easy by inspection, while noticing by induction that each
execution of Algorithm 4 generates only one new stack
item.

To analyze the algorithm, observe (using Fact 5) that as in
the proof of Theorem 1 it is correct whenever x ∈ Dyck(2).
Now, assume that x 6∈ Dyck(2) and apply Fact 2. If some
prefix of x has negative height or if the final height of x is
non-zero, then as in the proof of Theorem 1 the algorithm
is correct.

Finally, consider the case when x has an ill-formed match-
ing pair. Let i be minimum such that some i-block Bi con-
tains an ill-formed matching pair (j, j′). By minimality, xj
and xj′ are in different (i−1)-blocks B and B′. Let m be the
minimum, over upsteps xl of B, of height(x[1, l−1]). Let m′

be the minimum, over downsteps xl of B′, of height(x[1, l])
(see Figure 3 in Appendix A).

Up to reversing left-to-right and right-to-left directions,
we may assume that m ≥ m′.

Immediately after reading B, since j is not yet matched,
the stack necessarily contains an item encoding a word con-
taining j; moreover, since all compressions in B involve
items with first letter in B, the first letter f of that word is
in B, hence starts at height ≥ m. Since m ≥ m′, the letter
f ′ matching f is in Bi, and so, from Fact 6 by the end of
reading B′ that item has been discarded. Let (h, `, f) be
that discarded item, encoding a subword v.

Since the first letter f of v is in B, all of the letters of v
are in B∪B′. By Fact 5, v is a matching set, and, by Fact 7,
its matching pairs in B ×B′ are all at different heights. So,
at the height d of pair (i, i′), v only contains (j, j′), which is
ill-formed, plus possibly some matching pairs coming from
B × B or from B′ × B′, pairs that are all well-formed by
minimality of i. Overall, at height d the word v has exactly
one ill-formed matching pair, so by Fact 3, the probability
that v passes the hash test of Algorithm 4 is at most n−c,
for a uniformly random choice of α. So the algorithm is
correct with probability 1− n−c.

4. LOWER BOUNDS
We define a family of hard instances for Dyck(2) as fol-

lows. For any word Z ∈ {a, b}n, let Z be the matching word
associated with Z. For positive integers m,n, consider the
following instances of length Θ(mn):

w = X1Y 1c1c1Y1 X2Y 2c2c2Y2 . . .

. . . XmY mcmcmYm Xm . . . X2 X1,

where for every i, Xi ∈ {0, 1}n, Yi = Xi[n− ki + 2, n] for
some ki ∈ {1, 2, . . . , n}, and ci ∈ {a, b}. The word w is in
Dyck(2) if and only if, for every i, ci = Xi[n− ki + 1].

Intuitively, for m = n/ logn recognizing w is difficult with
space o(n). After reading Xi, the streaming algorithm does
not have enough space to store information about the bit at
unknown index (n− ki + 1). When it reads ci it is therefore
unable to decide whether ci = Xi[n − ki + 1]. Moreover,
after reading Y m it does not have enough space to store
information about all indices k1, k2, . . . , km. When it reads
Xm . . . X2 X1 it therefore misses out on its second chance
to check whether ci = Xi[n − ki + 1] for every i. The for-
mal proof contains several subtleties and is executed in the
language of communication complexity.

We define a communication problem Ascension(m) (Fig-
ure 5 in Appendix B) associated with the hard instances de-
scribed above. For convenience, we replace suffixes by pre-
fixes. Formally, in the problem Ascension(m) there are 2m
players A1, A2, . . . , Am and B1, B2, . . . , Bm. Player Ai has
Xi ∈ {0, 1}n, Bi has ki ∈ [n], a bit ci and the pre-
fix Xi[1, ki − 1] of Xi. Let X = (X1, X2, . . . , Xm), k =
(k1, k2, . . . , km) and c = (c1, c2, . . . , cm). The goal is to com-
pute fm(X,k, c) =

∨m
i=1 f(Xi, ki, ci) =

∨m
i=1(Xi[ki] ⊕ ci),

which is 0 if Xi[ki] = ci for all i, and 1 otherwise.
Motivated by the streaming model, we require each mes-

sage to have length at most size bits, where the parame-
ter size is a function of m and n and corresponds to the
space used in the streaming algorithm. We also require the
communication between the 2m participants in a one-pass
protocol to be in the following order:

Round 1

– For i from 1 to m − 1, player Ai sends message MAi to
Bi, then Bi sends message MBi to Ai+1;

– Am sends message MAm to Bm;

Round 2

– Bm sends message MBm to Am;

– For i from m down to 2, Ai sends message M ′Ai to Ai−1;

– A1 computes the output.

A streaming algorithm for Dyck(2) with space ‘size’ im-
plies a communication protocol for Ascension(m) as de-
scribed above. So a lower bound on size follows from a lower
bound on the communication complexity of Ascension(m).

To establish the hardness of solving Ascension(m), we
prove a direct sum result that captures its relationship to
solving m instances of a “primitive” problem Mountain
defined as follows. In the problem Mountain (Figure 4
in Appendix B), Alice has an n-bit string X ∈ {0, 1}n,
and Bob has an integer k ∈ [n], a bit c and the prefix
X[1, k − 1] of X. The goal is to compute the Boolean func-
tion f(X, k, c) = (X[k] ⊕ c) which is 0 if X[k] = c, and 1
otherwise. In a one-pass protocol for Mountain, the com-
munication occurs in the following order: Alice sends a mes-
sage MA to Bob, Bob sends a message MB to Alice, then
Alice outputs f(X, k, c).

As mentioned in Section 1, we follow the “information
cost” approach, a method that has been particularly suc-
cessful in recent works on direct sum results.

The direct sum result is proven using the superadditiv-
ity of mutual information for inputs (ki, ci) picked indepen-
dently from a carefully chosen distribution. In the defining
information cost, we measure mutual information with re-
spect to a distribution on which the Mountain function is
the constant 0, eventhough we consider protocols for the
problem that are correct with high probability in the worst
case. The use of this easy distribution collapses the func-
tion Ascension(m) to an instance of Mountain in any cho-
sen coordinate. We massage this technique into a form that
is better suited to the streaming model and to proving lower
bounds for the primitive function Mountain.

We finish by giving a combinatorial argument that pro-
tocols computing Mountain in the worst case necessarily
reveal “a lot” of information even when its inputs are chosen
according to the easy distribution.

4.1 Information cost
We measure the information cost of a one-pass public-

coin randomized protocol P for Ascension(m) (of the
form described in the previous section), with respect to
some distribution ν on the inputs (X,k, c), by ICν(P) =
I(k, c : MBm |X, R), where R denotes the public-coins of
P . From this we define the information cost of the prob-
lem Ascension(m) itself with respect to a distribution ν and
error parameter δ as follows: ICpub

ν (Ascension(m), δ) =
min

(
ICν(P)

)
, where the minimum is over one-pass public-

coin randomized protocols P for the problem, with worst-
case error at most δ. Note that the information cost implic-
itly depends on size, the length of each message.

For the problem Mountain we play a subtle game be-
tween public and private coins. We consider protocols in
which Alice has access only to public coins R, whereas
Bob additionally has access to some independent private
coins RB . We define ICν(P) = I(k, c : MB |X,R), where
R denotes only the public-coins of P . Further, we define
ICmix

ν (Mountain, δ) = min
(
ICν(P)

)
, where P ranges over

“mixed” public and private coin randomized protocols with
worst case error at most δ where Alice and Bob share public
coins, and only Bob has access to extra private coins.

We also make use of a related measure of complexity
for Mountain when P ranges over protocols where Al-
ice’s message is deterministic, and Bob has access to pri-
vate coins RB : DICmix

ν (Mountain, µ, δ) = min
(
ICν(P)

)
,

i.e., the minimum information cost with respect to ν, where
P ranges over protocols for Mountain, in which Alice’s
message MA is deterministic given her input X, while Bob
may use his private coins RB to generate his message. Fur-
ther, the distributional error of P is at most δ when the
inputs are chosen according to µ. Note that in general,
and certainly in our application, ν and µ may be different,
meaning that we measure the information cost of the pro-
tocol with respect to some distribution ν, while we measure
its error under a potentially different distribution µ. For
later use, we recall that the distributional error under µ is
Exp(X,k,c)∼µ

(
Pr(P fails on (X, k, c))

)
, where the probabil-

ity is over the private coins RB of Bob.
We begin by relating the information cost for protocols

in which Alice is deterministic to that of mixed randomized
protocols.

Lemma 1.

DICmix
ν (Mountain, µ, 2δ) ≤ 2× ICmix

ν (Mountain, δ).

Proof. Consider a randomized protocol P
for Mountain with worst-case error at most δ such
that ICmix

ν (Mountain, δ) = ICν(P). We further assume
that Alice and Bob have uniformly distributed public coins
R, and only Bob has extra private coins RB . Then

ICmix
ν (Mountain, δ) = Exp

r

(
I(k, c : MBm |X,R = r)

)
,

Since P has worst-case error at most δ, it has distributional
error at most δ under µ:

Exp
r

(
Exp

(X,k,c)∼µ

(
Pr(P fails on (X, k, c)|R = r)

))
≤ δ.

Therefore, by the Markov inequality, there is a set R
with Pr(R ∈ R) ≥ 1

2
such that

∀r ∈ R, Exp
(X,k,c)∼µ

(
Pr(P fails on (X, k, c)|R = r)

)
≤ 2δ.

Now consider the information cost of P under the distribu-
tion ν over inputs. Let U(R) denote the uniform distribution
on R. We have

Exp
r∼U(R)

(
I(k, c : MBm |X,R = r)

)
≤ 2×ICmix

ν (Mountain, δ),

since the event R has probability at least 1/2. Therefore,
there exists an r ∈ R such that I(k, c : MBm |X,R = r) ≤
2×ICmix

ν (Mountain, δ). Let Pr be the protocol obtained by
fixing the public coins used in P to r. Then Alice’s message
MA is deterministic. By definition of R, the protocol Pr
has distributional error at most 2δ under µ, and ICν(P) ≤
2× ICmix

ν (Mountain, δ).

4.2 Information cost of Mountain
As explained before, and formally proved in the next sec-

tion, the information cost approach entails showing that
the Mountain problem is “hard” even when we restrict our
attention to an easy distribution. We prove such a result
here.

Let µ be the distribution over inputs (X, k, c) in which X
is a uniformly random n-bit string, k is a uniformly random
integer in [n] and c a uniformly random bit. This is a hard
distribution for Mountain (as is implicit in [17, 3]). We
consider the information cost of Mountain under the dis-
tribution µ0 obtained by conditioning µ on the event that
the function value is 0: µ0(X, k, c) = µ(X, k, c|X[k] = c).

Lemma 2. If size ≤ n/100, then

DICmix
µ0

(Mountain, µ, 1/16n2) = Ω(logn).

Proof. Let P be a randomized protocol for Mountain,
where Alice’s message MA is deterministic, with distribu-
tional error at most 1/16n2 under the distribution µ, such
that |MA| ≤ n/100. We prove that ICµ0(P) = Ω(logn). In
the following, all expressions involving mutual information
and entropy are with respect to the distribution µ0.

By Markov inequality, there are at least 2n−1 strings
U on which P fails with error at most 1/8n2 on average
on input (U, k, c), where (k, c) are uniformly distributed.
Let S ⊆ {0, 1}n of size at least 2n−1 be the set of such
strings U . Then P has error probability less than 1/4n on
input (U, k, c), for every (k, c).

Let α be a possible message MA from Alice to Bob when
her inputs range in S, and let Sα = {U ∈ S : MA(U) = α}.
For every string V ∈ Sα, we bound from below the mu-
tual information of k and MB , the randomized message
that Bob sends back to Alice, as k varies. For this we con-
struct a set I ⊆ [n] such that the message distributions
mk = MB(α, V [1, k − 1], k, V [k]) for k ∈ I are pairwise
well-separated in `1 distance. This is in turn established
by exhibiting, for each k ∈ I, a string Vk ∈ Sα such that
Vk[1, k − 1] = V [1, k − 1] and Vk[k] 6= V [k]. The details
follow.

Associate with Sα its dictionary T , a 2-rank tree (a tree
with either 1 or 2 children at any internal node), all whose
nodes except the root are labeled by bits; the root has an
empty label. Each string V in Sα is in one-to-one correspon-
dence with a top-down path π in T from the root to one of
its leaves, where the label of the (i+ 1)th node in π is V [i].
We identify V ∈ Sα with the path π in T , and refer to this
path as V .

The tree T has |Sα| leaves, each at depth n. For a fixed
V ∈ Sα, let I be the set of integers k such that the (k+ 1)th
node in path V has out-degree 2. By construction, for ev-
ery k ∈ I there exists another string, say, Vk ∈ Sα such
that Vk[1, k − 1] = V [1, k − 1] and Vk[k] 6= V [k]. Set
ck = V [k] for every k ∈ [n]. Then the message distri-
butions satisfy MB(α, V [1, k − 1], k, ck) = MB(α, Vk[1, k −
1], k, ck), for all k ∈ I. Let mk = MB(α, V [1, k − 1], k, ck).
Let k, k′ ∈ I be distinct indices such that k < k′.
As Vk′ [1, k

′ − 1] = V [1, k′ − 1], the message distribu-
tionMB(α, Vk′ [1, k−1], k, ck) on input (Vk′ , k, ck) equalsmk,
and also MB(α, Vk′ [1, k

′ − 1], k′, ck′) on input (Vk′ , k
′, ck′)

equals mk′ . However, Vk′ [k] = V [k] = ck, so the function
evaluates to 0 on input (Vk′ , k, ck), and Vk′ [k

′] 6= V [k′] = ck′ ,
so the function value is 1 on (Vk′ , k

′, ck′). The protocol P

computes its outputs from mk, Vk′ and mk′ , Vk′ , respec-
tively, on these instances, and errs with probability at most
1/4n.

We use the above property of the distributions {mk} to
bound from below the mutual information of k in the mes-
sage MB , given V .

Proposition 2.

I(k : MB |X = V) ≥
(4|I| − n

4n

)
logn− 2.

(We prove this below.)
Next, we observe from the properties of 2-rank trees that

the number of strings V ∈ Sα for which |I| = l is at most
2l. The number of V for which |I| ≤ l − 2 is therefore at
most 2l−1. Now fix l = log |Sα|, and note that the propor-
tion of V ∈ Sα with |I| ≥ l − 1 is at least 1/2. Therefore
ExpV∼U(Sα) |I| ≥ l−1

2
.

We now concentrate on the messages α such
that PrX uniform(MA(X) = α|X ∈ S) ≥ 2−n/10. Then
l = log |Sα| ≥ n−1−n/10 = 0.9n−1, and by Proposition 2
for n large enough, ExpV∼U(Sα)(I(k, c : MB |X = V)) ≥
1
10

logn− 2.
Consider the set A of messages α which have probabil-

ity at most 2−n/10 given X ∈ S. These messages occur
with probability at most 2n/1002−n/10 = 2−9n/10, which is
negligible. Therefore we conclude that I(k, c : MB |X) =
Ω(logn).

Proof Proof of Proposition 2. Fix a string V , and
the corresponding set of indices I. Suppose we are given as
input a distribution m = mk, for some k ∈ I. We recover k
using the following procedure Π:

1. For each k′ ∈ I, simulate the Alice’s computation of
the output in the protocol P , by setting MB = m, the
input distribution, and X = Vk′ .

2. Let (dk′)k′∈I be the sequence of outputs Alice gener-
ates from the above simulation. Output the largest k′

for which dk′ = 1. This is our guess for k.

On input mk, the simulation of P above generates dk = 1,
and dk′ = 0 for k′ > k, with probability at least 1−1/4n for
any fixed k′ ≥ k. Therefore, the procedure outputs k′ = k
with probablity at least 3/4.

We now argue that the entropy of k is significantly re-
duced when given MB , X, under the distribution µ0 (i.e.,
when ck = X[k]). This is equivalent to saying that the mu-
tual information of k and MB is high. When the inputs are
picked according to the distribution µ0, we have

I(k, c : MB |X = V) = H(k|X = V)−H(k|MB , X = V)

= logn−H(k|MB , X = V).

We bound from above the conditional entropy H(k|MB , X =
V). We first separate the values of k 6∈ I as follows. Let p =
|I|/n, and define the Boolean random variable J as 1 iff k ∈
I. We have

H(k|MB , X = V)

= H(kJ |MB , X = V)

= H(J |MB , X = V) + H(k|MB , X = V, J)

= H(p) + (1− p)H(k|MB , X = V, k 6∈ I)

+pH(k|MB , X = V, k ∈ I)

≤ 1 + (1− p) logn+ H(k|MB , X = V, k ∈ I)

≤ 1 + (1− p) logn+ H(k|K,X = V, k ∈ I),

where K is the random variable computed by our finding
procedure Π, and the final step follows from the Data Pro-
cessing Inequality. For any fixed k ∈ I, given MB the pro-
cedure Π computes K = k with probability at least 3/4. By
the Fano Inequality, we have

H(k|K,X = V, k ∈ I) ≤ H

(
1

4

)
+

1

4
log(|I| − 1)

≤ 1 +
1

4
logn.

By combining Lemmas 1 and 2 we get

Theorem 3.

ICmix
µ0

(Mountain, 1/32n2) = Ω(logn).

4.3 Reduction from Ascension to Mountain
We now study the information cost of Ascension(m)

for the distribution µm0 over ({0, 1}n × [n] × {0, 1})m for
X = (X1, X2, . . . , Xm), k = (k1, k2, . . . , km) and c =
(c1, c2, . . . , cm). We state a direct sum property that re-
lates this cost to that of one instance of Mountain, and
then conclude.

Lemma 3.

ICpub
µm0

(Ascension(m), δ) ≥ m× ICmix
µ0

(Mountain, δ).

Proof. Let P be a public-coin randomized protocol for
Ascension(m) with worst-case error δ such that ICµm0 (P) =

ICpub
µm0

(Ascension(m), δ).

From P , we construct the following protocol P ′j for
Mountain, where j ∈ [n]. Let (X, k, c) be the input
for Mountain.

1. Alice sets Aj ’s input Xj to its input X.

2. Bob sets Bj ’s input (kj , Xj [1, kj − 1], cj) to its in-
put (k,X[1, k − 1], c).

3. Alice and Bob generate, using public coins, (Xi, ki, ci)
according to µ0, independently for all i < j, and Xi
uniformly independently for i > j.

4. Bob generates (ki) uniformly independently for i > j,
but using his private coins. Then Bob sets ci = Xi[ki]
for i > j (so that (Xi, ki, ci) are distributed according
to µ0, independently for all i > j).

5. Alice and Bob run the protocol P by simulating the
players (Ai, Bi)

m
i=1 as follows:

(a) Alice runs P until she generates the message MAj

from player Aj . She sends this message to Bob.

(b) Bob continues running P until he generates the
message MBm from player Bm. He sends this
message to Alice.

(c) Alice completes the rest of the protocol P until
the end, and produces as output for P ′j , the out-
put of player A1 in P .

By definition of the distribution µ0, we have f(Xi, ki, ci) = 0
for all i 6= j. So fm(X,k, c) = f(X, k, c), and each protocol
P ′j computes the function f , i.e., solves Mountain, with
worst-case error δ.

We prove that ICµm0 (P) =
∑
j ICµ0(P ′j), which implies

the result, since only Bob uses private coins in P ′j .

Let R denote the public coins used in the protocol P . By
applying the chain rule to ICµm0 (P), we get

ICµm0 (P)

= I(k, c : MBm |X, R)

=
∑
j

I(kj , cj : MBm |X, k1, c1, . . . , kj−1, cj−1, R)

Let Rj = (R, (Xi)j 6=i, (ki, ci)i<j). These are all the pub-
lic random coins used in the protocol P ′j , and any further
random coins (ki, ci)i>j are used only by Bob. Since for all j

ICµ0(P ′j) = I(kj , cj : MBm |Xj , Rj),

which is the same as

I(kj , cj : MBm |X, k1, c1, . . . , kj−1, cj−1, R),

the direct sum result follows.

Theorem 4. Let P be a public-coin randomized proto-
col for Ascension(n/ logn) with worst-case error probability
1/32n2, then size = Ω(n).

Proof. Let m = n/ logn and δ = 1/32n2, and let P
be a public-coin randomized protocol for Ascension(m)
with worst-case error probability δ. ICµm0 (P) is at most

size, and by definition ICpub
µm0

(Ascension(m), δ) is less

than or equal to ICµm0 (P). By Lemma 3, we have

ICpub
µm0

(Ascension(m), δ) ≥ m × ICmix
µ0

(Mountain, δ). By

Theorem 3, we get ICmix
µ0

(Mountain, δ) = Ω(logn). Com-
bining yields size = Ω(m logn) = Ω(n).

Corollary 1. Every one-pass randomized streaming al-
gorithm for Dyck(2) with (two-sided) error O(1/n′ logn′)
uses Ω(

√
n′ logn′) space, where n′ is the input length.

Proof. Assume we have a one-pass randomized
streaming algorithm for Dyck(2) with (two-sided) er-
ror O(1/n′ logn′) uses space size, where n′ is the input
length. Then, by the discussion at the beginning of
Section 4, there is a public-coin randomized protocol for
Ascension(n/ logn) with n = Θ(

√
n′ logn′) and with

worst-case error probability 1/32n2. By Theorem 4, the
messages have length Ω(n), and therefore, the streaming
algorithm has space Ω(n) = Ω(

√
n′ logn′).

Acknowledgements
For earlier discussions, F.M. would like to thank Michel de
Rougemont, Miklos Santha, Umesh Vazirani, and especially
Pranab Sen, who, among other things, noticed that the log-
arithmic space algorithm for Identity(s) in [15] can be con-
verted to a one-pass randomized streaming algorithm with
logarithmic space. We would also like to thank an anony-
mous referee for pointing out a

√
logn factor improvement

of our original one-pass algorithm.

5. REFERENCES
[1] N. Alon, M. Krivelich, I. Newman, and M. Szegedy.

Regular languages are testable with a constant
number of queries. SIAM J. Comput., 30(6), 2000.

[2] N. Alon, Y. Matias, and M. Szegedy. The space
complexity of approximating the frequency moments.
J. Comput. Syst. Sci, 58(1):137–147, 1999.

[3] A. Ambainis, A. Nayak, A. Ta-Shma, and U. Vazirani.
Dense quantum coding and quantum finite automata.
J. ACM, 49(4):1–16, July 2002.

[4] Z. Bar-Yossef, T. S. Jayram, R. Kumar, and
D. Sivakumar. An information statistics approach to
data stream and communication complexity. J.
Comput. Syst. Sci, 68(4):702–732, 2004.

[5] M. Blum and S. Kannan. Designing programs that
check their work. J. ACM, 42(1):269–291, 1995.

[6] M. Blum, M. Luby, and R. Rubinfeld.
Self-testing/correcting with applications to numerical
problems. J. Comput. Syst. Sci, 47(3):549–595, 1993.

[7] A. Chakrabarti, Y. Shi, A. Wirth, and A. C.-C. Yao.
Informational complexity and the direct sum problem
for simultaneous message complexity. In IEEE FOCS,
pages 270–278, 2001.

[8] N. Chomsky and M. Schotzenberger. Computer
programming and formal languages. In P. Braffort and
D. Hirschberg, editors, The algebraic theory of
context-free languages, pages 118–161, 1963.

[9] M. Chu, S. Kannan, and A. McGregor. Checking and
spot-checking the correctness of priority queues. In
ICALP, pages 728–739, 2007.

[10] J. Feigenbaum, S. Kannan, M. Strauss, and
M. Viswanathan. Testing and spot-checking of data
streams. Algorithmica, 34(1):67–80, 2002.

[11] O. Goldreich, S. Goldwasser, and D. Ron. Property
testing and its connection to learning and
approximation. J. ACM, 45(4):653–750, 1998.

[12] J. Hopcroft and J. Ullman. Formal Languages and
Their Relation to Automata. Addison-Wesley, 1969.

[13] R. Jain, J. Radhakrishnan, and P. Sen. A lower bound
for the bounded round quantum communication
complexity of Set Disjointness. In IEEE FOCS, pages
220–229, 2003.

[14] T. S. Jayram, R. Kumar, and D. Sivakumar. Two
applications of information complexity. In ACM
STOC, pages 673–682. ACM, 2003.

[15] R. Lipton and Y. Zalcstein. Word problems solvable in
logspace. J. ACM, 24(3):522–526, 1977.

[16] S. Muthukrishnan. Data Streams: Algorithms and
Applications. Now Publishers Inc., 2005.

[17] A. Nayak. Optimal lower bounds for quantum
automata and random access codes. In IEEE FOCS,
pages 369–376, 1999.

[18] M. Parnas, D. Ron, and R. Rubinfeld. Testing
membership in parenthesis languages. Random Struct.
Algor., 22(1):98–138, 2003.

[19] M. Saks and X. Sun. Space lower bounds for distance
approximation in the data stream model. In ACM
STOC, pages 360–369, 2002.

[20] L. Segoufin and C. Sirangelo. Constant-memory
validation of streaming XML documents against
DTDs. In ICDT, pages 299–313, 2007.

[21] L. Segoufin and V. Vianu. Validating streaming XML
documents. In ACM PODS, pages 53–64, 2002.

APPENDIX
A. EXAMPLE EXECUTIONS

Figure 1 shows an example of execution of our one-pass al-

gorithm. Here there are eight blocks, and they are shown af-
ter the internal simplifications have already been done. The
dotted vertical lines mark times at which the stack changes
size, either starting a new stack item (for example, at time
t0) or discarding a stack item (for example, at time t4). Note
that blocks and stack items are staggered: the first item in-
corporates the first block and the downsteps of the second
block, the second item incorporates the upsteps of the sec-
ond block and the downsteps of the third block, etc. The
bullets mark times when the algorithm checks and discards
an item, if the hash value is 0. The horizontal lines go from
the time when a stack item is created to the time when
it is checked and discarded. For example, at time t7 the
algorithm checks and discards an item (hm, `m) such that
hm incorporates the upsteps marked in bold on the figure,
namely x(t1, t2], and incorporates the downsteps marked in
bold on the figure, namely x(t2, t3], x(t4, t5] and x(t6, t7].

B1

B2

B3

B4
B5 B6

B7

B8

t0 t1 t2 t3 t4t5 t6t7

Figure 1: Example of execution of Algorithm 1

Figure 2 illustrates the logarithmic block decomposition
of the input word into all the blocks that will be activated
during one-pass. They are identical from the left-to-right
pass and the right-to-left pass since thanks to padding the
input length is a power of 2. At every instant, only one
i-block is activated for each i.

. .
.

k-block

(k − 1)-block

1-block

(k − 1)-block

(k − 2)-block (k − 2)-block (k − 2)-block (k − 2)-block

. .
.

. .
.

. .
.

Figure 2: Decomposition in block-structure

Figure 3 gives an intuition of the proof of Fact 6. The
bold-face lines represent matching pairs between the two
(i− 1)-blocks B,B′ within the same i-block Bi. In the case
of the figure, those pairs are checked during the left-to-right
pass, since the minimum height m within the left (i − 1)-
block B is larger than the minimum height m′ with the
right (i− 1)-block B′ (during the right-to-left pass, they are
compressed without any checks when Bi is processed).

B. FIGURES FOR HARD INSTANCES
Figure 4 presents an input stream with its division be-

tween players Alice and Bob. The horizontal axis represents
the length of the stream seen so far, and the vertical axis
represents the corresponding height. We introduce a poten-
tial mismatch denoted by letter c in Bob’s input.

B B�

j j�
m�

m

Block Bi

Figure 3: Illustration of Fact 6

k
c

Alice
Bob

Alice

. .
. . . .

A1 A1

B1

B2

Bm

Am

A2A2

length

X
Y

c
X

Y

height

Figure 4: Problem Mountain: Y [1, k− 1] = X[1, k− 1].
The word is well-formed if and only if c = X[k].

Figure 5 presents the m-fold nesting of the above stream.
The stream is now divided between 2m players. There are
m potential mismatches, the ith one caused by the letter ci
in Bi’s input.

k
c

Alice
Bob

Alice

. .
. . . .

A1 A1

B1

B2

Bm

Am

A2A2

length

X
Y

c
X

Y

height

Am

Figure 5: Problem Ascension(m): The word is well-
formed if and only ci = Xi[ki], for all i.

