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Abstract. We extend the study of the complexity of computing an ε-
approximate Nash equilibrium in symmetric congestion games from the
case of positive delay functions to delays of arbitrary sign. Our results
show that with this extension the complexity has a richer structure,
and it depends on the exact nature of the signs allowed. We first prove
that in symmetric games with increasing delay functions and with α-
bounded jump the ε-Nash dynamic converges in polynomial time when
all delays are negative, similarly to the case of positive delays. We are
able to extend this result to monotone delay functions. We then establish
a hardness result for symmetric games with increasing delay functions
and with α-bounded jump when the delays can be both positive and
negative: in that case computing an ε-approximate Nash equilibrium
becomes PLS-complete, even if each delay function is of constant sign or
of constant absolute value.

1 Introduction

Congestion games were introduced by Rosenthal [19] to model shared resources
by selfish players. In these games the strategies of each player correspond to some
collection of subsets of a given set of common resources. The cost of a strategy
is the sum of the costs of the selected resources, where the cost of a particular
resource depends on the number of players having chosen this resource. This
dependence is described in the specification of the game by some integer valued
delay function for each resource.

Congestion games can describe several interesting routing and resource allo-
cation scenarios in networks. More importantly from a game theoretic perspec-
tive, they have some particularly attractive properties. Rosenthal has proven
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that they belong to the class of potential games where, for each player, an im-
provement (decrease) in his cost is reflected by an improvement in a global func-
tion, the potential function. This implies, in particular, that congestion games
always have a pure Nash equilibrium. More precisely, a Nash equilibrium can be
reached by the so called Nash dynamics, in which an unsatisfied player switches
his strategy to a better one, which decreases his cost function. Since the same
improvement is mirrored in the potential function, which can not be decreased
infinitely, this process indeed has to converge to an equilibrium in a finite number
of steps. In an exact potential game the changes in the individual cost functions
and the potential function are not only identical in sign, but also in the exact
value. Monderer and Shapley [17] have proved that congestion games and exact
potential games are equivalent.

The existence of a potential function for congestion games allows us to cast
searching for a Nash equilibrium as a local search problem. The states, that is
the strategy profiles of the players, are the feasible solutions, and the neigh-
borhood of a state consists of all authorized changes in the strategy of a single
player. Then local optima correspond to states where no player can improve in-
dividually his cost, that is exactly to Nash equilibria. The potential of a state
can be evaluated in polynomial time, and similarly a neighboring state of lower
potential can be exhibited, provided that there exists one. This means that the
problem of computing a Nash equilibrium in a congestion game belongs to the
complexity class PLS, Polynomial Local Search, defined in [13, 18]. The class PLS
is a subclass of TFNP [16], the family of NP search problems for which a solution
is guaranteed to exist. While PLS is not harder than NP ∩ coNP, it is widely
believed to be computationally intractable. Fabrikant et al. [10] have shown that
computing a Nash equilibrium in congestion games is PLS-complete. In addition,
they have explicitly constructed games in which the Nash dynamics takes expo-
nential time to converge. It is worth to note that it is also highly unlikely that
computing a mixed Nash equilibrium in general games is feasible in polynomial
time, even when the number of players is restricted to two [9, 4].

It is therefore natural to look for relaxed versions, and in particular ap-
proximations, of Nash equilibria which might be computed in polynomial time.
Approximate Nash equilibria of various games have been defined and studied
both in the additive [14, 15, 5, 7, 8, 11, 21] and in the multiplicative models of
approximation [6, 2]. Here we consider multiplicative ε-approximate Nash equi-
libria, for 0 < ε < 1, that is states where no single player can improve his cost
by more than a factor of ε by unilaterally changing his strategy. In this context,
the analogous concept of the Nash dynamics is the ε-Nash dynamics, where only
ε-moves are permitted, which improve the respective player’s cost at least by
a factor of ε. Rosenthal’s potential function arguments imply again that the ε-
Nash dynamics converges to an ε-approximate Nash equilibrium.

In a very interesting positive result, Chien and Sinclair [6] proved that in con-
gestion games with four specific constraints the ε-Nash dynamics indeed does
converge fast, in polynomial time. The four constraints require the game to
be increasing, positive, symmetric, and with α-bounded jump. The first three



constraints are rather standard. A congestion game is increasing (respectively
positive) if of all delay functions are non-decreasing (respectively non-negative).
It is symmetric if all players have the same strategies. The last constraint puts
a limit on the speed of growth of the delay functions. They define an increasing
and positive congestion game to be with α-bounded jump, for some α ≥ 1, if
the delay functions can not grow more than a factor α when their argument is
increased by one. Their result states that in increasing, positive and symmet-
ric congestion games with α-bounded jump, the ε-Nash dynamics converges in
polynomial time in the input length, α and 1/ε.

Could it be that the ε-Nash dynamic converges fast in every congestion game?
Skopalik and Vöcking have found a very strong evidence for the contrary. In a
negative result [20], they proved that for every polynomial time computable
0 < ε < 1, computing an ε-approximate Nash equilibrium is PLS-complete, that
is as hard as computing a Nash equilibrium. In fact, they result is even stronger,
it shows the PLS-completeness of the problem for increasing positive games.

In this paper we extend these studies to the case when the delays can be also
negative, that is some resources might have the special status of improving the
cost of the players when they are chosen. We consider negative games where the
delay functions may be either increasing or decreasing. We first prove that in
negative symmetric games with α-bounded jump, when all delay functions are
increasing, the ε-Nash dynamics converges in polynomial time, just as in the case
of positive increasing games. We then extend this result to games where all delay
functions are monotone, that is either increasing or decreasing. We then prove
a hardness result: computing an ε-approximate Nash equilibrium in symmetric
and increasing games with α-bounded jump becomes PLS-complete when delay
functions of arbitrary sign are allowed. In fact, our result is somewhat stronger:
the PLS-completeness holds even when all delay functions are of constant sign
or when all the delays are of constant absolute value.

2 Preliminaries and results

We recall the notions of congestion games, local search problems and approxi-
mate Nash equilibrium. We also give motivations and applications of this work.

Congestion games. For a natural number n, we denote by [n] the set {1, . . . , n}.
For an integer n ≥ 2, an n-player game in normal form is specified by a set of
(pure) strategies Si, and a cost function ci : S → Z, for each player i ∈ [n], where
S = S1 × · · · × Sn is the set of states. For s ∈ S, the value ci(s) is the cost of
player i for state s. A game is symmetric if S1 = . . . = Sn.

For a state s = (s1, . . . , sn) ∈ S, and for a pure strategy t ∈ Si, we let (s−i, t)
to be the state (s1, . . . , si−1, t, si+1, . . . , sn) ∈ S. A pure Nash equilibrium is a
state s such that for all i, and for all pure strategies t ∈ Si, we have ci(s) ≤
ci(s−i, t). In general games do not necessarily have a pure Nash-equilibrium.

A specific class of games which always have a pure Nash equilibrium are
congestion games, where the cost functions are determined by the shared use



of resources. More precisely, an n-player congestion game is a 4-tuple G =
(n,E, (de)e∈E , (Si)i∈[n]), where E is a finite set of edges (the common resources),
de : [n]→ Z is a delay function, for every e ∈ E, and Si ⊆ 2E is the set of pure
strategies of player i, for i ∈ [n]. Given a state s = (s1, . . . , si, . . . , sn), let the
congestion of e in s be fe(s) = |{i ∈ [n] : e ∈ si}|. The cost function of user i
is defined then as ci(s) =

∑
e∈si de(fe(s)). Intuitively, each player uses some set

of resources, and the cost of each resource e depends on the number of players
using it, as described by the delay function. To simplify the notation, we will
specify a symmetric congestion game by a 4-tuple G = (n,E, (de)e∈E , Z), where
by definition the set of pure strategies of every player is Z ⊆ 2E . We will refer
to Z as the set of available strategies.

A delay function de is increasing if de(t) ≤ de(t+ 1), for all t ∈ [n−1], and it
is decreasing if −de is increasing. We say that de is monotone if it is increasing or
decreasing. A congestion game is increasing (respectively decreasing, monotone)
if all delay functions are increasing (respectively decreasing, monotone).

That congestion games have indeed a Nash equilibrium can be easily shown
by a potential function argument, due to Rosenthal [19], as follows. Let us de-

fine the potential function φ on the set of states as φ(s) =
∑
e∈E

∑fe(s)
t=1 de(t). If

s = (s1, . . . , si, . . . , sn) and s′ = (s−i, s
′
i) are two states differing only for player

i then φ(s) − φ(s′) = ci(s) − ci(s
′) since both of these quantities are in fact

equal to
∑
e∈si\s′i

de(fe(s))−
∑
e∈s′i\si

de(fe(s
′)). Therefore, in any state which

is not a pure Nash equilibrium, there is always a player that can change uni-
laterally his strategy so that the induced new state has a smaller potential. In
fact the decrease in the cost function and in the potential are identical. This
means that a finite sequence of such individual changes, the so-called Nash dy-
namics, necessarily results in a pure Nash equilibrium since the integer valued
potential function can not decrease forever. Therefore congestion games can be
casted as local search problems, and the computing of a Nash equilibrium can
be interpreted as the search of a local optimum.

Local search problems. A local search problem is defined by a 4-tuple Π =
(I, F, (vI)I∈I , (NI)I∈I), where I the set of instances, F maps every instance I ∈
I to a finite set of feasible solutions F (I), the objective function vI : F (I)→ Z
gives the value vI(S) of a feasible solution, and NI(S) ⊆ F (I) is the neighbor-
hood of S ∈ F (I). Given an instance I, the goal is to find a feasible solution
S ∈ F (I) such that is also local minimum, that is for all S′ ∈ NI(S), it satisfies
vI(S) ≤ vI(S

′). A local search problem is in the class PLS [13, 18] if there ex-
ist polynomial algorithms in the instance length to compute: an initial solution
S0; the membership in F (I); the objective value vI(S); and a feasible solution
S′ ∈ NI(S) such that vI(S

′) < vI(S) whenever S is not a local minimum. Com-
puting a Nash equilibrium of congestion games is then indeed in PLS: Given an
instance G, the feasible solutions F (G) are the states S, the value vG(s) of a
state s is its potential φ(s), and the neighborhood NG(s) consists of those states
which differ in one coordinate from s.

The notion of PLS-reducibility was introduced in [13]. A problem Π =
(I, F, (vI)I∈I , (NI)I∈I) is PLS-reducible to Π ′ = (I ′, F ′, (v′I)I∈I′ , (N ′I)I∈I′) if



there exist polynomial time computable functions f : I → I ′ and gI : F (f(I))→
F (I), for I ∈ I, such that if S′ is a local optimum of f(I) then gI(S

′) is local op-
timum of I. Complete problems in PLS are not believed to be solvable by efficient
procedures. Therefore, it is highly unlikely that there exists at all a polynomial
time algorithm for computing a pure equilibrium in congestion games. Indeed,
Fabrikant, Papadimitriou and Talwar [10] have shown that this problem is PLS-
complete, even for symmetric games.

Approximate Nash equilibrium. Several relaxations of the notion of equilibrium
have been considered in the form of approximations. Let 0 < ε < 1. In our
context ε will be a constant or some polynomial time computable function in
the input length. A ε-approximate Nash equilibrium is a state s such that for all
i ∈ [n], and for all strategies t ∈ Si, we have

ci(s)− ci(s−i, t) ≤ ε|ci(s)|.
Otherwise, we say that that (s−i, t) is an ε-move for player i if

ci(s)− ci(s−i, t) > ε|ci(s)|.
Clearly s is an ε-approximate Nash equilibrium if no player has an ε-move.

The ε-Nash dynamics is defined as a sequence of ε-moves, where a player with
the largest absolute gain makes the change in his strategy, when several players
with ε-move are available. Analogously to the exact case, the ε-Nash dynamics
converges to an ε-approximate Nash equilibrium. computing an ε-approximate
Nash equilibrium is also a problem in PLS. When casting this as a local search,
the only difference with the exact equilibrium case is that the neighborhoods are
restricted to states which are reachable by an ε-move.

Related results. In [6] Chien and Sinclair have considered the rate of convergence
of the ε-Nash dynamics in symmetric congestion games with three additional
restrictions on the delay functions. We say that a delay function de is positive if
the delays de(t) are non-negative integers for all 1 ≤ t ≤ n. A congestion game is
positive if all delay functions are positive. Let α ≥ 1. A positive and increasing
delay function is with α-bounded jump if the delays satisfy de(t + 1) ≤ αde(t),
for all t ≥ 1. We can think of α as being a constant, or a polynomial time
computable function in the input length of the game. Obviously, a positive delay
function with α-bounded jump can never take the value 0. A positive game is
with α-bounded jump if all delay functions are with α-bounded jump. Chien and
Sinclair have shown that in symmetric, positive, increasing games with bounded
jump the ε-Nash dynamics converges in polynomial time.

Theorem 1 (Chien and Sinclair [6]). For every α ≥ 1 and 0 < ε < 1, in n-
player symmetric, positive and increasing congestion games with α-bounded jump
the ε-Nash dynamics converges from any initial state in O(nαε−1 log(nmD))
steps, where m = |E|, and D = max{de(n) : e ∈ E} is an upper bound on the
delay functions.

The hope that the ε-Nash dynamics converges fast in generic congestion games
was crushed by Skopalik and Vöcking [20], even for positive increasing games.



Theorem 2 (Skopalik and Vöcking [20]). For every polynomial time com-
putable 0 < ε < 1, computing an ε-approximate Nash equilibrium in a positive
and increasing congestion game is PLS-complete.

Motivations. In this paper we mainly study the complexity of computing an
ε-approximate Nash equilibrium in congestion games where the delay functions
can also have negative values. Negative delays are motivated by real scenarios
worth of investigations. Profit maximizing games are defined exactly as conges-
tion games, except that each player tries to maximize its cost. These games are
easily seen to be equivalent to congestion games when the delay functions are
multiplied by a -1 factor. Market sharing games [3, 12], also studied in the con-
text of content distribution in service networks, are specific profit maximizing
games, where the delay functions are positive and decreasing as the value of a
resource is shared. They are equivalent to congestion games with negative and
increasing delay functions. Market social games, introduced in section 3.2, gen-
eralize market sharing games where the value of some resources, such as Web
pages, may increase with the number of players who selected them, whereas some
other resources are shared as in market sharing games. They are equivalent to
congestion games with negative increasing and decreasing delay functions, that
is negative monotone delay functions.

3 Negative games

We start now the study of computing ε-approximate Nash equilibria in conges-
tion games where the delay functions can take negative values. In this section
we impose the restriction that the delay functions have only negative values.
We further suppose that the games are symmetric, monotone and α-bounded.
We show in a result analogous to Theorem 1 that for any polynomial time com-
putable α and ε, the ε-Nash dynamics converges in polynomial time. We then
point out that this result applies to symmetric market sharing and social games.

We say that a delay function de is negative if the delays de(t) are negative
integers for all 1 ≤ t ≤ n. A congestion game is negative if all delay functions
are negative. Let α ≥ 1. A negative and increasing delay function is with α-
bounded jump if the delays satisfy de(t+ 1) ≤ de(t)/α, for all t ≥ 1. A negative
and decreasing delay function de is with α-bounded jump if −de is with α-
bounded jump. A negative and monotone game is with α-bounded jump if all
delay functions are with α-bounded jump.

We show our positive result first for increasing games, then we generalize it
to monotone games.

3.1 Increasing delay functions

Theorem 3. For every α ≥ 1 and every ε > 0, in an n-player symmetric,
negative, increasing congestion game with α-bounded jump the ε-Nash dynamics
converges from any initial state in O((αn2 + nm)ε−1 log(nmD)) steps where



m = |E|, and D = max{−de(1) : e ∈ E} is an upper bound on magnitude of the
delay functions.

Proof. We will suppose without loss of generality that every edge appears in
some strategy, since otherwise the edge can be discarded from E. We first
define a positive potential function which will be appropriate to measure the
progress of the ε-Nash dynamics. Let ψ be defined over the states as ψ(s) =
−
∑
e∈E

∑n
t=fe(s)+1 de(t). The function ψ is clearly positive, and we claim that

it is a potential function, that is ψ(s)− ψ(s′) = ci(s)− ci(s′) if the states s and
s′ differ only in their ith coordinate. This follows immediately from the fact that

for every state s, we have ψ(s) = φ(s)−k, where φ(s) =
∑
e∈E

∑fe(s)
t=1 de(t) is the

Rosenthal potential function, and k is the constant
∑
e∈E

∑n
t=1 de(t). Observe

that ψ(s) is bounded from above by nmD, for every state s.
For an arbitrary initial state s(0), let s(k) be the kth state of the ε-Nash

dynamics process. We claim that ψ(s(k+1)) ≤ ψ(s(k))(1 − ε/4(αn2 + nm)), for
every k, which clearly implies the theorem. Suppose that s(k) = s = (s1, . . . , sn)
is not an ε-equilibrium, and let i be the player which can make the largest gain
ε-move. To prove our claim, we will show that there exists a strategy s′i for
player i such that ci(s)− ci(s−i, s′i) ≥ εψ(s)/4(αn2 + nm), and we observe that
an ε-move can only be better for player i than playing strategy s′i.

The first idea is to try to prove, analogously to the case of positive games, that
for some player j, the opposite of its cost −cj(s) is a polynomial fraction of ψ(s).
Unfortunately this is not necessarily true. The sum

∑n
j=1 cj(s) is not necessarily

a polynomial fraction of ψ(s) because edges whose congestion is 0 in s do not
contribute to the former, but do contribute the latter. Therefore we introduce
the function ψ′ as ψ restricted to the edges with nontrivial congestion, that is by
definition ψ′(s) = −

∑
e∈E|fe(s) 6=0

∑n
t=fe(s)+1 de(t). The following Lemma shows

that some of the −cj(s) is at least a polynomial fraction of ψ′(s).

Lemma 1. There exists a player j such that −cj(s) ≥ ψ′(s)/n2.

Proof. We claim that −n
∑n
j=1 cj(s) ≥ ψ′(s), from which the statement clearly

follows. To prove the claim we proceed by the following series of (in)equalities:

−n
n∑
j=1

cj(s) = −n
∑

e∈E|fe(s)6=0

fe(s) de(fe(s)) ≥ −n
∑

e∈E|fe(s) 6=0

de(fe(s))

≥ −
∑

e∈E|fe(s)6=0

n∑
t=fe(s)+1

de(t) = ψ′(s),

where the second inequality holds because the delay functions are non-decreasing.
ut

We fix a value j which satisfies Lemma 1 for the rest of the proof. To upper
bound ψ(s), we also have to consider the edges of congestion 0, besides the
edges which are accounted for in ψ′(s). We have

ψ′(s)− n
∑

E∈E|fe(s)=0

de(1) ≥ ψ(s),



again because the delays are non-decreasing. This implies that either ψ′(s) ≥
ψ(s)/2 or −n

∑
e∈E|fe(s)=0 de(1) ≥ ψ(s)/2, and the proof proceeds by distin-

guishing these two cases.
Case 1: ψ′(s) ≥ ψ(s)/2. We then reason in two sub-cases by comparing the

value of ci(s) to ψ′(s)/2αn2. If −ci(s) ≥ ψ′(s)/2αn2, then let s′i be the strategy
which makes the biggest gain for player i. Then we have

ci(s)− ci(s−i, s′i)) ≥ −εci(s) ≥ εψ(s)/4αn2,
where first inequality holds since the move of player i is an ε-move, and the
second inequality is true because of the hypotheses. If −ci(s) < ψ′(s)/2αn2,
then let s′i = sj , the strategy of player j in state s. Observe that sj is an
available strategy for player i since the game is symmetric. Then
ci(s)− ci(s−i, s′i)) ≥ ci(s)− cj(s)/α ≥ ψ′(s)/αn2 − ψ′(s)/2αn2 ≥ ψ(s)/4αn2.

Here the first inequality is true because the game is with α-bounded jump. The
second inequality follows from the hypothesis and because −cj(s) ≥ ψ′(s)/n2.
Finally, the third inequality holds because ψ′(s) ≥ ψ(s)/2.

Case 2: −n
∑
e∈E|fe(s)=0 de(1) ≥ ψ(s)/2. Then for some edge with fe(s) = 0,

we have −de(1) ≥ ψ(s)/2nm. Let’s fix such an edge e. We distinguish two sub-
cases now by comparing the value of ci(s) to de(1)/2. If ci(s) ≤ de(1)/2 then let
s′i be the strategy which makes the biggest gain for player i. Then, similarly to
the first sub-case of Case 1, using the hypotheses and that player i’s move is an
ε-move, we have

ci(s)− ci(s−i, s′i)) ≥ −εci(s) ≥ εψ(s)/4nm.
If ci(s) > de(1)/2 then let s′i be some strategy that contains the edge e. There ex-
ists such a strategy since useless edges were discarded from E. Then fe(s−i, s

′
i)) =

1 since fe(s) = 0 and s and (s−i, s
′
i) differ only for the ith player. This, in turn,

implies that ci(s−i, s
′
i)) ≤ de(1), since the delays are negative. Therefore

ci(s)− ci(s−i, s′i)) ≥ ci(s)− de(1) ≥ −de(1)/2 ≥ ψ(s)/4nm,
where the last two inequalities follow from the hypotheses. ut

Market sharing games. In market sharing games [3, 12] n players sell their
goods on subsets of m markets E = {e1, . . . , em}, and they try to maximize their
gains. Each market e has a value v(e) > 0. If t sellers choose a market e, they
share its value and each earn v(e)/t. The gain of player i on a strategy profile
s = (s1, ..., sn), with si ⊆ E, is

∑
e∈si v(e)/fe(s), where fe(s) is the number

of sellers on the market e. A symmetric market sharing game with markets
strategies Z ⊆ 2E is a congestion game (n,E, (de)e∈E , Z) with delay functions
de(t) = −v(e)/t, which are increasing, negative and with 2-bounded jump.

Corollary 1. In symmetric market sharing games the ε-Nash dynamics con-
verges in polynomial time.

3.2 Monotone delay functions

We extend Theorem 3 to monotone congestion games where the resources can
be partitioned into two sets: E↑ with increasing delay functions and E↓ with



decreasing delay functions. Notice that if E↑ is empty, then the task of find-
ing a Nash equilibrium becomes trivial. Indeed, if the strategy s∗ minimizes∑
e∈s de(n) over all available strategies, then the state where all players select

s∗ is an equilibrium.

Theorem 4. For every α ≥ 1 and every ε > 0, in an n-player symmetric,
negative, monotone congestion game with α-bounded jump the ε-Nash dynamics
converges from any initial state in O((αn2 + nm)ε−1 log(nmD)) steps where
m = |E|, and D = max{−de(t) : e ∈ E, t ∈ [n]} is an upper bound on the
magnitude of the delay functions.

The proof is similar to the proof of theorem 3 using the potential function

ψ(s) = −
∑
e∈E↑

∑n
t=fe(s)+1 de(t) +

∑
e∈E↓

∑fe(s)
t=1 de(t).

Market social games. Let us call a symmetric market social game a congestion
game (n,E, (de)e∈E , Z) where the market E is partitioned into E↑, E↓. Each
market e ∈ E has a value v(e) > 0. The delay functions are defined as de(t) =
−v(e)/t when e ∈ E↑, and de(t) = −t.v(e) when e ∈ E↓. The delays are clearly
negative increasing on E↑ and negative decreasing on E↓. They are also with
2-bounded jump. We interpret fe(s) as the number of sellers on the market e.
These games generalize the market sharing games as some resources are shared
between the players, whereas some other resources have a value which increases
with the number of players.

Corollary 2. In symmetric market social games the ε-Nash dynamics converges
in polynomial time.

4 Games without sign restriction

In this section we deal with congestion games with no restriction on the sign
of the delay functions. Our overall result is that in that case computing an ε-
approximate Nash equilibrium is PLS-hard, even when the remaining restrictions
of Chien and Sinclair are kept, that is when the game is symmetric, increasing
and with α-bounded jump, for α ≥ 1. Observe that the smaller α the stronger
is the hardness result, therefore we deal only with constant α. Our first step
is to observe that a simple consequence of Theorem 2 is that computing an
ε-approximate Nash equilibrium in positive and increasing games remains PLS-
complete even if we additionally suppose that the game is symmetric. Our reduc-
tions will use the hardness of this latter problem. The proof of this statement is
a PLS-reduction of the search of an ε-approximate Nash equilibrium in positive
and increasing games to the same problem in symmetric, positive, increasing
games. This reduction is basically identical to the analogous reduction for pure
Nash equilibria, due to Fabrikant, Papdimitriou and Talwar [10].

Theorem 5. For every polynomial time computable 0 < ε < 1, computing an
ε-approximate Nash equilibrium in a symmetric, positive, increasing congestion
game is PLS-complete.



We need to discuss now the right notion of α-bounded jump when the jump
occurs from a negative to a positive value in the delay function. One possibility
could be to require de(t + 1) ≤ −αde(t) when de(t) < 0 and de(t + 1) ≥ 0, but
there are also other plausible definitions. In fact, we will avoid to give a general
definition because it turns out that this is not necessary for our hardness results.
Indeed, we will be able to establish a hardness result for congestion games where
there is no jump at all around 0, that is for delay functions of constant sign (still
some of the delay functions can be negative while some others positive). We say
that a congestion game is non-alternating, if every delay function is positive or
negative. Let α > 1 be a constant. A non-alternating congestion game is with
α-bounded jump if all delay functions are with α-bounded jump.

What happens when α = 1? If the delays are constant functions, a pure
Nash equilibrium can be determined trivially. Indeed, the cost functions of the
individual players are independent from the strategies of the other players, and
therefore any choice of a least expensive strategy, for each player, forms a Nash
equilibrium.

Nonetheless, if we authorize a jump around 0, then even if the jump changes
only the sign without changing the absolute value (which corresponds intuitively
to the case α = 1 in that situation), the game becomes already hard. We say
that a delay function de is a flip function, if there exists a positive integer c such
that for some 1 ≤ k ≤ n, the function satisfies:

de(t) =

{
−c if t < k,
c if t ≥ k.

Flip functions are either constant positive functions, or they are simple step
functions, which are constant negative up to some point, where an alternation
occurs which keeps the absolute value. After the alternation the function remains
constant positive. A congestion game is a flip game if all delay functions are flip
functions. The next two theorems state our hardness results respectively for
non-alternating games with α-bounded jump and for flip games.

Theorem 6. For every constant α > 1, and for every polynomial time com-
putable 0 < ε < 1, computing an ε-approximate Nash equilibrium in n-player
symmetric, non-alternating, increasing congestion games with α-bounded jump
is PLS-hard.

Proof. As stated in Theorem 5 computing an ε-approximate Nash equilibrium
in a symmetric, positive, increasing congestion game is PLS-complete [20]. We
present a PLS-reduction from this problem to the problem of computing an ε-
approximate Nash equilibrium in a symmetric, non-alternating, positive game
with α-bounded jump.

Let G = (n,E, (de)e∈E , Z) a symmetric, positive, increasing congestion game,
and let α > 1 be a constant. In our reduction we map G to the symmetric
game G′ = (n,E′, (de′)e′∈E′ , Z

′) that we define now. For each e ∈ E, we set
Ee = {e1, e+2 , e

−
2 , . . . , e

+
n , e
−
n }, and for every z ⊆ E, we define z′ =

⋃
e∈z Ee (and

therefore E′ =
⋃
e∈E Ee). The set of available strategies is defined as Z ′ = {z′ :



z ∈ Z}. Finally the delay functions are defined as follows. The delay de1 is simply
the constant function de(1). For k ≥ 2, we set

de+k
(t) =

{
(de(k)− de(k − 1)) α

α2−1 if t < k,

(de(k)− de(k − 1)) α2

α2−1 if t ≥ k,

and

de−k
(t) =

{
−(de(k)− de(k − 1)) α

α2−1 if t < k,

−(de(k)− de(k − 1)) 1
α2−1 if t ≥ k.

The game G′ is clearly non-alternating, increasing and with α-bounded jump.
Observe that there is a bijection between the states of G and G′. Indeed, the

states of G′ are of the form s′ = (s′1, . . . , s
′
n), where s = (s1, . . . , sn) ∈ Zn is a

state of G. For the reduction we will simply show that if s′ is an ε-approximate
Nash equilibrium in G′ then s is an ε-approximate Nash equilibrium in G (our
construction satisfies also the reverse implication). In fact, we show a stronger
statement about cost functions: for every state s, and for every player i, the cost
of player i for s in G is the same as the cost of player i for s′ in G′.

The edges e+k and e−k are such that the sum of their delay functions emu-
lates the jump de(k) − de(k − 1) when t ≥ k. Therefore the sum of the delays
corresponding to edges in Ee is just de which is expressed in the following lemma.

Lemma 2. For every edge e ∈ E, and 1 ≤ t ≤ n,
∑
e′∈Ee

de′(t) = de(t).

We now claim the following strong relationship between the cost functions
in the two games.

Lemma 3. For all state s = (s1, . . . , sn) in G, and for every player i, we have
ci(s

′) = ci(s), where s′ = (s′1, . . . , s
′
n).

By Lemma 3 we can deduce an ε-approximate Nash equilibrium for G, given an
ε-approximate Nash equilibrium for G′. This concludes the proof. ut

Theorem 7. For every polynomial time computable 0 < ε < 1, computing an
ε-approximate Nash equilibrium in n-player symmetric, flip congestion games is
PLS-hard.

Proof. The proof is very similar to the proof of the previous theorem. In the
reduction the delay functions, for 2 ≤ k ≤ n, are defined as

de+k
(t) = (de(k)− de(k − 1))/2 for every t,

and

de−k
(t) =

{
−(de(k)− de(k − 1))/2 if t < k,
(de(k)− de(k − 1))/2 if t ≥ k.

ut
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