
QUANTUM ALGORITHMS FOR THE TRIANGLE PROBLEM∗

FRÉDÉRIC MAGNIEZ† , MIKLOS SANTHA∗ , AND MARIO SZEGEDY‡

Abstract. We present two new quantum algorithms that either find a triangle (a copy of K3) in
an undirected graph G on n nodes, or reject if G is triangle free. The first algorithm uses combinatorial
ideas with Grover Search and makes Õ(n10/7) queries. The second algorithm uses Õ(n13/10) queries,
and it is based on a design concept of Ambainis [6] that incorporates the benefits of quantum walks
into Grover search [18]. The first algorithm uses only O(log n) qubits in its quantum subroutines,
whereas the second one uses O(n) qubits. The Triangle Problem was first treated in [12], where an
algorithm with O(n +

√
nm) query complexity was presented, where m is the number of edges of G.

1. Introduction. Quantum computing is an extremely active research area (for
introductions see e.g. [22, 20]) where a growing trend is the study of quantum query
complexity. The quantum query model was implicitly introduced by Deutsch, Jozsa,
Simon and Grover [15, 16, 25, 18], and explicitly by Beals, Buhrman, Cleve, Mosca
and de Wolf [9]. In this model, like in its classical counterpart, we pay for accessing the
oracle (the black box), but unlike in the classical case, the machine can use the power
of quantum parallelism to make queries in superpositions. While no significant lower
bounds are known in quantum time complexity, the black box constraint sometimes
enables us to prove such bounds in the query model.

For promise problems quantum query complexity indeed can be exponentially
smaller than the randomized one, a prominent example for that is the Hidden Sub-
group Problem [25, 17]. On the other hand, Beals, Buhrman, Cleve, Mosca and de
Wolf [9] showed that for total functions the deterministic and the quantum query com-
plexities are polynomially related. In this context, a large axis of research pioneered
by Grover [18] was developed around search problems in unstructured, structured, or
partially structured databases.

The classical query complexity of graph properties has made its fame through the
notoriously hard evasiveness conjecture of Aanderaa and Rosenberg [24] which states
that every non-trivial and monotone boolean function on graphs whose value remains
invariant under the permutation of the nodes has deterministic query complexity
exactly

(
n
2

)
, where n is the number of nodes of the input graph. Though this conjecture

is still open, an Ω(n2) lower bound has been established by Rivest and Vuillemin [23].
In randomized bounded error complexity the general lower bounds are far from the
conjectured Ω(n2). The first non-linear lower bound was shown by Yao [30]. For
a long time Peter Hajnal’s Ω(n4/3) bound [19] was the best, until it was slightly
improved in [13] to Ω(n4/3 log1/3 n). The question of the quantum query complexity
of graph properties was first raised in [11] where it is shown that in the exact case an
Ω(n2) lower bound still holds. In the bounded error quantum query model, the Ω(n2)
lower bound does not hold anymore in general. An Ω(n2/3 log1/6 n) lower bound, first
observed by Yao [31], can be obtained combining Ambainis’ technique [4] with the

∗A preliminary version of this paper appeared in Proceedings of 16th ACM-SIAM Symposium on
Discrete Algorithms, pp. 1109–1117, 2005.

† CNRS–LRI, UMR 8623 Université Paris–Sud, 91405 Orsay, France, emails: {magniez,
santha}@lri.fr; partially supported by the EU 5th and 6th framework programs RESQ IST-2001-
37559, RAND-APX IST-1999-14036 and QAP IST, and by ACI Cryptologie CR/02 02 0040 and ACI
Sécurité Informatique 03 511 grants of the French Research Ministry.

‡ Rutgers University, email: szegedy@cs.rutgers.edu; supported by NSF grant 0105692 and the
EU 5th framework program RESQ IST-2001-37559. The research was done while the author was
visiting LRI.

1

above randomized lower bound.
We address the Triangle Problem in this setting. In a graph G, a complete

subgraph on three vertices is called a triangle. In this write-up we study the following
oracle problem:

Triangle
Oracle Input: The adjacency matrix f of a graph G on n nodes.
Output: a triangle if there is any, otherwise reject.

Triangle has been studied in various contexts, partly because of its relation to matrix
multiplication [3]. Its quantum query complexity was first raised in [12], where the
authors show that in the case of sparse graphs the trivial (that is, using Grover Search)
O(n3/2) upper bound can be improved. Their method breaks down when the graph
has Θ(n2) edges.

The quantum query complexity of Triangle as well as of many of its kins with
small one-sided certificate size are notoriously hard to analyze, because one of the main
lower bounding methods breaks down near the square root of the instance size [27,
21, 32, 26]: If the 1-certificate size of a boolean function on N boolean variables is K,
then even the most general variants [8, Theorem 4][5][21] of the Ambainis’ quantum
adversary technique [4] can prove only a lower bound of Ω(

√
NK). Indeed only the

Ω(n) lower bound is known for Triangle, which, because of the remark above, cannot
be improved using any quantum adversary technique (N = n2 and K = 3). Problems
with small certificate complexity include various collision type problems such as the
2-1 Collision Problem and the Element Distinctness Problem. The first polynomial
lower bound for the 2-1 Collision Problem was shown by Aaronson and Shi [1] using
the polynomial method of Beals, Buhrman, Cleve, Mosca and de Wolf [9]. For the
Element Distinctness Problem, a randomized reduction from the 2-1 Collision Problem
gives Ω(n2/3).

In this paper we present two different approaches that give rise to new upper
bounds. First, using combinatorial ideas, we design an algorithm for Triangle
(Theorem 3.5) whose quantum query complexity is Õ(n10/7). Surprisingly, its quan-
tum parts only consist in Grover Search subroutines. Indeed, Grover Search coupled
with the Szemerédi Lemma [28] already gives a o(n3/2) bound. We exploit this fact
using a simpler observation that leads to the Õ(n10/7) bound. Moreover our algo-
rithm uses only small quantum memory, namely O(log n) qubits (and O(n2) classical
bits). Then, we generalize the new elegant method used by Ambainis [6] for solving
the Element Distinctness Problem in O(n2/3), to solve a general Collision Problem
by a dynamic quantum query algorithm (Theorem 4.1). The solution of the general
Collision Problem will be used in our second algorithm for Triangle. As an interme-
diate step, we introduce the Graph Collision Problem, which is a variant of the Col-
lision Problem, and solve it in Õ(n2/3) query complexity (Theorem 4.4). Whereas
a reduction of Triangle to the Element Distinctness Problem does not give a bet-
ter algorithm than O(n3/2), using a recursion of our dynamic version of Ambainis’
method we prove the Õ(n13/10) query complexity for Triangle (Theorem 4.5). We
end by generalizing this result for finding the copy of any given graph (Theorem 4.6)
and then for every graph property with small 1-certificates (Corollary 4.7).

2. Preliminaries.

2.1. Query Model. In the query model of computation each query adds one to
the complexity of an algorithm, but all other computations are free. The state of the
computation is represented by three registers, the query register x, the answer register
a, and the work register z. The computation takes place in the vector space spanned

2

by all basis states |x, a, z〉. In the quantum query model the state of the computation
is a complex combination of all basis states which has unit length in the norm l2.

The query operation Of maps the basis state |x, a, z〉 into the state |x, a⊕ f(x), z〉
(where ⊕ is bitwise XOR). Non-query operations are independent of f . A k-query
algorithm is a sequence of (k + 1) operations (U0, U1, . . . , Uk) where Ui is unitary.
Initially the state of the computation is set to some fixed value |0, 0, 0〉, and then the
sequence of operations U0, Of , U1, Of , . . . , Uk−1, Of , Uk is applied.

2.2. Notations. We denote the set {1, 2, . . . , n} by [n]. A simple undirected
graph is a set of edges G ⊆ {(a, b) | a, b ∈ [n]; a 6= b} with the understanding that
(a, b) def= (b, a). Let t(G) denote the number of triangles in G. The complete graph
on a set ν ⊆ [n] is denoted by ν2. The neighborhood of a v ∈ [n] in G is denoted by
νG(v), and it is defined by νG(v) = {b | (v, b) ∈ G}. We denote |νG(v)| by degG v.
For sets A,B ⊆ [n] let G(A,B) = {(a, b) | a ∈ A; b ∈ B; (a, b) ∈ G}.

The following function will play a major role in our proof. We denote the number
of paths of length two from a ∈ [n] to b ∈ [n] in G with t(G, a, b): t(G, a, b) = |{x |
(a, x) ∈ G; (b, x) ∈ G}|. For a graph G ⊆ [n]2 and an integer k ≥ 0, we define
G〈k〉 = {(a, b) ∈ [n]2 | t(G, a, b) ≤ k}.

2.3. Quantum Subroutines. We will use a safe version of Grover Search [18],
namely Safe Grover Search(t), based on a t iterations of Grover Search, and followed
by a checking process for markedness of of output instances.

Fact 2.1. Let c > 0. Safe Grover Search(Θ(c log N)) on a database of N
items has quantum query complexity O(c

√
N log N) and it always rejects if there is

no marked item, otherwise it finds a marked item with probability at least 1− 1
Nc .

For quantum walks on graphs we usually define two operators: coin flip and shift.
The state of the walk is held in a pair of registers, the node and the coin. The coin flip
operator acts only on the coin register and it is the identity on the node register. The
shift operation only changes the node register, but it is controlled by the content of
the coin register (see [29, 2, 7]). Often the coin flip is actually the Diffusion operator.

Definition 2.2 (Diffusion over T). Let T be a finite set. The diffusion operator
over T is the unitary operator on the Hilbert space CT that acts on a basis element
|x〉, x ∈ T as: |x〉 7→ −|x〉+ 2

|T |
∑

y∈T |y〉.
In [6] a new walk is described that plays a central role in our result. Let S be a

finite set of size n. The node register holds a subset A of S of size either r or r +1 for
some fixed 0 < r < n, and the coin register holds an element x ∈ S. Thus the basis
states are of the form |A〉|x〉, where we also require that if |A| = r then x 6∈ A, and if
|A| = r + 1 then x ∈ A. We also call the node register the set register.

Quantum Walk

1. Diffuse the coin register over S −A
2. Add x to A
3. Diffuse the coin register over A
4. Remove x from A

Ambainis [6] showed that, inside some specific stable subspaces, Θ(
√

r) iterations
of Quantum Walk can play the role of the diffusion over {(A, x) : A ⊂ S, |A| =
r, x 6∈ S}. This nice result leads to a more efficient Grover search for some problems
like the Element Distinctness Problem [6]. We will describe this in a general setting
in Section 4.1.

3. Combinatorial Approach.
3

3.1. Preparation. The algorithm presented here is based on three combinato-
rial observations. Throughout this section we do not try to optimize log n factors and
we will hide time in the Õ notation. The first observation is based on the Amplitude
Amplification technique of Brassard, Høyer, Mosca, and Tapp [10]

Lemma 3.1. For any known graph E ⊆ [n]2, a triangle with at least one edge in
E can be detected with Õ(

√
E +

√
n|G ∩ E|) queries and probability 1− 1

n .
Perhaps the most crucial observation to the algorithm is the following simple one.
Lemma 3.2. For every v ∈ [n], using Õ(n) queries, we either find a triangle in

G or verify that G ⊆ [n]2 \ νG(v)2 with probability 1− 1
n3 .

Proof. We query all edges incident to v classically using n − 1 queries. This
determines νG(v). With Safe Grover Search we find an edge of G in νG(v)2, if
there is any.

This lemma with the observation that hard instances have to be dense, already
enable us to show that the quantum query complexity of Triangle is o(n3/2), using
the Szemerédi Lemma [28]. However another fairly simple observation can help us to
decrease the exponent.

Lemma 3.3. Let 0 < ε < 1, k = d4nε log ne, and let v1, v2, . . . , vk ran-
domly chosen from [n] (with no repetitions). Let G′ = [n]2 \ ∪k

i=1νG(v)2. Then
Prv1,v2,...,vk

(
G′ ⊆ G〈n1−ε〉

)
> 1− 1

n .

Let us first remind the reader about the following lemma that is useful in many
applications.

Lemma 3.4. Let X be a fixed subset of [n] of size pn and Y be a random subset
of [n] of size qn, where p + q < 1. Then the probability that X ∩ Y is empty is
(1− pq)n(1±O(p3+q3+1/n)).

Proof. The probability we are looking for is estimated using the Stirling formula
as (

n(1−p)
nq

)(
n
nq

) =
[n(1− p)]![nq]![n(1− q)]!

[nq]![n(1− p− q)]!n!

=
√

(1−p)(1−q)
1−p−q

[
(1−p)1−p(1−q)1−q

(1−p−q)1−p−q

]n

(1±o(1))

= (1− pq)n(1±O(p3+q3+1/n)).

Proof of Lemma 3.3. Consider now a fixed edge (a, b) such that t(G, a, b) ≥ n1−ε.
The probability that (a, b) ∈ G′ is the same as the probability that the set X =
{x ∈ [n] : (x, a) ∈ G and (x, b) ∈ G} is disjoint from the random set {v1, v2, . . . , vk}.
Notice that |X| = t(G, a, b). By Lemma 3.4 we can estimate now this probability as,
for sufficiently large n,(

1− 4nε log n

n
× n1−ε

n

)n(1+o(1))

=
(

1− 4 log n

n

)n(1+o(1))

< e−3 log n = n−3.

Then the lemma follows from the union bound, since the number of possible edges
(a, b) is at most n2.

3.2. Algorithm and Analysis. We now describe our algorithm where every
searches are done using Safe Grover Search. We delay details of Step 6 for a while.

4

Combinatorial Algorithm(ε, δ, ε′)
1. Let k = d4nε log ne
2. Randomly choose v1, . . . , vk from [n] (with no repetition)
3. Compute every νG(vi)
4. If G ∩ νG(vi)2 6= ∅, for some i, then output the triangle induced by vi

5. Let G′ = [n]2 \ ∪i(νG(vi)2)
6. Classify the edges of G′ into T and E such that

– T contains only O(n3−ε′) triangles
– E ∩G has size O(n2−δ + n2−ε+δ+ε′)

7. Search for a triangle in G among all triangles inside T
8. Search for a triangle of G intersecting with E
9. Output a triangle if it is found, otherwise reject

Theorem 3.5. Combinatorial Algorithm(ε, δ, ε′) rejects with probability one
if there is no triangle in G, otherwise returns a triangle of G with probability 1−O(1

n).

Moreover it has query complexity Õ
(
n1+ε + n1+δ+ε′ +

√
n3−ε′ +

√
n3−min(δ,ε−δ−ε′)

)
.

With ε = 3
7 , ε′ = δ = 1

7 this gives Õ(n1+ 3
7) for the total number of queries.

We require every probabilistic step to be correctly performed with probability
1 − O(1

n3). So that the overall probability of a correct execution is 1 − O(1
n), using

the union bound and since the number of such steps is at most O(n2). Thus we
will always assume that an execution is correct. Since an incorrect execution might
increase the query complexity of the algorithm, we also assume there is a counter so
that the algorithm rejects and stops when a threshold is exceeded. This threshold is
defined as the maximum of query complexities over all correct executions.

The main step of Combinatorial Algorithm is Step 6 that we implement in
the following way.

Classification(G′, δ, ε′)
1. Set T = ∅, E = ∅
2. While G′ 6= ∅ do

(a) While there is an edge (v, w) ∈ G′ s.t. t(G′, v, w) < n1−ε′

Add (v, w) to T , and delete it from G′

(b) Pick a vertex v of G′ with non-zero degree and decide
1. low degree hypothesis: |νG(v)| ≤ 10× n1−δ

2. high degree hypothesis: |νG(v)| ≥ 1
10 × n1−δ

(c) If Hypothesis 1, add all edges (v, w) of G′ to E, and delete them
from G′

(d) If Hypothesis 2, then
i. Compute νG(v)
ii. If G∩ νG(v)2 6= ∅, output the triangle induced by v and stop
iii. Add all edges in G′(νG(v), νG′(v)) to E, and delete them from

G′

In Step 2b, we use an obvious sampling strategy:
Set a counter C to 0. Query dnδe random edge candidates from v×[n].
If there is an edge of G among them, add one to C. Repeat this
process K = c0 log n times, where c0 is a sufficiently large constant.
Accept the low degree hypothesis if by the end C < K/2, otherwise
accept the large degree hypothesis.

5

Observe than one could use here a quantum procedure based on Grover Search. Since
the cost of this step is negligible from others, this would not give any better bound.

Fact 3.6. When c0 is large enough in Step 2b:
1. The probability that degG(v) > 10 × n1−δ and the low degree hypothesis is

accepted is O(1
n3).

2. The probability that degG(v) < 1
10 × n1−δ and the high degree hypothesis is

accepted is O(1
n3).

Proof. Indeed, using Lemma 3.4, considering a single round of sampling the
probability that our sample set does not contain an edge from G even though
degG(v) > 10× n1−δ is, for sufficiently large n,(

1− 10n1−δ

n
× nδ

n

)n(1+o(1))

=
(

1− 10
n

)n(1+o(1))

< 0.1.

Similarly, the probability that our sample set contains an edge from G even though
degG(v) < 1

10 × n1−δ is

1−
(

1− n1−δ

10n
× nδ

n

)n(1+o(1))

= 1−
(

1− 1
10n

)n(1+o(1))

< 0.2.

Now for K = c0 log n rounds, where c0 is large enough, the Chernoff bound gives
the claim.

Lemma 3.7. If G ⊆ G′ ⊆ G〈n1−ε〉, then Classification(G′, ε′, δ) outputs the
desired partition (T,E) of G with probability 1 − O(1

n) and has query complexity
Õ(n1+δ+ε′).

Proof of Theorem 3.5. Clearly, if there is no triangle in the graph, the algorithm
rejects since the algorithm outputs a triplet only after checking that it is a triangle
in G. Therefore the correctness proof requires only to calculate the probability with
which the algorithm outputs a triangle if there is any, and the query complexity of
the algorithm.

Assume that the execution is without any error. Using union bound, we can
indeed upper bounded the probability of incorrect execution by O(1

n).
By Lemma 3.2, we already know that the construction of G′ requires Õ(nε × n)

queries. Moreover either G ⊆ G′ or a triangle is found, with probability 1 − O(1
n).

From Lemma 3.3, we also know that G′ ⊆ G〈n1−ε〉 with probability 1−O(1
n).

Assume that G′ lends all its edges to T and E, that is no triangle is found at the
end of Classification. Since G ⊆ G′, every triangle in G either has to be contained
totally in T or it has to have a non-empty intersection with E. Using Lemma 3.7,
we know that the partition (T,E) is correct with probability 1−O(1

n). Assume this
is the case. T is a graph that is known to us, and so we can find out if one of
these triangles belong to G with Õ(

√
n3−ε′) queries, using Safe Grover Search. By

Lemma 3.1, the complexity of finding a triangle in G that contains an edge from E is
Õ

(
n +

√
n3−min(δ,ε−δ−ε′)

)
.

From the analysis we conclude that the total number of queries is upper bounded
by:

Õ
(
n1+ε + n1+δ+ε′ +

√
n3−ε′ +

√
n3−min(δ,ε−δ−ε′)

)
.

6

In the rest of the section we prove Lemma 3.7 using a sequence of facts. Then the
proof derives directly. For the query complexity, we detail the analysis using Fact 3.8
stated below. Only Steps 2b and 2d have nonzero query complexity. As explained
before, Step 2b can be implemented with query complexity Õ(nδ) and it is iterated
at most n times. Step 2d has three sub-steps whose only two first ones have nonzero
query complexity. The first one has query complexity O(n) and the second one can
be implemented using Safe Grover Search with query complexity Õ(

√
n2) = Õ(n).

Using Fact 3.8, we upper bound the number of iterations of Step 2d by O(nδ+ε′),
which gives a total amount of queries in Õ(n1+δ+ε′).

Fact 3.8. During a correct execution, there is at most O(nδ+ε′) iterations of
Step 2d.

Proof. We will estimate the number of executions of Step 2d by lower bounding
|G′(A,A′)|, where A = νG(v) and A′ = νG′(v). For each x ∈ A we have t(G′, v, x) ≥
n1−ε′ , otherwise in Step 2a we would have classified (v, x) into T . A triangle (v, x, y)
contributing to t(G′, v, x) contributes with the edge (x, y) to G′(A,A′). Two different
triangles (v, x, y) and (v, x′, y′) can give the same edge in G′(A,A′) only if x = y′ and
y = x′. Thus:

|G′(A,A′)| ≥ 1
2

∑
x∈νG(v)

t(G′, v, x) ≥ |A|n1−ε′/2. (3.1)

Since we executed Step 2d only under the large degree hypothesis on v, if the
hypothesis is correct, the right hand side of Equation 3.1 is at least 1

10 × n1−δ ×
n1−ε′/2 = Ω(n2−δ−ε′). Since G′ has at most

(
n
2

)
edges, it can execute Step 2d at

most O(nδ+ε′) times.
Fact 3.9. During a correct execution, there is at most O(n) iterations of Step 2c.
Proof. We claim that each vertex is processed in Step 2c at most once. Indeed, if

a vertex v gets into Step 2c, its incident edges are all removed, and its degree in G′

becomes 0 making it ineligible for being processed in Step 2c again.
Now we state that T contains O(n3−ε′) triangles using this quite general fact.
Fact 3.10. Let H be a graph on [n]. Assume that a graph T is built by a process

that starts with an empty set, and at every step either discards some edges from H or
adds an edge (a, b) of H to T for which t(H, a, b) ≤ τ holds. For the T created by the
end of the process we have t(T) ≤

(
n
2

)
τ .

Proof. Let us denote by T [i] the edge of T that T acquired when it was in-
cremented for the ith time, and let us use the notation Hi for the current ver-
sion of H before the very moment when T [i] = (ai, bi) was copied into T . Since
{T [i], T [i + 1], . . .} def= T i ⊆ Hi, we have t(T i, ai, bi) ≤ t(Hi, ai, bi) ≤ τ. Now the fact
follows from t(T) =

∑
i t(T i, ai, bi) ≤

(
n
2

)
τ, since i can go up to at most

(
n
2

)
.

Fact 3.11. During a correct execution, E ∩G has size O(n2−δ + n2−ε+δ+ε′).
Proof. In order to estimate E ∩ G observe that we added edges to E only in

Steps 2c and 2d. In each execution of Step 2c, we added at most 10n1−δ edges to E,
and we had O(n) such executions (Fact 3.9) that give a total of O(n2−δ) edges. The
number of executions of Step 2d is O(nδ+ε′) (Fact 3.8). Our task is now to bound the
number of edges of G each such execution adds to E.

We estimate |G∩G′(A,A′)| from the A′ side, where A = νG(v) and A′ = νG′(v).
This is the only place where we use the fact that G′ ⊆ G〈n1−ε〉: For every x ∈ A′

we have t(G, v, x) ≤ n1−ε. On the other hand, when y ∈ A and x ∈ A′, every edge
7

(y, x) ∈ G′ creates a (v, x)-based triangle. Thus

|G ∩G′(A,A′)| ≤ |A′|n1−ε ≤ n2−ε.

Therefore the total number of edges of G Step 2d contributes to E is n2−ε+δ+ε′ .
In conclusion,

|G ∩ E| ≤ O(n2−δ + n2−ε+δ+ε′).

4. Quantum Walk Approach.

4.1. Dynamic Quantum Query Algorithms. The algorithm of Ambainis
in [6] is somewhat similar to the brand of classical algorithms, where a database is
used (like in heapsort) to quickly retrieve the value of those items needed for the run
of the algorithm. Of course, this whole paradigm is placed into the context of query
algorithms. We shall define a class of problems that can be tackled very well with the
new type of algorithm. Let S be a finite set of size n and let 0 < k < n.

k-Collision
Oracle Input: A function f which defines a relation C ⊆ Sk.
Output: A k-tuple (a1, . . . , ak) ∈ C if it is non-empty, otherwise
reject.

By carefully choosing the relation C, k-Collision can be a useful building block
in the design of different algorithms. For example if f is the adjacency matrix of a
graph G, and the relation C is defined as ‘being an edge of a triangle of G’ then the
output of Collision yields a solution for Triangle with O(

√
n) additional queries

(Grover search for the third vertex).

Unique k-Collision: The same as k-Collision with the promise
that |C| = 1 or |C| = 0.

The type of algorithms we study will use a database D associating some data
D(A) to every set A ⊆ S. From D(A) we would like to determine if Ak ∩ C 6= ∅. We
expedite this using a quantum query procedure Φ with the property that Φ(D(A))
rejects if Ak ∩ C = ∅ and, otherwise, both accepts and outputs an element of Ak ∩ C,
that is a collision. When operating with D three types of costs are incurred, all
measured in the number of queries to the oracle f .

Setup cost s(r): The cost to set up D(A) for a set of size r.
Update cost u(r): The cost to update D for a set of size r, i.e. moving from D(A)

to D(A′), where A′ results from A by adding an element, or moving from
D(A′′) to D(A) where A results from A′′ by deleting an element.

Checking cost c(r): The query complexity of Φ(D(A)) for a set of size r.

Next we describe the algorithm of Ambainis [6] in general terms. The algorithm
has 3 registers |A〉|D(A)〉|x〉. The first one is called the set register, the second one
the data register, and the last one the coin register.

8

Generic Algorithm(r, D, Φ)
1. Create the state

∑
A⊂S:|A|=r |A〉 in the set register

2. Set up D on A in the data register
3. Create a uniform superposition over elements of S − A in the coin

register
4. Do Θ(n/r)k/2 times

(a) If Φ(D(A)) accepts then do the phase flip, otherwise do nothing
(b) Do Θ(

√
r) times Quantum Walk updating the data register

5. If Φ(D(A)) rejects then reject, otherwise output the collision given by
Φ(D(A)).

Theorem 4.1 ([6]). Generic Algorithm solves Unique k-Collision with
some positive constant probability and has query complexity

O(s(r) + (n
r)k/2 × (c(r) +

√
r × u(r))).

Moreover it turns out that, when Unique k-Collision has no solution, Generic
Algorithm always rejects, and when Unique k-Collision has a solution c, Generic
Algorithm outputs c with probability p = Ω(1) which only depends on k, n and r.
Thus using quantum amplification, one can modify Generic Algorithm to an exact
quantum algorithm.

Corollary 4.2. Unique k-Collision can be solved with probability 1 in quan-
tum query complexity

O(s(r) + (n
r)k/2 × (c(r) +

√
r × u(r))).

One can make a random reduction from Collision to Unique Collision if the
definition on Φ is slightly generalized. We add to the input of the checking procedure a
relation R ⊆ Sk which restricts the collision set C to C ∩R. The reduction goes in the
standard way using a logarithmic number of randomly chosen relations R, and hence
an additional logarithmic factor appears in the complexity. If the collision relation is
robust in some sense, one can improve this reduction by removing the log factors (see
for example the reduction used by Ambainis in [6]).

Corollary 4.3. Collision can be solved in quantum query complexity

Õ(s(r) + (n
r)k/2 × (c(r) +

√
r × u(r))).

The tables below summarize the use of the above formula for various problems
(Graph Collision(G) is defined in the next section).

Problem Collision relation
Element
distinctness (u, v) ∈ C iff u 6= v and f(u) = f(v)
Graph
Collision(G) (u, v) ∈ C iff f(u) = f(v) = 1 and (u, v) ∈ G

Triangle (u, v) ∈ C iff there is a triangle (u, v, w) in G

9

Setup cost Update cost Checking cost
Problem s(r) u(r) c(r)
Element
distinctness r 1 0
Graph
Collision(G) r 1 0

Triangle O(r2) r O(r2/3√n)

4.2. Graph Collision Problem. Here we deal with an interesting variant
of Collision which will be also useful for finding a triangle. The problem is
parametrized by some graph G on n vertices which is given explicitly.

Graph Collision(G)
Oracle Input: A boolean function f on [n] which defines the relation
C ⊆ [n]2 such that C(u, u′) iff f(u) = f(u′) = 1 and (u, u′) ∈ E.
Output: A pair (u, u′) ∈ C if it is non-empty, otherwise reject.

Observe that an equivalent formulation of the problem is to decide if the set of vertices
of value 1 form an independent set in G.

Theorem 4.4. Graph Collision(G) can be solved with positive constant prob-
ability in quantum query complexity Õ(n2/3).

Proof. We solve Graph Collision(G) using Corollary 4.3, with S = [n] and r =
n2/3. For every U ⊆ [n] we define D(U) = {(v, f(v)) : v ∈ U}, and let Φ(D(U)) = 1 if
there are u, u′ ∈ U that satisfy the required property. Observe that s(r) = r, u(r) = 1
and c(r) = 0. Therefore we can solve the problem in quantum query complexity
Õ(r + n

r (
√

r)) which is Õ(n2/3) when r = n2/3.

4.3. Triangle Problem. Theorem 4.5. Triangle can be solved with positive
constant probability in quantum query complexity Õ(n13/10).

Proof.
We use Corollary 4.3 where S = [n], r = n2/3, and C is the set of triangle

edges. We define D for every U ⊆ [n] by D(U) = G|U , and Φ by Φ(G|U) = 1 if a
triangle edge is in G|U . Observe that s(r) = O(r2) and u(r) = r. We claim that
c(r) = Õ(

√
n× r2/3).

To see this, let U be a set of r vertices such that G|U is explicitly known, and let v
be a vertex in [n]. We define an input oracle for Graph Collision(G|U) by f(u) = 1
if (u, v) ∈ E. The edges of G|U which together with v form a triangle in G are the
solutions of Graph Collision(G|U). Therefore finding a triangle edge, if it is in
G|U , can be done in quantum query complexity Õ(r2/3) by Theorem 4.4. Now using
quantum amplification [10], we can find a vertex v, if it exists, which forms a triangle
with some edge of G|U , using only Õ(

√
n) iterations of the previous procedure, and

with a polynomially small error (which has no influence in the whole algorithm).
Therefore, we can solve the problem in quantum query complexity Õ(r2+ n

r (
√

n×
r2/3 +

√
r × r)) which is Õ(n13/10) when r = n3/5.

4.4. Monotone Graph Properties with Small Certificates. Let now con-
sider the property of having a copy of a given graph H with k > 3 vertices. Us-
ing directly Ambainis’ algorithm, one gets an algorithm whose query complexity is
Õ(n2−2/(k+1)). In fact we can improve this bound to Õ(n2−2/k). Note that only
the trivial Ω(n) lower bound is known. This problem was independently considered
by Childs and Eisenberg [14] whenever H is a k-clique. Beside the direct Ambainis’
algorithm, they obtained an Õ(n2.5−6/(k+2)) query algorithm. For k = 4, 5, this is
faster than the direct Ambainis’ algorithm, but slower than ours.

10

Theorem 4.6. Finding in a graph a copy of a given graph H, with k > 3 vertices,
can be done with quantum query complexity Õ(n2−2/k).

Proof. We follow the structure of the proof of Theorem 4.5. We distinguish an
arbitrary vertex of H. Let d be the degree of this vertex in H.

We say that a vertex v and a set K of (k − 1) vertices of G are H-compatible
if the subgraph induced by K ∪ {v} in G contains a copy of H, in which v is the
distinguished vertex. We also say that the set K is an H-candidate when there exists
a vertex v such that v and K are H-compatible. Our algorithm will essentially find a
set that contains an H-candidate.

We define an instance of (k − 1)-Collision, where S = [n], and C is the set of
H-candidates. We define D for every U ⊆ [n] by D(U) = G|U , and Φ by Φ(G|U) = 1
if U is contains an H-candidate. Again s(r) = O(r2) and u(r) = r. We now claim
that c(r) = Õ(

√
n× rd/(d+1)).

The checking procedure uses a generalization of Graph Collision to d-ary re-
lations. If some vertex v of G is fixed, then we say that a subset W ⊆ U of size d
is in relation if there exists W ⊆ K ⊆ U such that v and K are H-compatible in G,
and v is connected to every vertex of W . Following the arguments of the proof of
Theorem 4.4 (where the function f takes the value 1 on a vertex u ∈ U if (u, v) is
an edge in G), we find a d-collision in quantum query complexity Õ(rd/(d+1)) when
it exists. The checking procedure searches for a vertex v for which this generalized
Graph Collision has a solution using a standard Grover search.

The overall parameterized query complexity is therefore

Õ

(
r2 +

(n

r

)(k−1)/2 (√
n× rd/(d+1) +

√
r × r

))
.

By optimizing this expression (that is, by balancing the first and third terms), it
turns out that the best upper bound does not depend on d. Precisely the expression
is optimal with r = n1−1/k, which gives the announced bound. However, one can
imagine a different algorithm for the checking procedure where the choice of d might
be crucial.

To conclude, note that once a set U of size r that contains an H-candidate is
found, one can obtain a copy of H in G in the complexity of the checking cost c(r).

We conclude by extending this result for monotone graph properties which might
have several small 1-certificates.

Corollary 4.7. Let ϕ be a monotone graph property whose 1-certificates have
at most k > 3 vertices. Then deciding ϕ, and producing a certificate whenever ϕ is
satisfied, can be done with quantum query complexity to the graph in Õ(n2−2/k).

Acknowledgments. We would like to thank Andris Ambainis for useful discus-
sions and for sending us a preliminary version of [6].

REFERENCES

[1] S. Aaronson and Y. Shi, Quantum lower bounds for the collision and the element distinctness
problems, Journal of ACM, 51 (2004), pp. 595–605.

[2] D. Aharonov, A. Ambainis, J. Kempe, and U. Vazirani, Quantum walks on graphs, in
Proceedings of the 33th ACM Symposium on Theory of Computing, 2001, pp. 50–59.

[3] N. Alon, R. Yuster, and U. Zwick, Finding and counting given length cycles, Algorithmica,
17 (1997), pp. 209–223.

[4] A. Ambainis, Quantum lower bounds by quantum arguments, Journal of Computer and System
Sciences, 64 (2002), pp. 750–767.

11

[5] , Polynomial degree vs. quantum query complexity, in Proceedings of 44th IEEE Sympo-
sium on Foundations of Computer Science, 2003, pp. 230–239.

[6] , Quantum walk algorithm for element distinctness, in 45th IEEE Symposium on Foun-
dations of Computer Science, 2004, pp. 22–31.

[7] A. Ambainis, E. Bach, A. Nayak, A. Vishwanath, and J. Watrous, One-dimensional quan-
tum walks, in Proceedings of the 33th ACM Symposium on Theory of Computing, 2001,
pp. 60–69.

[8] H. Barnum, M. Saks, and M. Szegedy, Quantum decision trees and semidefinite program-
ming, in Proceedings of the 18th IEEE Conference on Computational Complexity, 2003,
pp. 179–193.

[9] R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf, Quantum lower bounds by
polynomials, Journal of the ACM, 48 (2001), pp. 778–797.

[10] G. Brassard, P. Høyer, M. Mosca, and A. Tapp, Quantum amplitude amplification and
estimation, in Quantum Computation and Quantum Information: A Millennium Volume,
vol. 305, AMS Contemporary Mathematics Series, 2002.

[11] H. Buhrman, R. Cleve, R. de Wolf, and C. Zalka, Bounds for small-error and zero-
error quantum algorithms, in Proceedings of 40th Symposium on Foundations of Computer
Science, 1999, pp. 358–368.

[12] H. Buhrman, C. Dürr, M. Heiligman, P. Høyer, F. Magniez, M. Santha, and R. de
Wolf, Quantum algorithms for element distinctness, SIAM Journal of Computing, 34
(2005), pp. 1324–1330.

[13] A. Chakrabarti and S. Khot, Improved lower bounds on the randomized complexity of graph
properties, in Proceedings of 28th International Colloquium on Automata, Languages and
Programming, 2001, pp. 285–296.

[14] A. Childs and J. Eisenberg, Quantum algorithms for subset finding, Tech. Report quant-
ph/0311038, arXiv, 2003.

[15] D. Deutsch, Quantum theory, the Church-Turing principle and the universal quantum com-
puter, in Proceedings of the Royal Society of London A, vol. 400, 1985, pp. 97–117.

[16] D. Deutsch and R. Jozsa, Rapid solution of problems by quantum computation, in Proceedings
of the Royal Society A, vol. 439, 1992.

[17] M. Ettinger, P. Høyer, and E. Knill, Hidden subgroup states are almost orthogonal, Tech.
Report quant-ph/9901034, arXiv, 1999.

[18] L. Grover, A fast quantum mechanical algorithm for database search, in Proceedings of 28th
ACM Symposium on Theory of Computing, 1996, pp. 212–219.

[19] P. Hajnal, An n4/3 lower bound on the randomized complexity of graph properties, Combina-
torica, 11 (1991), pp. 131–143.

[20] A. Kitaev, A. Shen, and M. Vyalyi, Classical and quantum computation, in Graduate Studies
in Mathematics, vol. 47, AMS, 2002.

[21] S. Laplante and F. Magniez, Lower bounds for randomized and quantum query complexity
using Kolmogorov arguments, in Proceedings of 19th IEEE Conference on Computational
Complexity, 2004, pp. 214–304.

[22] M. Nielsen and I. Chuang, Quantum Computation and Quantum Information, Cambridge
University Press, 2000.

[23] R. Rivest and J. Vuillemin, On recognizing graph properties from adjacency matrices, The-
oretical Computer Science, 3 (1976), pp. 371–384.

[24] A. Rosenberg, On the time required to recognize properties of graphs: A problem, SIGACT
News, 5 (1973), pp. 15–16.

[25] D. Simon, On the power of quantum computation, SIAM Journal on Computing, 26 (1997),
pp. 1474–1483.

[26] R. Špalek and M. Szegedy, All quantum adversary methods are equivalent, in Proceedings of
32nd International Colloquium on Automata, Languages and Programming, Lecture Notes
in Computer Science, Springer-Verlag, 2005, pp. 1299–1311.

[27] M. Szegedy, On the quantum query complexity of detecting triangles in graphs, Tech. Report
quant-ph/0310107, arXiv archive, 2003.

[28] E. Szemerédi, Regular partitions of graphs, Colloques Internationaux du CNRS, 260 –
Problèmes combinatoires et théorie des graphes (1976), pp. 399–401.

[29] J. Watrous, Quantum simulations of classical random walks and undirected graph connectivity,
Journal of Computer and System Sciences, 62 (2001), pp. 376–391.

[30] A. Yao, Lower bounds to randomized algorithms for graph properties, in Proceedings of 28th
IEEE Symposium on Foundations of Computer Science, 1987, pp. 393–400.

[31] , Personal communication, 2003.
[32] S. Zhang, On the power of Ambainis’s lower bounds, in Proceedings of 31st International

12

Colloquium on Automata, Languages and Programming, 2004, pp. 1238–1250.

13

