
Property testing of regular tree languages?

Frédéric Magniez1 and Michel de Rougemont2

1 CNRS–LRI, UMR 8623 Université Paris–Sud, France, magniez@lri.fr
2 LRI & Université Paris II, France mdr@lri.fr

Abstract. We consider the Edit distance with moves on the class of
words and the class of ordered trees. We first exhibit a simple tester for
the class of regular languages on words and generalize it to the class of
ranked regular trees. In the complete version of the paper, we show that
the distance problem is NP-complete on ordered trees.

1 Introduction

Inspired by the notion of Self-Testing [3, 4], Property Testing has been initially
defined and studied for graph properties [7]. It has been successfully extended
for various classes of finite structures. Let K be a class of finite structures and
a distance function dist, i.e. a function between structures of K. An ε-tester for
a class K0 ⊆ K is a randomized algorithm which takes a structure Un of size n
as input and decides if Un ∈ K0 or if Un is ε-far from K0 with high probability.
A class K0 is testable if for every sufficiently small ε there exists an ε-tester for
K0 whose time complexity is in O(f(ε)), i.e. independent of n.

For the Hamming distance, regular languages and Σ2-definable graphs are
testable [2, 1]. Testers have also been generalized to the infinite regular lan-
guages [5]. In this paper we initiate the study of Property Testing with the Edit
distance, when insertions and deletions of letters on words, of nodes and edges
on trees, are the elementary operations. We specifically require an additional
operation: the move of any entire subword or subtree in one step.

First (Section 3), we develop a new tester for regular languages on words
that greatly simplifies the tester of [2] and improves its complexity by a log(1/ε)
factor.

Then (Section 4), we initiate the study of Property Testing on trees. The
testability of regular tree languages is a well known open problem [5] for the
standard Edit distance. We solve this problem when moves are allowed, by prov-
ing the testability of regular ranked tree languages.

The Word Edit distance with moves decision problem and the standard Tree
Edit distance decision problem are computable in polynomial time [6, 10]. In the
complete version of the paper, we prove that the Tree Edit distance with moves
is NP-complete. It is then interesting to point out that this apparently more

? Complete version at http://www.lri.fr/∼magniez. Work supported by ACI
Sécurité Informatique: VERA of the French Ministry of Research.

complex distance yields a tester for regular languages, whereas we do not know
such a tester for the classical Tree Edit distance.

Finally (Section 5), we discuss the possibility of generalizing the testability
to unranked trees. As a direct application, it would imply than one can decide
in constant time if a large XML document follows a DTD or is far from it.
2 Preliminaries
2.1 Property Testing

Recall the notion of a (Property) tester [7] on a class K of finite structures for
which a distance function between structures has been defined.

We say that two structures Un, Vm ∈ K, whose domains are respectively of
size n and m, are ε-close if their distance is less than ε ×max(n, m). They are
ε-far if they are not ε-close. In this paper, we consider this notion of closeness
for words and trees since the representation of their structure is of linear size.
For other classes, such as graphs, one may define the closeness relatively to the
representation size (for e.g., εn2 for graphs) instead of the domain size.

Definition 1. Let ε ≥ 0 be a real. An ε-tester for a class K0 ⊆ K is a random-
ized algorithm A such that:
(1) If U ∈ K0, A always accepts;
(2) If U is ε-far from K0, then Pr[A rejects] ≥ 2/3.

The query complexity is the number of boolean queries to the structure U of
K. The time complexity is the usual time complexity where the complexity of a
query is one and the time complexity of an arithmetic operation is also one.

A class K0 ⊆ K is testable if for every sufficiently small ε > 0, there exists
an ε-tester whose time complexity depends only on ε.

2.2 Words

Let Σ be a finite alphabet of constant size and for the sake of simplicity, the
reader might think that Σ = {0, 1}. We now consider the words on the alphabet
Σ. Every word W is a finite structure (N, [N], l : [N] → Σ), where [N] denote
the set {1, . . . , N}. The class K is the set of all such structures. We will denote
a subclass K0 of K as a subset L ⊆ Σ∗. In this context, a query i to some word
W asks the letter W [i] = l(i). Let W be a word. A word w is a subword of W if
w = W [i, . . . , j], for some i, j.

An elementary operation (on words) is a deletion or an insertion of a letter,
or a move: given a subword and a position, a move is a transformation of the
word, where the subword has been removed of its current position and inserted
in the given position. Notice we omit letter replacement operations since such
an operation can be simulated using one deletion and one insertion.

The standard Edit distance only considers the operations without moves, and
this new distance is essential for most of the arguments.

Definition 2. The distance between two words W and W ′ is the minimum num-
ber of elementary operations necessary to reach W ′ from W , noted dist(W,W ′).
The distance between W and a language L, noted dist(W,L), is the minimum
dist(W,W ′) when W ′ ∈ L.

2.3 Trees

Let T be an ordered Σ-tree, i.e. a tree with labels σ ∈ Σ on the nodes. It is
ranked if the degree is bounded by a fixed constant, and unranked otherwise. We
omit the term ‘ordered’, since all our trees will be ordered.

Let us first consider r-ranked trees for some fixed constant r. An r-ranked
tree T is a finite structure

(N, [N], root , l : [N] → Σ, d : [N] → [r], s : [N]× [r] → [N]),

where N is the size of T , root is the distinguished element representing the root
of T , l is the label function, d is the degree function which gives the degree of
any node, and s is the successor partial function which associates to every node
v and any position i ∈ [d(v)] the i-th successor of v.

The class K is the set of all such structures. We will denote a subclass K0 of
K as a subset L of all r-ranked trees. In this context, a query (v, i) to some tree
T asks the label and the degree of the node v and its i-th node successor in T ,
if i ≤ d(v).

The classical Tree Edit distance [10] assumes basic insertions, deletions on
a tree and modifications of labels (see Figure 1). A node insertion (u, σ) on
an edge (v1, v2) replaces the edge (v1, v2) by the edge (v1, u), set v2 to be the
only successor of u, and labels u by σ. A node deletion is the inverse of a node
insertion. An edge insertion (v, u, σ, i) to a node v of T inserts the leaf u with
label σ between the (i−1)-th and the i-th successor of v, provided that d(v) < r.
The inverse operation is an edge deletion.

We will also allow some moves in T (see Figure 1). A complete subtree t of T
takes a node of T as root and is the substructure restricted to a subset of nodes
such that all leaves of t are also leaves of T . A move (t, v, i) of a complete subtree
t to a node v moves in one step t between the (i−1)-th and the i-th successor of
v, provided the degree of v allows it. An elementary operation (on trees) is one of
the above operations. We define dist(T, T ′) and dist(T,L) as in Definition 2, for
any trees T, T ′ and tree language L. For unranked trees, the above definitions

Node Insertion

Node Deletion

Edge Insertion

Edge Delection

1 Move

Fig. 1. Elementary operations on trees.

might be generalized by removing the degree condition and replacing [r] by [N].

Moreover the definition of a complete subtree is adapted so that t is a complete
subtree of T if in addition it satisfies: every successors in t of every node v of t
are subwords of the successors in T of v.

3 Testing regular languages

3.1 Basic definitions

Let A be a deterministic automaton on words with m states, m ≥ 2, which
recognizes a language L. We say that w connects the states q1 to the state q2

when starting from q1, the automaton A reaches q2 after reading word w. If w
connects q1 to q2, we also say that q1 is connected to q2. This notion will be used
for random subwords w of a fixed word W .

Proposition 1. Let q1 be a state connected to q2. Then there exists a word w
of size at most m that connects q1 to q2.

Let G(A) be the directed graph whose vertices are the states of A and edges
connects states that are connected by a word of size 1, that is a letter. We
assume without lost of generality that G(A) is connected. Since we will only
speak about strongly connected components, we omit the term ‘strongly’. A
connected component C of G(A) is truly connected if there is a non empty path
of G(A) inside C. Observe that a nontruly connected component is necessarily
a singleton. We will denote by Ĝ(A) the graph of the connected components of
G(A).

Let G(A) be the directed graph whose vertices are the states of A and edges
connects states that are connected by a word of size 1, that is a letter. We
assume without lost of generality that G(A) is connected. Since we will only
speak about strongly connected components, we omit the term ‘strongly’. A
connected component C of G(A) is truly connected if there is a non empty path
of G(A) inside C. Observe that a nontruly connected component is necessarily
a singleton. Let Ĝ(A) denote the graph of the connected components of G(A).

Definition 3. Let Π = (C1, . . . , Ck) be a path of Ĝ(A). Then Π is admissible
if C1 (resp. Ck) contains an initial (resp. final) state.

Definition 4.

1. Let C be a truly connected component of G(A). A word w is C-simply feasible
if it connects two states of C.

2. Let Π be a path of Ĝ(A). A word w of is Π-feasible if it connects two states
q1 and q2 along a path visiting only some of the connected components of Π.

A word w is (simply) Π-infeasible if it is not (simply) Π-feasible.
A cut of a word W is an ordered partition of W in subwords. We will think on

this partition as an ordered forest of words. Below we omit the term ‘ordered’.
A cut F is Π-feasible if every word of F is Π-feasible.

3.2 The tester

The tester takes random subwords of finite length of W and will test feasibility
for finitely many Π, that is at most 2m where m is the number of state of the
automaton. The Robustness lemma will insure that if a word W is far, then with
high probability a random subword of finite length will be infeasible.

Tester for regular language (A, ε,W):

If the size n of W is less than 15m2/ε
then simply evaluate A on W and accept iff A accepts W .

Else do the following:
For i = 1, . . . , log(5m2/ε) {

Compute Ni = Θ(2−im3 log(m2/ε)
ε).

Choose Ni random subwords wi
j of W of size 2i+1, for j = 1, . . . , Ni }

For every admissible path Π of Ĝ(A) {
If all the wi

j are Π-feasible then accept W (and stop) }
Reject W .

Theorem 1. For every real ε > 0, every automaton A with m states, and ev-
ery word W , the algorithm Tester for regular language (A, ε,W) is an ε-
tester for the language recognized by A. Moreover, its query complexity is in
O(m3 log2(m2/ε)/ε), and its time complexity in O(2mm3 log2(m2/ε)/ε).

Proof. We can assume w.l.o.g. that the size n of W is at least 15m2/ε, otherwise
the proof of the correctness is obvious.

First, if W ∈ L then W is Π-feasible for some admissible Π. Therefore every
subword of W is Π-feasible for this path Π. Thus the tester accepts W with
probability 1.

Suppose that dist(W,L) > εn and fix an admissible path Π. Using the Ro-
bustness lemma (Lemma 1), we get that the probability to accept W for this Π
is in O(2−m). Since there is at most 2m candidates Π, we can conclude, using
the union bound, that the acceptance probability is upper bounded by 1/3. ut

Corollary 1. Regular properties of words are ε-testable.

We now state the Robustness lemma. The notion of robustness was first
defined in [9] and studied in [8]. In the rest of this section, we fix an automaton
A and we call L its associated language.

Lemma 1 (Robustness). Let n ≥ 15m2/ε, and let W be a word of size n such
that dist(W,L) ≥ εn. Then for every admissible path Π of Ĝ(A), there exists an
integer 1 ≤ i ≤ log(5m2/ε), such that the number of Π-infeasible subwords of
size 2i+1 is at least 2i+1

90m2 log(5m2/ε) × εn.

The sketch of the proof of the Robustness lemma takes the following steps
(see Figure 2):

1. The Splitting lemma shows that if the distance between W and L is large
then there are many infeasible disjoint subwords. Its proof is by contraposi-
tion:
(a) First, from a cut of minimal infeasible subwords, we construct a close

feasible cut F .
(b) Then the Merging lemma which shows that if a cut F is feasible, then it

is close to L.
2. The Amplifying lemma shows that if there many infeasible words, then there

are many short ones.

CCC

C CC

Splitting a word Merging a word

Fig. 2. The correction (steps 1.a and 1.b) of a word with two infeasible subwords where
C is some connected components (and h′ = 3 for the proof of Lemma 2).

3.3 Robustness of the tester

Lemma 2 (Splitting). Let Π be an admissible path of Ĝ(A). Let W be a word
such that dist(W,L) > h. Then W has more than h−3m2

2m2 Π-infeasible disjoint
subwords.

Proof. The proof is by contraposition and we understand feasible as Π-feasible.
First we construct a cut P of W of size h′ whose h′−1 first subwords are minimal
infeasible and disjoint subwords. The last subword of P is either infeasible or
feasible. And in this last case, the entire word W might feasible and h′ = 1.

We visit W from the left to the right and the construction of each infeasible
subword W [i, . . . , j] is done by induction on that walk.

Initially: h′ = 0 and i = j = 1.
While (j ≤ |W |) {

While (subword W [i, . . . , j] is Π-feasible and j < |W |) {increase j}
h′ = h′ + 1, wh′ = W [i, . . . , j],i = j + 1, j = i.}

At the end of the procedure we get the desired partition P = (wi)1≤i≤h′ .
Now we explain how to get a word W ′ ∈ L. Let w′

i be wi without the last
letter, for i = 1, . . . , h′. When wh′ is feasible then w′

h′ = wh′ . By construction of
wi, the subwords w′

i are feasible. Let F be the cut of the (w′
i)1≤i≤h′ . Applying

Lemma 3, we get that dist(F,L) ≤ m + 2m2 × h′. Because dist(W,F) ≤ h′,
then dist(W,L) ≤ m + 2m2 × h′. But by assumption, h′ − 1 ≤ h−3m2

2m2 , therefore
dist(W,L) ≤ h. ut

Lemma 3 (Merging). Let Π = (C1, . . . , Ck) be an admissible path of Ĝ(A).
Let F be a Π-feasible cut of size h′. Then dist(F,L) ≤ m + 2m2h′.

Proof. First, we split each subword of F in C-feasible subwords, for some C ∈ Π.
Given a Π-feasible subword w which connects p ∈ Ci to q ∈ Cj , we follow the
automaton from p to q on w, and we delete each letter leading to a new connected
component. Then the subword is cut along each deleted letter.

This technique keeps subwords that are C-feasible for some truly connected
component C. Moreover, each initial subword of F splits in at most k subwords
from which at most k letters are deleted, where k is less than m, where m is the
number of state of the automaton. Let (wi)1≤i≤l be the remaining subwords of
F , where 1 ≤ l ≤ m× h′.

Now we explain how to move and glue the remaining subwords wi in order to
get a subword W ′ ∈ L. Let C ′

i be a component of Π such that wi is C ′
i-feasible.

Let pi, qi ∈ C ′
i such that wi connects pi to qi. Then, we do (l − 1) moves so

that the components C ′
i are in the order defined by Π. Up to some renaming,

we assume now that (C ′
1, . . . , C

′
l) are in the same order than (C1, . . . , Ck), up to

some repetitions.
We glue by induction. Let q0 be an initial state of C1, and let pl+1 be an

accepting state of Ck. For i = 0 to i = l do the following. By Proposition 1, let
gi be a word of size at most m that connects qi to pi+1. By inserting gi between
wi and wi+1, we get the world W ′ = g0.w1.g1 . . . wl.gh. By construction W ′ ∈ L.
In this last step, we did at most m× (l + 1) insertions.

The total number of elementary operations is less than (mh′) + (l − 1) +
(m(l + 1)) ≤ m + 2m2 × h′, since l ≤ mh′ and m ≥ 2. ut

Lemma 4 (Amplifying). Let Π be a path of Ĝ(A). Let W be a word of length
n with at least h′ Π-infeasible disjoint subwords. Then there exists an integer
1 ≤ i ≤ log(2n/h′) such that the number of Π-infeasible subwords of size 2i+1 is
at least 2i(h′−4)

6 log(2n/h′) .

Proof. In this proof, we understand feasible as Π-feasible.
Let w1, . . . , w

′
h be some infeasible disjoint subwords of W . Let a be a positive

integer. For every integer i ≥ 1, let si = |{wj : 2i−1 + 1 ≤ |wj | ≤ 2i}|. Since we
have |{wj : |wj | > 2a}| ≤ n

2a , we therefore get
∑a

i=1 si ≥ h′ − n
2a .

Take a = log(2n/h′). Then
∑a

i=1 si ≥ h′

2 , thus there exists some 1 ≤ i ≤ a

such that si ≥ h′

2a .
To lower bound the number of infeasible subwords of size 2i+1, we count the

number of subwords of size 2i+1 that contains a least one subword wj whose size
is in [2i−1 + 1, 2i]. These subwords are also infeasible since they contain one of
the infeasible subwords wj . Note that since the subwords wj are disjoint, each
infeasible subword of length 2i+1 contains at most 3 of the wj of length greater
than 2i−1. Moreover, each infeasible subword wj of length at most 2i is included
in at least 2i subwords of length 2i+1 (except, maybe, the two first and the two
last subwords). We then get that the number of infeasible subwords of size 2i+1

is at least 2i

3 ×
h′−4
2a . ut

Proof (of Lemma 1). From the Splitting lemma with h = εn, the word W has
more than h′ = 2εn

5m2 Π-infeasible disjoint subwords. Now, by the Amplifying
lemma, there exists an integer 1 ≤ i ≤ log(5m2/ε) such that the number of Π-
infeasible subwords of size 2i+1 is at least 2i((2εn/5m2)−4)

6 log(5m2/ε) ≥ 2i+1

90m2 log(5m2/ε) × εn.
ut

4 Testing regular ranked tree languages

4.1 Basic definitions

A r-ranked tree automaton is a 5-tuple A = (Q, Σ, δ, (Iσ)σ∈Σ , F) where Q is the
set of states, F ⊆ Q is the set of accepting states, Iσ ⊆ Q the set of initial states
for σ, and δ : Q≤r ×Σ → Q is the transition function.

A subtree t of T takes a node v1 of T as root and is the substructure restricted
to nodes {v1, . . . , vm} where v2, . . . , vm are connected to v1. The leaves of T
among {v1, . . . , vm} are leaves of t, while some nodes are leaves in t but not in
T and called ∗-nodes where the new label is ∗. By extension, a subtree t is a tree
where some of the leaves are ∗-nodes.

An assignment λ for a subtree t determines states for its leaves such that if
u is a leaf with label l(u), then λ(u) ∈ Il(u). A run on a tree T extends λ on
all the nodes of the subtree such that if u is a node with successors v1, . . . , vl

where l ≤ r in states λ(v1), . . . , λ(vl) then λ(u) = δ(λ(v1), ldots, λ(vl), l(u)). A
run accepts if the state of the root is in F .

Two states q and q′ are connected if there exists a finite subtree t of size
at most rm and a run λ such that one leaf of t is assigned the state q, and the
root of t is assigned the state q′. Let G(A) be the directed graph whose vertices
are the states of A and edges connect states that are connected by a subtree of
depth 1.

We assume without lost of generality that G(A) is connected. We define
Ĝ(A) and the notion of truly connected as in Section 3.1, and we omit the term
‘strongly’. We consider a set Π of connected components of G(A) and generalize
the notions of Π-feasibility for subtrees.

Definition 5. Let Π be a set of connected components of G(A). Then Π is ad-
missible if there is a pair (T0, λ0), the witness of Π, such that λ0 is an assignment
of the tree T0 which visits every connected components Π, and no more.

Observe that T0 can be always chosen such that its size is at most rm.

Definition 6. Let Π be a set of connected components of G(A). A path σ from
a leaf to the root of a subtree t is Π-feasible if there exists a run which visits
along σ only some connected components of Π. A subtree t is simply Π-feasible
if there exists a path σ in T such that σ is Π-feasible. A subtree t is Π-feasible
if there exists a run λ such that for all paths σ in t, σ is Π-feasible for λ.

A subtree t is (simply) Π-infeasible if it is not (simply) Π-feasible.
We say that two subtrees of a tree T are disjoint if they are node disjoint

except in one node that might be both a ∗-node of one subtree and the root of the

other subtree. A cut of a tree T is a partial ordered partition of T in subtrees. We
will think on this partition as an ordered forest of subtrees. A forest of subtrees
is a partial ordered set of subtrees. Below we omit the term ‘ordered’.

We naturally extend the Tree Edit distance (with moves) to forests, where
the move operation can now either be applied to two subtrees of the forest or
take one subtree and generate two new subtrees. Since the Tree Edit distance
and the Tree Forest Edit distance are 4-equivalent (see Proposition 2), we do
not distinguish them for the sake of simplicity. In other words, the Tree Forest
Edit distance allows for some temporarily disconnection of complete subtrees.

Proposition 2. If two trees T, T ′ have Tree Edit distance h then their Tree
Forest Edit distance is in [h/4, h].

A forest of subtrees is Π-feasible if every subtree is Π-feasible.

4.2 The tester

The tester generates random k-subtrees in the following way. A k-subtree of T
from v is a subtree of T with v as a root and containing every nodes at distance
at most k below v. The tester is going to select subtrees tji , for j = 1, . . . , Θ(mr

ε2),
of depth i, for i = 1, . . . , r2m/ε, and check if they are all Π-feasible, for some
admissible Π.

Tester for regular ranked tree language (A, ε, T):

If the size n of T is in O(r2m+1/ε)
then simply evaluate A on T and accept iff A accepts T .

Else do the following:
Compute N = Θ(mr4m+3/ε2)
For i = 1, . . . , 2r2m+1/ε {

Choose N random nodes vi
j , for j = 1, . . . , N .

Query the i-subtree tij of T from vi
j , for j = 1, . . . , N }

For every admissible set Π of connected component of G(A) {
If all the tij are Π-feasible then accept T (and stop) }

Reject T .

Theorem 2. For every real ε > 0, every r-ranked tree automaton A with m
states, and every r-ranked tree T , the algorithm Tester for regular ranked
tree language (A, ε, T) is an ε-tester for the language recognized by A. More-
over, its query complexity is in O(mr4m+32(r2m+1)/ε/ε2), and its time complexity
in O(2mmr4m+32(r2m+1)/ε/ε2).

Corollary 2. Regular properties of trees are ε-testable.

In the rest of this section, we fix an r-ranked automaton A and we call L
its associated language. The proof of Theorem 2 follow the same arguments of
Theorem 1 using the Robustness lemma for trees.

Lemma 5 (Robustness). Let n = Ω(r2m+1/ε), and let T be a r-ranked tree
of size n such that dist(T,L) ≥ εn. Then for every admissible set Π of connected
components of G(A), there exists an integer 1 ≤ i ≤ 2r2m+1/ε, such that the
number of Π-infeasible i-subtrees is in Ω(1

r4m+3 × ε2n).

The structure of the proof of the Robustness lemma is the same than the one
of Lemma 1 (see Figure 3).

C D D D

Merging trees
Splitting trees

*
*

Connected components

C C

T

C

C

C D

D

D

Fig. 3. The correction of a tree with two infeasible subtrees where we mention C and
D as some connected components (and h′ = 3 for the proof of Lemma 6).

4.3 Robustness of the tester

In this section, all the trees we consider are r-ranked trees.

Lemma 6 (Splitting). Let Π be an admissible set of connected components of
the graph G(A). Let T be a tree such that dist(T,L) > h. Then T has more than

1
3rm+1 (h

rm − 1)− 1 Π-infeasible subtrees.

Proof. The proof is by contraposition and we understand feasible as Π-feasible.
First we construct a cut P of T of size h′ whose h′− 1 last subtrees are minimal
infeasible and disjoint subtrees. It might be the case that the top subtree of
P is Π-feasible. We visit T from the left to the right, and bottom-up. While
visiting a node v, if the subtree below v is Π-infeasible, we add it in our cut
and we consider v as a ∗-node in the remaining part of T . At the end of the
procedure we get the desired cut P = (ti)1≤i≤h′ , ordered as T and having at
most h′ ∗-node.

Now we explain how to get a tree T ′ ∈ L. Since ti has a root of degree at
most r, let t1i , . . . , t

r
i be the r subtrees from the root of ti (some of them might

be empty), for i = 1, . . . , h′. By construction of ti, the subtrees t1i , . . . , t
r
i are Π-

feasible. When th′ is feasible then t1h′ = th′ and others tjh′ are empty. Let F be
the forest (t1i , . . . , t

r
i)i=1,...,h′ of size at most rh′, in the same order than T . To get

F from T , we use only rh′ moves and h′ edge deletions. Moreover F has at most
h′ ∗-nodes. Applying Lemma 7, we get that dist(F,L) ≤ rm(1 + h′ + 2rm+1h′)
and since dist(T, F) ≤ (r +1)h′, we conclude that dist(T,L) ≤ rm(1+3rm+1h′),
majoring (r + 1) + rm(1 + 2rm+1) by rm × 3rm+1. But by assumption, h′ − 1 ≤

1
3rm+1 (h

rm − 1)− 1, therefore dist(T,L) ≤ h. ut

Lemma 7 (Merging). Let Π be an admissible set of connected components of
G(A). Let F be a Π-feasible forest of size h′1 with at most h′2 ∗-nodes. Then
dist(F,L) ≤ rm(1 + h′2 + 2rmh′1).

Proof. First, we split each subtree t of F in simply C-feasible subtrees, for some
C of Π. Fix such a t ∈ F . Let λ be a run of t such that all paths of t are
Π-feasible. Fix a path σ of t and let C be the connected component of the root
of t. We follow σ top-down until we leave C after a node v. Then we cut t just
before leaving C, that is between v and its successors using r edge deletions and
r moves. This leads to one simply C-feasible subtree from the root of t where
the label of v is now ∗, and r new Π-feasible subtrees from the successors of
v. We iterate the argument for the last r subtrees using the restrictions of the
same run λ, so that the next paths of the last r subtrees will start with the next
connected component. At the end of the process, at most 1+r+ . . .+rm−1 ≤ rm

C-feasible subtrees are generated from t using rm edge deletions and rm moves.
We only consider subtrees that are simply C-feasible for some truly connected

component C of Π, and delete the other ones, of size 1, using at most rm×h′1 node
deletions. Let (ti)1≤i≤k be the remaining subtrees of F , where 1 ≤ k ≤ rm× h′1.

We now explain how to move and glue the remaining subtrees wi in order to
get a tree T ′ ∈ L. Let Ci be a connected component of Π such that ti is simply
Ci-feasible. We first move and glue linearly each subtrees ti with the same Ci.
At each ∗-node, a tree of size rm is also inserted so that the resulting subtree
is simply Ci-feasible and without any ∗-nodes. Then the remaining subtrees are
connected to T0 in order to get a tree T ′ ∈ L. We have done (k − 1) moves and
rm× (k+1)+rm×h′2 insertions and the total number of operations is less than:
(2rm× h′1) + (rm× h′1) + (rm× h′1 + rm× (rm× h′1 + 1) + rm× h′2) which is less
than rm + 2r2m × h′1 + rm × h′2. ut
Lemma 8 (Amplifying). Let Π be an admissible set of connected components
of G(A). Let T be a tree of size n with at least h′ Π-infeasible disjoint subtrees.
Then there exists an integer 1 ≤ i ≤ 2n/h′ such that the number of Π-infeasible
i-subtrees is at least 1

r ×
h′

4n × h′.

Proof. In this proof, we understand feasible as Π-feasible and we follow the
structure of the proof of Lemma 4.

Let t1, . . . , th′ be some infeasible disjoint subtrees of T . Let a be a positive
integer. For every integer i ≥ 1, let si = |{tj : depth(tj) = i}|. Since the root
of a subtree may be shared a with the leaf of another subtree as a ∗-node, we
have |{tj : depth(tj) > a}| ≤ n

a+1 , and therefore
∑a

i=1 si ≥ h′− n
a . Take a = 2n

h′ .
Then

∑a
i=1 si ≥ h′

2 , thus there exists some 1 ≤ i ≤ a such that si ≥ h′

2a .
To lower bound the number of infeasible i-subtrees, we count the number of

i-subtrees that contains a least one subtree tj of depth i. These subtrees are also
infeasible since they contain one of the infeasible subtrees tj . Note that since the
subtrees tj are disjoint, each infeasible i-subtrees contains at most r of the tj of
depth i. Moreover, each infeasible subtree tj of depth i is included in at least
one infeasible i-subtree. We then get that the number of infeasible i-subtrees is
at least 1

r ×
h′

2a . ut

5 Extension to unranked trees

An unranked tree automaton generalizes the transition function to δ : Q×Σ →
2Q∗

such that δ(q, a) is a regular language on Q. A run λ is generalized such
that if u is a node with successors v1, ..., vl in states λ(v1), . . . , λ(vl) and there
is a q such that λ(v1), . . . , λ(vl) ∈ δ(q, l(u)), then λ(u) = q.

We consider two approaches to generalize the Tester for regular ranked
tree language to unranked regular trees. In a direct approach we are able to
prove a Splitting lemma and a Merging lemma for any unranked tree automaton.
The remaining main obstacle is the existence of an efficient random generator of
subtrees for a corresponding Amplifying lemma.

Another possible approach consists to encode unranked trees T by binary
trees e(T) using a classical encoding to construct a binary automaton that ac-
cepts the encoded unranked trees accepted by the unranked automaton, and to
apply the tester on binary trees. In case of XML files, assume they are given
by their DOM (Document Object Model) structures. We can efficiently gener-
ate any random k-subtrees on the encoded tree from the DOM and simulate
efficiently the Tester for regular ranked tree language on the encoded
tree. There is a remaining obstacle consisting in lower bounding the distance
of two encoded trees dist(e(T), e(T ′)) by dist(T, T ′). Even if it is clear that
dist(e(T), e(T ′)) ≤ 2dist(T, T ′), the opposite inequality is rather technical.

References

1. N. Alon, E. Fischer, M. Krivelevich, and M. Szegedy. Efficient testing of large
graphs. Combinatorica, 20:451–476, 2000.

2. N. Alon, M. Krivelich, I. Newman, and M. Szegedy. Regular languages are testable
with a constant number of queries. SIAM Journal on Computing, 30(6), 2000.

3. M. Blum and S. Kannan. Designing programs that check their work. Journal of
the ACM, 42(1):269–291, 1995.

4. M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications
to numerical problems. Journal of Computer and System Sciences, 47(3):549–595,
1993.

5. H. Chockler and O. Kupferman. ω-regular languages are testable with a constant
number of queries. In Proceedings of the 6th Workshop on Randomization and
Approximation Techniques in Computer Science, pages 26–38, 2002. LNCS volume
2483.

6. G. Cormode. Sequence Distance Embeddings. PhD thesis, University of Warwick,
2003.

7. O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to
learning and approximation. Journal of the ACM, 45(4):653–750, 1998.

8. R. Rubinfeld. On the robustness of functional equations. SIAM Journal on Com-
puting, 28(6):1972–1997, 1999.

9. R. Rubinfeld and M. Sudan. Robust characterizations of polynomials with appli-
cations to program testing. SIAM Journal on Computing, 25(2):23–32, 1996.

10. K. Tai. The tree-to-tree correction problem. Journal of the ACM, 26:422–433,
1979.

