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Problème de décodage de syndrome
généralisé et son application à la
cryptographie post-qantiqe

Dans cette thèse, nous nous concentrons sur le problème du décodage du syn-
drome (SDP), sa généralisation, la cryptanalyse et son application à la con-
ception de schémas de signature. Nous introduisons un nouveau problème,
que nous appelons le problème de décodage de syndrome généralisé. Dans la
partie cryptanalytique de la thèse, nous nous concentrons sur la cryptanalyse
classique et quantique du problème de décodage de syndrome généralisé en
utilisant les algorithmes de décodage par ensemble d’information. Plus pré-
cisément, nous calculons le temps d’exécution de trois algorithmes de (clas-
siques) différents de ce type, que nous appelons les algorithmes de Prange, de
Stern/Dumer et de Wagner. Les trois algorithmes sont adaptés pour résoudre
des versions spécifiques du problème généralisé qui utilise le poids de Ham-
ming, pris comme référence, et le poids de Lee, pris comme alternative au
poids de Hamming. Nous comparons ensuite les temps d’exécution obtenus
avec le temps d’exécution de l’algorithme hybride classique-quantique, obtenu
en introduisant la recherche de Grover et l’amplification d’amplitude dans
l’étape appropriée de l’algorithme de Wagner. Dans la partie de l’article con-
sacrée à la conception de protocoles, nous modifions le protocole d’identi-
fication de Stern et le schéma de signature correspondant pour l’adapter au
problème de décodage du syndrome généralisé nouvellement introduit. Nous
proposons ensuite différentesméthodes pour optimiser l’efficacité du système
et fournissons des résultats numériques qui comparent l’efficacité de la con-
struction originale et de notre nouveau système. Le résultat de ce travail est
une analyse de la variante nouvellement introduite du problème de décodage
de syndrome qui fournit une estimation de la complexité asymptotique du
problème, ainsi que de la sécurité concrète du schéma basé sur ce problème.
Les résultats indiquent que le choix approprié d’une fonction de poids in-
troduit une version plus difficile du problème de décodage de syndrome et
produit donc des protocoles plus efficaces basés sur ce problème.

mots clés: problème du décodage du syndrome, métrique de Lee, décodage
par ensemble d’information, schéma de signature de Stern

iii



iv



Generalized Syndrome Decoding
Problem and its Application
to Post-Quantum Cryptography

In this thesis, we focus on the syndrome decoding problem (SDP), its general-
ization, cryptanalysis, and its application to digital signature scheme designs.
We introduce a new problem, which we refer to as the generalized syndrome
decoding problem. In the cryptanalytic part of the thesis, we then focus on
the classical and quantum cryptanalysis of the generalized syndrome decod-
ing problem using the information set decoding framework. More precisely,
we calculate the running time of three different (classical) information set
decoding algorithms, which we refer to as Prange’s, Stern’s/Dumer’s, and
Wagner’s algorithms. The three algorithms are adapted to solve specific ver-
sions of the generalized problem which are given over the Hamming weight,
taken as a baseline, and the Lee weight, taken as an alternative to the most
commonly used Hamming weight. We then compare the obtained running
times with the running time of the hybrid classical-quantum algorithm, ob-
tained by introducing the Grover search and the amplitude amplification in
the appropriate step of Wagner’s algorithm. In the protocol design part of
the paper, we modify Stern’s identification protocol, and the corresponding
signature scheme, to the newly introduced generalized syndrome decoding
problem. To keep the zero-knowledge property of the scheme, we eventu-
ally replace the syndrome decoding problem with the permuted kernel one
(PKP), for which we show that the average-case SDP reduces to average-case
PKP. We then suggest different methods for optimizing the efficiency of the
scheme and then provide numerical results that compare the efficiency of the
original construction and our newly introduced scheme. The outcome of this
work is an analysis of the newly introduced variant of the syndrome decod-
ing problem that estimates the asymptotic complexity of the problem, as well
as the concrete security of the scheme based on this problem. The results in-
dicate that the proper choice of a weight function introduces a harder version
of the syndrome decoding problem and thus yields more efficient protocols
based upon it.

key words: syndrome decoding problem, Lee metric, information set decod-
ing, Stern’s signature scheme
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Problème de décodage de syndrome
généralisé et son application à la
cryptographie post-qantiqe

Le thème central de cette recherche est le problème du décodage du syn-
drome. Introduit à l’origine dans la théorie du codage, ce problème a trouvé
un large éventail d’applications en cryptographie, et plus particulièrement
dans un sous-domaine connu sous le nom de cryptographie post-quantique.
Dans cette thèse, nous nous concentrons sur la généralisation de ce problème.
Présentons donc le problème. Prenons n, k ∈ N et soitwt(·) le poids de Ham-
ming. Le problème du décodage de syndrome décisionnel est défini comme
suit.

Problem0.0.1 (Le problème du décodage de syndrome décisionnel). Étant
donné H ∈ F(n−k)×n

2 , s ∈ Fn−k
2 , et w ∈ N, déterminer s’il existe e ∈ Fn

2

satisfaisant s = eHT et wt(e) = w.

Alors que la méthode originale de décodage de syndrome a été introduite
pour fournir un moyen efficace de décoder les codes linéaires, le problème
de décodage de syndrome, dérivé de cette méthode, s’avère être NP-complet.
Plus important encore, pour des paramètres bien choisis, ce problème s’avère
difficile même pour les meilleurs algorithmes qui s’y attaquent. En tant que
tel, il est considéré comme une bonne base potentielle pour différents proto-
coles cryptographiques.

Néanmoins, en pratique, nous observons que les protocoles basés sur
ce problème manquent souvent d’efficacité. Le but de cette thèse est donc
d’augmenter la difficulté du problème de décodage de syndrome et, par con-
séquent, d’améliorer l’efficacité des protocoles basés sur ce problème. La
thèse est structurée comme suit.

Chapitre 1 Nous avons donné une brève introduction et une vue d’ensemble
des concepts pertinents dans le contexte de cette thèse. Nous commençons le
chapitre par une introduction qui explique lamotivation de ce travail et donne
une vue d’ensemble de cette thèse. Dans la même section, nous présentons les
conventions de notation utilisées tout au long de la thèse. Nous introduisons
ensuite les définitions pertinentes de la théorie du codage, des algorithmes et
de la complexité, et de la cryptographie.
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Chapitre 2 Dans ce chapitre, nous généralisons le problème du décodage
de syndrome au-delà de l’alphabet binaire et du poids de Hamming, le cadre
le plus courant dans la théorie du codage et la cryptographie. Pour ce faire,
nous redéfinissons le problème en introduisant les fonctions de poids élémen-
taires. Nous obtenons ainsi une nouvelle version généralisée du problème
définie sur un alphabet arbitraire de nombres premiers et un poids élémen-
taire arbitraire. Plus précisément, le problème est maintenant défini comme
suit. Prenons q un nombre premier, et wtM(·) une fonction de poids élémen-
taire. Le problème du décodage de syndrome généralisée est défini comme
suit.

Problem0.0.2 (Le problème du décodage de syndrome généralisée). Étant
donné H ∈ F(n−k)×n

q , s ∈ Fn−k
q , et w ∈ N, déterminer s’il existe e ∈ Fn

q

satisfaisant s = eHT et wtM(e) = w.

Nous montrons ensuite que la version moyenne du problème de décodage
du syndrome généralisé est réductible en temps polynomial à la versionmoyenne
du problème du noyau permuté. L’ingrédient crucial de cette réduction est
la capacité de calculer la surface de la sphère dans un espace vectoriel doté
d’une fonction de poids élémentaire arbitraire. Pour calculer la surface de la
sphère, nous généralisons la méthode précédemment connue pour le poids
de Lee uniquement. La généralisation de cette méthode a servi de base pour
démontrer la réduction susmentionnée et déterminer la complexité asympto-
tique du problème du point de vue de la cryptanalyse, présentée au chapitre
3.

Chapitre 3 Nous adaptons le cadre de décodage par ensemble d’informations,
qui sont les meilleures attaques génériques contre le problème de décodage
du syndrome en poids de Hamming, à notre cadre plus général. Le cadre
comprend les quatre étapes suivantes.

1. étape de permutation : L’algorithme permute les colonnes de la matrice
de contrôle de paritéH.

2. étape de décomposition : L’algorithme effectue une élimination Gaussi-
enne partielle surH pour fournir une sous-instance du problème.

3. mSDP étape : L’algorithme trouve plusieurs solutions à la sous-instance
de décodage du syndrome.
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4. étape de test : L’algorithme vérifie si l’une des solutions à la sous-
instance permet de résoudre le problème initial.

Nous utilisons ce cadre pour déterminer la complexité asymptotique du
problème de décodage du syndrome généralisé dans des contextes classiques
et quantiques. Plus précisément, nous analysons quatre algorithmes clas-
siques, appelés algorithme de Prange[Pra62], algorithme de Lee-Brickel[LB88],
algorithme de Stern/Dumer[Ste88] et algorithme de Wagner[Wag02]. Nous
montrons que ces trois premiers algorithmes peuvent être considérés comme
des variantes différentes de l’algorithme de Wagner. À partir de l’algorithme
deWagner, nous dérivons ensuite un algorithme hybride classique-quantique
qui combine l’approche classique de l’algorithme deWagner avec la recherche
deGrover et l’amplification d’amplitude pour obtenir une accélération quadra-
tique.

À la fin du chapitre, nous présentons les résultats numériques sur le temps
d’exécution asymptotique de ces algorithmes de décodage en poids de Ham-
ming et en poids de Lee. Nous illustrons certains de ces résultats dans les fig-
ures suivantes, où R := k

n
, ω = w

n
, et α est l’exposant du temps d’exécution

de l’algorithme (exprimé en log2).

Figure 1: Complexité de l’A-SDP de Hamming : quatre algorithmes de l’ISD
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Figure 2: Complexité de l’A-SDP de Lee : quatre algorithmes de l’ISD

Les résultats indiquent que le problème dans le cadre du poids de Lee peut
être considéré comme une version plus cohérente du problème de décodage
du syndrome lorsque la taille de l’alphabet augmente. De plus, les résultats
numériques sur les instances les plus difficiles du problème, présentés dans le
tableau suivant, indiquent que le problème dans le cadre du poids de Lee est
plus difficile que dans le cadre du poids de Hamming pour toutes les tailles
d’alphabet supérieures à 3.

Pour q, R et ω donnés, nous exprimons alors la dureté relative d’une in-
stance par deux coefficients, α et α̂, définis comme suit:

α := lim
n→∞

log2 t
W (n)

n
, α̂ := lim

n→∞

logq t
W (n)

n
,

où tW (n) est le temps d’exécution de l’algorithme de Wagner (quantique).
Le temps d’exécution asymptotique est obtenu pour le choix optimal des
paramètres de l’algorithme de Wagner qui donnent le temps d’exécution le
plus court de l’algorithme de Wagner (quantique).
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Hamming weight, wtH(·)

q Wagner’s algorithm quantum Wagner’s algorithm
R ω α α̂ R ω α α̂

3 0.370 1.000 0.269 0.170 0.369 1.000 0.148 0.093
13 0.456 0.311 0.356 0.096 0.453 0.314 0.180 0.049
43 0.459 0.368 0.459 0.085 0.459 0.368 0.230 0.042
163 0.463 0.405 0.541 0.074 0.463 0.405 0.271 0.037
643 0.468 0.427 0.602 0.065 0.475 0.420 0.316 0.034

Table 1: Instances les plus difficiles de A-SDP avec le poids de Hamming

Lee weight, wtL(·)

q Wagner’s algorithm quantum Wagner’s algorithm
R ω α α̂ R ω α α̂

3 0.370 1.000 0.269 0.170 0.369 1.000 0.148 0.093
13 0.475 0.955 0.522 0.141 0.501 0.962 0.283 0.076
43 0.459 0.955 0.794 0.146 0.467 0.957 0.429 0.079
163 0.445 0.968 1.117 0.152 0.462 0.971 0.607 0.083
643 0.437 0.980 1.455 0.156 0.455 0.982 0.794 0.085

Table 2: Instances les plus difficiles de A-SDP avec le poids de Lee

La raison pour laquelle nous introduisons deux coefficients pour exprimer
le temps d’exécution asymptotique, à savoirα et α̂, est la suivante. Lamanière
courante d’exprimer le temps d’exécution asymptotique d’un algorithme est
sous la forme t(n) = 2α(n), oùn→∞, etα(n) est déterminé par l’algorithme.
Néanmoins, il apparaît que cette représentation ne reflète pas exactement la
difficulté du problème du syndrome dans le cadre généralisé auquel nous nous
intéressons. Nous introduisons donc un autre coefficient du temps d’exécution
asymptotique, α̂(n), obtenu lorsque t(n) est donné comme t(n) = qα̂(n) et
n→∞. Ce coefficient semble refléter plus précisément la difficulté du prob-
lème car il est cohérent avec les observations précédentes concernant le prob-
lème de décodage du syndrome sur le poids de Hamming pour des tailles
d’alphabet q > 2 (voir, par exemple, [Pet10]).

Nous observons que, tant dans le cas du poids deHamming que dans le cas
du poids de Lee, le taux de codage des instances les plus difficiles du problème
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se situe dans l’intervalle [0.35, 0.5]. Ceci était déjà prévu par les graphiques
des résultats numériques obtenus précédemment. Nous observons également
que, dans le cadre du poids de Hamming et pour q > 3, pour la valeur de R
donnant les instances les plus difficiles du problème, le poids normalisé atteint
ce que l’on appelle la limite de Gilbert-Varshamov, définie au chapitre 1. Les
instances les plus difficiles du problème sur le poids de Hamming pour q = 3
ou sur le poids de Lee pour tout q observé, en revanche, sont obtenues dans
le régime de poids élevé. A notre connaissance, ce régime de paramètres ne
correspond à aucune borne connue et il est généralement omis dans l’analyse
numérique bien qu’il produise effectivement les instances les plus difficiles
du problème. Nous soulignons donc l’importance de prendre en compte le
régime de poids élevé lors de l’analyse du problème de décodage de syndrome
généralisé.

Nous observons ensuite que les deux coefficients (à savoir α et α̂), dans le
cadre classique comme dans le cadre quantique, sont plus élevés dans le cas
du poids de Lee. Là encore, les graphiques des résultats numériques obtenus
précédemment l’indiquaient déjà. Cela suggère en outre que les instances
A-SDP les plus difficiles sur le poids de Lee sont plus difficiles que les in-
stances A-SDP les plus difficiles sur le poids de Hamming. Observons alors
uniquement les valeurs de α dans les deux cas. Nous voyons alors que α aug-
mente avec l’augmentation de q dans tous les cas. Cela donne l’impression
que la complexité du problème augmente avec l’augmentation de la taille de
l’alphabet. Cependant, dans les études précédentes de ce problème pour le
poids de Hamming, il a été montré qu’en fait, ce n’est pas le cas. Observons
alors α̂. Dans le cas du poids de Hamming, à la fois pour le cadre classique et
quantique, il y a une chute soudaine de α̂ lorsque l’on passe de q = 3 à q = 13,
et le coefficient continue à diminuer lorsque la taille de l’alphabet augmente.
Dans le cas du poids de Lee, en revanche, la chute est moins importante et, en
fait, le coefficient recommence à augmenter pour des tailles d’alphabet com-
prises entre q = 43 et q = 163. La question ouverte est donc de savoir quel
serait le cas limite. Peut-on espérer que pour des tailles d’alphabet vraiment
élevées, la complexité sera plus élevée que pour q = 3 ?

En remplaçant le problème du décodage du syndrome dans le poids de Lee
par le problème du décodage du syndrome dans le poids de Hamming, nous
améliorons l’efficacité du système, mais pas suffisamment pour qu’il devienne
applicable dans la pratique. Il est donc optimisé davantage en utilisant des
générateurs pseudo-aléatoires, ce qui a effectivement augmenté l’efficacité
du schéma de manière significative, mais qui était susceptible de faire l’objet
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d’une nouvelle attaque. Nous expliquons ensuite la vulnérabilité de cette
méthode d’optimisation et proposons une méthode pour atténuer cette at-
taque. Nous terminons le chapitre en présentant les résultats numériques des
tailles de signature de la signature numérique que nous avons conçue. Nous
présentons ces résultats ici.

Tailles de signature (en kB)

q Non-optimized scheme Optimized scheme
wtH wtL wtH wtL

2 253.05 253.05 26.21 26.21
3 116.54 116.54 21.81 21.81
5 138.54 95.48 27.62 21.41
7 126.47 90.94 28.29 22.71
13 113.23 79.27 29.38 23.29

Table 3: Taille des signatures des schémas optimisés et non optimisés

Nous observons ici que la diminution de la taille de la signature obtenue
par l’introduction de générateurs pseudo-aléatoires est nettement plus im-
portante que celle introduite par lamodification de la fonction de poids. Néan-
moins, nous remarquons que, commenous l’avonsmontré dans la sous-section
précédente, l’utilisation de générateurs pseudo-aléatoires peut potentielle-
ment conduire à une fuite de sécurité dans certains contextes. En revanche,
le remplacement du poids de Hamming par le poids de Lee n’entraîne au-
cun coût en termes de sécurité. Compte tenu de tous ces éléments, le rem-
placement de la fonction de poids peut être considéré comme une technique
d’optimisation non autonome qui, en combinaison avec d’autres techniques,
peut conduire à une réduction supplémentaire de la taille des signatures et
à des schémas potentiellement applicables dans le monde réel. Une autre
observation concerne le choix de la taille de l’alphabet. En effet, nous obser-
vons que la plus petite taille de signature est obtenue pour q = 5, une taille
d’alphabet qui n’est pas couramment utilisée dans la conception de proto-
coles cryptographiques. Il pourrait donc s’agir d’un choix intéressant pour la
conception de nouveaux protocoles.

Directions futures Dans nos travaux ultérieurs, nous aimerions aborder
les questions suivantes. La première, et la plus naturelle, serait de savoir
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si nous pouvons combiner d’autres techniques d’optimisation plus récentes,
telles queMPC-in-the-head, pour obtenir des signatures numériques plus effi-
caces basées sur le problème du décodage de syndrome généralisé. Du côté de
la cryptanalyse, nous serions intéressés de savoir s’il serait possible d’utiliser
des techniques deDécodage par Ensemble d’Information plus avancées, comme
celles basées sur les représentations ou la recherche du plus proche voisin,
pour obtenir une meilleure attaque sur le problème généralisé, ou en parti-
culier, sa version en poids de Lee. D’autres algorithmes de recherche quan-
tique seraient-ils plus performants que notre approche basée sur la recherche
de Grover et l’amplification d’amplitude?

xiv
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We start this chapter with a brief introduction that explains the main mo-
tivation for the research done on the topic of the syndrome decoding problem
and gives a high-level overview of this thesis. In the same section, we provide
the notational conventions used throughout the thesis. We then introduce the
basic concepts in the areas relevant to this thesis, namely, the basic concepts
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Chapter 1

in coding theory, algorithms and complexity, and cryptography.

In the section on coding theory, we introduce linear codes and related
concepts which provide the starting point for the research presented in this
thesis. We primarily rely on the standard coding theory literature, such as
[Ber68], and [RU08], and we say a special thank you to MaryWootters whose
lecture notes made some concepts more accessible to us and thus better ex-
plained in this thesis. In this section, we assume that a reader is familiar with
fundamental concepts in abstract algebra and linear algebra, such as notions
of a finite field and a vector space. We also assume some familiarity with
properties of norms and metrics, but the basic intuition should be clear from
the context even without strong familiarity with the topic.

The section on computational models and algorithms introduces the two
computational models we are primarily interested in this thesis, namely, the
classical circuit model and the quantum circuit model, and the correspond-
ing algorithms. In this section, we focused on elaborating on the quantum
computing part, as the one we considered to be less common in the standard
computer science curriculum. We thus primarily rely on the standard quan-
tum computing literature such as [NC16], as well as on the lecture notes and
the course on quantum computing COMS 4281, given by Henry Yuen. For
readers already familiar with quantum computing, this part can be rather el-
ementary and considered redundant, so we advise these readers to go quickly
through it or skip it entirely. For readers less familiar with quantum com-
puting, it can be useful to draw the analogs between the two computational
models.

The section on computational complexity introduces basic complexity
classes and fundamental concepts such as reductions that are relevant in the
context of this thesis. For that, we rely on the standard complexity theory
literature such as [AB09]. We finish this chapter with a section on cryptog-
raphy, where we introduce the basic concepts of cryptanalysis and protocol
design that are relevant in the context of our research. For that, we rely on
the basic cryptographic literature, such as [KL14], as well as on some con-
cepts already introduced in the part on complexity in the previous section.
Though most of the cryptographic preliminaries are given in this section,
some of them are placed in the preliminary part of the chapters where we
consider them relevant.
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1.1 Introduction

The central topic of this research is the syndrome decoding problem. Origi-
nally introduced in coding theory, this problem has found a wide range of
applications in cryptography, and more specifically, in its subfield known as
the post-quantum cryptography. In this thesis, we focus on the generalization
of this problem. While the original syndrome decoding method was intro-
duced to provide an efficient way for decoding linear codes, our goal is to
provide a problem that cannot be solved efficiently and thus be used as a ba-
sis of cryptographic protocols. We thus aim to make this problem as difficult
as possible and potentially improve the efficiency of the protocols based upon
this problem.

The thesis is structured as follows. In the second chapter, we introduce
the notion of generalized syndrome decoding problem and we focus on the
analysis of its complexity from the complexity theory point of view. In the
third chapter, we observe this problem from the cryptanalytic perspective.
Namely, we analyze the state-of-the-art attacks against this problem, known
under the name of information set decoding algorithms. In Chapter 4, we use
the results from the analysis of the problem to construct a digital signature
scheme based on the generalized version of the syndrome decoding problem.
We conclude the thesis with a summary of obtained results, open problems,
and future directions.

1.1.1 Notation

Throughout the rest of this thesis, we use the following notation. We denote
by N the set of natural numbers. We take Z+ to be the set of non-negative
integers, R+ to be the set of non-negative real numbers, and Fq to be a finite
field of size q, where q is a prime number. We denote by a small, non-bold let-
ter a scalar in any of these sets and by a bold small letter a vector in a vector
space defined over these sets. Via a bold capital letter, we denote a matrix. For
example, we have that x ∈ Fq is a scalar in the finite field Fq; x ∈ Fn

q , n ∈ N,
is a vector in n-dimensional vector space, where n is some natural number;
and X ∈ Fm×l

q , m, l ∈ N, is an m times l dimensional matrix taking values
from Fq, where m, l are some natural numbers. We then denote by $←− sam-
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pling a scalar, vector, or matrix from a certain distribution of elements. If not
stated differently, we assume that the underlying distribution is uniform over
the given set. For n ∈ N, r ∈ R+, we use the following notation convention
[n] := {0, 1, . . . , n− 1} and [r] := {i ∈ R+ | i ≤ r}. We denote by {xi}i∈[n]
the set of elements {x0, x1, . . . , xn−1}. Similarly, we denote by (xi)i∈[n] a vec-
tor (x0, x1, . . . , xn−1). Finally, we use the asymptotic notation to express the
upper/lower bounds. Namely, we use g(n) = O(f(n)) to express that the
function g(·) is upper bounded by the function f(·). Equivalently, we use
f(n) = Ω(g(n)) to express that the function f(·) is lower bounded by the
function g(·).
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1.2 Coding theory

Coding theory is the field devoted to designing protocols that enable secure
communication over public, potentially noisy channels. The underlying as-
sumption is that the communication needs to be protected against random
noise occurring during transmission due to the imperfections of a transmis-
sion channel.

S
m m̃

R

Figure 1.1: Coding theory: basic setting

In the basic setting, depicted in Figure 1.1, a sender S sends a message
m, i.e. a string of characters, to a receiver R. The message is sent through
a public communication channel (for example, an optical cable), depicted by
a wavy curve in Figure 1.1. Given the underlying imperfections of physical
communication channels, we assume that certain errors will occur during
message transmission. Subsequently, certain message characters are altered
and the message obtained by the receiver, denoted as m̃, is different from
the original message. The goal of coding theory, therefore, is to enable the
detection and correction of errors that occurred during message transmission
and recover the original message on the receiver’s side.

S
m

Enc(·)
c c̃

Dec(·) m̃
R

Figure 1.2: Coding theory: basic setting

The most common approach to this problem is to design a protocol that
enables message encoding on the sender’s side and message decoding on the
receiver’s side. A sender encodes its message using a function, denoted as
Enc(·) in Figure 1.2, that adds redundancy to the message. The redundancy
is then used to protect the data during transmission and recover the original
message on the receiver’s side. The decoding function, denoted as Dec(·)
in Figure 1.2, is applied on the receiver’s side to detect and correct errors
that occurred during transmission. The receiver then recovers the original
message by removing the redundancy.
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1.2.1 Message encoding

In this thesis, we focus on the analysis of linear codes. We thus assume that
each message, m, introduced in the previous subsection, can be represented
as a vector in a finite-dimensional vector space Fk

q , where q is a prime num-
ber1, Fq denotes the underlying finite field, also known as the alphabet, and
k ∈ N is message length, also known as the code dimension. This represen-
tation is depicted in Figure 1.3, where each message is a vector (red dot) in a
one-dimensional vector space. We remark here that we will consider only fi-
nite fields that correspond to integers modulo prime numbers. Therefore, the
elements of the field of size q will be denoted as integers in {0, 1, . . . , q− 1},
and all the arithmetic operations will be modulo q.

Figure 1.3: Message space for k = 1, q = 3

In this setting, the encoding Enc(·) is defined as a linear map Enc(·) :
Fk
q → Fn

q that takes as an entry a vector from a message space and maps into
a vector space with the same underlying alphabet but of larger dimension,
n ∈ N, also known as the code length. The encoding is depicted in Figure 1.4,
where its domain (i.e. message space) is represented on the left side and its
co-domain is represented on the right side.

Figure 1.4: Linear encoding for q = 3, k = 1, n = 2

Linear code A linear code, C, is a linear subspace obtained by encoding,
Enc(·). It can also be seen as a set of all the encoded messages, also known
as the codewords, which are in Figure 1.4 depicted as red dots in the vector
space on the right and formally given by the following definition.

1Strictly speaking, it can also be a prime power but, in this thesis, we are not interested
in the finite fields over prime powers.
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Definition 1.2.1 (Linear code). Let q be a prime number and k, n be pos-
itive integer values satisfying n ≥ k. Let then G ∈ Fk×n

q be a generator
matrix that defines a linear map Enc(·) : Fk

q → Fn
q as:

∀x ∈ Fk
q , Enc(x) := xG.

A linear code, C, is defined as a linear subspace of size qk of a vector space
Fn
q , where a basis of the subspace is given by rows of the generator matrix

G, i.e.:
C := {c ∈ Fn

q | (∃m ∈ Fk
q) c = Enc(m)}.

As it can be seen from Definition 1.2.1, the choice of a linear map (and,
consequently, the choice of the obtained code), depends crucially on the choice
of a generator matrix G.2 The question then is what is a good choice of a gen-
erator matrix that would enable us to correct as many as possible errors while
having the communication as efficient as possible.

Efficiency and error correcting capability Themeasure of the efficiency
of a linear code is given as a code rate, R ∈ [0, 1]. The code rate is defined as
a proportion between the code dimension and the code length, i.e. R := k

n
. It

is not hard to see that the highest possible code rate R = 1 corresponds to a
code for which the code dimension is equal to the code length. Without loss
of generality, we can assume that, in that case, the code is actually the orig-
inal message space. This further implies that encoding a message added no
redundancy to it, so the error-correcting capability of the code is as high as
the one of the original message space. If we then assume that each message
(i.e. a codeword in this case) has a non-zero probability to occur, each mis-
take leads to another message (i.e. another codeword), so this error cannot
be either detected or corrected. This code, therefore, has no error-correcting
capability. On the other hand, for the code rate R ≈ 0, the code dimension is
negligible in comparison to the code length, i.e. k ≪ n. In that case, given a
huge amount of redundancy added to amessage, even a generator matrix that
is taken uniformly at random would probably be good enough to encode a
message such that a certain number of errors can be detected and potentially

2We always assume it is of a full rank.
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even corrected.3 Nevertheless, it would yield an extremely inefficient encod-
ing. Choosing a good code, therefore, comes down to optimizing the trade-off
between the code rate and the error-correcting capability of the code.

1.2.2 Message decoding

In contrast to the previously described encoding process that comes down to
matrix-vector multiplication, decoding is a more involved process. It requires
making certain assumptions about the communication system we observe.
The first assumption to be made is about the noise model, i.e. we need to
assume which type of errors can occur. Another question is then how we
obtain the original codeword c from a noisy codeword c̃, i.e. the codeword al-
tered by the communication channel. Some common approaches to this task,
commonly referred to as the decoding task are presented in the following sub-
sections. Once the original codeword is found, finding the original message
comes down to removing the redundancy from the codeword.

Noise model The most common noise model is the additive noise model.
We thus have that a noisy codeword c̃ ∈ Fn

q , obtained by the receiver, is of the
form c̃ = mG + e, where e ∈ Fn

q is a random variable, commonly referred
to as an error vector. The distribution of this random variable is determined
by the physical properties of the communication channel. One of the most
common settings is given by the communication channel known as the bi-
nary symmetric one, where the alphabet is binary, i.e. q = 2, and an error
at each coordinate occurs with some probability p ∈ [0, 1]. The number of
errors that occur, i.e. the number of non-zero coordinates of e, can thus be
seen as a random variable distributed according to Binomial distribution with
parameters n and p.

Distance function Upon choosing the noise model, one can decide on the
decoding strategy to use. One of the possible strategies is to say that the orig-
inal message corresponds to a codeword ’closest’ to the received noisy code-
word, which is also referred to as minimum distance decoding. the question
is then how we decide what the closes codeword is or, even more generally,

3More details on this will be given in the next subsection.
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how we measure the distance between two codewords. Naturally, we decide
to introduce a distance function (also known as metric) into our vector space,
and we denote it by dist(·). We thus obtain two metric spaces, one corre-
sponding to the set of original messages, and one corresponding to the set of
encoded messages.

Encoding in this setting is depicted in Figure 1.5, where we present metric
spaces as a unit distance graph4. In Figure 1.5 the distance function over
which themetric space is defined as either theHamming distance, which is the
most common choice of a metric when the alphabet size is q = 2, or the so-
called Lee distance, which is the metric commonly chosen when q > 2. Both
of these metrics are defined in Definition 1.2.2. The two distance functions,
and corresponding metric spaces, are identical for q = 2, as well as for q = 3,
by definition. The difference between the two becomes apparent for higher
alphabet sizes, and it will be discussed in more detail in the next chapter.

Definition 1.2.2 (Hamming and Lee distances). Let n ∈ N be the dimen-
sion of a vector space Fn

q . The Hamming distance, distH : Fn
q × Fn

q → N,
and the Lee distance, distL : Fn

q × Fn
q → N, are defined as:

∀x,y ∈ Fn
q , x = (x0, x1, . . . , xn−1), y = (y0, y1, . . . , yn−1),

distH(x,y) := |{i ∈ {0, 1, . . . , n− 1} | xi ̸= yi}|,

distL(x,y) :=
n∑

i=1

min(|xi − yi|, q − |xi − yi|).

Figure 1.5: Linear encoding in the Hamming metric/Lee metric for q = 3,
k = 1, and n = 2

4In the unit distance graph, each vertex represents an element of a metric space, and each
edge connects two elements at distance one in the given metric space.
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Weight function Given a distance function, we can easily derive a cor-
responding weight function, denoted as wt(·), and defined as the distance of
any vector from the origin of the vector space. We thus obtain the following
definitions of the Hamming weight and the Lee weight.

Definition 1.2.3 (Hamming and Lee weights). Let n ∈ N, q be a prime
number, and Fn

q be a finite dimensional vector space. The Hamming weight,
wtH : Fn

q → N, and the Lee weight, wtL : Fn
q → N, are defined as:

∀x ∈ Fn
q , x = (x0, x1, . . . , xn−1),

wtH(x) := |{i ∈ {0, 1, . . . , n− 1} | xi ̸= 0}|,

wtL(x) :=
n∑

i=1

min(xi, q − xi).

Error detecting and error correcting capabilities

The minimum distance between two different codewords is called the mini-
mum distance of a code.5 Given the linearity of the code, the minimum dis-
tance can be defined equivalently as the minimum weight of non-zero code-
words. More formally, the minimum distance, d ∈ N, is given as:

d := min
x,y∈C
x ̸=y

dist(x,y) = min
x,y∈C
x ̸=y

wt(x− y).

This parameter of a linear code can be regarded as an implicit measure of
the error-detecting capability of the code. The reasoning behind it is the fol-
lowing. Let us observe a code with a distance strictly greater than t, i.e. d > t,
for some t ∈ N. Let us then assume that a receiver obtains a potentially noisy
codeword c̃ that is at distance t from the closest codeword c. We note that,
by the definition of the minimum distance, the obtained codeword cannot be
valid as it is at a distance less than d from a valid codeword. Therefore, we
conclude that c̃ is noisy, i.e. it contains an error. Following a similar line rea-
soning, we can see that one can detect an error in c̃ if dist(c̃, c) < d. Given
that c̃ = c+ e and that the code is linear, we can reformulate this condition

5Given that the metric space we observe is finite, such a minimum always exists.
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to dist(c̃, c) = dist(c̃ − c,0) = dist(e,0) = wt(e) < d. This statement is
expressed more succinctly in the following proposition.

Proposition 1.2.1 (Error-detecting capability). Let us fix a weight func-
tionwt(·). A linear code C with the minimum distance d can detect an error
e when its weight is smaller than d, i.e. wt(e) < d.

Furthermore, if we want to be able to correct errors (instead of only de-
tecting them), we would need to increase the minimum distance even more,
as expressed via Proposition 1.2.2.

Proposition 1.2.2 (Error-correcting capability). Let us fix a weight func-
tion wt(·). A linear code C with the minimum distance d can correct an
error e when its weight is smaller than ⌊d−1

2
⌋, i.e. wt(e) ≤ ⌊d−1

2
⌋.

Rigorous proofs of these propositions can be found in coding theory re-
sources, such as [RU08], and an informal proof of Proposition 1.2.1 is already
given when we explained the reasoning behind the error-detecting capabil-
ity of a code. An informal proof of Proposition 1.2.2 goes as follows. Let us
imagine that around each codeword in the metric space corresponding to Fn

q

and a distance function dist(·) we have a ball of radius ⌊d−1
2
⌋ and that each

ball is centered around a corresponding codeword. Notice here that, given
that the minimum distance is d, the two balls cannot overlap as the closest
centers are at a distance d that is strictly greater than 2⌊d−1

2
⌋. By minimum

distance decoding, each of the noisy codewords lying in any of these balls will
be decoded as the center of the ball, as it will be its closest valid codeword.
So we have that any noisy codeword at the distance at most ⌊d−1

2
⌋ from the

center of any of these balls is correctable. Namely, if dist(c, c̃) < ⌊d−1
2
⌋, the

error is correctable. Again, by the linearity of the code and additivity of the
noise, we have that dist(c, c̃) = dist(c̃ − c,0) = wt(c̃ − c) = wt(e), so the
condition translates into wt(e) < d/2.

Bounds on codes

Knowing that the minimum distance of a code is an implicit measure of its
error-detecting and error-correcting capability, we would like to design a
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code with a distance as high as possible so that it can detect/correct as many
as possible errors. The question now is how high it can be. Namely, can
we design a code with an arbitrarily high minimum distance? If so, what
is the efficiency of such a code, i.e., what is the highest code rate we can
expect? The answer to this question is given by so-called bounds on codes.
There are numerous bounds that have been proven over the years, but here
we will consider only two of them, namely, the Gilbert-Varshamov bound and
the Hamming bound, that are relevant in our context. The statement of these
bounds is given by the following two theorems.

Theorem 1.2.1 (Gilbert-Varshamov bound (for linear codes)). Let q be
a primer number, let d, n ∈ N satisfying d < n, and let dist(·) be an
arbitrary distance function. There exists a linear code C with alphabet size
q, code length n, minimum distance d, and code rate R ∈ [0, 1] satisfying:

R ≥ 1−
logq(volq(n, d− 1))− 1

n
,

where volq(n, d − 1) ∈ N denotes a volume of a ball of radius d − 1 in a
vector space Fn

q equipped dist(·).

The theoremwas originally proven independently by Gilbert in 1952, and
Varshamov in 1957, and some simplified versions of these proofs can be found
in the aforementioned coding theory sources. Less formally, the theorem
states that, in the metric space of our choice, we can fix the alphabet size, q,
the code length, n, and the minimum distance of a code, d, and always obtain
a code of the rate at least, R, given by the Gilbert-Varshamov bound. The
theorem thus basically states a possible result and provides us with a lower
bound on the code rate. This theoremwas originally proven for the Hamming
distance but proofs of this statement (eg. in [Deb23]), can be easily adapted
to general distance functions. The question then is whether there exists an
impossibility result that states the upper bound on the code rate for a fixed
minimum distance. An answer is given in the following theorem.

Theorem 1.2.2 (Hamming bound). Let q be a prime number, let d, n ∈ N
satisfying d < n, and let dist(·) be an arbitrary distance function. The code
rate R ∈ [0, 1] of a linear code C with alphabet size q, code length n and

12
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minimum distance d, is upper-bounded:

R ≤ 1−
logq(volq(n,

d−1
2
))

n
,

where volq(n, d−1
2
) ∈ N denotes a volume of a ball of radius (d − 1)/2 in

a vector space Fn
q equipped with a distance function dist(·).

Less formally, what the Hamming bound states can be proven as follows.
Let us observe a metric space defined over a vector space Fn

q and a distance
function dist(·). Let then C be a linear code of the length n, dimension k,
and distance d, defined over the given vector space. Around each codeword
c ∈ C, we then take a ball of radius d−1

2
, centered at the codeword c. Notice

here that, by definition of the minimum distance, the centers of the balls are
at the distance of at least d, so none of these balls overlap. Therefore, the
overall volume of the balls is given as qk volq(n, d−1

2
), where volq(n, d−1

2
) ∈ N

denotes a volume of a ball of radius (d−1)/2 in a vector space Fn
q . The overall

volume needs to be smaller than the volume of the whole vector space Fn
q ,

given as qn, so we obtain the following inequality:

qk volq(n,
d− 1

2
) ≤ qn,

which yields the expression given in Theorem 1.2.2. The theorem thus basi-
cally states an impossibility result and provides us with an upper bound on
the code rate.

The question now is how big is the gap between the two bounds presented
above, namely, the lower bound given in Theorem 1.2.1 and the upper bound
given in Theorem 1.2.2. Alternatively, how can we find the best trade-off
between the code rate and theminimumdistance? To answer these questions,
we would need first to be able to calculate the volume of a ball in an arbitrary
metric space.

Ball volume Let us first recall a definition of a ball. A ball Bq(x, r), for
n, r ∈ N, is a set of vectors at distance at most r from some point x ∈ Fn

q in a
vector space equipped with a distance function dist(·). More formally, a ball
Bq(x, r) is given by the following expression:

Bq(x, r) := {y ∈ Fn
q | dist(x,y) ≤ r}.

13
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Less formally, a ball in a Hamming/Lee metric space is depicted in 1.6, where
cyan dots represent vectors of a ball centered at vector denoted as x.

x

Figure 1.6: Hamming/Lee ball for q = 3, n = 2, and r = 1

Hamming ball In the case of the Hamming metric space, calculating the
volume of a ball comes down to counting the number of vectors with a cer-
tain number of positive entries. Therefore, the ball volume, volq(·), can be
expressed as:

volq(n, d− 1) =
d−1∑
i=0

(
n

i

)
(q − 1)i,

where
(
n
i

)
denotes a binomial coefficient calculated as

(
n
i

)
:= n!

i!(n−i)!
.

For other distance functions, including the Leemetric, calculating the vol-
ume of a ball is a more involved task. In the next chapter, we suggest an ap-
proach for calculating the ball volume for the class of the weight functions
that we refer to as the elementwise weight functions. We thus generalize the
calculation of the ball volume for different metric spaces based on these func-
tions.

Decoding methods

As discussed previously, the most intuitive decoding strategy is to say that
the original message corresponds to a codeword with the shortest distance
from the received, potentially noisy, codeword. This reasoning yields the
following decoding method.

Method 1.2.1 (Minimum distance decoding). Given a noisy codeword c̃,
a linear code C and a distance function dist(·), find a codeword c ∈ C such

14
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that:
dist(c̃, c) := min

y∈C
dist(c̃,y).

(a) Uniquely decodable

?

? ?

(b) Non-uniquely decodable

Figure 1.7: Decoding in the Hamming metric/Lee metric for q = 3, k = 1,
and n = 2

Syndrome decoding Alternatively, given that the noisy codeword can be
expressed as c̃ = c+ e, decoding can be seen as a search for the error vector
e of the minimum weight. The question then is how we can make use of
this fact. The answer to it is given through a method known as syndrome
decoding. To describe this method, we first need to introduce two additional
coding theory notions, the first one being a notion of parity-check matrix.
Namely, a matrixH ∈ F(n−k)×n

q that satisfiesGHT = 0, where 0 is a matrix
of all zeros in Fk×(n−k)

q , is called a parity-check matrix. We thus obtain an
alternative definition of a linear code (equivalent to Definition 1.2.1).

Definition 1.2.4 (Linear code). Let q be a prime number and k, n be pos-
itive integer values satisfying n ≥ k. Let Lin : Fn

q × F(n−k)×n
q → Fn−k

q be
a linear map defined as Lin(c̃,H) := c̃HT = s, for some H ∈ F(n−k)×k

q ,
c̃ ∈ Fn

q , and s ∈ Fn−k
q . A linear code, C, is the kernel of Lin(·), given as:

C := {c ∈ Fn
q | cHT = 0}.

Now, let us make use of this alternative definition and start by calculating the
so-called syndrome, s ∈ Fn−k

q , corresponding to the noisy codeword. Assum-
ing the noise is additive and that the code is linear, we obtain

s := c̃HT = (xG+ e)HT = xGHT + eHT = eHT .
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Finding the closest valid codeword then comes down to finding the error of a
minimum weight that corresponds to the syndrome, hence, the name of the
method.

Method 1.2.2 (Syndrome decoding). Given a noisy codeword c̃, a linear
code C, defined by its parity-check matrix H, and a weight function wt(·),
first calculate the syndrome s as:

s = c̃HT ,

and then find an error e satisfying:

wt(e) = min
ẽ∈Ẽ

wt(ẽ), Ẽ := {ẽ ∈ Fn
q | ẽHT = s}.

As this decoding method is at the core of the research presented in this
thesis, we will focus on it during the rest of this thesis. More precisely, in
Chapter 2, we will explain how this method can be translated into a so-called
the syndrome decoding problem that is used as a basis of different crypto-
graphic protocols including ours. In Chapter 3, we will give a more detailed
explanation of how efficiently this method can be used for decoding a partic-
ular class of linear codes called random linear codes, which we will describe
in short. Finally, in Chapter 4, we will give an example of how the syndrome
decoding problem can be applied to the design of cryptographic protocols.

Good, bad, and random codes

Given all that we have seen so far, what would be a good choice for a linear
code? Namely, how should we choose a generator matrix (or, equivalently,
a parity check matrix)? As we already discussed, from the coding theory
perspective, we should search for a code that maximizes the trade-off be-
tween the code rate and theminimum distance. Given the Gilbert-Varshamov
bound, for a given minimum distance, we know what rate we can always
achieve. The Hamming bound, on the other hand, tells us what is impossible
to achieve. The gap between the two leaves space for code designers to find
a sweet spot between what we can always achieve and what is the best we
can hope for. From what we learned in practice, finding this sweet spot is not
an easy task. Moreover, one can argue that even if we find a linear code with
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a fairly good trade-off, it does not necessarily mean that we have an efficient
algorithm to decode it. What we have also learned from practice is that codes
with good decoding algorithms are even harder to find.

From a cryptographic perspective, however, this is good news. Namely,
in cryptography, we often search for codes that have no efficient decoding
algorithms. A class of codes that is particularly interesting from the crypto-
graphic perspective is the class of so-called random codes. In the case of linear
codes, random codes are those obtained by sampling a generator matrix (or a
parity-check matrix) uniformly at random from Fk×n

q (or from F(n−k)×n
q in the

case of the parity-check matrix). As codes with no particular structure, apart
from their inherent linearity, we learned from practice that these have a wide
range of implementations in cryptography. This is mainly due to the fact that
it is extremely hard to find an efficient decoding algorithm for decoding these
codes, as we will elaborate on in Chapter 3. We remark here, however, that
it is not strictly necessary for a code to be random to yield a good basis for a
cryptographic protocol. Famous examples of cryptographic protocols based
on problems of decoding linear codes, such as [McE78], would contradict that
claim. In Chapter 4, we will thus elaborate a bit more on how we can benefit
from the inherent randomness of the codes we use for our protocol design.

Glossary of linear codes

We here give a brief recapitulation of the basic terms introduced in this chap-
ter that will be useful for the rest of this thesis:

alphabet, Fq - a finite set of characters; a finite field

alphabet size, q ∈ N - the size of an alphabet; the size of the finite field
corresponding to an alphabet

code, C ⊆ Fn
q - a set of encoded messages; a linear subspace of a finite-

dimensional vector space containing all the codewords

code dimension, k ∈ N - the length of a message; the dimension of a
message space

minimum distance, d ∈ N - a minimal distance between two distinct
codewords; an implicit measure of the error-detecting and error-correcting
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capability

code length, n ∈ N - the length of encoded messages; the dimension of
the vector space containing all the codewords and noisy codewords

code rate, R ∈ [0, 1] - the proportion of code dimension and the code
length; an implicit measure of the code efficiency

codeword, c ∈ Fn
q - an encodedmessage; an element of the code; a vector

in the code sub-space; an output of the encoding

encoding, Enc(·) : Fk
q → Fn

q - adding redundancy to the message; a
linear map that maps a message into a codeword

Gilbert-Varshamov bound, GV - an upper bound on the highest code
rate of a code with a fixed minimum distance

error, error vector, e ∈ Fn
q - a noise; a random vector in a vector space

of dimension n

generator matrix,G ∈ Fk×n
q - a matrix that defines the encoding

message, m ∈ Fk
q - an array of characters; a vector in a message space;

an input of an encoding algorithm

message space, Fk
q - a set of all the messages; a finite-dimensional vector

space containing all the messages

noisy codeword, c̃ ∈ Fn
q - an encodedmessage with additive noise added

to it; a codeword with error

parity-check matrix, H ∈ F(n−k)×n
q - a matrix that defines a linear en-

coding

syndrome, s ∈ Fn−k
q - a product of the parity check matrix and the error

vector
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1.3 Computational models and algorithms

A computational model can be seen as an abstract description of general-
purpose computational devices that have common internal logic and come
with the same level of computing power (scaled with the size of the computa-
tional devices). In this thesis, we are interested in two types of computational
models, namely, the classical circuit model and the quantum circuit model.
The first one describes classical (digital) general-purpose computational de-
vices, also known as classical computers, which are considered to be today’s
state-of-the-art technology. The quantum circuit model, on the other hand,
describes general-purpose quantum computational devices that promise to
achieve a computational advantage over classical computers if technological
development overcomes practical difficulties in creating full-scale (or at least
middle-scale) quantum devices. In the rest of this section, we will present an
overview of the fundamental concepts describing the two models focusing
on their comparison.

1.3.1 Basic units of information

Classical bits Classical computers operate on boolean values, taken from
the set {0, 1}. We thus take the basic unit of classical information to be the
bit that can take a value of either 0 or 1. The overall data then can be repre-
sented as a sequence of zeros and ones, or, more mathematically, as a vector
in {0, 1}n, where n ∈ N. A computation then can be presented as evaluating
a vectorial boolean function, f : {0, 1}k → {0, 1}n, k, n ∈ N, that takes as an
input a vector in {0, 1}k, performs logical operators such as ¬,∧,∨,⊕, etc.
on it, and returns the output in {0, 1}n.

Quantum bits (qubits)

The basic unit of information in quantum computing is called quantum bit or,
simply, qubit. In terms of linear algebra, a qubit can be described as a vector
(point) on the unit-distance sphere in the two-dimensional complex space,
C2. Similarly, multiple qubits can be described as a point on a unit-distance
sphere in the higher-dimensional complex space, C2n , where n ∈ N is the
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number of qubits. Each qubit (or multi-qubit) thus can be represented using
a basis of the corresponding complex vector space.

Standard basis One of the most common basis choices is an orthonormal
basis known as the standard basis. In the case of C2, it is formed by vectors
|0⟩ , |1⟩, defined as:

|0⟩ :=
(
1
0

)
, |1⟩ :=

(
0
1

)
,

where |·⟩ is the so-calledDirac or the bra-ket notation of vectors that are com-
monly encountered in quantum computing and, more generally, in quantum
mechanics. Using the standard basis, we can present an arbitrary single-qubit
quantum state, |ψ⟩ ∈ C2, as:

|ψ⟩ = α0 |0⟩+ α1 |1⟩ ,

where α0, α1 ∈ C are the so-called complex amplitudes that need to satisfy
|α0|2 + |α1|2 = 1. If we now want to present a multi-qubit state, we need to
extend our standard basis to C2n . This is done through the tensor product,
denoted by ⊗, of basis vectors in C2. For example, for two-qubit states, we
obtain the standard basis given as:

|0⟩ ⊗ |0⟩ ≡ |0, 0⟩ ≡ |00⟩ =
(
1
0

)
⊗
(
1
0

)
=


1
0
0
0

 ,

|0⟩ ⊗ |1⟩ ≡ |0, 1⟩ ≡ |01⟩ =
(
1
0

)
⊗
(
0
1

)
=


0
1
0
0

 ,

|1⟩ ⊗ |0⟩ ≡ |1, 0⟩ ≡ |10⟩ =
(
0
1

)
⊗
(
1
0

)
=


0
0
1
0

 ,

|1⟩ ⊗ |1⟩ ≡ |1, 1⟩ ≡ |11⟩ =
(
1
0

)
⊗
(
1
0

)
=


0
0
0
1

 .
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Similarly, for an arbitrary number of qubits, we obtain the standard basis
comprising of following vectors:

|00 . . . 0⟩ =



1
0
0
0
...
0
0
0
0


, |00 . . . 1⟩ =



0
1
0
0
...
0
0
0
0


, . . . , |111⟩ =



0
0
0
0
...
0
0
0
1


.

In the standard basis of C2n , we can then present an n-qubit state, |ϕ⟩ ∈ C2n ,
as:

|ϕ⟩ =
∑

i∈{0,1}n
αi |i⟩ ,

where αi ∈ C, i ∈ {0, 1}n, are coefficients satisfying
∑

i∈[n] |αi|2 = 1.

Hadamard basis Another commonly used basis is the so-called Hadamard
basis, formed by the following two basis vectors:

|+⟩ := 1√
2

(
1
1

)
=
|0⟩+ |1⟩√

2
, |−⟩ := 1√

2

(
1
−1

)
=
|0⟩ − |1⟩√

2
.

It is not hard to verify that this basis is also orthonormal and that the quantum
state |ψ⟩, previously given via the standard basis, can be presented via the
Hadamard basis, as :

|ψ⟩ = β0 |+⟩+ β1 |−⟩ ,

where β0, β1 ∈ C satisfy:

β0 =
α0 + α1√

2
, β1 =

α0 − α1√
2

.

As in the case of the standard basis, the Hadamard basis can be extended
to a multi-qubit basis using the tensor product. For the two-qubit state, the
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Hadamard basis comprises the following vectors:

|+⟩ ⊗ |+⟩ ≡ |+,+⟩ ≡ |++⟩ = 1√
2

(
1
1

)
⊗ 1√

2

(
1
1

)
=

1

2


1
1
1
1

 ,

|+⟩ ⊗ |−⟩ ≡ |+,−⟩ ≡ |+−⟩ = 1√
2

(
1
1

)
⊗ 1√

2

(
1
−1

)
=

1

2


1
1
1
−1

 ,

|−⟩ ⊗ |+⟩ ≡ |−,+⟩ ≡ |−+⟩ = 1√
2

(
1
−1

)
⊗ 1√

2

(
1
1

)
=

1

2


1
−1
1
1

 ,

|−⟩ ⊗ |−⟩ ≡ |−,−⟩ ≡ |−−⟩ = 1√
2

(
1
−1

)
⊗ 1√

2

(
1
−1

)
=

1

2


1
−1
1
−1

 .

The Hadamard basis ofC2n , where n ∈ N, is then obtained by combining the
basis vectors {|bi⟩}i∈2n , given as:

|b0⟩ := |++ · · ·+⟩ = 1

2n/2



1
1
1
1
. . .
1
1


, |b1⟩ := |++ · · · −⟩ = 1

2n/2



1
1
1
1
. . .
1
−1


, . . . ,

|b2n−2⟩ := |− − · · ·+⟩ =
1

2n/2



1
−1
1
−1
. . .
1
1


, |b2n−1⟩ := |− − · · · −⟩ =

1

2n/2



1
−1
1
−1
. . .
1
−1


.
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An n-qubit state, |ϕ⟩ ∈ C2n , with coefficients βi ∈ C, i ∈ {0, 1}n, satisfying∑
i∈{0,1}n |βi|2 = 1, is then given as:

|ϕ⟩ =
∑

i∈{0,1}n
βi |bi⟩ .

As in the one-qubit case, we can derive the coefficients of {βi}i∈{0,1}n from
the coefficients {αi}i∈{0,1}n representing the n-qubit state |ϕ⟩ in the standard
basis. For each i ∈ {0, 1}n, we thus obtain:

βi =

∑
j∈{0,1}n(−1)i·jαj

2n/2
,

where i · j is the bitwise dot product.

1.3.2 Basic processing units

Logic gates Logic gates (or, simply, gates) are the basic processing units in
the classical circuit model. As each gate corresponds to a logical operator,
on the input of a gate, we have entries of the corresponding logical operator,
and on the output the result of the operation. Some of the common gates are
depicted in Figure 1.8, where all x0, x1 ∈ {0, 1} represent inputs and each
y0 ∈ {0, 1} is an output of a gate.

x0 y0 = ¬x0

x0
x1

y0 = x0 ∧ x1

x0
x1

y0 = x0 ∨ x1

x0
x1

y0 = x0 ⊕ x1

Figure 1.8: Classical NOT, OR, AND, and XOR gates.

Quantum gates

As in the case of classical computing, the basic processing unit in the quantum
case is a logic gate, commonly referred to as either quantum logic gate, or
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simply quantum gate. In the classical case, logical gates correspond to logical
operators acting commonly on one-bit or two-bit inputs. In the quantum case,
on the other hand, each logic gate corresponds to a unitary operator that acts
on one qubit or multiple qubits.

Single-qubit quantum gates Let us denote by U a unitary operator that
takes one qubit quantum state as an input, |ψin⟩ ∈ C2, and outputs a one-
qubit quantum state as an output, |ψout⟩ ∈ C2. In the standard quantum
computing notation, the action of the corresponding quantum gate is then
given as:

|ψin⟩ U |ψout⟩

Figure 1.9: One-qubit quantum gate.

To be consistentwith a vector representation of quantum states, we present
each unitary operator as a unitary matrix in the computational basis that cor-
responds to the representation of a qubit processed by the gate. Applying a
quantum gate U to a qubit |ϕin⟩ thus comes down to calculating the matrix
inner product between a vector representation of the qubit and a unitary ma-
trix U ∈ C2×2 corresponding to the quantum gate. The output |ψout⟩ is then
obtained as:

|ϕout⟩ = U |ϕin⟩ .

Without loss of generality, we choose to represent both qubits and quantum
gates in the standard basis.

Multi-qubit quantum gates Let then U be a unitary operator taking as
an input a n-qubit state ϕin ∈ C2n and outputting ϕout ∈ C2n . If we take
n = 3, the action of the corresponding quantum gates is presented as:

|ϕin⟩ U |ϕout⟩ ≡
3 3|ϕin⟩ U |ϕout⟩

Figure 1.10: Multi-qubit quantum gate.
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We can generalize the matrix representation of unitary operators from
operators acting on a single qubit to multi-qubit operators. We thus obtain a
unitary matrix U ∈ C2n⊗2n corresponding to the quantum operator. Apply-
ing the corresponding quantum gate U to a qubit |ψin⟩ then comes down to
calculating the matrix inner product between a vector representation of the
qubit and the unitary matrix U . As in the single-qubit case, the output |ϕout⟩
is then obtained as:

|ϕout⟩ = U |ϕin⟩ ,
and we can choose to represent both qubits and quantum gates in the stan-
dard basis.

Quantum gates examples

Pauli gates The four gates depicted in Figure 1.11, along with the corre-
sponding unitary matrices, are known as (single-qubit) Pauli gates.

I I :=

(
1 0

0 1

)
X X :=

(
0 1

1 0

)
Y Y :=

(
0 −i
i 0

)
Z Z :=

(
1 0

0 −1

)
Figure 1.11: Pauli gates.

When acting onmulti-qubits, these gates are combined using tensor prod-
uct into the multi-qubit Pauli gates, Pn, given as:

Pn := {U1 ⊗ U2 ⊗ · · · ⊗ Un | Ui ∈ {I,X, Y, Z}}.

Hadamard gates The single-qubit Hadamard single is depicted in Figure
1.12, along with the corresponding unitary matrix. We observe here that
the Hadamard gate effectively rotates the one-qubit standard basis into the
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H H := 1√
2

(
1 1

1 −1

)
Figure 1.12: Single-qubit Hadamard gate.

one-qubit Hadamard basis. Similarly, by applying the Hadamard gate on
each qubit of a multi-qubit state expressed via the standard basis, we obtain
the Hadamard-basis representation of a multi-qubit state. The effect of the
Hadamard basis on the single-qubit standard basis state is depicted in Figure
1.13.

|0⟩ H |+⟩ |1⟩ H |−⟩

Figure 1.13: Standard to Hadamard basis.

The effect on the multi-qubit Hadamard gate on a multi-qubit quantum state,
expressed via the standard basis, is depicted in Figure 1.14. Here the states

|ψ⟩ :=
∑

i∈{0,1}n αi |i⟩ H |ϕ⟩ :=
∑

i∈{0,1}n βi |bi⟩

Figure 1.14: Standard to Hadamard basis.

|ψ⟩ , |ϕ⟩ ∈ C2n are expressed via the standard basis and the Hadamard basis,
respectively, and the relation between the coefficients of the two representa-
tions is given by:

βi =

∑
j∈{0,1}n(−1)i·jαj

2n/2
.

We observe here that the basis change, from the standard basis of state |ψ⟩
to the state |ϕ⟩ in the Hadamard basis, thus comes down to applying a single
multi-qubit Hadamard gate.

Clifford gates We now introduce a set of gates comprising of the elements
from the so-called Clifford group, hence the name Clifford gates. Being part of
a group, each gate in the set can be obtained as a combination of other gates
within the set. Moreover, as the generators of the group are the Hadamard
gate, H , the phase gate, S, and the controlled-not gate, CNOT , each gate in
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the set can be obtained as a combination of these three gates. The three gates,
along with the corresponding unitary matrices, are presented in Figure 1.15.

H H := 1√
2

(
1 1

1 −1

)
S P :=

(
1 0

0 i

)

CNOT :=


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


Figure 1.15: Clifford group generators.

The set of Clifford gates is considered to be interesting for various reasons.
First, it contains the Pauli gates. To see that, we observe that:

I = HH,Z = SS,X = HZH, Y = SXS†,

where † denotes the Hermitian conjugate. Since all the Pauli gates can be
generated using only H and S, which are generators of the Clifford group,
the four Pauli gates belong to the Clifford group, too. These gates can be seen
as a natural generalization of the logical operator ¬ and, as such, regarded as
a valuable asset in the computational model. In addition to that, the group
contains the Hadamard and the controlled-not gates. These gates are seen as
rather useful because they appear to capture the inherently quantum nature
of the quantum circuit model. Namely, the two gates combine to produce the
so-called entanglement of qubits, which is an inherently quantum effect.

Nevertheless, despite the indications that this set should suffice for ex-
pressing the computational advantage of the quantum circuit model over the
classical one, it turns out that, in fact, it is not true. Namely, it can be shown
that a quantum circuit consisting of the Clifford gates only can be efficiently
simulated by a classical circuit [Got98]. However, as we will show in short,
this gate set is just one gate away from the universal quantum gate set, which
yields a model that is strongly believed to have a computational advantage
over the classical model.
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Measurement

We now introduce the only non-reversible processing units encountered in
the quantum circuit model, called measurements. We use measurement to
access the result of a computation that otherwise, by postulates of quantum
mechanics, would be inaccessible to us. By measuring a quantum state, we
collapse it to one of the basis states that can be represented via classical binary
values, i.e. {0, 1}. The outcome of measurement thus becomes a sequence of
basis states that corresponds to a sequence of (classical) binary values.

In the general theory of quantum computing, there exist different types
of measurements. Here we will present one that is relevant in our context
and which we refer to as ameasurement with respect to a computational basis.
Mathematically speaking, it can be seen as a projection of a quantum state
on the states of a computational basis.

Single-qubitmeasurement In the single-qubit case, themeasurementwith
respect to a basis is calculated as the inner product between the given quan-
tum state and a basis vector. If we now take |ψ⟩ ∈ C2 to be a single-qubit state
to measure, the projections on the vectors in the standard basis are given as:

α0 = ⟨ψ|0⟩, α1 = ⟨ψ|1⟩,

where α0, α1 ∈ C. The state ϕ then can be presented as:

ψ = ⟨ψ|0⟩ |0⟩+ ⟨ψ|1⟩ |1⟩ = α0 |0⟩+ α1 |1⟩ .

The probabilities that ψ collapses to either the basis state |0⟩ or the basis
state |1⟩ i.e. the probabilities of obtaining values 0 and 1 as the outcome of
computation, are calculated as:

|⟨ψ|0⟩|2 = |α0|2, |⟨ψ|1⟩|2 = |α1|2.

Multi-qubit measurement In the multi-qubit case, we discriminate over
two measurements, namely, the partial measurement and the full measure-
ment. In the case of a partial measurement with respect to a computational
basis, we project an n-qubit state onto a subspace of dimensionm ∈ N, m ≤
n, spanned by a subset of the basis states. We thus obtain a new state that
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comprises measured states that collapsed and the rest of the states, which
are not measured strictly speaking but may potentially collapse as we will
explain in short. To obtain the full measurement, we let m = n and thus
measure all the states.

A particularly interesting case occurswhenwe perform a partial measure-
ment on an entangled state. This state is created by combining, for example,
the Hadamard and the CNOT gate, and we can define it as any quantum
state that is not separable. In our linear-algebra interpretation of quantum
computing, this means that we cannot write down a multi-qubit state as a
tensor product of two other states belonging to smaller vector spaces.

|0⟩ H
|00⟩+|11⟩

2
|0⟩

|0⟩ H
|01⟩+|10⟩

2
|1⟩

|1⟩ H
|00⟩−|11⟩

2
|0⟩

|1⟩ H
|01⟩−|10⟩

2
|1⟩

Figure 1.16: Four Bell states.

The most common example of entangled states is the so-called Bell states,
presented in Figure 1.16. We observe here that indeed none of these states
can be written down as a tensor product of two single-qubit states. Moreover,
after measuring the first qubit of any |ψi⟩ , i ∈ [3], the measurement of the
second qubit is already predetermined. For example, if the outcome of the
measurement of the first qubit of |ψ0⟩ is |0⟩, we know that the measurement
of the second qubit will always be |0⟩. On the other hand, if the measurement
of the first qubit gives |1⟩ as the outcome, the second state will automatically
collapse to state |1⟩, too. The same goes for measuring any other |ψi⟩. This
effect is widely exploited in quantum protocol design and quantum algorithms,
and we will see some examples of how it can be used in the rest of the section.

1.3.3 Circuits

Boolean circuits Different logic gates, with the corresponding inputs and
outputs, can be combined into a so-called boolean circuit that evaluates a
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boolean function. An example of a circuit that evaluates a boolean function
f : {0, 1}k → {0, 1}n is given in Figure 1.17, where the input of a circuit is
given as (x0, x1, x2) ∈ {0, 1}3 and the output y0 ∈ {0, 1} is evaluated as:

y0 = f(x0, x1, x2) = (¬(x0 ∨ x1))⊕ (¬x0 ∧ (x1 ∨ x2)).

y0 = f(x0, x1, x2)

x0

x2

x1

Figure 1.17: Example of a boolean circuit.

Quantum circuits

Similarly to classical gates, quantum gates can be combined into a quantum
circuit. An example of a quantum circuit that combines different single-qubit
and multi-qubit gates is given in Figure 1.18. The example illustrates the gen-

|ψ0⟩ U0

U2

U3 b

|ψ1⟩ U1 |ϕ1⟩

Figure 1.18: A quantum circuit.

eral pattern of most of the quantum circuits: the input, given as qubit states
|ψ0⟩ and |ψ1⟩, the internal computation, given by unitaries U0, U1, U2 and U3,
and the output given as a classical state b and a qubit state |ϕ1⟩. The number
of input/output qubits, of course, varies, as well as the internal logic deter-
mined by the choice of the unitaries to use, but the general pattern remains
the same for most of the quantum circuits.
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We observe here that the overall action of a quantum circuit, up to mea-
surement, can be presented by a unitary matrix that determines the internal
logic of the whole circuit. Let us denote this unitary matrix by U . In the
circuit example given in Figure 1.18, we then have:

U = (U3 ⊗ I)U2(U0 ⊗ U1).

Universal gate set From what we have seen so far, it appears that the
choice of the set of available logical/quantumgates determineswhich boolean
circuits can be evaluated. An intuition says that amore diverse gate set should
imply more diverse boolean circuits. Nevertheless, it can be shown that we
can construct a gate set of finite size with logical gates that can be combined
into a boolean circuit that calculates arbitrary boolean functions. We call such
a set a universal (classical) gate set. Similarly, from Solovay–Kitaev theorem,
we know that from a properly chosen set of quantum gates, we can construct
a quantum circuit that approximates (arbitrarily well) any unitary.

Two prominent examples of (classical) universal gate sets are {NOT,AND}
and {NOT,OR}. These sets, in fact, can be used to form the so-called uni-
versal gates by combining the whole set into just one gate. We thus obtain
NAND and NOR gates, each of which alone can form a circuit that can eval-
uate an arbitrary boolean function. As already indicated, the set of Clifford
gates, though not universal on its own, can be extended to yield a universal
set of quantum gates. It can be shown that, in fact, the union of the Clifford
set, and any other gate that is not in the Clifford group form a universal set
of quantum gates [NC16]. For example, the T gate, depicted in Figure 1.19,
along with the Clifford gates forms a universal set. More generally, the T gate
in the universal set can be replaced with almost any phase-shift, depicted in
1.20, for which θ ∈ [0, 2π].

T T :=

(
1 0

0 eiπ/4

)
.

Figure 1.19: The T gate.

The question which now comes naturally is how do we choose which
universal gate set to use? It can be shown that different choices of univer-
sal gate sets provide different trade-offs between the number of gates in the
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P P (θ) :=

(
1 0

0 eiθ

)
.

Figure 1.20: The P gate.

gate set (i.e. the number of physical gates that need to be fabricated) and the
so-called circuit complexity, which will be explained in short. In addition to
that, to decide which gate set to choose, we would need to take into account
the efficiency of the physical implementation of different gates. In this thesis,
however, we do not go so deeply into the circuit implementation, and we just
state that there exists a universal gate set (arbitrary one) that enables one to
calculate an arbitrary boolean function/unitary. We thus do not make any
assumption on the optimality of a universal gate set implementation. With a
given gate set, the question now is how efficiently we can calculate boolean
functions (resp. unitaries) by evaluating boolean circuits (resp. quantum cir-
cuits).

Circuit complexity The most relevant property for circuit implementa-
tion is its complexity. It can be evaluated either through the overall number of
gates in the circuit or through the so-called circuit depth that counts the num-
ber of gates on the longest path from the input to the output of the circuit.
Both of these measures can be related to the time necessary for performing
a calculation, and, as such, these are taken as basic measurements of circuit
efficiency.
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1.3.4 Algorithms

So far, we have identified each computationwith a circuit calculating a boolean
function/unitary. In the classical setting, we can move to a higher level of ab-
straction and identify each computation with a finite sequence of instructions
that correspond to a part of a circuit. Though certain quantum algorithms,
like quantum walks that we will mention a bit later in this subsection, can
also be seen as a higher-level abstraction of quantum circuits, the quantum
algorithms relevant to the context of this thesis, as well as most of the well-
known examples of quantum algorithms, can be presented simply as quantum
circuits. We will now present a few examples of these algorithms.

Quantum algorithms for promise problems

The first example is an algorithm that is used for solving a specific promise
problem that we will explain in short. It is not used in this thesis but we
present it here because it is considered to be the first example to illustrate the
computational advantage of quantum computing over classical computing.
In addition to that, different quantum algorithms that came after are based
on this algorithm. As such, it is considered to be one of the crucial steps in
the development of quantum computing.

Deutsch’s algorithm Deutsch algorithm aims to solve a computational
task of deciding if a given function f : {0, 1} → {0, 1} is either constant
or balanced. It does so through the function calls, that we refer to as queries,
which enable us to learn the type of the function. Namely, if the function is
constant, we have that ∀x, y ∈ {0, 1}, f(x) = f(y). On the other hand, if the
function is balanced, then ∀x, y ∈ {0, 1}, f(x) ̸= f(y).

To see the promised advantage of the Deutsch algorithm over classical
algorithms, let us first consider what would be the required number of calls
that a classical algorithm makes to function f(·) in order to determine its
nature. It turns out that any classical algorithm needs to make at least two
calls to decide if f(·) is constant or balanced. In the quantum setting, on
the other hand, as shown by Deutsch, after just one call to the unitary that
corresponds to f(·), the algorithm can perfectly discriminate if the function
is constant or balanced.
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To see that, let us observe the Deutsch algorithm presented in Figure 1.21.
First, we notice that in order to make the function f(·) reversible, and thus

|0⟩ H

Uf

H

|1⟩ H

1 2 3 4

Figure 1.21: Deutsch algorithm.

computable by a quantum circuit, we need to encode it as a unitary. We
denote this unitary by Uf and define it as follows:

Uf |x, y⟩ = |x, y + f(x)⟩ ,

where x, y ∈ {0, 1}. We can then evaluate f(·) by applying Uf to an input
|ψ⟩ ∈ C22 . The unitary Uf is commonly referred to as the oracle, and we
say that we query it by evaluating the result when the oracle is applied to a
certain input |ψ⟩. The goal of the quantum algorithm is then to decide if f(·)
is constant or balanced by making as small as possible number of queries to
the oracle Uf .

Let us now analyze the Deutsch algorithm by observing the quantum
states at each time step of the algorithm. We take as an input the state |ψ⟩ =
|01⟩ and denote the quantum state of the two qubits atmoment t ∈ {1, 2, 3, 4}
by |ψt⟩. After the first two Hadamard gates, we thus obtain the state |ψ1⟩
given as:

|ψ1⟩ =
|00⟩ − |01⟩+ |10⟩ − |11⟩

2
.

After applying the unitary Uf to the state |ψ1⟩, we obtain the state |ψ2⟩ given
as:

|ψ2⟩ = Uf |ψ1⟩ =
Uf |00⟩ − Uf |01⟩+ Uf |10⟩ − Uf |11⟩

2

=
|0, 0⊕ f(0)⟩ − |0, 1⊕ f(0)⟩+ |1, 0⊕ f(1)⟩ − |1, 1⊕ f(1)⟩

2

=
|0, f(0)⟩ − |0, 1⊕ f(0)⟩+ |1, f(1)⟩ − |1, 1⊕ f(1)⟩

2
.
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After applying the final Hadamard gate on the first qubit of the state |ψ2⟩, we
obtain |ψ3⟩ as:

|ψ3⟩ =
|+, f(0)⟩ − |+, 1⊕ f(0)⟩+ |−, f(1)⟩ − |−, 1⊕ f(1)⟩

2
.

Let us now observe what would be the state |ψ3⟩ if the function is constant:

• case 1 - f(0) = f(1) = 0:

|ψ3⟩ =
|+, 0⟩ − |+, 1⟩+ |−, 0⟩ − |−, 1⟩

2

= |+⟩ |−⟩+ |−⟩ |−⟩ =
(
|+⟩+ |−⟩

)
|−⟩ = |0⟩ |−⟩ .

• case 2 - f(0) = f(1) = 1:

|ψ3⟩ =
|+, 1⟩ − |+, 0⟩+ |−, 1⟩ − |−, 0⟩

2

= − |+⟩ |−⟩ − |−⟩ |−⟩ = −
(
|+⟩+ |−⟩

)
|−⟩ = − |0⟩ |−⟩ .

After the measurement, we obtain | ± ⟨0|0⟩|2 = 1, | ± ⟨0|1⟩|2 = 0, which
implies that the algorithm outputs state |0⟩ with probability 1. On the other
hand, if the function is balanced we have:

• case 1 - f(0) = 0, f(1) = 1:

|ψ3⟩ =
|+, 0⟩ − |+, 1⟩+ |−, 1⟩ − |−, 0⟩

2

= |+⟩ |−⟩ − |−⟩ |−⟩ =
(
|+⟩ − |−⟩

)
|−⟩ = |1⟩ |−⟩ .

• case 2 - f(0) = 1, f(1) = 0:

|ψ3⟩ =
|+, 1⟩ − |+, 0⟩+ |−, 0⟩ − |−, 1⟩

2

= − |+⟩ |−⟩+ |−⟩ |−⟩ =
(
− |+⟩+ |−⟩

)
|−⟩ = − |1⟩ |−⟩ .
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After the measurement, we obtain | ± ⟨1|0⟩|2 = 0, | ± ⟨1|1⟩|2 = 1, which
implies that the outcome of the algorithm is |1⟩ with probability 1.

The Deutsch algorithm thus perfectly distinguishes the two cases with
only one query to Uf . As we saw earlier, classically we need to make at least
two calls to f(·) to determine if it is constant or balanced. Therefore, the
quantum algorithm achieves an advantage in the number of queries to the
function. The question now is how does the Deutsch algorithm achieve this
advantage? To explain this, we would need to go deeper into the theory of
quantum mechanics which is out of the scope of this thesis. We will thus just
say that the key ingredient in obtaining this speed-up was the proper combi-
nation of the Hadamard gates that enabled the algorithm to take advantage
of two quantum effects known as superposition and interference.

Similar quantum algorithms Some other quantum algorithms can be
seen as a generalization of the Deutsch algorithm to functions with more
inputs/outputs and different promises on the possible outputs. For example,
the Deutsch/ Jozsa algorithm[DJ92] generalizes Deutsch’s algorithm by tak-
ing a function f : {0, 1}n → {0, 1} as input while keeping the promise on
the output unchanged, namely, that the function could be either constant or
balanced. The goal of the algorithm then is to decide whether the function is
constant or balanced. Another example is so-called Simon’s algorithm[Sim97]
that takes as an input a function g : {0, 1}n → {0, 1}n with a promise that
there exists x,y, s ∈ {0, 1}n for which g(x) = g(y) if and only if x = y+ s.
The goal of the algorithm is to find s by querying g(·) the smallest possible
number of times. These algorithms use ideas similar to one of the Deutsch
algorithms and exploit quantum effects such as superposition and interfer-
ence to obtain an advantage over classical algorithms. In the case of the two
above-described algorithms, the advantage is, in fact, rather high, more pre-
cisely, it is exponential in the number of queries in comparison to the best
classical algorithms.

Shor’s algorithm One of the most prominent examples of more evolved
quantum algorithms that follow the same line of reasoning as the previously
introduced Deutsch algorithm is the so-called Shor’s algorithm[Sho94]. Its
significance lies in its ability to solve the so-called integer factorization prob-
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lem and the discrete logarithm problem efficiently6. As these computational
tasks are used as bases of a significant amount of the current state-of-the-
art cryptographic protocols, Shor’s algorithm gave the initial motivations
for the development of a whole new area of cryptography, known as the
post-quantum cryptography/quantum-safe cryptography, which aims to de-
sign protocols resistant to attacks via quantum devices. Most of the current
proposals for quantum-safe protocols thus aim to avoid the attack via Shor’s
algorithm by not introducing promises that can potentially be exploited by
Shor’s algorithm.

Non-promise problems

We will now present a quantum algorithm that, in contrast to the already
described ones, does not require any particular promise on the output of the
function that is taken as the input to the algorithm. In return, the quantum
algorithm provides a smaller but still significant speed-up over classical al-
gorithms solving the same computational task. It was originally introduced
as an algorithm for database search but then found a wide variety of appli-
cations in different areas, including cryptography. In this thesis, we use this
algorithm as the basis of the hybrid quantum-classical approach introduced
in Chapter 3.

Grover’s algorithm What we refer to as Grover’s algorithm (also known
as Grover’s search) is a quantum algorithm that solves the following compu-
tational task. Given a function f : {0, 1}n → {0, 1}, find an x∗ ∈ {0, 1}n
such that f(x∗) = 1. For now, we will assume there exists only one such x∗

that yields f(x∗) = 1, and the goal of the algorithm is to find it.

To see the promised advantage of Grover’s search, let us first see how
many classical calls to f(·) we need to make in order to find x∗ (assuming all
the values of x ∈ {0, 1}n we used for function calls were different). It turns
out that, in the classical setting, the number of queries is lower-bounded by
2n, which implies that, in the worst case, we would need to call f(·) on every
possible input to be sure that we will find the desired x∗. In the quantum
setting, on the other hand, the number of calls to Vf is O(2n/2), which is the

6We will explain what we mean by efficient in the following subsection
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square root of the number of queries that is necessary in the classical case.
We will now explain where the speed-up, obtained by Grover’s algorithm,
comes from.

The quantum circuit corresponding to the Grover algorithm is presented
in figure 1.22. First, let us observe that in the case of Grover’s algorithm, we

Grover iterate

. . .n n n n n n|0n⟩ H⊗n Vf R Vf R

Figure 1.22: Grover’s algorithm.

encode f(·) via the quantum oracle Vf that we define as follows:

Vf |x⟩ = (−1)f(x) |x⟩ ,

where x ∈ {0, 1}n. Let us then observe what happens at each step of Grover’s
algorithm. After applying theHadamard gate onn input qubits, the algorithm
obtains the following state:

|ψ1⟩ =
1

2n/2

∑
x∈{0,1}n

|x⟩ ,

which is basically a uniform superposition of all the basis states of the stan-
dard basis. After obtaining the superposition, the algorithm applies the so-
called Grover iterate that comprises of the quantum oracle Vf and the so-
called difussion operator, R. The diffusion operator is defined as follows;

R = 2 |ψ1⟩ ⟨ψ1| − I,

where |·⟩ ⟨·| denotes the outer product, and I the identity matrix of rank n.
The Grover iterate is then repeated 2n/2 times. The purpose of each repetition
is to put the original superposition of states, |ψ1⟩, a step closer to the solution
|x∗⟩.

To see that, let us observe what happens during each repetition of the
Grover iterate. We denote by |ϕ⟩ ∈ C2n a state orthogonal to the solution
|x∗⟩, namely:

|ϕ⟩ = 1√
2n − 1

∑
x ̸=x∗

|x⟩ .
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In each iteration, the algorithm first applies Vf to the state |ψi⟩ , i ∈ [n],
obtained in the previous iteration, reflecting the state |ψi⟩ around state |ϕ⟩,7
and then applies the diffusion operator, R, to reflect the newly obtained state
around |ψ1⟩. Combining the two reflections occurring in the same plane,
the algorithm thus rotates the original state of uniform superposition, |ψ1⟩,
toward the solution of the problem.

Let us now take θ ∈ [0, 2π] to be the angle between |ψ1⟩ and |ϕ⟩. Given
that Vf |ψ1⟩ is obtained as a reflection of |ψ1⟩ around |ϕ⟩, the angle between
|ψ1⟩ and Vf |ψ1⟩ is 2θ. By reflecting the state Vf |ψ1⟩ around |ψ1⟩, we obtain
the state RVf |ψ1⟩, which is at the angle distance 2θ from the original state
|ψ1⟩. We thus observe that, after each application of Grover iterate, the initial
uniform superposition |ψ1⟩, as well as the state |ϕ⟩, are rotated for angle 2θ
toward the solution x∗. Since we know that the state |ϕ⟩was originally at the
angle distance π/2 from the state |x∗⟩, we can calculate the expected number
of repetitions of Grover iterate after which Grover’s algorithm rotates state
|ψ1⟩ as close as possible to state |x∗⟩. We then obtain the expected number of
repetitions r ∈ N given as r ≈ π

4θ
. Given that |x∗⟩ and |ϕ⟩ are orthonormal,

|ψ1⟩ can be written as:

|ψ1⟩ = cos θ |ϕ⟩+ sin θ |x∗⟩ ,

so we obtain sin θ = 1
2n/2 , which for small θ implies θ = O(2n/2). We thus

know that after approximately 2n/2 applications of Grover iterate, we will
obtain the solution |x∗⟩ with a high probability. This result finally yields
that after O(2n/2) queries to the unitary Vf , we will find |x∗⟩ with a high
probability.

Let us now observe what would happen in the case when there is more
than one |x∗⟩ that yields f(x∗) = 1, and let’s say we know the number of
solutions is equal to some m ∈ N. We then modify Grover’s algorithm so
that the initial superposition of all the basis states iteratively rotates toward
the superposition of all the solution states. We thus obtain an algorithm that
finds any of these solutions in the expected number of calls equal to Vf that
is equal to O(

√
2n

m
).

7We note here that the state |ϕ⟩ is introduced for the sake of clear analysis, but the algo-
rithm does not calculate it at any point.

39



Chapter 1

Amplitude amplification The amplitude amplification can be seen as a
generalized version of the previously introduced Grover algorithm. In con-
trast to other algorithms that we presented so far, it does not aim to solve
a particular computational task but to improve the success probability of a
certain algorithm. In Figure 1.23 we present a quantum circuit that performs
amplitude amplification.

. . .n n n n n n|0n⟩ A V R V R

Figure 1.23: Amplitude amplification.

As it can be shown that any classical circuit can be simulated by a quan-
tum circuit with at most polynomial overhead, every classical algorithm can
be efficiently simulated via a quantum one. Therefore, without loss of gen-
erality, we can assume that the algorithm A, whose success probability we
would like to boost, is quantum. Nevertheless, we assume that it does not per-
form ameasurement at the end and, as such, can be presented using a unitary
matrix we denote by A. If we denote by p ∈ [0, 1] the success probability of
A, the corresponding unitary can be presented as:

A |0n⟩ = √p |x∗⟩+
√

1− p |ϕ⟩ ,

where |x∗⟩ is a projection on the subspace S ⊆ C2n spanned by the solutions
of the task that A aims to solve, and |ϕ⟩ is the projection on the subspace
orthogonal to S .

Let us now analyze the algorithm presented in Figure 1.23. The initial
state, which we denote by |ψ1⟩, is obtained by applying A to the n-qubit
state |0n⟩. This state is then iteratively rotated toward state |x∗⟩ using reflec-
tion operators V and R. More precisely, in each iteration, the algorithm first
applies V to the state |ψi⟩, where V is defined as:

V = I − 2Π.

The unitary V is then followed by the unitary R defined as:

R = |ψ1⟩ ⟨ψ1| − I.
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Similarly to Grover’s search, it can be shown that each iteration rotates the
initial state for a constant angle given as twice the size of the initial angle
difference between |ψ⟩ and A |0n⟩. It can also be shown that after O(1/√p)
steps, the algorithmA finds a solution to the computational task with a prob-
ability close to 1. We remark here that, in the classical setting, we can also
boost the probability of success of an algorithm. The expected number of
calls to do so, however, is Θ(1/p). This gap will be crucial for the speed-ups
we obtained in this thesis when we applied Grover’s search and amplitude
amplification to solve certain computational problems.

Quantum search As we already remarked, amplitude amplification can
be seen as a generalization of Grover’s algorithm where the initial state of
uniform superposition in Grover’s search is replaced with A |0n⟩, and the
operators V and R are generalized to operate on the subspaces. A further
step in the generalization is obtained through the framework of the quantum
walks which also aim to solve search problems in the setting similar to the
ones from Grover’s search and amplitude amplification.

We further remark that the speedup obtained by either of these algo-
rithms, namely, Grover’s search, the amplitude amplification, and quantum
walks, is expected to be quadratic. As such, the speed-up appears to be less
impressive than the one obtained by algorithms such as Deutsch-Josza, Shor’s
algorithm, etc. Nevertheless, we observe that the computational tasks that
these algorithms aim to solve come ‘without promises’, in contrast to the
problems for which we obtain exponential speed-ups. These algorithms thus
can be seen as a more generic tool that can be used as a search tool in a wide
range of domains.

Oracles and queries

An oracle is an abstract representation of an algorithm, commonly encoun-
tered in the analysis of algorithms, used for presenting an algorithm as a black
box. When modeling algorithms as oracles, we do not take into account what
is the internal logic of an algorithm or its running time, but just which func-
tion the algorithm evaluates. This can be rather useful in settings similar to
what we presented in the analysis of Deutsch’s algorithm, where the focus of
the analysis is not on the exact running time, but on the comparison of the
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number of calls to the function. We commonly refer to these calls as queries,
and to the corresponding number of calls as the query complexity. Query
complexity is a rather common measure of algorithms efficiency, especially
in the quantum setting.

The major differences between classical and quantum circuit models

So far, we described two models, drawing parallels between their basic units
as well as between the measures of their efficiency. Nevertheless, we did not
say which of the two models we should choose and why we should do so.
From the discussion so far, it appears that the quantum computational model
is more general, and we will discuss this observation in short. Does it mean
that it is necessarily better? Does it have any computational advantage over
the classical one? To answer these questions, wewill highlight the differences
between the twomodels and try to understand if any of these provide us with
a computational advantage.

Bits versus qubits The first difference we notice is in the number of poten-
tial states that classical and quantum bits can store. Namely, while classical
bits are points in F2, quantum bits can take one of the infinitely many val-
ues on the unit-distance surface sphere in C2. It gives the impression that
infinitely many classical data can be stored within just a single qubit with
appropriate encoding. Nevertheless, by the laws of quantum mechanics, this
type of encoding is not possible. As we already remarked, to access informa-
tion stored in a qubit at the end of a calculation, we need to collapse it into a
classical bit by measuring it. But, as a measurement is a destructive process
that enables us to learn only one bit of classical information per qubit, the
rest of the information is inevitably lost. To make use of the quantum bits,
we need to find a way to exploit their quantum nature while processing the
data, but before measuring it.

Non-reversible versus reversible gates A major difference between the
two gate types, namely, classical and quantum ones, is in its reversibility.
While classical gates are not necessarily reversible, all quantum gates are
reversible by the postulates of quantum mechanics. Non-reversible classi-
cal gates, however, can be ‘turned into’ reversible ones by adding additional
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entries and exits to these gates. Moreover, each classical gate can be sim-
ulated via a quantum gate with at most polynomially many additional in-
puts/outputs. Quantum gates, on the other hand, are not necessarily effi-
ciently simulatable by the classical ones. Though certain gate sets, such as
Clifford gates, can be simulated by classical gates efficiently, this is not true
for arbitrary quantum gate sets. Universal quantum gate sets, for example,
cannot be efficiently simulated on classical devices. The question then is
whether this difference gives us any computational advantage.

The (potential) computational advantage To answer this question, we
first observe that, since qubits can be seen as a generalization of bits, and
quantum gates as a generalization of classical ones, all classical circuits can
be simulated by the quantum ones. Furthermore, this simulation can be done
efficiently. The question then is how we can use this generalization to our
advantage. The first step toward it would be to use some inherently quan-
tum effects, such superposition, interference, and entanglement, to our benefit.
The examples of quantum circuits (i.e. quantum algorithms) given in this
section illustrate this approach. The second step would be to actually im-
plement these algorithms and compare their performances with the classical
algorithms in a real-life setting. With the current state of the development of
quantum devices, however, this comparison is not possible on a larger scale
since large-scale quantum devices, which are supposed to demonstrate the
full advantage of using quantum algorithms, are not (yet) produced. Whether
these deviceswill be ever produced and howmuch advantage theywould give
remains an open question.
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1.4 Computational complexity

The computational complexity can be observed as an even higher level of an
abstract view of the computation. It deals with the proper definition of the
computational tasks, which we commonly refer to as computational problems,
and determining their difficulty. The problems are then categorized into what
we know as complexity classes that form hierarchies of problemswith respect
to their difficulty. In the following subsection, we will explain some of the
notions of this field that are relevant to this thesis.

Computational problems

A computational problem can be broadly defined as any computational task
that can be solved using an algorithm. The input of the algorithm thus corre-
sponds to the problem definition, while its output describes a desired solution
to the problem. Based on the possible desired outcome, we divide problems
into so-called decision problems and search problems. In the case of decision
problems, the desired output of the algorithm is a binary answer yes or no
(equivalently, 1 or 0). In the case of search problems, the desired output is
commonly given as a string representing the answer. In the following chap-
ters, we will give examples of both types of problems.

Instance of a problem A concrete instantiation of the problem, which we
refer to as an instance of the problem, is given via particular input to the
algorithm and the desired output. Each problem thus can be seen as a set of
all instances that correspond to the same computational task. Instances of
particular interest in the study of computational complexity are those whose
size grows beyond bound as these reflect how the problem’s difficulty scales
up with the size of the input.

Computational complexity The complexity of a computational problem
is taken as a fundamental measure of the problem’s difficulty. It is determined
as the efficiency of the best algorithm solving an instance of the problem
when the instance size grows beyond bounds. The algorithm’s efficiency is
then commonly measured as either the running time or the memory con-

44



Preliminaries

sumption of the algorithm solving this instance, and the efficiency is ex-
pressed as a function of the input size. In this thesis, we primarily rely on
the running time as a measure of the algorithm’s efficiency.

Complexity classes

Given the problem’s difficulty, i.e. its computational complexity, each prob-
lem can be categorized into a complexity class, which is defined with respect
to a computational model. We will now define computational classes that are
relevant in the context of this thesis.

Definition 1.4.1 (Deterministic polynomial time, P). The deterministic
polynomial time class, P, consists of decision problems that can be solved
by a deterministic algorithm running in time polynomial in its input size.

The complexity class P is considered to be of particular importance for the
theory of computation as it appears to encompass computational problems
whose solution is computationally feasible using classical computational de-
vices. The class NP, which we introduce next, on the other hand, is believed
to contain problems that are computationally infeasible for both classical and
quantum devices. The exact relation between the two classes, however, is still
an open question in complexity theory and one of the biggest open problems
in theoretical computer science.

Definition 1.4.2 (Non-deterministic polynomial time, NP). The non–
deterministic polynomial time class, NP, consists of decision problems that
can be solved by a non-deterministic algorithm running in time polynomial
in its input size.

Decision versus search problems

So far, we discussed the complexity of decision problems only. We observe
here that finding a solution to a search problem directly implies that one exists
while finding no solution implies that none exists. Therefore, solving a search
problem is at least as difficult as solving its decision version. Moreover, it can
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be shown that for NP-complete problems, the opposite is also true and that
solving a decision problem implies solving its search version. For proof of
this statement, see, for example, [AB09]). The decision and search versions
are thus equivalent for NP.

Hard and complete problems

Whatwe refer to as hard problems are the problems that are at least as difficult
as any other problem in a given computational class. To define these more
formally, we introduce the notion of reduction, formally given in 1.4.3.

Definition 1.4.3 (Karp reduction, ⪯). We say that a decision problem P1
is polynomial-time Karp reducible (or simply polynomial-time reducible) to
a decision problem P2, i.e. P1 ⪯p P2, if there is a polynomial-time algorithm
A that on input x ∈ {0, 1}∗ outputs A(x) that is a solution to P2 if and
only if x is a solution to P1.

The above-given definition, in fact, implies that if there exists an algorithmA
that acts as a polynomial-time reduction from P1 to P2, then P2 is at least as
difficult as P1. To see that, let us assume that we have an algorithmA2 solving
P2 efficiently. We can then use the reduction algorithm A to transform an
instance of P1, given as the input x ∈ {0, 1}∗ to an algorithm solving P1,
into an input of A2 given as A(x). We can then use A2 to decide if A(x) is a
solution to P2 and, consequently, if x is a solution to P1. A2 thus can be used
for solving P1 with at most polynomial overhead, which further implies P1
cannot be more difficult than P2.

We can now extend this reasoning to the whole class and define hard and
complete problems, as given in Definition 1.4.4.

Definition 1.4.4 (Hard and complete problems). We say that a decision
problem A is hard for a class C if B ⪯p A for all A ∈ C. If A is hard for C
and A ∈ C, then we call A a complete problem for C.

Problems that are of particular interest for this thesis are hard problems for
the class NP, also referred to as NP-hard. Some famous examples of these
problems are the decision version of traveling salesman problem, boolean sat-
isfiability problem, subset sum problem, etc.
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1.5 Cryptography

Cryptography can be broadly defined as the study of secure communication.
More precisely, it studies computational problems that are believed to be dif-
ficult to solve and uses these to build cryptographic protocols that protect
our data and achieve secure communication. Later in the chapter, we will
give a more precise definition of what to mean by "secure" and give differ-
ent examples of how computational problems can be used to protect data
through cryptographic protocols. For now, we would like to introduce the
two major subfields known as the private-key (or symmetric) cryptography
and the public key (or asymmetric) cryptography. The difference between the
two subfields can be illustrated through the so-called data encryption proto-
col, presented in Figure 1.24 and Figure 1.25, where the former corresponds
to the symmetric key setting and the latter one to the asymmetric key setting.

Sender

m, sk

c = Enc(m, sk)

c

m̃ = Dec(c, sk)

sk

Receiver

Figure 1.24: Symmetric key encryption

Sender

m, pk

c = Enc(m, pk)

c

m̃ = Dec(c, sk)

sk

Receiver

Figure 1.25: Asymmetric key encryption

The goal of this protocol is to enable secure transmission of a message
m ∈ {0, 1}∗, also known as the plaintext, between the two parties known
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as the sender and the receiver, also known as the honest parties. The pro-
tocol starts by the key generation in which, depending on the setting, the
function KGen : N → {0, 1}∗ produces either the matching public key and
secret key pair, (sk, pk) ∈ {0, 1}n × {0, 1}poly(n), n ∈ N, or simply the se-
cret key sk ∈ {0, 1}n, n ∈ N. Again depending on the setting, the sender
then obtains either the public key, pk, or the secret key, sk, and the receiver
obtains the secret key, sk. In the secret key setting, the sender then uses its se-
cret key to encrypt the message m using an encryption function (algorithm)
Enc : {0, 1}∗×{0, 1}∗ → {0, 1}∗. The function takes as an input the message
m, the secret key sk, and then outputs the encrypted message, also known
as the ciphertext, c ∈ {0, 1}∗. Similarly, in the asymmetric key setting, the
sender uses the encryption function Enc(·) to encrypt the messagem by tak-
ing as an input m and, this time, the public key pk, and then outputting the
ciphertext c. The ciphertext is then sent to the receiver through a (potentially
insecure) public channel. Upon receiving the ciphertext c, the receiver de-
crypts it using the function (algorithm) Dec : {0, 1}∗ × {0, 1}∗ → {0, 1}∗.
The algorithm takes as an input the ciphertext c, the secret key sk and out-
puts the deciphered message, m̃ ∈ {0, 1}∗. If the sender’s key matches the
receiver’s key, the receiver obtains the original plaintext, m. Namely, we
should have:

m̃ := Dec(Enc(m, pk), sk) = m.

The choice of using a symmetric or asymmetric approach extends beyond
encryption protocols, and the difference in symmetry introduces a rather dif-
ferent approach to the analysis of the protocols and the underlying compu-
tational problems in these two settings. In this thesis, we focus on the design
and analysis of public key protocols.

1.5.1 Security

In this section we define more formally what we mean by "secure" and how
we can prove that a certain cryptographic model is secure. To do so, we
will introduce models of potential attackers whose goal would be to either
partially or fully steal the secret information, temper the data, or perform
any adversarial action.
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Perfect security What we call the perfect security characterizes an ideal
setting in which a cryptographic protocol reveals no information even to a
dishonest party, also known as an adversary or an attacker, with unbounded
computational power. In the data encryption setting, for example, we say that
a protocol is perfectly secure if observing a ciphertext (or many of them) do
not reveal any information on the message being sent even in the presence
of an all-powerful adversary. This definition seems rather natural and can be
further extended to other cryptographic protocols. Nevertheless, it turns out
that protocols satisfying this notion of security are inefficient. Luckily, this
notion is not really mandatory in the real-life setting in which we can expect
that the adversary is not unbounded. We thus introduce yet another notion
of security, known as computational security.

Computational security The computational security can be seen as a bet-
ter suited to the real-life setting alternative to the perfect security notion. We
call a protocol computationally secure if it reveals information with a very
small probability (we will specify in short what we mean by "very small") to
any computationally bounded adversary rather than unbounded ones. This
relaxation allows us to assume that certain computational tasks are difficult
for a bounded adversary and, as such, can be used as bases for computation-
ally secure protocols. In this thesis, we will use computational security as a
main criterion for evaluating the protocol’s security.

Security definitions To prove claimed (computational) security of a pro-
tocol, we first introduce security definitions (also known as security notions)
that establish the security goal, i.e. criterion that needs to be satisfied in order
to claim security. Though security goals can be rather different and should be
chosen according to the protocol at hand, there exist standard goals that are
considered to be good practices. In this thesis, we will use these for verifying
the security of our protocols. To give a full security definition, in addition to
the security goal, we also need to specify an attacker model, which determines
the computational power of an adversary. As we already mentioned, in this
thesis we are primarily interested in computational security, rather than the
perfect one, so we will consider only the computationally bounded attackers.
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Hardness assumptions and reductions Once the security definition is
established, we can decide which hardness assumption, i.e. the assumption
on the difficulty of a problem underlying a protocol, to use in order to claim
that a certain security definition is satisfied. To show that certain protocol is
computationally secure, we then commonly rely on security reductions. These
basically show that breaking a protocol implies solving a computational prob-
lem that we believe is difficult.

Security parameter To give a more precise definition of "small" probabil-
ity and an "efficient" adversary, we first define the so-called security parame-
ter. It is commonly denoted by n, and it is used for expressing the computa-
tional resources necessary for attacking the protocol, as well as the success
probability of an attack. For example, for an encryption scheme, the security
parameter is given as the length of the secret key chosen in the key genera-
tion process. The running time of an algorithm that aims to recover the secret
key, with a certain success probability, thus can be expressed as the function
of the length of the secret key. We then define an efficient adversary as an
algorithm running in time poly(n), and we describe a "very small" success
probability through the notion of negligible function, defined as follows.

Definition 1.5.1 (Negligible function, negl(n)). A function f : N → N
is negligible, denoted as negl(n), if for every positive polynomial poly(n),
there exists n0 ∈ N such that ∀n > n0, the following is satisfied:

f(n) < 1/poly(n).

Asymptotic and concrete security In this thesis, we will be primarily
interested in the asymptotic complexity of the attacks corresponding to the
limit case where the security parameter grows beyond bound. In practice,
however, the so-called concrete security estimates are obtained in the non-
asymptotic regime, which allows us to evaluate more accurately what is the
security of a certain protocol in a real-life setting. We use the concrete ap-
proach when calculating the concrete security parameters of our protocol
design in Chapter 4. In the concrete setting, we say that a protocol is (t, ϵ)-
secure if an adversary running in time at most t succeeds to break the proto-
col with probability at most ϵ, where both t and ϵ are some constant values.
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Broadly speaking, "breaking" a protocol refer to learning enough secret infor-
mation so that we can consider that the scheme is not secure anymore. In the
case of encryption protocol, for example, learning the secret key would reveal
information about all the future messages being sent via the same protocol.
This effectively corresponds to breaking the scheme’s security.

Cryptanalysis

The goal of cryptanalysis is to estimate the computational resources neces-
sary for attacking a certain cryptographic protocol. The attack can aim either
at breaking the protocol construction, i.e. invalidating the claims about the
security of the construction, or breaking the problem that is used as the pro-
tocol basis, i.e. invalidating the assumption on the problem’s difficulty. While
the security of the protocols is commonly guaranteed through the so-called
security proofs that we will introduce in short, the security of the assumption
is based on the claimed difficulty of the computational problem.

In the setting of public-key cryptography, i.e. in our setting, we are pri-
marily interested in the so-called average-case complexity of computational
problems. It is estimated as the asymptotic running time of the best algo-
rithms solving problem instances sampled from a particular distribution of
inputs. Namely, we estimate the running time of the given algorithm solving
an average-case instance of the computational problem in the limit case when
the security parameter grows beyond bound. We thus obtain an estimate of
how the problem behaves on average, rather than in the worst case, which is
considered to be the most relevant in a cryptographic setting.

Classical and quantum setting Aswe have already explained, in this the-
sis, we are concerned with two models of computation describing general-
purpose computational devices, one corresponding to classical computing
and one corresponding to quantum computing. As either of these devices
can potentially be used to run algorithms that attack cryptographic proto-
cols, we will calculate the expected running time of these algorithms and
base our security estimates on these results.
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Post-quantum cryptography As briefly mentioned in the section on the
computational models, protocols that are believed to be secure against quan-
tum attacks (and implicitly also against classical ones) are commonly referred
to as post-quantum, quantum safe, or quantum resistant. The subfield of cryp-
tography that analyzes problems that are believed to be post-quantum, and
builds protocols based on these,e is commonly referred to as post-quantum
cryptography.

In this thesis, we are focused on the design of a protocol based upon
computational problems derived from decoding linear codes, originally in-
troduced in coding theory, and hence referred to as the code-based problems.
These problems are believed to be quantum resistant and, as such, they rep-
resent one of the major interests of post-quantum cryptography. One of the
central problems in this area, and the focus of this thesis, is the so-called
syndrome decoding problem, derived from the syndrome decoding method in-
troduced in the previous chapter. We will give a more precise definition of
this problem in the next chapter. The first known example of a public key
protocol based on this problem is the so-called McEliece encryption scheme,
introduced in [McE78]. So far, the scheme resisted all the cryptanalytic ef-
forts, both classical and quantum, and, as such, it is regarded as one of the
most prominent candidates for public key encryption schemes in the post-
quantum era.

1.5.2 Digital signature schemes

Digital signature schemes are public key protocols that enable proving mes-
sage authenticity (also known asmessage integrity). In Figure 1.26, we present
a basic setting in which the first party, also known as the signer, signs a mes-
sage m ∈ {0, 1}∗, and the second party, also known as the verifier, verifies
its authenticity.
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Signer

m, sk

σ ← Sig(m, sk)

σ,m

b← Ver(m, σ, pk)

pk

Verifier

Figure 1.26: Digital signature scheme

The protocol proceeds as follows. It starts with the key generation, in
which the signer calls functionKGen : N→ {0, 1}n×{0, 1}poly(n) to produce
thematching public key and secret key pair, (sk, pk) ∈ {0, 1}n×{0, 1}poly(n), n ∈
N. Once the keys are generated, the signer keeps the secret key to itself
and broadcasts the public key. The signer then signs a message of its choice,
m ∈ {0, 1}∗, using signing algorithm Sig : {0, 1}∗×{0, 1}n → {0, 1}l, l ∈ N.
Namely, it calls the signing algorithm on the chosen message and the secret
key and thus obtains the so-called signature, σ := Sig(m, sk). The signer
then sends the pair (σ,m), commonly referred to as the signed message, to
the verifier. Upon receiving the signed message, the verifier checks its valid-
ity using a verification algorithm, Ver : {0, 1}∗×{0, 1}l ×{0, 1}n → {0, 1}.
More precisely, using the message m, the signature σ, and the public key pk
as the inputs of the verification algorithm, the verifier calculates its response
as b = Ver(m, σ, pk). If the message is authentic, meaning that it is chosen
by the signer and has not been modified during the transmission, the verifier
accepts the signature with overwhelmingly high probability and its verifica-
tion algorithm returns b = 1. Otherwise, the verifier rejects the signature
with overwhelmingly high probability and its verification algorithm returns
b = 0.

In Definition 1.5.2, we present the digital signature schememore formally.
Our definition corresponds to the one given in [KL14].

Definition 1.5.2 (Digital signature scheme, DSS). A digital signature
scheme, Σ, is a public key protocol comprising of the following three algo-
rithms running in time poly(n):
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• KGen : N→ {0, 1}n × {0, 1}poly(n) - a probabilistic algorithm that
takes as an input 1n ∈ N and outputs a pair of matching secret key
and public key pair, (sk, pk) ∈ {0, 1}n × {0, 1}poly(n), n ∈ N, ob-
tained as

(sk, pk)← KGen(1n),

where 1n denotes n in unary representation;

• Sig : {0, 1}∗ × {0, 1}n → {0, 1}l, l ∈ N - a probabilistic algorithm
that takes as an input a message m ∈ {0, 1}∗ and the secret key sk,
and it outputs the signature σ ∈ {0, 1}l obtained as

σ ← Sig(m, sk);

• Ver : {0, 1}∗ × {0, 1}l × {0, 1}poly(n) → {0, 1} - a deterministic
algorithm that takes as an input signature, σ, the message m and
the public key, pk, and outputs b ∈ {0, 1}. Namely, it outputs

b← Ver(m, σ, sk), pk).

We observe here that b is a random variable given over the choice of (sk, pk).
It is required that, except with probabilityO(1−1/negl(n)) over the choice
of (sk, pk),

b = Ver(m, Sig(m, sk), pk) = 1

for every message m.

(Un)forgability of digital signature schemes

To prove that a certain digital signature scheme is (computationally) secure,
we rely on a security definition known as the existentially unforgeable un-
der an adaptive chosen-message attack (EUF-CMA). To explain this notion on
an intuitive level, let us call a valid signature any σ that originated from the
signer, and call a forgery any valid signature, σ̃, that was not obtained from
the signer. A EUF-CMA secure signature scheme guarantees that an adver-
sary is not able to output a forgery even if it obtains signatures on many
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other messages of its choice. To define EUF-CMA security more formally, let
us first introduce the following security experiment.

Definition 1.5.3. LetΣ = (KGen, Sig,Ver) be a digital signature scheme,
and n ∈ N be a security parameter. Let then A1 : N× {0, 1}n → {0, 1}∗,
and A2 : N × {0, 1}n × {0, 1}∗ × {0, 1}l·q → {0, 1}∗ × {0, 1}l be two
polynomial time algorithms run by an adversary A, and let l, q be some
constants in N.

For the given n,Σ, A, a forging experiment, EUF-CMA(n,Σ, A), con-
sists of the following steps:

Experiment EUF-CMA(n,Σ, A)

1 : (sk, pk)← KGen(1n)

2 : for i ∈ [q] :

3 : mi ← A1(1
n, pk)

4 : Q.add(mi)

5 : σi ← OSign(mi)

6 : (m, σ)← A2(1
n, pk, {m}i∈[q], {σi}i∈[q])

7 : ifm /∈ Q :

8 : return Ver(m, σ, pk)

9 : else:
10 : return 0

whereOSign(·) is a signing oracle that on an inputmessagemi ∈ {0, 1}∗, i ∈
[q], returns a signature of this message, σi ∈ {0, 1}l.

We observe here that the outcome of this experiment, which we denote
by outEUF-CMA(n,Σ,A), is a random variable given over the randomness in A1

andA2. We can now define the notion of existentially unforgeability under an
adaptive chosen-message attack.

Definition 1.5.4 (Existentially unforgeable under an adaptive chosen-mes-
sage attack (EUF-CMA)). Adigital signature schemeΣ = (KGen, Sig,Ver)
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is existentially unforgeable under an adaptive chosen-message attack, i.e.
EUF-CMA secure, if for any probabilistic polynomial-time adversaries A,
there exists a negligible function, negl(n), such that:

Pr[outEUF-CMA(n,Σ,A) = 1] ≤ negl(n).

This notion, originally introduced in [GMR88], is taken as the standard notion
of security for digital signature schemes.

Before continuing on the topic of digital signature schemes, we would
like to introduce the notion of (cryptographic) hash functions, which will be
relevant in the context of the two types of digital signature constructions we
will introduce afterward.

Hash functions

Informally speaking, a hash function can be observed as compressing func-
tion that takes a vector of arbitrary length and outputs a shorter vector of
a fixed size. Given that the input is longer than the output, this function is
necessarily non-injective. We thus say that it is always possible to find a col-
lision in a hash function, meaning that we can always find at least one pair
of vectors that map to the same output. A common requirement for a "good"
hash function is that the collisions are as "balanced" as possible, meaning that
the number of collisions per output is similar for all the outputs of the given
hash function. The requirement naturally translates into the common secu-
rity definition for the cryptographic hash functions that we will introduce in
short. Let us now define a cryptographic hash function used in our protocol
design, known as the unkeyed or deterministic cryptographic hash function.

Definition 1.5.5 ((Unkeyed) cryptographic hash function). An unkeyed
cryptographic hash function, H : {0, 1}∗ → {0, 1}l, is a deterministic
polynomial time algorithm that on input x ∈ {0, 1}∗ outputs a string y ∈
{0, 1}l of a constant length l ∈ N.

We observe here that, by the introduced definition, a cryptographic hash
function is inherently deterministic. In Chapter 4, we will show that the ap-
plication of a deterministic hash function in the cryptographic setting can po-
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tentially lead to new cryptographic attacks that are commonly unperceived
by the standard cryptographic analysis.

Collision resistance Acommon security requirement for the cryptographic
hash functions is given through the notion of collision resistance. To define it,
let us introduce the following security experiment.

Definition 1.5.6. Let Γ = (KGen,H) be a cryptographic hash function,
and n ∈ N be a security parameter. Let thenA1 : N×{0, 1}n → {0, 1}k×
{0, 1}k, be a polynomial time algorithm run by an adversary A, and let k
be a constant in N. For the given n,Γ, A, a collision-resistance experiment,
Hash-Coll(n,Γ, A), consists of the following steps:

Experiment Hash-Coll(n,Γ, A)

1 : k← KGen(1n)

2 : x0,x1 ← A1(1
n, k)

3 : if x0 ̸= x1 :

4 : returnH(x0) = H(x1)

5 : else:
6 : return 0

As in the case of EUF-CMA notion, we observe that the outcome of this ex-
periment, which we denote by outHash-Coll(n,Γ,A), is a random variable given
over the randomness in A1. We can now define the notion of collision resis-
tance.

Definition 1.5.7 (Collision resistance). A cryptographic hash function,
H(·), is collision resistant if for any probabilistic polynomial-time adver-
sary, A, there exists a negligible function, negl(n), such that:

Pr[outHash-Coll(n,Γ,A) = 1] ≤ negl(n).

57



Chapter 1

Non-interactive commitment schemes

Broadly speaking, a non-interactive commitment scheme can be described as a
cryptographic protocol that enables one to commit to a message by sending
the corresponding committing value, also known as the commitment, that
satisfies the following two properties:

• hiding: the commitment does not reveal any information about the
message,

• binding: for a computationally bounded party that commits to a certain
message m using commitment value c, it should be infeasible to find
another message m̃ ̸= m that commits to the same c.

More formally, a commitment scheme is given by the following definition.

Definition 1.5.8 (Commitment scheme, Comm). A commitment scheme,
K , is a cryptographic protocol comprising of the following algorithms run-
ning in time poly(n):

• Gen : N→ {0, 1}∗ - a probabilistic algorithm that takes as an input
1n ∈ N and outputs public parameters params ∈ {0, 1}∗ where 1n
denotes the security parameter in unary representation;

• Com : {0, 1}n × {0, 1}l → {0, 1}m, l,m ∈ N - a deterministic
algorithm that takes as an input a message, m ∈ {0, 1}n, and the
random vector r ∈ {0, 1}l, and then outputs the commitment value
c ∈ {0, 1}m, obtained as

c← Com(m, r).

The (computational) hiding and binding properties are then given via the
following experiments.

Definition 1.5.9. Let K = (Gen,Com) be a commitment scheme, and
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n ∈ N be a security parameter. Let then

A1 : N× {0, 1}∗ → {0, 1}n × {0, 1}n, A2 : N× {0, 1}m × {0, 1},

A3 : N× {0, 1}∗ → {0, 1}m × {0, 1}n × {0, 1}l × {0, 1}n × {0, 1}l,

be three polynomial time algorithms run by an adversary A, and let l, and
m be some constants in N.

For the given n,K,A, a hiding experiment, Hiding(n,K,A), consists
of the following steps:

Experiment Hiding(n,K,A)

1 : params← Gen(1n)

2 : m0,m1 ← A1(1
n, params)

3 : b
$←− {0, 1}

4 : r
$←− {0, 1}l

5 : c← Com(params,mb, r)

6 : b̃← A2(1
n, c)

7 : return b = b̃

A binding experiment, Binding(n,K,A), consists of the following steps:

Experiment Binding(n,K,A)

1 : params← Gen(1n)

2 : (c,m0, r0,m1, r1)← A3(1
n,params)

3 : ifm0 ̸= m1 :

4 : return Com(params,m0, r0) = Com(params,m1, r1) = c

5 : else :
6 : return 0

We observe here that the outcomes of these experiments, which we denote
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by outHiding(n,K,A) and outBinding(n,K,A), are random variables given over the
randomness in A1, A2, and A3. We can now give a security definition that
needs to be satisfied for every commitment scheme we claim secure.

Definition 1.5.10. A commitment K = (Gen,Com) is secure if for any
probabilistic polynomial-time adversaries A, there exits a negligible func-
tion, negl(n), satisfying the following:

Pr[outHiding(n,K,A) = 1] ≤ 1/2 + negl(n),

Pr[outBinding(n,K,A) = 1] ≤ negl(n).

It is not hard to see that cryptographic hash functions are a natural choice
for constructing commitment schemes in practice. In this thesis, we will thus
assume that the commitment scheme used in our protocol design is instanti-
ated using cryptographic hash functions.

DSS using hash functions

As we already briefly mentioned, the two most common approaches to de-
signing digital signature schemes use hash functions in their constructions.
The first approach is known as the hash-and-sign paradigm. It uses hash
functions to reduce the length of the initial message to be signed. Though
this approach is rather intuitive and provably secure, it is considered to be
rather inefficient. The second approach is done in two steps: in the first step,
we construct an identification scheme, which is then transformed into a digital
signature scheme using the Fiat-Shamir transformation in the second step. In
this thesis, we use the second approach, so we will now introduce it formally.
To do so, let us start by defining an identification scheme.

Identification scheme An identification scheme can be broadly defined as
an interactive protocol that allows one party, known as the prover, to prove its
identity, i.e. to authenticate itself, to another party, known as the verifier. In
this thesis, we are interested in a particular variant of identification schemes
called a Σ-protocols, or three-round protocols, depicted in Figure 1.27 and
defined formally in Definition 1.5.11.
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Prover

sk (m, init)← P1(sk)
m

c
$←− C

c

r← P2(sk, init, c) r

b← Ver(pk, c, r) = m

pk

Verifier

Figure 1.27: Sigma (3-round) protocol

As in the case of digital signature schemes, the protocol starts with the
key generation. During the key generation, the prover calls function KGen :
N→ {0, 1}n×{0, 1}poly(n) to produce the matching secret key and public key
pair, (sk, pk) ∈ {0, 1}n × {0, 1}poly(n), n ∈ N. Once the keys are generated,
the prover keeps the secret key to itself and broadcasts the public key. The
prover then runsP1 : {0, 1}n → {0, 1}l×S, l ∈ N, to produce amessagem ∈
{0, 1}l and obtains the initial state init ∈ S , where S is the set of possible
states. The prover then sends the message m to the verifier. Upon receiving
the message, the verifier samples a so-called challenge, c ∈ C, where C is a
finite set of symbols, and sends the challenge back to the prover. The prover
then uses P2 : {0, 1}n × S × C → {0, 1}m,m ∈ N, to produce the response
r ∈ {0, 1}m, and then sends the response to the verifier. Upon receiving the
response, the verifier checks the consistency between the original message
and the response using functionVer : {0, 1}poly(n)×C×{0, 1}m → {0, 1}l. If
the two values are consistent, the verifier accepts the proof of identity with an
overwhelmingly high probability, and it returns b = 1. Otherwise, the verifier
rejects the proof with an overwhelmingly high probability and returns b =
0.

Definition 1.5.11 (Identification scheme, IS). An identification scheme,
Π, is a public key protocol comprising of the following algorithms running
in time poly(n):

• KGen : N→ {0, 1}n × {0, 1}poly(n) - a probabilistic algorithm that
takes as an input 1n ∈ N and outputs a pair of matching secret key
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and public key, (sk, pk) ∈ {0, 1}n × {0, 1}poly(n), n ∈ N, obtained
as

(sk, pk)← KGen(1n),

where 1n denotes the security parameter in unary representation;

• P1 : {0, 1}n → {0, 1}l × S, l ∈ N - a probabilistic algorithm that
takes as an input the secret key, sk, and outputs the initial state init ∈
S and a message m ∈ {0, 1}l, obtained as

(m, init)← P1(sk),

• P2 : {0, 1}n×S×C → {0, 1}m,m ∈ N - a probabilistic polynomial
time algorithm that takes as an input the secret key, sk, the initial
state init, and the challenge, c, and then outputs the response r ∈
{0, 1}m,m ∈ N, obtained as

r← P2(sk, init, c),

• Ver : {0, 1}poly(n) × C × {0, 1}m → {0, 1}l - a deterministic algo-
rithm that takes as an input the public key, pk, the challenge, c, the
response r, and verifies the consistency between the original message
and the response. Namely, it outputs

b← Ver(pk, c, r) = m.

In Chapter 4, we will give an example of a Σ-protocol which we will then
fully analyze. We observe here that even from the high-level description of
the scheme, it is not hard to see that identification schemes are a direct ap-
plication of the so-called interactive proofs. The basic properties of interac-
tive proofs, known as the completness and soundness, thus translate into basic
properties of identification schemes. Namely, we require that the scheme is
complete, meaning that the honest prover is able to convince the verifier of its
identity with an overwhelmingly high probability. More formally, we state
the following.
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Definition 1.5.12 (Completness). We say that an identification scheme,
Π = (KGen, P1, P2,Ver), is complete if there exists a negligible function,
negl(n), for which the following is satisfied :

Pr[Ver(pk, c, P2(sk, init, c)) = 1] ≥ 1− negl(n),

where init is generated as the output of P1(sk).

We also require that the scheme is sound, meaning that a dishonest prover
cannot convince the verifier into accepting its proof with overwhelmingly
high probability. This property captures the requirement that a cheating
polynomial-time adversary, which does not hold the secret key, cannot con-
vince the verifier to accept its proof of identity. More formally, the soundness
is given via the following definition.

Definition 1.5.13 (Soundness). LetΠ = (KGen, P1, P2,Ver) be an iden-
tification scheme, and n ∈ N be a security parameter. Let then A1 :

{0, 1}n → {0, 1}l × S, l ∈ N and A2 : {0, 1}n × S × C → {0, 1}m,m ∈
N, be polynomial time algorithms run by an adversary A. For the given
n,Π, A, the soundness experiment Soundness(n,Π, A) consists of the fol-
lowing steps:

Experiment Soundness(n,Π, A)

1 : (sk, pk)← KGen(1n)

2 : (m, init)← A1(pk),

3 : c
$←− C,

4 : r← A2(pk, init, c),
5 : return Ver(pk, c, r) = m

We say that an identification scheme has soundness s, where s is a con-
stant in [0, 1], if for any polynomial-time adversary,A, the probability that
Soundness(n,Π, A) outputs true is at most s.

Finally, the common requirement from an identification scheme is that
it is zero-knowledge. This means that if the prover is honest, i.e. it knows
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the secret key, the verifier does not learn anything from their communica-
tion apart from the fact that the prover knows the secret key.8 A common
way to formalize this notion is to say that there exists a polynomial time al-
gorithm, called a simulator, that has access only to the public key and that
can reproduce the transcript generated between the prover and the verifier,
i.e. messages exchanged during their interaction. If there exists a simulator
that can do that, the verifier has as much information from interacting with
the prover as by running the simulator. This further implies that the veri-
fier does not obtain any additional information from its interaction with the
prover, and we say the protocol is zero-knowledge.

In this thesis, we are only interested in the case where the verifier hon-
estly interacts with the prover, which corresponds to the honest-verifier zero-
knowledge property defined as follows.

Definition 1.5.14. LetΠ = (KGen, P1, P2,Ver) be an identification scheme,
and n ∈ N be a security parameter. Let then Sim : {0, 1}n → {0, 1}l×C×
{0, 1}m be a polynomial time algorithm (the simulator) andA : {0, 1}n →
{0, 1}l × C × {0, 1}m → {0, 1} be a distinguishing algorithm run by an
adversary, A.

For the given n,Π, Sim,A, the honest verifier zero-knowledge experi-
ment HVZK(n,Π, Sim, A) consists of the following steps:

8If the prover is dishonest, i.e. it does not know the secret key, the verifier cannot learn
the secret key from the prover.
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Experiment HVZK(n,Π, Sim, A)

1 : (sk, pk)← KGen(1n)

2 : b
$←− {0, 1}

3 : if (b = 0) :

4 : (m, init)← P1(sk),

5 : c
$←− C,

6 : r← P2(sk, init, c),

7 : b̃← A(m, c, r)

8 : if (b = 1) :

9 : (m̃, c̃, r̃)← Sim(pk)

10 : b̃← A(m̃, c̃, r̃)

11 : return b̃ = b

We say that an identification scheme is honest-verifier zero-knowledge if
there exists a polynomial time simulator, Sim, such that for any polynomial-
time adversary, A, the probability that HVZK(n,Π, Sim,A) outputs true
is at most 1

2
+ negl(n).

Fiat-Shamir transformation, FS The Fiat-Shamir transformation, denoted
by FS, can be broadly defined as removing interactions from an interactive
scheme and thus constructing a non-interactive protocol provably secure.
Fiat and Shamir introduced the transformation in [FS86] as a heuristicmethod
used for transforming an interactive proof system into a digital signature. The
heuristic is later proven by Pointcheval and Stern in [PS96], and since that
time we refer to it as transform rather than heuristic.

This thesis uses FS to transform a Σ-protocol, known as the Stern iden-
tification scheme, into a digital signature scheme. We will give a more de-
tailed explanation of this protocol, as well as of how it is transformed into a
digital signature, in Chapter 4. For now, we give a formal definition of the
Fiat-Shamir transformation that can be applied to an arbitrary three-round
protocol.
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Definition 1.5.15 (Fiat-Shamir transformation). Let n ∈ N be a security
parameter and Π = (KGenIS, P1, P2,VerIS) be an identification scheme.
We can construct a signature scheme, Σ = (KGen, Sig,Ver), using the
following procedure.

Fiat-Shamir transformation,
FS

1 : (sk, pk)← KGenIS(1
n)

2 : KGen(1n) := (sk, pk)

3 : (m′, init)← P1(sk)

4 : c← H(m,m′)

5 : r← P2(sk, init, c)
6 : Sig(m, sk) := (m′, c, r)

7 : m̃← VerIS(pk, c, r)

8 : Ver := (H(m̃,m) = c),

where we takeH : {0, 1}∗ → C as a random oracle.a

aIn practice, we commonly assume that a hash function acts as a random oracle.

We observe here that the key generation part is the same in both protocols
(line 1-2). The main idea underlying this transformation is conveyed by the
signing algorithm in which the signer, acting as a prover in IS, runs the iden-
tification protocol by itself, as given by lines 3-6. The verifier then only needs
to verify that the challenge was generated honestly, i.e. using the declared
functionH(·) (line 8).

The above-describedmethod is proven to be secure in the so-called random-
oraclemodel. The proof can be found either in the original paper by Pointcheval
and Stern or in some introductory literature such as [KL14], and the high-
level idea of the proof can be explained as follows. From the FS descrip-
tion, we can see that the challenge c, calculated as H(m′,m), bounds sig-
nature to a specific message m. Since H(·) acts as a random oracle, which
maps inputs into uniformly random challenges in C, changing either m or
m′ would change the generated challenge, and consequently change the sig-
nature, with an overwhelmingly high probability. Therefore, for a malicious
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signer, who does not hold sk, constructing a valid signature on message m
is at least as hard as impersonating the prover in IS. More precisely, proofs
of the Fiat-Shamir transform imply that from an identification scheme which
has small soundness and is honest-verifier zero-knowledge, the resulting sig-
nature scheme is EUF-CMA secure.

Protocol optimization Though already more efficient than the protocols
obtained through the hash-and-sign paradigm, protocols obtained through
the above-described approach can often be further optimized. One way to do
so would be using pseudo-random generators. Informally speaking, pseudo-
random generators can be described as efficient polynomial-time algorithms
that transform short random vectors into longer, random-looking ones, also
known as pseudorandom vectors. We commonly refer to the original vector
as a seed, and to the algorithm in use as pseudorandom generator. To define
pseudorandom generators more formally, we would first need to define more
precisely what we mean by pseudorandom. We present both definitions in
Definition 1.5.16.

Definition 1.5.16 (Pseudorandom generation). Let n ∈ N be a security
parameter and l : N → N be given as l(n) = poly(n). A deterministic
polynomial time algorithm, G, is called a pseudorandom generator if, on
an input seed ∈ {0, 1}n, it outputs a vector of length l(n) and satisfies the
following:

• Expansion criteria: ∀n ∈ N, l(n) > n,

• Pseudorandomness criteria: For any polynomial time algorithm
D, there exists a negligible function, negl(n), such that:

|Pr[D(G(seed)) = 1]− Pr[D(r) = 1]| ≤ negl(n),

where the first probability is taken over the choice of seed, sampled uni-
formly at random from the set {0, 1}n, and the randomness of D. The sec-
ond probability is taken over the choice of r ∈ {0, 1}l(n), sampled uniformly
at random from the set {0, 1}l(n), and the randomness of D.

In Chapter 4, where we explain our protocol design, we will give a more
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detailed explanation of how one can benefit from the use of pseudorandom
generators to increase the efficiency of a cryptographic scheme.
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The syndrome decoding problem is one of the fundamental problems in
code-based cryptography, derived from the corresponding syndrome decod-
ing method introduced in the previous chapter. In this chapter, we generalize
this problem beyond the binary alphabet and the Hamming weight, which is
the most common setting in both coding theory and cryptography. We do so
by redefining the problem with respect to the elementwise weights and we
then observe the problem for an arbitrary prime-number alphabet sizes and
arbitrary elementwise weight function. We also show how to compute the
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volumes of spheres for these weight functions, which is an important part
of our analysis of Information Set Decoding algorithms, and which appears
in [CDE21].
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2.1 Combinatorial definitions

Here we introduce the combinatorial definitions necessary for deriving the
combinatorial results presented throughout the chapter.

Definition 2.1.1 (Compositions). Let q, n ∈ N. The set of compositions
of n into q parts, denoted asR, is then given as:

R = {r = (ri)i∈[q] ∈ Nq
0 |
∑
i∈[q]

ri = n}.

We have (see, for example, [Bog00]) that |R| =
(
n+q−1
q−1

)
.

Definition 2.1.2 (Restricted compositions). Let q, n ∈ N and wt : Fn
q →

N denote a weight function. The set of restricted compositions of n into q
parts with weight restriction w, denoted asRw, is defined as:

Rw = {r ∈ R :
∑
i∈[q]

riwt(i) = w}.

In our setting, we will associate a composition r ∈ R with the vectors
x ∈ Fq st. the number of zeros in x is r0, the number of ones is r1 and so on.

Definition 2.1.3. The set of vectors with composition r is defined as

Cr = {x ∈ Fn
q : |{j ∈ [n] : xj = i}| = ri, ∀i ∈ [q]},

Notice that for each x ∈ Fn
q , there is a unique r ∈ R st. x ∈ Cr.

We thus obtain a simple formula for the size of Cr that is presented in
Lemma 2.1.1.

Lemma 2.1.1.

|Cr| =
(
n

r

)
≡
(

n

r0, . . . , rq−1

)
=

n!

r0!r1! . . . rq−1!
.
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where
(
n
r

)
is the multinomial coefficient.

Proof. Let us fix a composition r and count the number of vectors x with
this composition. We first choose the r0 different positions for the “0” coor-
dinates from the n possible positions, then the r1 different positions for the
“1” coordinates from the n− r0 remaining positions, and so on. This means
we have

|Cr| =
(
n

r0

)
×
(
n− r0
r1

)
× · · · ×

(
n− r0 − · · · − rq−2

rq−1

)
=

n!

(n− r0)!r0!
× (n− r0)!

(n− r0 − r1)!r1!
× · · · × (n− r0 − · · · − rq−2)!

0!rq−1!

=
n!

r0!r1! . . . rq−1!

where we used
∑

i ri = n and 0! = 1.
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2.2 Problem generalization

To define the generalized syndrome decoding problem, let us start by defining
the notion of elementwise weight function, denoted by wtM(·).

Definition 2.2.1 (Elementwise weight function). Let n ∈ N, q be a prime
number and dist : Fq → N be a distance function (metric).

We then define a weight function over an element, wtm : Fq → N as:

∀x ∈ Fq,wtm(x) = dist(x, 0),

where 0 denotes the zero elements of the finite field. The elementwise weight
function, wtM : Fn

q → N, is then given as follows:

∀x ∈ Fn
q ,x = (xi)i∈[n],wtM(x) =

∑
i∈[n]

wtm(xi).

Let us now take n, k ∈ N, let q be a prime number, and wtM(·) be an ele-
mentwise weight function. In Problem 2.2.1 and Problem 2.2.2, we present the
generalized version of the decisional and the search variant of the syndrome
decoding problem, respectively.

Problem 2.2.1 (Decisional Syndrome Decoding Problem, D-SDP). Given
H ∈ F(n−k)×n

q , s ∈ Fn−k
q , and w ∈ N, determine if there exists e ∈ Fn

q

satisfying s = eHT and wtM(e) = w.

Problem2.2.2 (SyndromeDecoding Problem, SDP). GivenH ∈ F(n−k)×n
q ,

s ∈ Fn−k
q , and w ∈ N, find a vector e ∈ Fn

q satisfying s = eHT and
wtM(e) = w.

We refer to the problem as generalized since our problem definition can
be seen as more general than the original problem definition. Namely, in the
original version, the alphabet is binary, i.e. q = 2, and the underlying weight
function is the Hamming weight (introduced in the previous chapter). We
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thus refer to the original version as the binary syndrome decoding problem in
the Hamming weight and denote it by 2-SDPH . As this problem has already
been thoroughly analyzed, it will a baseline for our analysis.

2.2.1 Worst case complexity

In their paper from 1978, Berlekamp, McEliece, and Van Tilborg showed
that the 2-SDPH is NP-hard. They did so by reducing the three-dimensional
matching problem which is known to be NP-hard, to the 2-SDPH . Know-
ing that the problem is also in NP, the three authors actually proved that
the 2-SDPH is, in fact, NP-complete. Moreover, for the weight functions we
are focusing on in this thesis, namely, the Hamming and the Lee weights, it
has been proven that the q-vary variants of D-SDP are NP-complete, too. A
proof of the NP-completeness for the q-ary SDP in the Hamming weight can
be found in [Bar94], while proof of the NP-completeness of the q-ary SDP in
the Lee weight is given in [Weg+20]. Nonetheless, the generalized case we
introduced has not been analyzed from the complexity theory point of view,
and we leave it as an open question for some future work.

2.2.2 Average-case complexity

In the average-case analysis, we are interested in the complexity of a problem
whose inputs are sampled from a particular distribution. In this thesis, we
are interested in the difficulty of solving the generalized syndrome decoding
problem whose underlying code is sampled from a uniform distribution and
it is guaranteed that there exists a solution to the problem.

Average-case syndrome decoding problem Let us define the maximum
value of the finite field Fq as:

∆ := max
x∈Fq

wtM(x),

and let the surface area of a sphere of radius w in the same vector space be
denoted as SM(q, n, w) and defined as follows:

SM(q, n, w) := {x ∈ Fn
q | wtM(x) = w}.
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The average-case syndrome decoding problem is then given via the following
definition.

Problem 2.2.3 (Average-case Syndrome Decoding Problem, A-SDP). Let
w ∈ N satisfy w ≤ n∆, and let ẽ ∈ Fn

q be sampled uniformly at random
from SM(q, n, w). Let thenH ∈ F(n−k)×n

q be sampled uniformly at random
from F(n−k)×n

q , and calculate s ∈ Fn−k
q as s = ẽHT . Given H, s and w,

find a vector e ∈ Fn
q satisfying s = eHT and wtM(e) = w.

Permuted kernel problem The permuted kernel problem is a compu-
tational problem introduced in [Sha89], where the author showed that the
decisional version of the problem is NP-complete. In this sub-section, we
will show that the average-case version of the syndrome decoding problem,
A-SDP, is polynomial-time reducible to the average-case version of the per-
muted kernel problem, A-PKP.1 Let us choose a vector v ∈ Fn

q . The average-
case version of PKP is given as follows.

Problem2.2.4 (Average-case PermutedKernel Problem, A-PKP). LetH ∈
F(n−k)×n
q be sampled uniformly at random from F(n−k)×n

q , π̄ : [n]→ [n] be
sampled uniformly at random from a set of all permutations of n elements,
and calculate s ∈ Fn−k

q as s = π̄(v)HT . GivenH, s,v, find a permutation
π : [n]→ [n] that satisfies s = π(v)HT .

We remark here that in the original version of PKP, the syndrome s ∈ Fn−k
q

is the all-zero vector in Fn−k
q , i.e. s = 0, hence the name of the problem. In

the version of PKP we present, the problem is generalized by replacing the
all-zero syndrome with an arbitrary vector from Fn−k

q . This generalization is
introduced to highlight the similarity between A-SDP and A-PKP and does
not affect the complexity of the PKP problem. We now present a reduction
from SDP to PKP.

1This result will turn out to be rather important to our protocol design presented in
Chapter 4.
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Average-case reduction

LetH ∈ F(n−k)×n, s ∈ Fn−k
q , and w ∈ N. Let thenRw be the set of restricted

compositions, defined in Definition 2.1.2, where the restriction is given as∑
i∈[q] ri wtm(i) = w, and where wtm : Fq → N is a weight function. Finally,

let r̃ := (r̃i)i∈[q] ∈ Rw such that
(
n
r̃

)
= maxr∈RE

(
n
r

)
and ṽ ∈ Fn

q consists of
r̃0 zeros, r̃1 ones, etc.

Proposition 2.2.1 (SDP ⪯ PKP ). If there exists an algorithm B that
solves an instance ofPKP on the input

(
H, s, ṽ

)
in timeO(poly(n log2 q)),

then there exists an algorithm A that solves the instance of SDP on the
input

(
H, s, w

)
in time O(poly(n log2 q) and succeeds with probability

Ω(1/poly(n log2 q)) when q is constant.

Proof. For a fixed q, n, k, w ∈ N and a fixed elementwise weight function,
wtM(·), consider a random instance of SDP. Namely, we sampleH $←− F(n−k)×n

q ,
ē

$←− Fn
q st. wtM(ē) = w, and we calculated s = Hē. Given (H, s), our goal

is to find e st. wtM(e) = w and eHT = s.

Let us choose r ∈ Rw. We then take a vector v ∈ Cr, and let A be
an algorithm that runs in poly(n) and finds a solution to a random instance
of PKP given on the input (H, s,v). A solution to this problem is a vector
e = π(v) st. eHT = s. Since wtM(e) = wtM(v) = w, we found a solution
to our original syndrome decoding problem. Nevertheless, since r can be
any element in Rw, we do not have a guarantee that there is a solution to
the given PKP instance in the first place. To guarantee the solution is found,
we repeat the algorithm for each r ∈ Rw, as we know that if r̄ ∈ Rw is
chosen st. ē ∈ Cr̄, the a solution exists. We thus repeat the algorithm A

|Rw| ≤ |R| =
(
n+q−1
q−1

)
= poly(n) times in the worst case. It implies that

the time for finding a solution to an SDP instance, given access to an oracle
solving a PKP instance, is at most polynomial and concludes the proof.

We remark here that Proposition 2.2.1 implies that, as long as q is constant,
the PKP is essentially at least as hard as the SDP for elementwise weight
functions.
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2.3 Sphere surface areas and ball volumes

In this subsection, we derive a general formula for the sphere surface area
and the ball volume, as well as the formula for the asymptotic values of these,
that holds for an arbitrary choice of an elementwise weight function. This
is considered to be one of the major contributions of this thesis as it allows
us to analyze the syndrome decoding problem in a lot broader setting, both
from the complexity theory and cryptanalytic perspective.

We start this section by recalling the well-known results on the surface
areas (ball volumes) in the Hamming weight spaces. We then derive the cor-
responding formulas on the sphere surface area and the ball volume for the
Lee weight, relying on the approach presented in [Ast84]. We finish the sec-
tion by generalizing the approach for Lee weight to an arbitrary weight ele-
mentwise weight function and then re-derive the well-known result on the
Hamming weight using our approach.

2.3.1 Hamming weight

The Hamming weight, depicted in Figure 2.1a as a unit-distance graph2, is
the most common choice of weight function, both in coding theory and in
cryptography. As such, it is well studied from both perspectives so we will
take it as a baseline for our research. Let us first recall its definition.

For a prime number q and an integer n, the Hamming weight of an ele-
ment in Fq, denoted as wth : Fq → N, and its elementwise version over Fn

q ,
wtH : Fn

q → N, are defined as:

∀x ∈ Fn
q , x = (xi)i∈[n],wth(xi) :=

{
0, if xi = 0

1, otherwise
,wtH(x) =

∑
i∈[n]

wth(xi).

2In a unit distance graph, each vertex corresponds to a vector in Fn
q and each edge con-

nects two vertices at the distance 1.
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(a) Two-dimensional Hamming
weight space for 5-ary alphabet

x

(b) Hamming ball (in cyan) of radius
1, centered at x

Sphere surface area and ball volume

Let us recall that a sphere of radius w ∈ N, w ≤ n, in the vector space Fn
q

endowed with the Hamming metric, denoted as SH(q, n, w) , is defined as:

SH(q, n, w) := {x ∈ Fn
q | wtH(x) = w}.

The corresponding sphere surface area, surfH(·), then counts the number of
vectors having w non-zeros coordinates, and it is then given as:

surfH(q, n, w) := |SH(q, n, w)| =
(
n

w

)
(q − 1)w.

Similarly, a Hamming ball of radius w ∈ N, w ≤ n, in the vector space Fn
q

endowed with the Hamming metric, denoted as BH(q, n, w) and depicted in
Figure 2.1b, is defined as:

BH(q, n, w) := {x ∈ Fn
q | wtH(x) ≤ w}.

The corresponding ball volume, volH(q, n, w)(·)), then counts the number of
vectors having at most w non-zeros coordinates. Given that we observe a
vector space over a discrete set, we have that:

volH(q, n, w) :=|BH(q, n, w)| =
w∑
i=0

(
n

i

)
(q − 1)i,
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Asymptotic sphere surface area and ball volume

It is not hard to prove that for w = ωn, ω ∈ [0, 1], the expression
(
n
w

)
(q −

1)w is upper-bounded by qnHq(ω) and lower bounded by qnHq(ω)−o(n) (see, for
example, [Ber68]), where Hq(ω) is the q-ary entropy function given as:

Hq(ω) = −ω logq(
ω

q − 1
)− (1− ω) logq(1− ω).

As the bounds are rather tight, we obtain a close approximation of the asymp-
totic surface area of a Hamming sphere. A sphere of radius w = ωn, ω ∈
[0, 1], in the vector space Fn

q , thus has the following asymptotic surface area,
sH(q, ω):

sH(q, ω) = lim
n→∞

1

n
logq (surfH(q, n, ωn)) = Hq(ω).

As the entropy function is concave, from its derivative, we determine that
it reaches its maximum for ω = 1−1/q. This further implies that the asymp-
totic surface area of a sphere also reaches its maximum for 1 − 1/q, and
decreases afterward. For the asymptotic value of the ball volume, defined as:

vH(q, ω) = lim
n→∞

1

n
logq volH(q, n, ωn).

we then obtain:

vH(q, ω) = lim
n→∞

1

n
logq

w∑
i=0

surfH(q, n, i)

= max
i={0,1,...,w}

lim
n→∞

1

n
logq surfH(q, n, i)

=

{
sH(q, ω) = Hq(ω), if ω ≤ 1− 1/q

1, otherwise
.

We highlight here that the two values, namely, the asymptotic sphere surface
area and the asymptotic volume are identical for ω ≤ 1 − 1/q and different
for the rest of the interval. This difference is rather important for the crypt-
analysis presented in the following chapter.
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2.3.2 Lee weight

The Lee weight, depicted in Figure 2.2a by a unit-distance graph, is another
weight function that is commonly encountered in coding theory and, since
recently, more often used in cryptography. It was introduced in [Lee58] ex-
actly for the purpose of decoding non-binary linear codes. Let us recall its
definition.

For a prime number q and an integer n, the Lee weight over an element
in Fq, denoted as wtl : Fq → N, and its elementwise version wtL : Fn

q → N,
are defined as follows:

∀x ∈ Fn
q ,x = (xi)i∈[n],wtl(xi) := min(xi, q − xi),wtL(x) :=

∑
i∈[n]

wtl(xi).

(a) Two-dimensional Leeweight space
for 5-ary alphabet

x

(b) Lee ball (in cyan) of radius 1, cen-
tered at x

Sphere surface area and ball volume

We recall that a sphere of radiusw ∈ N, in the vector space Fn
q endowed with

the Lee metric, denoted as SL(q, n, w) , is defined as:

SH(q, n, w) := {x ∈ Fn
q | wtL(x) = w},

while a ball of radius w in the same vector space, denoted as BH(q, n, w) and
depicted in Figure 2.2b, is defined as:

BH(q, n, w) := {x ∈ Fn
q | wtL(x) ≤ w}.
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In contrast to the surface area of a Hamming sphere, the surface area
of a Lee sphere cannot be presented via simple combinatorial formula. A
more complex combinatorial expression can still be derived, as presented in
[HW21], so it can be one approach for calculating the surface area of a Lee
sphere. Another approach would be to combine the use of so-called gener-
ating functions and saddle-point techniques to calculate the volume, as pre-
sented in [GS91]. Equivalently, one can use multinomial coefficients and La-
grange multipliers as presented in [Ast84]. In this thesis, we rely on the last
approach and use it to derive a more generalized method to calculate the
sphere surface area (and, consequently the volume of a ball) that holds for an
arbitrary elementwise weight function.

Proposition 2.3.1 (Surface area of a Lee sphere). Let q be a prime number,
n,w ∈ N, where w ≤ ⌊q/2⌋n. The surface area of a sphere of radius w
in the vector space Fn

q endowed with the Lee weight, surfL(q, n, w), is then
calculated as:

surfL(q, n, w) =
∑
r∈Rw

(
n

r

)
.

Proof. We just write

surfq(n,w) = |{x ∈ Fq : wtL(x) = w}| =
∑
r∈Rw

|Cr| =
∑
r∈Rw

(
n

r

)
.

Given Proposition 2.3.1, we can calculate the volume of a Lee ball of radius
w ∈ N, w ≤ ⌊q/2⌋n, in the vector space Fn

q as:

volL(q, n, w) :=|BL(q, n, w)| =
w∑

j=0

∑
r∈Rj

(
n

r

)
.

Asymptotic sphere surface area

To calculate the asymptotic surface area of a Lee sphere, we generalize the
method proposed in [Ast84] and formalize its proof in Proposition 2.3.2.
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Proposition 2.3.2 (Asymptotic surface area of a Lee sphere). Let q be a
prime number, and n,w ∈ N, where w = ⌊ q

2
ωn⌋, ω ∈ [0, 1]. The asymp-

totic surface area of a sphere of radius d in the vector space Fn
q endowed

with the Lee weight, sL(q, ω), is then calculated as:

sL(q, ω) := lim
n→+∞

max
r∈Rw

(
−

q∑
i=1

ri
n
logq

ri
n

)
. (2.1)

Proof. Let us recall that, by Proposition 2.3.1, surfL(q, n, w) =
∑

r∈Rw

(
n
r

)
.

First notice that

surfL(q, n, w) ≤ |Rw|max
r∈Rw

(
n

r

)
≤ |R|max

r∈Rw

(
n

r

)
=

(
n+ q − 1

q − 1

)
max
r∈Rw

(
n

r

)
.

which means we can write

max
r∈Rw

(
n

r

)
≤ surfL(q, n, w) ≤

(
n+ q − 1

q − 1

)
max
r∈Rw

(
n

r

)
.

Following the same line of reasoning as in [Ast84], we assume thatmaxr∈Rw

(
n
r

)
is reached for r̃ ∈ Rw and observe that

(
n+q−1
q−1

)
≤ (n+q−1)q−1

(q−1)!
≤ (n+q+1)q−1.

We then calculate the asymptotic upper and lower bound given as:

lim
n→+∞

1

n
logq

(
n

r̃

)
≤ sL(q, ω) ≤ lim

n→+∞

1

n
logq

(
n

r̃

)
+ lim

n→+∞

q − 1

n
logq(n+q−1).

As the last term approaches 0+ as n → +∞, the asymptotic value of the
sphere surface is sL(q, ω) = limn→+∞

1
n
logq

(
n
r̃

)
. Using Stirling’s approxi-

mation, which states that for a large integer value, m, logm! = m logm −
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m logq(e) + o(m), we obtain the following:

1

n
logq

(
n

r̃

)
=

1

n
logq

n!

r̃0!r̃1! . . . r̃q−1!
=

1

n
logq n!−

1

n

∑
i∈[q]

logq r̃i!

=
1

n
(n logq n− n logq(e))−

1

n

∑
i∈[q]

(
r̃i logq r̃i − r̃i logq(e)

)
+ o(1)

= logq n− logq(e)−
∑
i∈[q]

( r̃i
n
logq

r̃i
n
n− ri

n
logq(e)

)
+ o(1)

= logq n− logq(e)−
∑
i∈[q]

r̃i
n
logq

r̃i
n
− (logq n− logq e)

∑
i∈[q]

r̃i
n
+ o(1)

= −
∑
i∈[q]

r̃i
n
logq

r̃i
n
+ o(1).

We thus obtain the expression that proves the claim, namely:

sL(q, ω) = lim
n→+∞

1

n
logq

(
n

r̃

)
= lim

n→+∞

(
−
∑
i∈[q]

r̃i
n
logq

r̃i
n

)
= lim

n→+∞
max
r∈Rw

(
−
∑
i∈[q]

ri
n
logq

ri
n

)
.

We note here that the expression 2.1 is not a closed-form solution, but a
problem of maximizing a concave function3, or, equivalently, a problem of
minimizing a convex function. The solution to this problem then yields the
asymptotic surface area of a Lee sphere and, consequently, the asymptotic
volume of a Lee ball. Calculating these values thus comes down to solving
the following constrained convex optimization problem.

Problem 2.3.1. Let p ∈ Rq
+, p = (pi)i∈[q].

• Maximize: −
∑

i∈[q] pi logq pi,

3As each summand in the expression (3.1) is a concave function, their sum is also a con-
cave function.
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• Subject to:
∑

i∈[q] pi = 1,
∑

i∈[q] pi wtl(i) = δ⌊q/2⌋.

It can be easily verified that when replacing the optimization variable pi from
Problem 2.3.1 with ri/n from (3.1), we recover the original formulation of the
asymptotic surface area of a Lee sphere from Proposition 2.3.2. The solu-
tion of Problem 2.3.1 then indeed yields the asymptotic surface area of a Lee
sphere. More specifically, if we denote by p̃ = (p̃1, ..., p̃q) the solution4 of
Problem 2.3.1, the asymptotic value of the surface area of a sphere of radius
w = ⌊ q

2
ωn⌋, ω ∈ [0, 1], is calculated as sL(w, ω) = −

∑
i∈[q] p̃i logq p̃i.

Solving convex optimization problem To solve Problem 2.3.1, we can
rely on the method of Lagrange multipliers, as suggested in [Ast84]. We thus
first form the Lagrangian function, L(p, λ1, λ2), corresponding to the con-
strained optimization problem:

L(p, λ1, λ2) = −
∑
i∈[q]

pi logq pi−λ1(
∑
i∈[q]

pi− 1)−λ2(
∑
i∈[q]

pi wtl(i)− δ⌊q/2⌋).

We then ask for the stationary point5 of L(p, λ1, λ2). Namely, we ask for
values of p, λ1, λ2 for which the gradient of L, denoted as ∇L, evaluates
to zero. Therefore, we obtain a system of equations containing all partial
derivatives of L evaluating to zero. The solution of this system yields the
solution to our constrained convex optimization problem. In particular, the

4As
∑

i∈[q] pi logq pi is a convex function, the solution is unique.
5Again, given that the function is concave and we ask for its maximum, it is expected

that the solution will be unique.
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system corresponding to Problem 2.3.1 is given as follows:

∂L
∂p0

= (− logq p0 − 1/ ln(q))− λ1 = 0

∂L
∂p1

= (− logq p1 − 1/ ln(q))− λ1 − λ2wtl(1) = 0

. . .

∂L
∂pq−1

= (− logq pq−1 − 1/ ln(q))− λ1 − λ2wtl(q − 1) = 0

∂L
∂λ1

= −
∑
i∈[q]

pi + 1 = 0

∂L
∂λ2

= −
∑
i∈[q]

pi wtl(i) + δ⌊q/2⌋ = 0

Let us observe here that the number of variables in the system grows lin-
early with q. It is then expected that for a large enough q, solving the system
manually would be a long and error-prone process. We thus normally rely
on non-linear system solvers to find the solution for us. In this work, we use
solvers from the software package called MOSEK [ApS19]. Though the un-
derlying methodology of these solvers is equivalent to the method based on
Lagrange multipliers, the input to the solvers is not in the form of a system of
equations. It rather resembles the problem’s original formulation, with mi-
nor adjustments to the framework. In our case, the problem is reformulated
as follows.

Problem 2.3.2. Let p ∈ Rq
+, p = (pi)i∈[q], and t ∈ Rq

+, t = (ti)i∈[q].

• Maximize:
∑

i∈[q] ti,

• Subject to:
∑

i∈[q] pi = 1,
∑

i∈[q] pi wtl(i) = δ⌊q/2⌋, (1,p, t) ∈
Kexp.

We note here that the constraint (1,p, t) ∈ Kexp means that ti ≤ −pi logq pi,
for each i ∈ [q].6 It can be easily verified that Problem 2.3.1 and Problem 2.3.2

6The notationKexp comes from the MOSEK optimizer[ApS19] and represents the expo-
nential convex cone.
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are equivalent, hence, finding a solution to either of the two yields the asymp-
totic value of the sphere surface area. Our numerical results on the asymp-
totic values of the surface areas of Lee spheres (equivalently, the asymptotic
values of the volumes of Lee balls) were obtained using this approach.

Asymptotic ball volume

As in the case of Hamming metric, we see that sL(·) is a concave function,
so for a fixed q, its maximum is reached for some ωmax ∈ [0, 1]. To find ωmax,
we can first solve Problem 2.3.1 to express sL(·) as a function of ω ∈ [0, 1],
and then calculated the value of ωmax from the derivative of sL(q, ω), as we
did in the case of Hamming metric. Alternatively, we can first solve Problem
2.3.1 without the last constraint on the weight7, namely, without requiring
that

∑
i∈[q] pi wtl(i) = ω⌊q/2⌋, and then calculate for which ωmax ∈ [0, 1] the

second constraint is also satisfied. We thus basically reverse the ordering of
the maximizations. Therefore, using the method of Lagrange multipliers, we
can first find {pi}i∈[q] for which the maximum of−

∑
i∈[q] pi logq pi is reached

and
∑

i∈[q] pi = 1 is satisfied. It turns out that if pi = 1/q,∀i ∈ [q], the
maximum is reached, so we calculate ωmax as:

ωmax =
∑
i∈[q]

pi wtl(i)

⌊q/2⌋
=

1

q⌊q/2⌋
∑
i∈[q]

wtl(i) =

{
1
2
, if q is even

q+1
2q
, else

. (2.2)

Given the solution to Problem 2.3.1, we can then calculate the asymptotic
volume of a Lee ball of radius w = ⌊ q

2
ωn⌋, ω ∈ [0, 1], in the vector space Fn

q

as:

vL(q, ω) = lim
n→∞

1

n
logq volL(q, n, ωn) = lim

n→∞

1

n
logq

w∑
i=0

surfL(q, n, i)

≈ max
i={0,1,...,w}

lim
n→∞

1

n
logq surfq(n, i) =

{
sL(q, ω), if ω ≤ ωmax

1, else

=

 lim
n→+∞

maxr∈Rw

(
−
∑

i∈[q]
ri
n
logq

ri
n

)
, if ω ≤ ωmax

1, else
,

7Notice here that, in fact, the maximization is independent of the weight function.
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where ωmax is given in (3.2), and the maximum of 1 is reached when the ball
covers the whole vector space Fn

q , i.e. volq(n, d) = qn.

2.3.3 Arbitrary elementwise weight

Proposition 2.3.1 and Proposition 2.3.2, in fact, can be generalized to any el-
ementwise weight function. Intuitively, we can see this generalization as
replacing the Lee weight constraint in the definition of the set of restricted
compositions with a weight constraint corresponding to some other weight
function, for example, the Hamming weight. We thus obtain the following
proposition.

Sphere surface area Let q be a prime number, n ∈ N, and Fn
q be a vector

space endowed with an elementwise weight function, wtM(·). Let wtm(·) be
the corresponding weight over an element in Fq, and ∆ ∈ Fq be defined as
∆ := maxx∈Fq{wtm(x)}. Let ω ∈ [0, 1] and d = ⌊∆ωn⌋.

Proposition 2.3.3 ((Asymptotic) Sphere surface area). The surface area
of a sphere of radius d in the vector space Fn

q , surfM(q, n, d), and its asymp-
totic value, sM(q, ω), are calculated as:

surfM(q, n, d) =
∑
r∈Rw

(
n

r

)
, sM(q, δ) := lim

n→+∞
max
r∈Rw

(
−

q∑
i=1

ri
n
logq

ri
n

)
.

To prove this proposition we can follow the same line of reasoning as in the
proof of Proposition 2.3.1 and Proposition 2.3.2, so we will not repeat it here.

From Proposition 2.3.3, we have that the asymptotic surface area of a
sphere in a vector space endowedwith an arbitrary elementwise weight func-
tion comes down to solving the following convex optimization problem.

Problem 2.3.3. Let q be a prime number, let p ∈ Rq
+, p = (pi)i∈[q], and

let wtm : Fq → N, ∆ := maxx∈Fq wtm(x).

• Maximize: −
∑

i∈[q] pi logq pi,
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• Subject to:
∑

i∈[q] pi = 1,
∑

i∈[q] pi wtm(i) = ω∆,

As in the case of the Lee weight, we can be easily verified that once we re-
place the optimization variable pi from Problem 2.3.3 with ri/n from (3.2), we
recover the original formulation of the asymptotic surface area of a sphere
from Proposition 2.3.3. Again, if we denote by p̃ = (p̃1, ..., p̃q) the solution of
Problem 2.3.3, the asymptotic value of the surface area of a sphere of radius
w = ⌊∆nω⌋, ω ∈ [0, 1], is calculated as sM(q, ω) = −

∑
i∈[q] p̃i logq p̃i.

Asymptotic sphere surface area as entropy

Definition 2.3.1 (Entropy). Let X be a discrete random variable that
takes values in the alphabet A, where |A| = q, that is distributed ac-
cording to p : A → [0, 1]. The entropy of X is then given as H(X) =

−
∑

x∈A p(x) logq p(x).

Let now X be a random variable that takes values in Fq and is distributed
according to p : Fq → [0, 1], and let p(·) be defined as ∀xi ∈ Fq, p(xi) := p̃i,
for i ∈ [q], where values {p̃i}i∈[q] are obtained as the solution to Problem
2.3.3. The asymptotic sphere surface area is then given as:

sM(q, δ) = −
∑
i∈[q]

p̃i logq p̃i = −
∑
xi∈Fq

p(xi) logq p(xi) = H(X).

We observe here that the q-ary entropy function, defined in 2.3.1, is just a
special case of the entropy where a random variableXH takes elements from
Fq, and where p(0) = 1 − ω, and ∀xi ∈ Fq \ {0}, p(xi) = ω/(q − 1). The
asymptotic surface area of the Hamming sphere of radius ⌊nω⌋, ω ∈ [0, 1], in
the vector space Fn

q , thus corresponds to the entropy of the random variable
XH . In the case of the Lee weight, we can also form a corresponding random
variable XL taking elements from Fq and satisfying ∀xi ∈ Fq, p(xi) = p̃i,
where p̃i are solutions to Problem 2.3.3. Nevertheless, we do not have a
closed-form solution to express the dependence of p(xi) from ω.
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Ball volume

Given Proposition 2.3.3, we can calculate the volume of a ball of radius w ∈
N, w ≤ ∆nω, where ∆ := maxx∈Fq wtm(x), and ω ∈ [0, 1], in the vector
space Fn

q as:

volM(q, n, d) :=|BM(q, n, d)| =
w∑

j=0

∑
r∈Rj

(
n

r

)
.

As in the case of the Lee weight, we can show that the asymptotic value of the
sphere surface area, sM(·), reaches its maximum for ωmax ∈ [0, 1] given as
ωmax =

∑
i∈[q] wtm(i)

q∆
. We thus obtain the following expression for calculating

the asymptotic volume of a ball of radius w:

vM(q, ω) = lim
n→∞

1

n
logq volM(q, n, ωn)

=

 lim
n→+∞

maxr∈Rw

(
−
∑

i∈[q]
ri
n
logq

ri
n

)
, if ω ≤ ωmax

1, else
.

2.3.4 Hamming space

In this subsection, we would like to show that, using results from Proposition
2.3.3, we can re-prove the well-known result on the (asymptotic) surface area
of a sphere in the Hamming metric space. We thus first define the set of
restricted compositions corresponding to the Hamming metric, namely:

Rw := {r = (ri)i∈[q] ∈ Nq
0 |
∑
i∈q

ri = n,
∑

i∈[q]\{0}

ri = w},

where n ∈ N, q is a prime number, and w ∈ N satisfies w = ⌊ωn⌋, ω ∈
[0, 1]. We then observe that the two conditions in the definition of Rw are
equivalent to the following two conditions:

r0 = n− w, r1 + · · ·+ rq−1 = w.
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Surface area We thus obtain the surface area of a sphere in the Hamming
space:

surfq(n,w) =
∑
r∈Rw

(
n

r

)
=

∑
r1+···+rq−1=w

(
n

n− w, r1, . . . , rq−1

)
=

∑
r1+···+rq−1=d

n!

(n− w)! r1! . . . rq−1!
· w!
w!

=
n!

(n− w)!w!
∑

r1+···+rq−1=w

w!

r1! . . . rq−1!

=

(
n

w

) ∑
r1+···+rq−1=w

(
d

r1, . . . , rq−1

)
=

(
n

w

)
(q − 1)w,

where
∑

r1+···+rq−1=w
w!

r1!...rq−1!
= (q − 1)d is given by the multinomial theo-

rem and it is known as the sum of multinomial coefficients (see, for example,
[Ber10]).

Asymptotic sphere surface area To calculate the asymptotic sphere sur-
face area, for the Hamming weight, we observe the following constrained
convex optimization problem.

Problem 2.3.4. Let p ∈ Rq
+, p = (pi)i∈[q], ω ∈ [0, 1].

• Maximize: −
∑

i∈[q] pi logq pi,

• Subject to:
∑

i∈[q] pi = 1,
∑

i∈[q] pi wth(i) = ω.

We then derive the Lagrangian function,L(p, λ1, λ2), corresponding to Prob-
lem 2.3.4:

L(p, λ1, λ2) = −
∑
i∈[q]

pi logq pi − λ1(
∑
i∈[q]

pi − 1)− λ2(
∑
i∈[q]

pi wth(i)− ω).
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to obtain the following system of equations:

∂L
∂p0

= (− logq p0 − 1/ ln(q))− λ1 = 0 (2.3)

∂L
∂p1

= (− logq p1 − 1/ ln(q))− λ1 − λ2 = 0 (2.4)

. . . (2.5)
∂L
∂pq−1

= (− logq pq−1 − 1/ ln(q))− λ1 − λ2 = 0 (2.6)

∂L
∂λ1

= −
∑
i∈[q]

pi + 1 = 0 (2.7)

∂L
∂λ2

= −
∑

i∈[q]\{0}

pi + ω = 0 (2.8)

We solve the system as follows:

(2.8)⇒
∑

i∈[q]\{0}

pi = ω

(2.7)⇒ p0 +
∑

i∈[q]\{0}

pi − 1 = 0 ⇒ p0 = 1− ω

(2.4)− (2.6)⇒ logq
p1
p2

= logq
p2
p3

= · · · = logq
pq−1

pq−2

= 0

⇒ p1 = p2 = · · · = pq−1

(2.8), (2.3)− (2.7)⇒ p1 = p2 = · · · = pq−1 = ω/(q − 1).

Finally, we obtain the asymptotic surface area of a Hamming ball of radius
w = ⌊ωn⌋, ω ∈ [0, 1], given as:

sH(q, ω) = −
∑
i∈[q]

pi logq pi = −(1−ω) logq(1−ω)−ω logq
ω

q − 1
= Hq(ω).

91



Chapter 2

92



Chapter 3

Information Set Decoding

3.1 Information set decoding preliminaries . . . . . . . . 94
3.2 Probability of finding a solution . . . . . . . . . . . . 98
3.3 Classical ISD algorithms . . . . . . . . . . . . . . . . 101

3.3.1 Prange’s algorithm . . . . . . . . . . . . . . . 101
3.3.2 Lee-Brickel’s algorithm . . . . . . . . . . . . 103
3.3.3 Stern’s/Dumer’s algorithm . . . . . . . . . . . 105
3.3.4 Wagner’s algorithm . . . . . . . . . . . . . . 110

3.4 Quantum ISD algorithms . . . . . . . . . . . . . . . . 115
3.5 Asymptotic analysis . . . . . . . . . . . . . . . . . . . 123
3.6 Numerical results . . . . . . . . . . . . . . . . . . . . 132

The information set decoding framework is known as the set of the most
efficient algorithms attacking the syndrome decoding problem in the wide
range of parameters, namely, for values of R > 0.3.1 In this chapter, we
use this framework to analyze the complexity of the generalized version of
the syndrome decoding problem introduced in the previous chapter. These
results appear in [CDE21].

1For R < 0.3, recent improvements in the field showed that the statistical decoding
[Car+22] is more efficient in solving the syndrome decoding problem.
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3.1 Information set decoding preliminaries

The information set decoding (ISD) is a common name for the set of algorithms
that rely on the linear algebra properties of linear codes to gain speed-up in
solving the syndrome decoding problem. Eugene Prange introduced the orig-
inal algorithm in [Pra62] and, over the years, it was simplified, generalized,
and improved by the work of many. The framework presented in Definition
3.1.1, introduced by Finiazs and Sendrier in [FS09], encompasses different ISD
variants used in this thesis. The framework was originally designed for solv-
ing 2-SDPH and then further generalized to an arbitrary prime alphabet by
Peters in [Pet10]. For the purpose of this thesis, we generalize it to an arbi-
trary elementwise weight function wtM(·) (along with an arbitrary alphabet
size).

Definition 3.1.1 (Information set decoding framework). The information
set decoding framework comprises the following four steps:

1. permutation step: The algorithm samples a permutation matrix P ∈
Fn×n
2 as P $←− Π.

2. decomposition step: For a fixed l ∈ N, the algorithm performs the
Gaussian elimination on the first n− k− l columns of the permuted
parity check matrix HP. The goal is to obtain the decomposition,
H̄ ∈ F(n−k)×n

q , given as:

H̄ =

(
I H1

0 H2

)
= UHP,

such that I is the identity matrix of rank n− k − l, 0 is a matrix of
all zeros in Fl×(n−k−l)

q , H1 ∈ F(n−k−l)×(k+l)
q , and H2 ∈ Fl×(k+l)

q . If I
is of rank smaller than n − k − l, the algorithm returns to the first
step. Otherwise, it decomposes the syndrome s as follows:

s̄ = Us =

(
s1
s2

)
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where s̄ is a decomposition of the syndrome, U ∈ F(n−k)×(n−k)
q cor-

responds to elementary row operations performed during Gaussian
elimination, and s1 ∈ Fn−k−l

q , s2 ∈ Fl
q.

3. mSDP step: For a fixed d ∈ N, d ≤ w, the algorithm finds multiple
solutions to the syndrome decoding sub-instance given on the inputs(
H2, s2, d

)
.

4. test step: For each e2 found as a solution to the syndrome decoding
sub-instance, the algorithm calculates e1 = e2H

T
1 − s1 and checks

if wtM

(
e1
0

)
= w − d. If no e1 is of weight w − d, the algorithm

returns to the first step. Otherwise, it returns:

e = Pē = P

(
e1
e2

)
,

where ē =

(
e1
e2

)
is a decomposition of a permuted error vector.

Let us first verify that the algorithms in this framework give a correct so-
lution to the syndrome decoding problem. We can then explain the intuition
behind different steps and estimate the running time of different algorithms
within the framework.

Correctness of the ISD framework. Let us assume that after the second step,
an algorithm in the ISD framework succeeds in obtaining the desired decom-
position of the permuted parity check matrix HP (which indeed happens
with some constant probability). We then obtain a new instance of the syn-
drome decoding problem given on the inputs (H̄, s̄, w) and we would like to
show that finding a solution to this instance yields a solution to the original
instance, given on the input

(
H, s, w

)
.

From the problem definition, we know that ē ∈ Fn
q of weightw, satisfying

s̄ = H̄ē is a solution to the (H̄, s̄, w) instance. Equivalently, a solution ē =
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(
e1,

e2

)
∈ Fn−k−l

q × Fk+l
q , satisfies:

(
s1
s2

)
=

(
I H1

0 H2

)(
e1,

e2

)
, wtM(ē) = w.

Given that theweight function is elementwise, we have thatwtM
(
e1
e2

)
=

wtM

(
e1
0

)
+ wtM

(
0

e2

)
= w. With a slight abuse of notation, we then sim-

plify the previous expression to obtain wt(e1) + wtM(e2) = w. Finding a
solution ē then comes down to solving the following system of linear equa-
tions:

e1 +H1e2 = s1 (3.1)
H2e2 = s2, (3.2)

with an additional constraint given as wtM(e1) + wtM(e2) = w.

In step 3, the algorithm then finds vectors e2 ∈ Fk+l
q satisfying 3.2 and

wtM(e2) = d, where d ∈ N. From 3.1, we know that e1 can be calculated
as e1 = s1 − H1e2. If now wtM(e1) = w − d, we have that wtM(e1) +

wtM(e2) = w. In step 4, the algorithm thus calculates e1 and checks if its
weight is w − d. If that is the case, the algorithm obtains ē that satisfies
s̄ = H̄ē and wtM(ē) = w and yields a solution to a syndrome decoding
instance on the inputs (H̄, ē, w). Consequently, e = Pē is of weight w and
satisfies

He = (U−1H̄P−1)(Pē) = U−1H̄ē = U−1s̄ = s,

so e is a solution to the original instance of the syndrome decoding problem
given on the inputs (H, s, w).

Intuition behind the framework An intuition behind the different steps
of the framework can be presented as follows.

• permutation: The permutation step plays the role of the guessing step
described in the original ISD algorithm. The original algorithm guesses
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the information set, i.e. the set of coordinates of a codeword that were
not compromised by errors during transmission or, equivalently, the
set of zero-element coordinates of the error vector. As the permuta-
tion P is sampled uniformly at random, the last k + l positions of the
permuted error vector ē = P−1e correspond to randomly sampled po-
sitions of the error vector e whose overall weight is d, where d ≤ w.
Equivalently, the algorithm could have sampled uniformly at random a
set G ∈ [n] of k + l elements corresponding to the coordinates of k + l
positions of e.

• decomposition: Given G ⊆ [n] and d ∈ N, the original algorithm aims to
obtain the parity check matrix in the standard form and, consequently,
forms a sub-instance of the syndrome decoding problem. Solutions
of this sub-instance are of weight d and satisfy the initial constraint
s = He for the set of positions given by G. These solutions thus po-
tentially yield a solution to the original problem. Namely, if the initial
constraints on the [n] \ G positions are also satisfied, i.e. if He = s at
the rest of positions and wtM((ei)i∈[n]\G) = w − d, a solution of the
original problem is obtained from the solution of the sub-instance with
a polynomial overhead.

• mSDP : In this step, the algorithm finds multiple solutions to the sub-
instance from the previous step.2

• test: Finally, the algorithm checks if any of the solutions found in the
previous step yields a solution to the original problem. It does so by
calculating the error vector at positions [n]\G and checking if its weight
is w − d. If not, the algorithm returns to the guess step.

2Notice here that, in contrast to the original problem where the goal is to find any solu-
tion, the goal here is to find as much as possible solutions.
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3.2 Probability of finding a solution

It is not hard to see that the probability that the algorithm finds a solution
at the end of an iteration of the above-presented framework depends on the
probability that the initial guess was correct, as well as on the probability the
decomposition was successful. Apart from that, the probability of finding a
solution in one iteration depends also on the number of solutions that exist
for the original instance, as well as on the number of solutions that are found
in the third step. Taking all of this into account, we derive the expression for
calculating the probability of finding a solution to the generalized syndrome
decoding problem in one iteration of the ISD framework. We present it in the
following lemma.

Lemma 3.2.1. Let surfM(q, n, w) and surfM(q, n− k− l, w− d), respec-
tively, be a surface area of a sphere of radius w in a vector space Fn

q and
a sphere of radius w − d in a vector space Fn−k−l

q . Let then |L| be the ex-
pected number of solutions found in themSDP step of the ISD framework.
The probability that a solution is found after one iteration of an algorithm
within the framework, p ∈ [0, 1], is then given as:

p = min
(
1,

surfM(q, n− k − l, w − d)
max

(
qn−k, surfM(q, n, w)

)
q−l
|L|
)
.

Proof. Let us assume that the algorithm succeeds in decomposing the per-
muted parity-check matrix (which happens with some constant probability).
After the decomposition step, we thus have:

H̄ = UHP =

(
I H1

0 H2

)
, s̄ = Us =

(
s1
s2

)
,

that yield a potential solution, ē = P−1e =

(
e1
e2

)
. We will thus refer to the

instance (H̄, s̄, w) as the original A-SDP as it is equivalent to a truly original
instance given on the input (H, s, w).
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Let then Ē be the set of all the solutions to the original A-SDP instance,
defined as:

Ē := {ē ∈ Fn
q | ēH̄T = s̄,wtM(ē) = w}.

By definition of A-SDP, we know there exists at least one solution in Ē , so
Ē ̸= ∅ and thus |Ē | ̸= 0. The expected size of the set is then calculated as the
expected size of the coset corresponding to the syndrome s̄ with the ball of
radius w:

|Ē | = max

(
1,

surfM(q, n, w)

qn−k

)
=

max
(
qn−k, surfM(q, n, w)

)
qn−k

.

Let then E12 be a set of all error vectors with a weight distribution according
to the initial guess. We define it as follows:

E12 := {(e1, e2) ∈ Fn−k−l
q × Fk+l

q | wtM(e1,0) = w − d,wtM(e2,0) = d},

The probability that the initial guess was correct is then given as:

pinit = Pr[(e1, e2) ∈ E12 | wt(e1, e2) = w]

=
surfM(q, n− k − l, w − d) surfM(q, k + l, d)

surfM(q, n, w)
.

Let now E2 be the set of all solutions to the SDP sub-instance, defined as
follows:

E2 := {e2 ∈ Fk+l
q | e2HT

2 = s2, wtM(e2) = d}.

Its expected size is given as3:

|E2| =
surfM(q, k + l, d)

ql
.

For a reasonable choice of parameters l and d, we expect that |E2| ̸= 0 with
high probability, which implies that there exists a solution to the SDP sub-
instance. Given a solution to the sub-instance, e2 ∈ E2, the probability that

3Note here that, since the problem is actually an instance of a general SDP, and not an
instance of A-SDP, there is no promise that a solution exists.
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it yields a solution to the original A-SDP instance is calculated as:

p1 = Pr[(e1, e2) ∈ E12 | wt(ē) = w, e2 ∈ E2] =
pinit
|E2|

=
surfM(q, n− k − l, w − d) surfM(q, k + l, d)

surfM(q, n, w)
· ql

surfM(q, k + l, d)

=
surfM(q, n− k − l, w − d)ql

surfM(q, n, w)
.

Let us now denote by L the set of all solutions to the SDP sub-instance found
in the third step4, and let |L| be its expected size. The probability that any of
these solutions yield a solution to the original A-SDP instance is then given
as5:

pL =
surfM(q, n− k − l, w − d)ql

surfM(q, n, w)
|L|.

Finally, the probability of finding any solution to the original A-SDP instance,
given any solution found in themSDP step is calculated as:

p = 1− (1− pL)|Ē| ≈ min
(
1, |E|pL

)
= min

(
1, max

(
1,

surfM(q, n, w)

qn−k

)
· surfM(q, n− k − l, w − d)ql

surfM(q, n, w)
|L|
)

= min

(
1,

surfM(q, n− k − l, w − d)
min

(
qn−k, surfM(q, q, n, w)

)
q−l
|L|
)
.

This probability determines the expected number of iterations before the
solution is reached with a high probability. Different ISD algorithms thus
use different strategies to increase this probability while maintaining or even
decreasing the cost of one iteration of the algorithm. After the analysis of
the running time of these algorithms, it will become apparent that these two
values cannot beminimized simultaneously. Naturally, finding the best trade-
off between the two is the major goal of algorithm designers working on this
framework.

4Notice here that L ⊆ E2, i.e. it is a sub-set of all solutions to the SDP sub-instance found
by the algorithm.

5This follows from the linearity of expectations.
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3.3 Classical ISD algorithms

We now present four classical ISD algorithms used in this thesis to determine
the average-case complexity of the syndrome decoding problem. The choice
of these four is driven by the overall efficiency of the algorithms, as well as by
the relative simplicity of the analysis of their running time. Along with the
descriptions of the algorithms, we show the running time of each algorithm.

In our analysis, we focus on the evolution of the original algorithm, pre-
sented in [Pra62], to the version that we refer to asWagner’s algorithm. More
specifically, we present the latter three ISD algorithms as iterative refine-
ments of the original algorithm. Each of these refinements decreased the
expected running time by providing better trade-offs between the cost of one
iteration of the algorithm and the probability of finding a solution in one
iterations. We then suggest an alternative view that suggests that all four
algorithms we presented can be seen as one algorithm with different values
of parameters.

General setting In the classical setting, the running time tC : N3 → N,
given as a function of the code length, n, the code dimension, k, and the
weight w, can be calculated by adding up the running time of each step of
the framework. If we denote by κ ∈ N the overall cost of one iteration, and
by κi ∈ N, i ∈ {1, 2, 3, 4} the cost of each step, we thus obtain:

tC(n, k, w) =
κ

p
=
κ1 + κ2 + κ3 + κ4

p
,

where p is the probability of finding a solution in one iteration of the algo-
rithm. Finding the best trade-off thus comes down to increasing the value p
and either maintaining or decreasing the values of κi.

3.3.1 Prange’s algorithm

Prange’s algorithm, introduced in [Pra62], is considered to be the first ISD
algorithm. In its original version, it solves A-SDPH over a binary alphabet
and the Hamming weight. In fact, it can be seen as a special case of the previ-
ously introduced framework where both l = 0 and d = 0. In Algorithm 1, we
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present an adapted version of the original algorithm that now solves A-SDP
over the finite field of size q and arbitrary elementwise function wtM(·). The
running time of each step of the algorithm is given along with its description,
and the overall running time is given in Proposition 3.3.1.

Algorithm 1 Prange’s algorithm (prange) Running time

Input: H ∈ F(n−k)×n
q , s ∈ Fn−k

q , w ∈ N
Output: e ∈ SM(q, n, w) s.t. He = s

1: loop
2: P

$←− Π ▷ O(n log2 n)

3: UHP =
(
I H1

)
← GE(HP, n− k) ▷ O(n(n− k)2)

4: if rank(I) < n− k then ▷ O(n− k)
5: goto 2: ▷ O(1)

6: else ▷ O(1)

7: s1 ← Us ▷ O((n− k)2)
8: end if
9: e1 ← s1 ▷ O(n− k)
10: if wtM(e1) = w then ▷ O(n− k)

11: return e← P

(
e1
0

)
▷ O(n log2 n)

12: end if
13: end loop

Proposition 3.3.1 (Running time of Prange’s algorithm). The running
time of Prange’s algorithm, tPC : N3 → N, is given as:

tPC(n, k, w) = O

(
n(n− k)2

p

)
,

where

p = min
(
1,

surfM(q, n− k, w)
min

(
qn−k, surfM(q, n, w)

)).
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Proof. The running time of the algorithm is given as:

tPC =
κ

p
=
κ1 + κ2 + κ4

p
= O

(
n log2 n+ n(n− k) + n log2 n

p

)
,

where p is obtained from Lemma 3.2.1. For values of parameters relevant in
practice, we have log2 n < (n− k). The running time of one iteration of the
algorithm is thus dominated by the cost of Gaussian elimination performed
in step 2 of the framework, i.e. in line 3 of the above-described algorithm. It
gives the upper bound of the cost of one iteration, κ = O(n(n − k)2), and
thus proves the proposition.

The cost of one iteration of Prange’s algorithm is then as small as we could
hope for6, but the probability of obtaining a solution in one iteration is rather
small, too. In particular, for the parameter values relevant to cryptography,
this probability is exponentially small. We thus look for a better trade-off
between the iteration cost and the probability of finding a solution in one
iteration.

3.3.2 Lee-Brickel’s algorithm

To improve the trade-off given by Prange’s algorithm, Lee and Brickel in
[LB88] suggested an algorithm for which l = 0 but the choice of d is more
flexible. As in the case of Prange’s algorithm, and the rest of the algorithms
described in this section, the original algorithm was designed for solving an
instance of A-SDP over a binary field and the Hamming weight. In Algorithm
2, we present a version of Lee-Brickel’s algorithm designed for solving A-
SDP over the finite field of size q and arbitrary elementwise function wtM(·).
Along with the algorithm description, we present the cost of each step.

Algorithm 2 Lee-Brickel’s algorithm (lee_brickel) Running time

Input: H ∈ F(n−k)×n
q , s ∈ Fn−k

q , w, d ∈ N
Output: e ∈ SM(q, n, w) s.t. He = s

6As R = k/n is a constant, the cost is O
(
n(n − Rn)

)
, which is essentially polynomial

in n log2 q.
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1: loop
2: P

$←− Π ▷ O(n log2 n)

s
3: UHP =

(
I H1

)
← GE(HP, n− k) ▷ O(n(n− k)2)

4: if rank(I) < n− k then ▷ O(n− k)
5: goto 2: ▷ O(1)

6: else ▷ O(1)

7: s1 ← Us ▷ O((n− k)2)
8: end if
9: for all e2 ∈ SM(q, k, d) do ▷ O(1)

10: e1 ← e2H
T
1 − s1 ▷ O((n− k)k)

11: if wtM(e1) = w − d then ▷ O(n− k)
12: return e← (e1, e2)P

−1 ▷ O(n log2 n)

13: end if
14: end for
15: end loop

If we now compare Prange’s and Lee-Brickel’s algorithms, we see that
they differ only in the fourth step of the framework, i.e. lines 9-14 of Lee-
Brickel’s algorithm. While Prange’s algorithm implicitly checks only e2 = 0,
Lee-Brickel’s algorithm checks all e2 ∈ SM(q, k, d), i.e. it checks |SM(q, k, d)| =
surfM(q, k, d) many vectors that potentially yield a solution to the original
problem. This change implies the running time expressed via Proposition
3.3.2.

Proposition 3.3.2 (Running time of Lee-Brickel’s algorithm). For a fixed
d ∈ N, the running time of Lee-Brickel’s algorithm, tLBC : N3 → N, is given
as:

tLBC (n, k, w) = O

(
n(n− k)2 + surfM(q, k, d)(n− k)k

p

)
,
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where

p = min
(
1,

surfM(q, n− k, w − d)
min

(
qn−k, surfM(q, n, w)

) surfM(q, k, d)
)
.

Proof. Similarly to the case of Prange’s algorithm, the running time of Lee-
Brickel’s algorithm is given as:

tLBC =
κ1 + κ2 + κ4

p

= O

(
n log2 n+ n(n− k) + surfM(q, k, d)(n log2 n+ (n− k)k)

p

)
,

where p is obtained from Lemma 3.2.1. We observe, however, that n log2 is
significantly smaller than (n − k)k for the parameters of interest, implying
that the overall cost of one iteration is κ = O

(
n(n− k) + surfM(q, k, d)(n−

k)k
)
, which concludes the proof.

From Proposition 3.3.2, we see that the running time of one iteration of
Lee-Brickel’s algorithm is longer than the running time of one iteration of
Prange’s algorithm. The improvement brought by Lee-Brickel’s algorithm
comes from the increased probability of finding a solution in one iteration
of the algorithm. It is worth noticing, however, that the improvement comes
only with a proper choice of d and that, even with the optimal choice of d,
it is still relatively small (at most polynomial in n log2 q). The major benefit
of Lee-Brickel’s approach, in fact, is the generalization introduced when d
is added as an additional parameter, which provided a new direction for the
development of the ISD algorithms.

3.3.3 Stern’s/Dumer’s algorithm

Stern/Dumer’s algorithm, firstly presented in [Ste88] and then slightly im-
proved in [Dum91], advances Lee-Brickel’s algorithm by introducing the third
step of the framework (line 9 of the algorithm). In this step, the algorithm
searches for solutions to the sub-instance of SDP that is given on the in-
put (H2, s2, d). In Algorithm 3, we present a version of Stern’s/Dumers’s
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algorithm that solves A-SDP over the finite field of size q and arbitrary el-
ementwise function wtM(·). In Algorithm 4 and Algorithm 5, we present a
sub-routine used to provide a list of solutions to the syndrome decoding sub-
instance. Along with the algorithms’ descriptions, we present each step’s
running time.

Algorithm 3 Stern/Dumer’s algorithm (stern_dumer) Running time

Input: H ∈ F(n−k)×n
q , s ∈ Fn−k

q , w ∈ N, l, d ∈ N
Output: e ∈ SM(q, n, w) s.t. He = s

1: loop
2: P

$←− Π ▷ O(n log2 n)

3: UHP =

(
I H1

0 H2

)
← GE(HP, n− k − l) ▷ O(n(n− k − l)2)

4: if rank(I) < n− k − l then ▷ O(n− k)
5: goto 2: ▷ O(1)

6: else ▷ O(1)

7:
(
s1
s2

)
← Us ▷ O((n− k)2)

8: end if
9: L ← stern_dumer_sub(H2, s2, d) ▷ tSD_sub

C

10: for all e2 ∈ L do ▷ O(1)

11: e1 ← e2H
T
1 − s1 ▷ O((n− k − l)(k + l))

12: if wtM(e1) = w − d then ▷ O(n− k − l)

13: return e← P

(
e1
e2

)
▷ O(n log2 n)

14: end if
15: end for
16: end loop

The first step of the general framework (line 2 of theAlgorithm 3), namely,
the permutation step is the same for all ISD algorithms. The difference in the
second step is that, in the case of Lee-Brickel’s algorithm, the Gaussian elim-
ination is performed on the first n−k columns of the permuted parity-check
matrixHP, while in the case of Stern/Dumer’s algorithms, it is performed on
only firstn−k−l columns of the permuted parity-checkmatrix. Furthermore,
Lee-Brickel’s algorithm does not have the third step (as l = 0, there is no sub-
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Algorithm 4 Subroutine (stern_dumer_sub) Running time

Input: H2 ∈ Fl×(k+l)
q , s2 ∈ Fl

q, d ∈ N
Output: L ⊆ Fk+l

q

1: for all e′ ∈ SM
q (k+l

2
, d
2
) do

2: L0.insert
(
(e′,0)HT

2

)
▷ O((k + l)l)

3: L1.insert
(
(0, e′)HT

2 − s2
)

▷ O((k + l)l)

4: end for
5: return L ← merge-join(L0,L1, l) ▷ tmj

C

instance of SDP), and, in the fourth step, it checks if any of the error vectors
e2 ∈ SM(q, k+l, d) yields a solution to the original instance. Stern’s/Dumer’s
algorithm, on the other hand, uses a sub-routine that first creates two lists of
partial solutions to the sub-instance, according to the Shamir-Schroeppel ap-
proach [SS79], and then merges these two lists using merge-join routine 5.
The algorithm thus creates a list of solutions to the sub-instance (line 9) and
checks if any of these yields a solution to the original problem (lines 10-15).
The running time of the algorithm is given via Proposition 3.3.3.

Proposition 3.3.3 (Running time of Stern/Dumer’s algorithm). For fixed
l, d ∈ N, the running time of Stern/Dumer’s algorithm, tSDC ∈ N, is given
as:

tSDC (n, k, w) = O

(
n(n− k − l)2 + tSD_sub

C + |L| · (n− k − l)(k + l)

p

)
,

(3.3)

where

|L0| = surfMq

(
k + l

2
,
d

2

)
, |L| =

surfM(q, k+l
2
, d
2
)2

ql
, (3.4)

tSD_sub
C = O

(
|L0| · (k + l)l + tmj

)
, (3.5)

tmj = O

(
max

(
|L0|, |L|

)
· l
)
. (3.6)
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Algorithm 5 Merge-join (merge-join) Running time

Input: L0 ⊆ Fn
q , L1 ⊆ Fn

q , l ∈ N
Output: L = L0 ▷◁l L1 ⊆ Fn

q

1: L0.sort(), L1.sort() ▷ O
(
n(|L0|+ |L1|)

)
2: i← 0, j ← |L1| − 1 ▷ O(1)

3: while i < |L0|, j ≥ 0 do ▷ O(1)

4: if L0[i] < L1[j] then ▷ O(1)

5: i← i+ 1 ▷ O(1)

6: else
7: if L0[i] > L1[j] then ▷ O(1)

8: j ← j − 1 ▷ O(1)

9: else
10: i0, i1 ← i, j0, j1 ← j ▷ O(1)

11: while i1 < |L0|, L0[i0] = L0[i1] do ▷ O(n)

12: i1 ← i1 + 1 ▷ O(1)

13: end while
14: while j1 ≥ 0, L1[j0] = L1[j1] do ▷ O(n)

15: j1 ← j1 − 1 ▷ O(1)

16: end while
17: for i ∈ [i0, i1] do ▷ O(1)

18: for j ∈ [j1 + 1, j0 + 1] do ▷ O(1)

19: L.insert
(
L0[i] + L1[j]

)
▷ O(n)

20: end for
21: end for
22: i← i1, j ← j1 ▷ O(1)

23: end if
24: end if
25: end while
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and

p = min
(
1,

surfM(q, n− k − l, w − d) surfM(q, k+l
2
, d
2
)2

min
(
qn−k, surfM(q, n, w)

) )
. (3.7)

Proof. Let us first observe that the running time of the first step of the frame-
work, given as κ1 = O(n log2 n), is negligible in comparison to the running
time of other steps. Therefore, the cost of one iteration comes down to:

tWC =
κ2 + κ3 + κ4

p
= O

(
n(n− k − l)2 + tSD_sub

C + |L|(n− k − l)(k + l)

p

)
,

where p is given by Lemma 3.2.1. Moreover, we know that merge-join rou-
tine returns a list L with |L| = surfM (q, k+l

2
, d
2
)2

ql
elements on average. From

Lemma 3.2.1, we then obtain the expression 3.8 that calculates the probabil-
ity of finding a solution in one iteration of the algorithm. The running time
of merge-join, tmj

C , is calculated as O
(
max(surfM(q, k+l

2
, d
2
), |L|)l

)
, which

gives the expression 3.7. Given 3.7, we then calculate the running time of the
Stern/Dumer’s subroutine as

O
(
surfM(q,

k + l

2
,
d

2
)(k + l)l +max(surfM(q,

k + l

2
),
d

2
), |L|)l

)
,

as expressed by 3.6. Finally, given 3.5 and knowing the expected |L|, the
running time of the Stern/Dumer’s algorithm is given by expression 3.4.

Let us now compare the efficiency of Lee-Brickel’s and Stern/Dumer’s al-
gorithms. We observe that the purpose of introducing the third step into
Stern/Dumer’s algorithm is to reduce the running time of its fourth step.
Let us recall that Lee-Brickel’s algorithm skips the third step and that, in
the fourth step, the algorithm checks if any e2 ∈ SM(q, k + l, d) yields
a solution to the original problem. Stern/Dumer’s algorithm, on the other
hand, in step 3, finds solutions to the sub-instance of SDP and then, in step
4, checks if any of these yields a solution to the original problem. More-
over, in step 3, Stern/Dumer’s algorithm obtains only solutions to the sub-
instance with a particular property, i.e. only those that have weight equally
distributed between two parts of the error vector, i.e. d/2 each. Conse-
quently, in step 4, Stern/Dumer’s algorithm checks only the subset of vec-
tors e2 from Lee-Brickel’s algorithm, so the number of checks is decreased.
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The question now is whether this decrease implies a shorter overall running
time of Stern/Dumer’s algorithm in comparison to Lee-Brickel’s. To answer
this question, we need to consider the running time of step 3, as well as the
probability of finding a solution in step 4.

After careful analysis of the trade-offs, it becomes apparent that the im-
provement of Stern/Dumer’s algorithm over Lee-Brickel’s algorithm crucially
depends on the choice of parameters l and d. A particularly interesting choice
of parameter l would be to take the value that makes the approximation
ql ≈ surfM(q, k+l

2
, d
2
) as tight as possible. The running time of stern_dumer

algorithm is then calculated as tSDC = O

(
n(n−k−l)2+tSD_sub

C +ql(n−k−l)(k+l)

p

)
,

where tSD_sub
C = O

(
ql(k + l)l

)
. We observe that this choice implies that the

expected number of solutions the sub-routine returns is |L| = ql, which fur-
ther implies that each solution to the sub-instance is found in timeO((k+l)l).
The running time of the third step of the framework is thus minimized.

3.3.4 Wagner’s algorithm

The algorithm is created by combiningWagner’s k-tree algorithm, introduced
in [SS81], with Shamir’s and Schroeppel’s approach [SS79]. It generalizes the
ideas of Stern and Dumer by introducing the k-tree algorithm in step 3 of
the framework (line 9 of the algorithm). We will thus refer to it as Wagner’s
algorithm. In Algorithm 6, we present its version that solves A-SDP over the
finite field of size q and arbitrary elementwise function wtM(·). In Algorithm
7, we present a subroutine that uses the k-tree algorithm to create a list of
solutions to the syndrome decoding sub-instance. Alongwith the algorithms’
descriptions, we present the running time of each step.

Algorithm 6 Wagner’s algorithm (wagner) Running time

Input: H ∈ F(n−k)×n
q , s ∈ Fn−k

q , w ∈ N, l, d, a ∈ N
Output: e ∈ SM(q, n, w) s.t. He = s

1: loop
2: P

$←− Π ▷ O(n log2 n)

3: UHP =

(
I H1

0 H2

)
← GE(HP, n− k − l) ▷ O(n(n− k − l)2)
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4: if rank(I) < n− k − l then ▷ O(n− k − l)
5: goto 2: ▷ O(1)

6: else ▷ O(1)

7:
(
s1
s2

)
← Us ▷ O((n− k)2)

8: end if
9: L ← wagner_sub(H2, s2, d, a) ▷ tW _sub

C

10: for all e2 ∈ L do ▷ O(1)

11: e1 ← e2H
T
1 − s1 ▷ O((n− k − l)(k + l))

12: if wtM(e1) = w − d then ▷ O(n− k − l)

13: return e← P

(
e1
e2

)
▷ O(n log2 n)

14: end if
15: end for
16: end loop

Algorithm 7 Subroutine (wagner_sub) Running time

Input: H2 ∈ Fl×(k+l)
q , s2 ∈ Fl

q, d, a ∈ N
Output: L ⊆ Fk+l

q

1: for all e′ ∈ SM
q (k+l

2a
, d
2a
) do ▷ O(1)

2: L(0,0).insert
(
(e′,0,0, . . . ,0)HT

2

)
▷ O((k + l)l)

3: L(0,1).insert
(
(0, e′,0, . . . ,0)HT

2

)
▷ O((k + l)l)

4: . . .
5: L(0,2a−2).insert

(
0,0, . . . , e′,0)HT

2

)
▷ O((k + l)l)

6: L(0,2a−1).insert
(
(0,0, . . . ,0, e′)HT

2 − s2
)

▷ O((k + l)l)

7: end for
8: for all i ∈ [a] do
9: for all j ∈ [2a−i−1] do
10: L(i+1,j) ← merge-join(L(i,2j), L(i,2j+1), (i+ 1) l

a
)

11: end for
12: end for ▷ tmj

13: return La,0 ▷ O(1)

111



Chapter 3

As alreadymentioned, Wagner’s algorithm can be viewed as a generaliza-
tion of Stern/Dumer’s algorithm in which the first, second, and fourth steps
of the framework are the same, while the third step (line 9 of the algorithm)
is modified. In the case of Wagner’s algorithm, in line 9, the algorithm calls a
sub-routine that creates 2a lists of partial solutions, instead of creating only
2 as in the case of Stern/Dumer’s algorithm. In both cases, however, the lists
are formed using the Shamir-Schroeppel approach and then merged using
merge-join routine. While Stern/Dumer’s algorithm uses the joining rou-
tine at only one level, Wagner’s algorithm uses the k-tree algorithm which
applies merge-join routine on multiple levels. An alternative view is then
that Stern/Dumer’s algorithm represents only a special case of Wagner’s al-
gorithm for which a = 1. This can also be seen from the running time of
Wagner’s algorithm given by Proposition 3.3.4. Namely, if we let a = 1 in
the proposition, i.e. we fix the number of levels in Wagner’s algorithm to 1,
we recover the running time of Stern/Dumer’s algorithm.

Proposition 3.3.4 (Running time ofWagner’s algorithm). For fixed l, d, a ∈
N, the running time of Wagner’s algorithm, tWC : N3 → N, is given as:

tWC (n, k, w) = O

(
n(n− k − l)2 + tW _sub

C + |L| (n− k − l)(k + l)

p

)
,

(3.8)

where

|L0| = surfM
q

(
k + l

2a
,
d

2a

)
, |L| =

surfM(q, k+l
2a
, d
2a
)2

a

q(2
a−1) l

a

, (3.9)

tW _sub
C = O

(
|L0| (k + l)l + tmj

)
, (3.10)

tmj = O

(
max

(
L0, L

)
l

)
. (3.11)

and

p = min
(
1,

surfM(q, n− k − l, w − d) surfM(q, k+l
2a
, d
2a
)2

a

min
(
qn−k, surfM(q, n, w)

)
q

(2a−a−1)l
a

)
. (3.12)

Proof. As in the case of Stern/Dumer’s algorithm, the running time of the
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first step of the framework is negligible in comparison to the running time of
other steps, so the cost of one iteration comes down to:

tWC =
κ2 + κ3 + κ4

p
= O

(
n(n− k − l)2 + tW _sub

C + |L|(n− k − l)(k + l)

p

)
,

where p is given by Lemma 3.2.1. Since merge-join routine, in combination
with the k-tree algorithm, returns a list L with |L| = surfM (q, k+la

2a
, d
2a

)2
a

q(2
a−1) l

a
el-

ements on average, from Lemma 3.2.1, we then obtain the expression 3.12
that calculates the probability of finding a solution in one iteration of the
algorithm. As the running time of merge-join, tmj

C , is calculated as:

O
(
max(surfM(q,

k + l

2a
,
d

2a
), |L|)l

)
,

we obtain the expression 3.11. Given 3.11, we then calculate the running time
of Wagner’s subroutine as:

O
(
surfM(q,

k + l

2a
),
d

2a
)|(k + l)l +max(surfM(q,

k + l

2a
),
d

2a
), |L|)l

)
,

as expressed by 3.10. Finally, given 3.10 and knowing the expected |L|, the
running time of wagner algorithm is given by expression 3.9.

As in the case of Stern’s/Dumer’s algorithm, one strategy for minimizing
the running time of the algorithm would be to set the parameters l, d, and a
so that surfM(q, k+l

2a
, d
2a
)2

a ≈ q(2
a−1) l

a . We thus minimize the running time
of the third step of the framework, in which the algorithm finds the solutions
to the syndrome decoding sub-instance, and thus obtain close to optimal (if
not optimal) Wagner’s algorithm.

Wagner’s algorithm as a generalization

From the above-presented descriptions of classical ISD algorithms, we can
conclude that all four algorithms can be observed as different versions of
Wagner’s algorithm. To see that, let us recall that Stern’s/Dumer’s algorithm
can be observed as a special case of Wagner’s algorithm for which a = 1
and values of l, d can be optimized. Similarly, Lee-Brickel’s algorithm can be
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observed as a bit more restrictive version of Wagner’s algorithm in which a
and l are fixed, i.e. a = 1, l = 0, and d can be optimized. Finally, Prange’s
algorithm can be observed as the most restrictive version for which all three
parameters are fixed, namely, a = 1, l = 0, and d = 0. We will use this
observation to simplify the analysis of the asymptotic running time of the
four algorithms.
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3.4 Quantum ISD algorithms

What we call the quantum algorithms are, in fact, hybrid classical-quantum
algorithms that combine the above-presented classical ISD framework with
quantum algorithms such as Grover’s search, amplitude amplification, or
quantumwalks, described in Chapter 1. In the first paper suggesting that this
approach was successful, namely, in[Ber10], the author combined Prange’s
algorithm with Grover’s search to create a hybrid classical-quantum algo-
rithm that solves binaryA-SDP over theHammingweight. An almost quadratic
speed-up of the approach over (classical) Prange’s algorithm encouraged fur-
ther development of quantum ISD algorithms. Significant advances were
made in [KT17] and [Kir18] afterward, where the authors combined more ad-
vanced classical ISD algorithms, such as [Bec+12], [MMT11], with Grover’s
search and quantum walks. In our work, we combine Wagner’s algorithm
with amplitude amplification and Grover’s search. We thus obtain a hybrid
classical-quantum algorithm that solves A-SDP over q-ary alphabet and ele-
mentwise weight function wtM(·). We refer to it as the quantum Wagner’s
algorithm.

Our approach To gain a speed up over classical algorithms, we modify
the mSDP step of the framework. Namely, instead of returning a list of so-
lutions to the syndrome decoding sub-instance, the mSDP step now returns
a description of a function f : m → Fk+l

q ,m ≥ surfM(q, 2(k+l)
2a+1

, 2d
2a+1

). On
input i ∈

[
surfM(q, 2(k+l)

2a+1
, 2d
2a+1

)
]
, f(·) outputs what would be the i-th ele-

ment of the list returned in the mSDP of classical Wagner’s algorithm. The
promise is that if f(·) is evaluated on every input in

[
surfM(q, 2(k+l)

2a+1
, 2d
2a+1

)
]
,

it returns all the solutions that would be in the list of solutions returned by
the mSDP step of classical Wagner’s algorithm. To be more specific, let us
take n, k,m ∈ N, let q be a prime number, and let wtM(·) be an elementwise
weight function. We then introduce the following version of the syndrome
decoding problem.
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Problem 3.4.1 (Multi-solution Syndrome Decoding Problem, M-SDP).
Let m ∈ N satisfy m ≥ surfM(q, 2(k+l)

2a+1
, 2d
2a+1

). Given H ∈ F(n−k)×n
q , s ∈

Fn−k
q , andw ∈ N, return a description of a function f : [m]→ Fk+l

q defined

as f(i) =

{
L[i], if i < |L|
0, otherwise

, where E := {e ∈ Fn
q | s = eHT ,wtM(e) =

w} and L ⊆ E .

In the hybrid classical-quantum setting, in the mSDP step, the algorithm
thus solves an instance ofM-SDP. The algorithm, alongwith the running time
of each step, is presented in Algorithm 8. The sub-routines that perform the
third step of the general framework are given in Algorithm 9 and 10, along
with the running time of each of its steps.

Algorithm 8 Wagner’s algorithm (qantum_wagner) Running time

Input: H ∈ F(n−k)×n
q , s ∈ Fn−k

q , w ∈ N, l, d, a ∈ N
Output: e ∈ Fn

q s.t. He = s and wtM(e) = w

1: for all e′ ∈ SM
q (2(k+l)

2a+1
, 2d
2a+1

) do
2: E ′.insert(0,0, . . . ,0, e′) ▷ O(k + l)

3: end for
4: loop
5: P

$←− Π ▷ O(n log2 n)

6: UHP =

(
I H1

0 H2

)
← GE(HP, n− k − l) ▷ O(n(n− k − l)2)

7: if rank(I) < n− k − l then ▷ O(n− k − l)
8: goto 2: ▷ O(1)

9: else ▷ O(1)

10:
(
s1
s2

)
← Us ▷ O((n− k)2)

11: end if
12: f(·)←qantum_wagner_sub(H2, s2, d, a, E ′) ▷ tW _sub

Q
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13: function g( i ∈
[
surfM(q, 2(k+l)

2a+1
, 2d
2a+1

)
]
)

14: e2 ← f(i) ▷ O(k + l)

15: e1 ← e2H
T
1 − s1 ▷ O((n− k − l)(k + l))

16: if wtM(e1) = w − d then ▷ O(n− k − l)
17: return 1 ▷ O(1)

18: else ▷ O(1)

19: return 0 ▷ O(1)

20: end if
21: end function
22: i← grover(g(·)) ▷ O

(√
|L0| tg

)
23: if i < surfM(q, 2(k+l)

2a+1
, 2d
2a+1

) then ▷ O(1)

24: e2 ← f(i) ▷ O(k + l)

25: e1 ← e2H
T
1 − s1 ▷ O((n− k − l)(k + l))

26: return e← P

(
e1
e2

)
▷ O(n log2 n)

27: else
28: goto 5:
29: end if
30: end loop

Algorithm 9 Subroutine (qantum_wagner_sub) Running time

Input: H2 ∈ Fl×(k+l)
q , s2 ∈ Fl

q, d, a ∈ N, E ′ ⊆ Fk+l
q

Output: f :
[
surfM(q, 2(k+l)

2a+1
, 2d
2a+1

)
]
→ Fk+l

q

1: for all e′ ∈ SM
q ( k+l

2a+1
, d
2a+1

) do
2: L(0,0).insert

(
(e′,0,0, . . . ,0,0,0)HT

2

)
▷ O((k + l)l)

3: L(0,1).insert
(
(0, e′,0, . . . ,0,0,0)HT

2

)
▷ O((k + l)l)

4: . . .
5: L(0,2a−2).insert

(
(0,0, . . . , e′,0,0)HT

2

)
▷ O((k + l)l)

6: end for
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7: for all i ∈ [a− 1] do
8: for all j ∈ [2a−i−1 − 1] do
9: L(i+1,j) ← merge-join(L(i,2j), L(i,2j+1), (i+ 1) l

a
)

10: end for
11: end for ▷ tmj

12: function f (i ∈
[
surfM(q, 2(k+l)

2a+1
, 2d
2a+1

)
]
)

13: f(i)← E ′[i]HT
2 − s2 ▷ O(k + l)

14: for all i ∈ [a] do
15: f(i)← function-merge-join(L(i,2a−i−2), f(i), (i+ 1) l

a
)

16: end for ▷ tfmj

17: end function
18: return f(·) ▷ O(1)

Algorithm 10 Function-merge-join (func-merge-join) Running time

Input: L0 ⊆ Fn
q , m, l ∈ N, j ∈ [m], f : [m]→ Fn

q ,
Output: g : [m]→ Fn

q

1: L0.sort() ▷ O(n|L0|)
2: i← 0 ▷ O(1)

3: while i < |L0| do ▷ O(1)

4: if L0[i] < f(j) then ▷ O(1)

5: i← i+ 1 ▷ O(1)

6: else
7: i0, i1 ← i ▷ O(1)

8: while i1 < |L0|, L0[i0] = L0[i1] do ▷ O(n)

9: i1 ← i1 + 1 ▷ O(1)

10: end while
11: i← i1 ▷ O(1)

12: g(j)← L0[i] + f(j) ▷ O(n)

13: end if
14: end while

Let us now compare classicalWagner’s and quantumWagner’s algorithms.
We first observe that the differences appear in the last two steps of the frame-
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work. In the mSDP step (line 9 of Algorithm 8), quantumWagner’s algorithm
outputs a function that evaluates solutions to the sub-instance of SDP, instead
of just returning a list of these solutions. As explained earlier, the reason
for this change is the application of a quantum algorithm in the test step.
Namely, to use a quantum algorithm to search over the solutions to the sub-
instance and benefit from a speedup, one needs to construct a function that
can be evaluated on a state superposition. Writing down the solution to the
list would already be too costly, so no speedup would be possible. Therefore,
we use a pre-processing step to create the elements of the final list on the
bottom layer of Wagner’s algorithm, which is done only once, and then we
reuse the same list to evaluate the function values in different calls of the
function.

In the last step of the framework (lines 13-27 of quantum Wagner’s al-
gorithm), the algorithm forms a function g(·) that verifies if any solution
obtained in the mSDP step yields a solution to the original problem (this cor-
responds to 10-15 lines in the classical Wagner’s algorithm). The algorithm
then uses g(·) as an input to Grover’s search (line 22 of the algorithm). If there
is a solution to the sub-instance, e2, that yields a solution to the original prob-
lem, Grover’s search finds it and returns i for which f(i) = e2. Given i, the
algorithm then calculates e2 as f(i) and finally uses it to calculate a solution
to the original problem. If there is no e2 that gives a solution to the original
problem, Grover’s search returns a value greater than the domain of g(·) and
the algorithm returns to the first step. An important remark to be made here
is that, in addition to Grover’s search, we can use amplitude amplification,
described in Chapter 1, to search for a solution over multiple iterations of
the algorithm and thus obtain an additional speed-up. Finally, we obtain the
following running time of the algorithm, given by 3.4.1.

Proposition 3.4.1 (Running time of quantum Wagner’s algorithm). For
fixed l, d, a ∈ N, the running time of the quantum Wagner’s algorithm,
tWQ : N3 → N, is given as:

tWQ (n, k, w) = O

(
n(n− k − l)2 + tW _sub

Q +
√
L0 tg

√
p

)
, (3.13)
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where

|L0| = surfMq

(
k + l

2a + 1
,

d

2a + 1

)
, |L2a−1| = surfMq

(
2(k + l)

2a + 1
,

2d

2a + 1

)
,

(3.14)

|L′| =
surfM(q, k+l

2a+1
, d
2a+1

)2
a−1

q
(2a−1−1)l

a

, |L′′| =
surfM(q, k+l

2a+1
, d
2a+1

)2
a−1−1 |L2a−1|

q
(2a−1−1)l

a

(3.15)

tW _sub
Q = O

(
|L0| (k + l)l + tmj + tfmj

)
, (3.16)

tmj = O

(
max

(
|L0|, |L|′

)
l

)
, tfmj = O

(
max

(
|L2a−1|,

|L′| |L′′|
q

l
a

)
l

)
,

(3.17)
tg = O

(
(n− k − l)(k + l)). (3.18)

and

p = min
(
1,

surfM(q, n− k − l, w − d)|L0|2
a−1| |L2a−1|

min
(
qn−k, surfM(q, n, w)

)
q

(2a−a−1)l
a

)
. (3.19)

Proof. As in the case of the previously described classical algorithms, the run-
ning time of sampling a permutation is significantly smaller than the running
time of other steps. The cost of one iteration thus comes down to:

tWQ =
κ2 + κ3 + κ4√

p

= O

(n(n− k − l)2 + tW _sub
Q +

√
surfM(q, 2(k+l)

2a+1
, 2d
2a+1

) tg
√
p

)
,

where p is given by Lemma 3.2.1 and tq = O((n − k − l)(k + l)) is the
running time of g : [surfM(q, 2(k+l)

2a+1
, 2d
2a+1

)] → Fk+l
q defined in Algorithm 8.

By definition of Grover’s search, the time complexity of searching over g(·)
is given by

√
surfM(q, 2(k+l)

2a+1
, 2d
2a+1

) tg, so we retrieve the cost of the last step.
The cost of the second step is the cost of Gaussian elimination performed on
n−k−l columns of matrix (n−k)×n, and it is given asO((n−k−l)(k+l)).
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Finally, let us calculate the cost of the third step calling the quantumWagner’s
sub-routine.

We first observe that using the merge-join routine combined with the
k-tree, at the level before the topmost one, the algorithm obtains the list of
the expected size

|L1| =
surfM(q, k+l

2a+1 ,
d

2a+1 )
2a−1

q
(2a−1−1)l

a

in time
tmj = O

(
surfM(q,

k + l

2a + 1
,

d

2a + 1
), |L1|

)
l

)
.

After merging the list with the output of f(i) using function-merge-join
routine, again in combination with k-tree algorithm, at the level before the
topmost one, the algorithm obtains the list of expected size

|L2| =
surfM(q, k+l

2a+1 ,
d

2a+1 )
2a−1−1 surfM(q, 2(k+l)

2a+1 ,
2d

2a+1 )

q
(2a−1−1)l

a

in time
tfmj = O

((
surfMq (

2(k + l)

2a + 1
,

2d

2a + 1
), |L2|

)
l

)
.

Finally, merging the two lists gives a list L with the expected number of ele-
ments given as

|L| =
surfM(q, k+l

2a+1 ,
d

2a+1 )
2a−1surfM

q (2(k+l)
2a+1

, 2d
2a+1

)

q(2
a−1) l

a

,

in time tmj + tfmj. As the running time for creating the lists at the bottom
level of the merging algorithms is given by surfM(q k+l

2a+1
, d
2
), we obtain the

running time of the quantum Wagner’s subroutine, and the running time of
the third step, given by the expression 3.14. From Lemma 3.2.1 and 3.18, we
finally derive the expression 3.19 that calculates the probability of finding a
solution in one iteration of the algorithm. By definition of amplitude ampli-
fication, the expected number of iterations before the solution is found using
amplitude amplification is given by O(1/√p). We thus obtain the running
time of qantum wagner algorithm given by expression 3.13.
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As in the case of classical Wagner’s algorithm, we can set parameters l, d,
and a so that surfM(q, k+l

2a+1 ,
d

2a+1 )
2a−1surfM

q (2(k+l)
2a+1

, 2d
2a+1

) ≈ q(2
a−1) l

a . We
thus minimize the running time of the third step, in which the algorithm
solves the M-SDP, so we obtain close to optimal (if not the optimal) quantum
Wagner’s algorithm.
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3.5 Asymptotic analysis

As already explained, we rely on the ISD framework to learn the expected
complexity of the syndrome decoding problem. More precisely, we estimate
the running time of an ISD algorithm attacking an instance of the A-SDP
whose input size grows beyond bounds. We take the code length, n, to be
the size of the input, and all other parameters of the problem, as well as the
parameters of the algorithm, to be functions of n. Furthermore, we take all
these parameters to be constant fractions ofn. We thus obtain constant values
R,L, ω, δ ∈ [0, 1] given as:

R :=
k

n
, L :=

l

n
, ω :=

w

∆n
, δ :=

d

∆n

where ∆ := maxx∈Fq wtM(x). We observe here that the values of R and ω
determine the instances of A-SDP, while the choice of L and δ determine the
efficiency of the algorithm used for analyzing the problem.

Since we expect the running time of an ISD algorithm, t : N×N×N→ N,
to be an exponential function7, we take t(n, k, w) = qτ(R,ω)n. We are then
primarily interested in the asymptotic value of the exponent τ(·, ·), so we
calculate:

τ(R,ω) := lim
n→∞

1

n
logq t(n, k, w).

To simplify the explanations, in the rest of the text, we omit "exponent" and
refer to the exponents of asymptotic values simply as "asymptotic values". To
obtain the asymptotic running time, we rely on the following assumption.

Assumption 1. Let q be a prime number, n, r ∈ N, δ ∈ [0, 1], and surfM :

N × R × R → N be the sphere surface area in a vector space Fn
q endowed

with an elementwise weight function wtM(·). The sphere surface area then
satisfies:

lim
n→∞

logq surfM(q, n
r
, δn

r
)

n
= lim

n→∞

logq surfM(q, n, δn)1/r

n
=
sM(q, δ)

r
,

7This is a reasonable assumption given that all known algorithms attacking the syndrome
decoding problem run in time exponential in the input size of its instances.
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where sM(q, δ) := limn→∞
logq surfM (q,n,δn)

n
.

For the Hamming weight, it is not hard to see that the assumption holds.
Namely, we first recall that, for the Hamming weight, the asymptotic value
of the sphere surface area is given by:

sH(q, δ) := lim
n→∞

surfH
q (n, δn)

n
= Hq(δ),

where H : [0, 1] → R denotes the q-ary entropy function that is defined as
Hq(δ) :=

(
δn
n

)
. We then observe that, by Stirling’s approximation,

(
δn/r
n/r

)
≈

r

√(
δn
n

)
, which implies the claim of Assumption 1.

Different ISD algorithms As remarked in the previous sub-section, we
can adjust the parameters of Wagner’s algorithm to simulate any of the four
ISD algorithms we described, and the same goes for quantum Wagner’s al-
gorithm. In either classical or quantum cases, we then have the following
correspondences between the chosen values of L, δ, a and the four ISD algo-
rithms:

• L = 0, δ = 0, a = 1⇒ Prange’s algorithm;

• L = 0, δ ≥ 0, a = 1⇒ Lee-Brickel’s algorithm;

• L ≥ 0, δ ≥ 0, a = 1⇒ Stern’s/Dumer’s algorithm;

• L ≥ 0, δ ≥ 0, a ≥ 1⇒Wagner’s algorithm.

The asymptotic value of the running time of these algorithms is then cal-
culated as the asymptotic running time of classical and quantum Wagner’s
algorithms with the appropriate choice of values of L, δ, and a. We express
it through the following two propositions.
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Proposition 3.5.1 (Asymptotic running time of classical ISD algorithms).
For fixed L, δ, a ∈ N, and parameters R,ω ∈ [0, 1], the asymptotic val-
ues of the exponent of the running time of a classical ISD algorithm, τC :

[0, 1]× [0, 1]→ R, is given as:

τC(R,ω) =

(
2a + 1

2a
σ1 − (2a − 1)

L

a

)
− (1−R− σ0) + σ2, (3.20)

where

σ0 = sM(q, ω), σ1 = (R + L) sM

(
q,

δ

R + L

)
, (3.21)

σ2 = (1−R− L)sM
(
q,

ω − δ
1−R− L

)
. (3.22)

Proof. The proof follows from Proposition 3.3.4 and Assumption 1. We start
the proof by defining the following values:

σ0 := lim
n→∞

logq surfM(q, n, w)

n
,

σ1 := lim
n→∞

logq surfM(q, k + l, d)

n
,

σ2 := lim
n→∞

logq surfM(q, n− k − l, w − d)
n

.

Taking Assumption 1, and using the definition of the asymptotic sphere sur-
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face area, we then calculate σ0, σ1, and σ2 as:

σ0 = lim
n→∞

logq surfM(q, n, ωn)

n

= sM(q, ω),

σ1 = lim
n→∞

logq surfM(q, k+l
(k+l)/n

, d
(k+l)/n

)(k+l)/n

n

= (R + L) lim
n→∞

logq surfM(q, n, δ
R+L

n)

n

= (R + L)sM

(
q,

δ

R + L

)
,

σ2 = lim
n→∞

logq surfM(q, n−k−l
(n−k−l)/n

, w−d
(n−k−l)/n

)(n−k−l)/n

n

= (1−R− L) lim
n→∞

logq surfM(q, n, ω−δ
1−R−L

n)

n

= (1−R− L)sM
(
q,

ω − δ
1−R− L

)
.

From Proposition 3.3.4, we can calculate the asymptotic values of the size of
the initial lists, |L0|, as well as the asymptotic value of the size of the final
list, L. We thus obtain:

lim
n→∞

logq |L0|
n

= lim
n→∞

logq surfM

(
q, k+l

2a
, d
2a

)
n

=
σ1
2a
,

lim
n→∞

logq |L|
n

= lim
n→∞

logq(surfM(q, k+l
2a
, d
2a
)2

a
/q(2

a−1) l
a )

n
= σ1 − (2a − 1)

L

a
.

As we know that the running time of the sub-routine is calculated as:

tsubC (n, k, w) = O

((
|L0| (k + l) + max

(
|L0|, |L|

))
l

)
,
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its asymptotic value is then calculated as:

lim
n→∞

logq t
sub
C (n, k, w)

n
= lim

n→∞

logq |L0|
n

+ lim
n→∞

logq max

(
|L0|, |L|

)
n

= lim
n→∞

logq max

(
|L0|, |L|

)
n

= lim
n→∞

logq |L0|
n

+ lim
n→∞

logq |L|)
n

=
2a + 1

2a
σ1 − (2a − 1)

L

a
.

The running time of the algorithm is given by:

tC(n, k, w) = O

(
(n− k − l)2n3 + tW _sub

C (n, k, w) + |L| (n− k − l)(k + l)n2

p

)
.

and its asymptotic value is calculated as:

τC(R,ω) = lim
n→∞

logq tC(n, k, w)

n

= lim
n→∞

logq t
sub
C (n, k, w)

n
+ lim

n→∞

logq |L|
n

+
��

���
��*0

lim
n→∞

logq n

n
− lim

n→∞

logq p

n

= lim
n→∞

max

(
|L0|, |L|

)
n

+ lim
n→∞

logq |L|
n

− lim
n→∞

logq p

n

=

(
2a + 1

2a
σ1 − (2a − 1)

L

a

)
− lim

n→∞

logq p

n
.

By Proposition 3.3.4, the probability of finding a solution in one iteration of
Wagner’s algorithm, p, is given by:

p = min
(
1,

surfM(q, n− k − l, w − d) surfM(q, k+l
2a
, d
2a
)2

a

min
(
qn−k, surfM(q, n, w)

)
q

(2a−a−1)l
a

)
.
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Its asymptotic value is then calculated as:

lim
n→∞

logq p

n
= min

(
0, lim

n→∞

logq surfM(q, n− k − l, w − d)
n

+ 2a lim
n→∞

logq surfM(q, k+l
2a
, d
2a
)

n

−min

(
1−R, lim

n→∞

logq surfM(q, n, w)

n

)
− (2a − a− 1)

L

a

)

= min

(
0, σ1 + σ2 −min(1−R, σ0)− (2a − a− 1)

L

a

)
,

= min(1−R, σ0) + (2a − a− 1)
L

a
− σ1 − σ2,

= (1−R− σ0)− (σ1 − (2a − a− 1)
L

a
)− σ2.

Finally, we calculate the asymptotic value of the running time of classical
algorithms using the following expression:

τC(R,ω) =

(
2a + 1

2a
σ1 − (2a − 1)

L

a

)
− (1−R− σ0) + σ2.

This concludes the proof.
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Proposition 3.5.2 (Asymptotic running time of quantum ISD algorithms).
For fixed L, δ, a ∈ N, and parameters R,ω ∈ [0, 1], the asymptotic val-
ues of the exponent of the running time of a quantum ISD algorithm,
τQ : [0, 1]× [0, 1]→ R, is given as:

τQ(R,ω) = max

(
2σ1

2a + 1
, σ1 − (2a − 1)

L

a

)
+

σ1
2a + 1

− ρ

2
, (3.23)

where

σ0 = sMq (ω), σ1 = (R + L) sMq

(
δ

R + L

)
, (3.24)

σ2 = (1−R− L)sMq
(

ω − δ
1−R− L

)
(3.25)

and

ρ = min

(
0, σ1 + σ2 −min

(
1−R, σ0

)
− (2a − a− 1)

L

a

)
. (3.26)

Proof. The proof follows the same line of reasoning as in the proof of 3.5.1,
so we focus on the difference between the two cases and omit the details.

As in proof of 3.5.1, we start by calculating σ0, σ1, σ2:

σ0 := lim
n→∞

logq surfM(q, n, w)

n
= sM(q, ω),

σ1 := lim
n→∞

logq surfM(q, k + l, d)

n
= (R + L)sM

(
q,

δ

R + L

)
,

σ2 := lim
n→∞

logq surfM(q, n− k − l, w − d)
n

= (1−R− L)sM
(
q,

ω − δ
1−R− L

)
.

From Proposition 3.4.1, we can calculate the asymptotic values of the size of
the initial lists, |L0| and |L2a−1|, as well as the asymptotic value of the size of
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the lists at the level before the topmost one, |L|′ and |L|′′. We then obtain:

lim
n→∞

logq |L0|
n

=
σ1

2a + 1
, lim

n→∞

logq |L2a−1|
n

=
2σ1

2a + 1
,

lim
n→∞

logq |L′|
n

=
2a−1

2a + 1
σ1 − (2a−1 − 1)

L

a
,

lim
n→∞

logq |L′′|
n

=
2a−1 + 1

2a + 1
σ1 − (2a−1 − 1)

L

a
.

As we know that the running time of the sub-routine is calculated as:

tsubQ (n, k, w) = O

((
|L0| (k + l) + max

(
|L0|, |L′|

)
+max

(
|L2a−1|,

|L′||L′′|
q

l
a

))
l

)
,

its asymptotic value is then calculated as:

lim
n→∞

logq t
sub
Q (n, k, w)

n
= lim

n→∞

logq |L0|+ logq |L2a−1|+ logq |L′|+ logq |L′′|
n

− L

a

=
2a−1 + 1

2a + 1
σ1 − (2a−1 − 1)

L

a
.

The running time of the algorithm is given by:

tQ(n, k, w) = O

(
(1− k − l)2n3 + tsubQ +

√
|L0| (1− k − l)(k + l)n2

p

)
.

and its asymptotic value is calculated as:

τQ(R,ω) = lim
n→∞

logq t
sub
Q (n, k, w)

n
+

1

2
lim
n→∞

logq |L0|
n

− lim
n→∞

logq p

n

=

(
2a−1 + 1

2a + 1
σ1 − (2a−1 − 1)

L

a

)
− lim

n→∞

logq p

n
.

By Proposition 3.4.1, the probability of finding a solution in one iteration of
Wagner’s algorithm, p, is given by:

p = min
(
1,

surfM(q, n− k − l, w − d)|L0|2
a−1| |L2a−1|

min
(
qn−k, surfM(q, n, w)

)
q

(2a−a−1)l
a

)
. (3.27)
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Its asymptotic value is then calculated as:

lim
n→∞

logq p

n
= min

(
0, lim

n→∞

logq surfM(q, n− k − l, w − d)
n

+ (2a + 1) lim
n→∞

logq surfM(q, k+l
2a+1

, d
2a+1

)

n

−min

(
1−R, lim

n→∞

logq surfM(q, n, w)

n

)
− (2a − a− 1)

L

a

)
= (1−R− σ0)− (σ1 − (2a − a− 1)

L

a
)− σ2.

Finally, we calculate the asymptotic value of the running time of classical
algorithms using the following expression:

τQ(R,ω) =

(
2a + 2a−1 + 1

2a + 1
σ1 − (2a−1 − 1)

L

a

)
− (1−R− σ0) + σ2.

This concludes the proof.
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3.6 Numerical results

We now compare the asymptotic running time of the above-described ISD al-
gorithms attacking the syndrome decoding problem in the Hamming and the
Lee weight, for alphabet sizes in the range from 3 to 643.8. To calculate the
asymptotic running time, we rely on the method for calculating the surface
area of a sphere in a metric space endowed with an arbitrary weight func-
tion described in Chapter 2. More precisely, we use the convex optimization
approach derived by generalizing the method presented in [Ast84]. For each
algorithm, we then first calculate the optimal values of parameters that yield
the shortest running times and we take the obtained shortest running time as
the measurement of the algorithm’s efficiency. The code used for obtaining
numerical results is implemented in C++, and the convex optimization tasks
are carried out using MOSEK solver [ApS19], more precisely, its Fusion API
for C++. The code is available at the GitHub repository setinski.

Different ISD algorithms

In Figure 3.1 and Figure 3.2, we present the asymptotic running time of three
classical ISD algorithms and one hybrid classical-quantum algorithm solving
instances of A-SDP over the Hamming and the Lee weights, respectively. The
three classical algorithms are Prange’s, Stern’s/Dumer’s, Wagner’s algorithm,
and the hybrid classical-quantum algorithmwe refer to as quantumWagner’s
algorithm.

Let us now recall that we take the running time of an ISD algorithm,
t : N × N × N → N, to be a function of the code length, n ∈ N, the code
dimension, k ∈ N, and the weight, w ∈ N. In the asymptotic regime, we
define the coefficient of the asymptotic running time of an algorithm, τ :
[0, 1]× [0, 1]→ R, given as:

τ(R,ω) := lim
n→∞

log2 t(n, k, w)

n
,

8Given that the number of constraints in the convex optimization problem grows linearly
with the alphabet size, the computation becomes resource demanding for higher values of q.
For q = 643, for example, the computation on the personal computer takes approximately
one day with a moderate PC configuration.
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where R ∈ [0, 1] and ω ∈ [0, 1] represent the code rate and the normal-
ized weight, respectively. The following figures show the comparison of the
asymptotic running time of the four algorithms when solving the A-SDP for
moderate code rates R ≈ 0.5 and ω ∈ [0, 1].
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Figure 3.1: Complexity of four ISD algorithms when solving A-SDP over the
Hamming weight

We notice here that the reducing the running time for solving A-SDP, ob-
tained by introducingmore advanced ISD algorithms, namely, Stern’s/Dumer’s
and Wagner’s algorithms, can mainly be observed for the higher values of ω
and higher alphabet sizes. An almost quadratic reduction of running time of
the hybrid classical-quantum algorithms, in comparison to all three classical
algorithms, however, is noticeable for all parameter ranges and all alphabet
sizes. In addition to that, we notice that, in the general case, the asymptotic
running time of ISD algorithms solving the hardest instances of A-SDP over
the Lee weight (observed as the local peaks in Figure 3.2) is longer than the
asymptotic running time of algorithms solving the hardest instances of the
problem in the Hamming weight case (observed as the local peaks in Figure
3.1). The numerical results thus indicate that, for the fixed alphabet size, the
hardest A-SDP instances over the Lee weight are harder than the hardest A-
SDP instances over the Hamming weight. We verify this claim through the
numerical results on the hardest instances of the problem presented in the
following subsection.
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Figure 3.2: Complexity of four ISD algorithms when solving A-SDP over the
Lee weight

Hamming weight case We observe that the choice of alphabet size q = 3
is rather particular. Namely, for a fixed code rate, R, and the fixed alphabet
size q = 3, there are two local maxima of the curve presenting the asymptotic
complexity of the problem: one maximum is reached in what we call the low-
weight regime, for which ω < 0.5, and the other one in what we refer to as
the high-weight regime, for which ω ≥ 0.5. We denote the two maxima by
ω∗
−, and ω∗

+, respectively. We then observe that, for q = 3, the local maximum
in the high-weight regime is slightly higher than the one in the low-weight
regime. For a fixedR and given q = 3, we thus associate ω∗

+ with the hardest
instance of the problem. For q > 3, on the other hand, the numerical results
show that the hardest instances of A-SDP over the Hamming weight can be
found only in the low-weight regime. For a given code rate, R, and alphabet
sizes q > 3, we then associate the corresponding values of ω∗

− to the hardest
instances of the problem over the Hamming weight.

Leeweight case In contrast to the Hammingweight case where, for a fixed
code rate, R, the number of local maxima depends on the choice of q, in the
case of the Lee weight, the number of local maxima is equal to two for all
prime number alphabet sizes being analyzed. We can then say that the A-
SDP over the Lee weight, in some sense, exhibits a more regular behavior
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than the A-SDP over the Hamming weight. Again, we denote the two local
maxima by ω∗

− and ω∗
+, respectively. We then observe that, for a fixed code

rate, R, and a fixed alphabet size q, the second local maximum, obtained in
the high-weight regime, is always higher. For the given q and R, the hardest
instance of the problem is then associated with ω∗

+.

Hardest A-SDP instances

For a fixed alphabet size, q, and a fixed weight function, which is in our case
either theHammingweight,wtH(·), or the Leeweight,wtL(·), we now search
for the code rate, R, and the normalized weight, ω, that yield the hardest in-
stance of A-SDP. Namely, we search for the global maximum of the asymp-
totic running time given as a function of code rate and the normalized weight.
The values of R and ω for which the global maximum is reached then yield
the hardest A-SDP instance for the given alphabet size and weight function.
To limit the range of values we search over and thus speed up the compu-
tation, we rely on the above-presented observations about the local maxima
of the asymptotic running time. More details on the optimization procedure
can be found in our paper [CDE21].

The obtained numerical results are presented in Table 3.1 and Table 3.2.
For the given q,R, and ω, we then express the relative hardness of an instance
as two coefficients, τ(·, ·), and τ̂(·, ·), defined as follows:

τ(R,ω) := lim
n→∞

log2 t
W (n, k, w)

n
, τ̂(R,ω) := lim

n→∞

logq t
W (n, k, w)

n
,

where tW (n, k, q) is the running time of (quantum)Wagner’s algorithm solv-
ing an instance of A-SDP for the given code length, n, code dimension, k, and
weight, w.9 The asymptotic running time is a function of the code rate, R,
and normalized weight, ω, obtained for the optimal choice of parameters of
Wagner’s algorithm, i.e. for the values of a, l, and d that yield the shortest
running time of the (quantum) Wagner algorithm.

9Wagner’s algorithm is chosen as the most generalized and the most evolved version of
the presented ISD algorithms.
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Hamming weight, wtH(·)

q Wagner’s algorithm quantum Wagner’s algorithm
R ω τ τ̂ R ω τ τ̂

3 0.370 1.000 0.269 0.170 0.369 1.000 0.148 0.093
13 0.456 0.311 0.356 0.096 0.453 0.314 0.180 0.049
43 0.459 0.368 0.459 0.085 0.459 0.368 0.230 0.042
163 0.463 0.405 0.541 0.074 0.463 0.405 0.271 0.037
643 0.468 0.427 0.602 0.065 0.475 0.420 0.316 0.034

Table 3.1: Hardest instances of A-SDP over the Hamming weight

Lee weight, wtL(·)

q Wagner’s algorithm quantum Wagner’s algorithm
R ω τ τ̂ R ω τ τ̂

3 0.370 1.000 0.269 0.170 0.369 1.000 0.148 0.093
13 0.475 0.955 0.522 0.141 0.501 0.962 0.283 0.076
43 0.459 0.955 0.794 0.146 0.467 0.957 0.429 0.079
163 0.445 0.968 1.117 0.152 0.462 0.971 0.607 0.083
643 0.437 0.980 1.455 0.156 0.455 0.982 0.794 0.085

Table 3.2: Hardest instances of A-SDP over the Lee weight

The reason we introduce two coefficients for expressing the asymptotic
running time, namely, τ(·, ·) and τ̂(·, ·), is the following. The common way
of expressing the asymptotic running time of an algorithm is in the form
t(n, k, w) = 2τ(R,ω)n, where n → ∞, and τ(·, ·) is determined by the algo-
rithm. Nevertheless, it appears that this representation does not reflect accu-
rately the difficulty of the syndrome decoding problem in the generalized set-
ting we focus on. We thus introduce yet another coefficient of the asymptotic
running time, τ̂(·, ·), obtained when t(·, ·, ·) is given as t(n, k, w) = qτ̂(R,ω)n

and n→∞. This coefficient seems to reflect more accurately the difficulty of
the problem as it is consistent with the previous observations regarding the
syndrome decoding problem over the Hamming weight for alphabet sizes
q > 2 (see, for example, [Pet10]).
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Code rate andnormalizedweight Weobserve that, both in theHamming
weight case and in the Lee weight case, the code rate of the hardest instances
of the problem is in the range [0.35, 0.5]. This was already provisioned by
the plots of previously obtained numerical results. We also observe that, in
the Hamming weight setting and for q > 3, for the value of R yielding the
hardest instances of the problem, the normalized weight attains the so-called
Gilbert-Varshamov bound, defined in Chapter 1. The hardest instances of the
problem over the Hamming weight for q = 3 or over the Lee weight for any
observed q, on the other hand, are obtained in the high-weight regime. To
the best of our knowledge, this parameter regime does not correspond to any
known bound and it is commonly omitted in the numerical analysis though
it indeed yields the hardest instances of the problem. We thus highlight the
importance of taking the high-weight regime into account when analyzing
the generalized syndrome decoding problem.

Hamming weight and Lee weight The first observation to be made is
that both coefficients (namely, τ(·, ·) and τ̂(·, ·)), in the classical as well as in
the quantum settings, are higher in the Lee weight case. Again, this was al-
ready provisioned by the plots of previously obtained numerical results. This
further suggests that the hardest A-SDP instances over the Lee weight are
harder than the hardest A-SDP instances over the Hamming weight. Let us
then observe only the values of τ(·, ·) in the two cases. We then see that τ(·, ·)
increases with the increase of q in all the cases. This gives the impression that
the complexity of the problem increases with the rise of the alphabet size.
However, in the previous studies of this problem for the Hamming weight,
it was shown that, in fact, this is not the case. Let us then observe τ̂(·, ·).
In the Hamming weight case, both for the classical and the quantum setting,
there is a sudden drop in τ̂(·, ·) when we switch from q = 3 and q = 13, and
the coefficient continues to decrease as the alphabet size increases. In the
Lee weight case, on the other hand, the drop is less dominant, and, in fact,
the coefficient starts to increase again for alphabet sizes between q = 43 and
q = 163. The open question is then what would be the limit case? Can we
then hope that for some really high alphabet sizes, the complexity will get
higher than for q = 3?

Classical and quantum Wagner’s algorithm If we now compare τ(·, ·)
(equivalently, τ̂(·, ·)) obtained in the classical and quantum settings for the
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Hamming weight, we can see that the coefficients in the classical setting are
twice as big as those in the quantum setting. This quadratic speed-up was
exactly what was expected from Grover’s search and amplitude amplification
introduced in the hybrid classical-quantum approach. In the Lee weight case,
on the other hand, we observe that the speed-up is not exactly quadratic.
Namely, the coefficients in the classical setting are not exactly twice as big as
in the classical case. This small gap leaves a place for future improvements.
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In this chapter, we study the adaptation of the so-called Stern identifica-
tion scheme, and its digital signature version, to the generalized syndrome
decoding problem. We thus propose a new scheme construction and verify
its security. During the course of the chapter, we also propose an attack on
a particular version of the scheme construction, and we then suggest tech-
niques for mitigating this attack. This work will appear in what is currently
a submitted preprint [CE23].
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4.1 Stern Identification Scheme

Along with the McEliece encryption protocol [McE78], what we call the Stern
identification scheme [Ste93] is one of the first examples of cryptographic
protocols based on the syndrome decoding problem. In its original version,
the scheme is based on the binary syndrome decoding problem in the Ham-
ming weight. This section shows how the original scheme can be adapted
to the generalized syndrome decoding setting, introduced in Chapter 2. We
remark that the adapted version of the protocol does not preserve the zero-
knowledge property of the original scheme. To overcome this shortcoming,
we adapt the scheme again by replacing an instance of the generalized syn-
drome decoding problem with an instance of the permuted kernel problem,
presented in Chapter 2, knowing that A-SDP is polynomial time reducible to
A-PKP.We then show the basic construction of a scheme based on the A-PKP,
the proof of its security, and some techniques for improving the scheme’s ef-
ficiency.

4.1.1 Basic scheme construction

In the basic construction of the Stern identification protocols, the key genera-
tor samples an instance of an A-SDP problem and takes the error vector, e, to
be the secret key and the parity check matrix,H, along with the syndrome, s,
to be the public key. We now present the key generation part of the protocol.

Stern’s protocol - basic construction

Prover Verifier

. . . . . . . . . . . . . . . . . . . . . Key Generation . . . . . . . . . . . . . . . . . . . . .

H
$←− F(n−k)×n

q , e
$←− SM (q, n, w),

s← He,

sk← e, pk← (H, s, w)

pk . . .
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In the interactive part of the protocol, the prover aims to prove it has the
secret key, i.e. the error vector e, preferably without revealing any informa-
tion on it. By doing so, the prover effectively allows the verifier to check
the prover’s identity, ideally, without revealing any additional information.
When the secret key is binary, i.e. e ∈ Fn

2 , the two basic strategies for dis-
guising it are to permute the error vector and to scramble it using some other,
randomly generated vector in Fn

2 . In the more general case when e ∈ Fn
q for

q ̸= 2, however, the permutation does not allow for a complete random-
ization vector e. We will touch a bit more upon this point in the part of the
zero-knowledge property of the scheme. Here we present the original Stern’s
protocol adapted to the generalized syndrome decoding setting, which guar-
antees that the prover will be correctly recognized with probability 1 but does
not promise that no information on e ∈ Fn

q will be leaked in the process if
q ̸= 2.

The interactive part of the protocol thus starts via sampling a random
permutation, π ∈ Π[n], and a random vector, y ∈ Fn

q , which are then used
for disguising the secret key. The prover commits to three values, c0, c1,
c2 ∈ {0, 1}d, d ∈ N, using the hash function H : {0, 1}∗ → {0, 1}d.1 The
three commitments are then sent to the verifier that stores these and responds
by a random challenge c ∈ {0, 1, 2}. Based on the challenge obtained from
the verifier, the prover forms the opening, o ∈ {0, 1}∗, and sends it to the
verifier. In the case of the honest prover, the opening contains sufficient in-
formation for checking two out of three commitments, i.e. the two commit-
ments that do not correspond to the challenge, {ci}i∈[3]\c. These two com-
mitments along with the opening then should enable the verifier to check the
prover’s identity. The interactive part of the protocol is given in the scheme
that follows.

1We assume here that the hash function is unkeyed but that it takes the randomness ri
as its input.
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Stern’s protocol - basic construction

Prover Verifier

. . . . . . . . . . . . . . . . . . . . . . . . . . Interaction . . . . . . . . . . . . . . . . . . . . . . . . . .

π
$←− Π[n], y

$←− Fn
q , t← Hy

r0
$←− {0, 1}m, c0 ← H(π, t, r0),

r1
$←− {0, 1}m, c1 ← H(π(y), r1),

r2
$←− {0, 1}m, c2 ← H(π(y + e), r2)

{ci}i∈[3]

c
$←− [3]

c

o←


(π(y), π(e), r1, r2), if c = 0

(π,y + e, r0, r2), if c = 1

(π,y, r0, r1), if c = 2

.

o . . .

In the verification part of the protocol, the verifier checks the consistency
between the two commitments and the corresponding opening provided by
the prover in the interactive part of the protocol. If these are consistent, the
verifier answers positively i.e. returns 1 and thus verifies the prover’s iden-
tity. If the verifier recognizes the inconsistency, it rejects the proof of identity
and answers negatively, i.e. returns 0. We present the verification part of the
protocol in the scheme that follows.
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Stern’s protocol - basic construction

Prover Verifier

. . . . . . . . . . . . . . . . . . . . . . . . . .Verification . . . . . . . . . . . . . . . . . . . . . . . . . .

if c = 0 :

c̃1 ← H(o[0],o[2])
c̃2 ← H(o[0] + o[1],o[3])

if c1 = c̃1, c2 = c̃2 ∧ wtM (o[1]) = w :

a← 1

else : a← 0

end if
else if c = 1 :

c̃0 ← H(o[0],Ho[1]− s,o[2])

c̃2 ← H(o[0](o[1]),o[3])
if c0 = c̃0 ∧ c2 = c̃2 :

a← 1

else : a← 0

end if
else if c = 2 :

c̃0 ← H(o[0],Ho[1],o[2])

c̃1 ← H(o[0](o[1]),o[3])
if c0 = c̃0 ∧ c1 = c̃1 :

a← 1

else : a← 0

end if
end if

a

We will now show that the above-presented protocol is computational
complete and sound. Namely, the protocol allows an honest prover to respond
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with an opening that is consistent with the commitments for each verifier’s
challenge. In the same time, the protocol does not allow a cheating prover to
respond with an opening that is consistent with all the challenges.

Completness To show the protocol is complete, we assume the prover is
honest and then consider the consistency between the commitments and the
opening for different challenges. Namely, we observe the following three
cases:

• c = 0: The verifies checks the consistency between:
c1 = H(π(y), r1), c2 = H(π(y + e), r2),

and the opening o = (π(y), π(e)), r1, r2). The verifier thus calculates:
c̃1 = H(o[0],o[2]) = H(π(y), r1),
c̃2 = H(o[0] + o[1],o[3]) = H(π(y + e), r2),

and confirms that indeed c1 = c̃1, c2 = c̃2, and wtM(π(e)) = w.

• c = 1: The verifies checks the consistency between:
c0 = H(π, t, r0), c2 = H(π(y + e), r2),

and the opening o = (π,y + e), r0, r2). The verifier thus calculates:
c̃0 = H(o[0],Ho[1] + s,o[2]) = H(π, t, r0),
c̃2 = H(o[0](o[1]),o[3]) = H(π(y + e), r2),

and confirms that indeed c0 = c̃0 and c2 = c̃2.

• c = 2: The verifies checks the consistency between:
c0 = H(π, t, r0), c1 = H(π(y), r1),

and the opening o = (π,y, r0, r1). The verifier thus calculates:
c̃0 = H(o[0],Ho[1],o[2]) = H(π, t, r0),
c̃1 = H(o[0](o[1]),o[3]) = H(π(y), r1),

and confirms that indeed c0 = c̃0 and c2 = c̃2.

Therefore, in each of these cases when the prover is honest, it responds with
an opening consistent with the two required commitments, and the verifier
accepts the proof of identity.
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Soundness To show the protocol is sound, we argue that no cheating strat-
egy allows a dishonest prover to answer all three challenges consistently
with overhelmingly high probability (unless A-SDP is computationally easy
to solve or there exists a non-negligible probability of finding a collision in
the hash function used for committing). We summarize it in the following
proposition.

Proposition 4.1.1 (Soundness of Stern’s identification protocol). The
Stern identification protocol based on A-SDP is computationally sound with
a soundness error of 2/3.

Proof. Let us assume that for each c ∈ {0, 1, 2}, a prover can provide the
three commitments, {cci}i∈[3], and the opening, oc, that are consistent among
each other and that pass the verifier’s check. For each i ∈ {0, 1, 2}, the
commitments then satisfy:

c0i = c1i = c2i = ci,

and for each c ∈ {0, 1, 2}, the opening oc is consistentwith the corresponding
two commitments, {ci}i∈[3]\c.

For a dishonest prover, this happens in two cases. The first case is when
the prover manages to find a collision in the hash function used for commit-
ting to {ci}i∈[3]. The found collision then allows one to find an impersonation
strategy which gives commitments consistent with the opening even without
the prover’s knowledge of the secret key. The soundness of the scheme thus
reduces the hardness of finding a collision in the hash functionH(·).

In the second case, the cheating prover indeed commits to the same values
for each challenge and these values are consistent with the openings. In that
case, we have that:

c0 = H(π, t, r0), c1 = H(π(y), r1), c2 = H(π(y + ẽ), r2),

where π $←− Π[n], y $←− Fn
q , and r0, r1, r2

$←− {0, 1}m are sampled by the
prover, t← Hy is calculated by the prover, and ẽ ∈ Fn

q is chosen so that the
commitments and the opening pass the verifier consistency test at the end
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of the protocol. The chosen ẽ thus needs to satisfy Hẽ + Hy − s = Hy,

checked when c = 1, as well as wtM(π(ẽ)) = w, checked when c = 0. If
both satisfied, ẽ also satisfies Hẽ = s and wtM(ẽ) = w, which implies ẽ is a
solution of the A-SDP instance. This further implies that the cheating prover
is able to find a solution to the generalized syndrome decoding problem. The
soundness of the scheme thus reduces the hardness of finding a solution to
A-SDP. This concludes the proof.

To show that the cheating prover could still cheat with the probability of
2/3 (assuming the challenges are sampled uniformly at random) even with-
out the knowledge of the solution to the A-SDP instance, let us observe the
following impersonation strategy. The prover makes a guess on the error
vector by sampling it uniformly at random from the set Sq(n,w), i.e. it takes
ẽ

$←− Sq(n,w). The prover then commits to the following values:

c0 = H(π,Hy, r0), c1 = H(π(y), r1), c2 = H(π(y + ẽ), r2),

and gives the following opening:

o←


(π(y), π(ẽ), r1, r2), if c = 0

(π,y + ẽ, r0, r2), if c = 1

(π,y, r1, r2), if c = 2

.

This gives us the soundness error of 2/3. We observe that the soundness
error of 2/3 is rather high as it implies that a cheating prover succeeds in
providing the proper proof of identity on average 2/3 of the time. To re-
duce the soundness error, we can repeat the protocol r times, where r ∈ N,
and thus obtain the so-called r-fold parallel repetition protocol. In this type
of protocol, the overall proof is accepted if and only if in each parallel rep-
etition, the proof is accepted by the verifier. Otherwise, the overall proof is
rejected. This approach gives us the soundness error that can be arbitrarily
small. More precisely, the soundness error is equal to the probability that a
cheating prover succeeds in each parallel repetition, and it is equal to (2/3)r.

Zero-knowledge The original Stern identification scheme, based on the
binary syndrome decoding problem in theHammingweight, is zero-knowledge.
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Without going into formal proof, we can see this through an argument that
neither the commitments nor the openings reveal any information about the
secret key. Themodified schemewe presented, on the other hand, is not zero-
knowledge in the general case. To see that, let us observe a permutation of
the error vector, π(e). It is obtained as the opening for c = 0, and, as such,
it reveals the distribution of the elements in the error vector, i.e. the num-
ber of zeros, ones, . . . , values of q − 1 in e. Therefore, the protocol is not
zero-knowledge.

To circumvent this problem, we replace an instance of the generalized
syndrome decoding problem, used in the key-generation part, with an in-
stance of the permuted kernel problem and obtain the following version of
the key-generation part.

Stern’s protocol - PKP construction

Prover Verifier

. . . . . . . . . . . . . . . . . . . . . . Key Generation . . . . . . . . . . . . . . . . . . . . . .

H
$←− F(n−k)×n

q , σ
$←− Π[n]

s← Hσ(v)

sk← σ, pk← (H, s,v)

pk . . .

We recall here that the replacement of the A-SDP instancewith andA-PKP in-
stance is possible given the reduction of A-SDP to A-PKP presented in Chap-
ter 2. The secret key thus becomes a permutation, σ ∈ Π[n], and the public
key comprises the parity check matrix, the syndrome, and the error vector
v ∈ SM(q, n, w). The remaining parts of the scheme remain exactly the same
as in the original version. We now show that the modified version of the
scheme is honest verifier zero-knowledge, as suggested by Proposition 4.1.2.

Proposition 4.1.2 (HZVK property of modified Stern’s protocol). The
Stern identification protocol based on the permuted kernel problem is com-
putationally honest-verifier zero-knowledge.
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Stern’s protocol - simulator of PKP construction
Simulator

c
$←− [3]

. . . . . . . . . . . . . . . . . . . .Committing . . . . . . . . . . . . . . . . . . . .

π̃
$←− Π[n], ỹ

$←− Fn
q ,

r̃0, r̃1, r̃2
$←− {0, 1}m

if c = 2 :

σ̃, ṽ← solution toHσ̃(ṽ) = s,

else :

σ̃
$←− Π[n],

end if

t̃←

{
H(ỹ + σ̃(v))− s, if c = 1

Hỹ, otherwise

c0 ← H(π̃, t̃, r̃0),
c1 ← H(π̃(ỹ), r̃1),

c2 ←

{
H(π̃(ỹ + σ̃(ṽ)), r̃2), if c = 2,

H(π̃(ỹ + σ̃(v)), r̃2), otherwise

. . . . . . . . . . . . . . . . . . . . . Opening . . . . . . . . . . . . . . . . . . . . .

o←


(π̃(ỹ), π̃(σ̃(v)), r̃1, r̃2), if c = 0

(π̃, ỹ + σ̃(v), r̃0, r̃2), if c = 1

(π̃, ỹ, r̃1, r̃2), if c = 2

.

Let us observe a simulator of the interactive part of the scheme, which sim-
ulates the interaction between the prover and verifier for the case when the
verifier accepts the proof of identity given by the prover. To prove the scheme
is an honest verifier zero-knowledge, we need to show that the distribution
of the transcript of the original interaction between the prover and the hon-
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est verifier is indistinguishable from the distribution of the transcript of the
simulated interaction.

Let us then denote by transorig the transcript of the original interaction
that consists of the commitments, {corigi }i∈[3] given by the prover, a chal-
lenge, corig, sampled by the honest verifier, and the opening, oorig, given by
the prover. We further denote by transsim the transcript of the simulated in-
teraction that comprises the commitments, {csimi }i∈[3], a challenge, csim, and
the opening, osim, all of them being generated by the simulator. We will now
show that the distribution of the two transcripts is indistinguishable, by ar-
guing that distinguishing the two transcripts comes down to inverting a hash
function used for committing, which we assume is computationally hard.

Let us thus first observe that both corig and csim are sampled uniformly
at random from {0, 1, 2}, which implies that their distributions are indistin-
guishable. Therefore, we will denote a challenge by c and proceed by analyz-
ing the distribution of the commitments and the openings conditioned on the
challenges sampled from the same distribution. We thus obtain the following
original transcript:

corig0 = H(π,Hy, r0),

corig1 = H(π(y), r1),
corig2 = H(π(y + σ(v)), r2),

oorig =


(π(y), π(σ(v)), r1, r2), if c = 0

(π, y + σ(v), r0, r2), if c = 1

(π, y, r0, r1), if c = 2

,

where π, σ $←− Π[n], y $←− Fn
q , and r0, r1, r2

$←− {0, 1}m. Let us then observe
the simulated transcript.
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• If c = 0:

osim = (π̃(ỹ), π̃(σ̃(v)), r̃1, r̃2),

csim0 = H(π̃,Hỹ, r̃0),

csim1 = H(π̃(ỹ), r̃1),
csim2 = H(π̃(ỹ + σ̃(v)), r̃2),

Since y, ỹ $←− Fn
q , π◦σ, π̃◦σ̃

$←− Π[n], as well as r1, r2, r̃1, r̃2
$←− {0, 1}m,

and v ∈ Fn
q is a fixed value common for both transcripts, the distribu-

tions of oorig and osim are indistinguishable. The distributions of the
second and the third commitments, csim1 and csim2 , that are opened are
then also indistinguishable from the distribution of corig1 and corig2 . Fi-
nally, the first commitments in both transcripts, namely, corig0 and csim0 ,
are not opened. By the hiding property of the commitment scheme, the
distribution of the two is thus computationally indistinguishable.

• If c = 1:

osim = (π̃, ỹ + σ̃(v), r̃0, r̃2),

csim0 = H(π̃,H(ỹ + σ̃(v))− s, r̃0),

csim1 = H(π̃(ỹ), r̃1),
csim2 = H(π̃(ỹ + σ̃(v)), r̃2).

Since y, ỹ $←− Fn
q , σ, σ̃

$←− Π[n], as well as r1, r2, r̃1, r̃2
$←− {0, 1}m, and

v ∈ Fn
q is a fixed value common for both transcripts, the distributions

of oorig and osim are indistinguishable. The distributions of the first
and the third commitments, csim0 and csim2 , that are opened are then
also indistinguishable from the distribution of corig0 and corig2 . Finally,
the second commitments in both transcripts, namely, corig1 and csim1 , are
not opened. By the hiding property of the commitment scheme, the
distribution of the two is thus computationally indistinguishable.
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• If c = 2:

osim = (π̃, ỹ, r̃0, r̃1),

csim0 = H(π̃,Hỹ, r̃0),

csim1 = H(π̃(y), r̃0),
csim2 = H(π̃(ỹ + σ̃(v)), r̃2).

Since y, ỹ $←− Fn
q , π, π̃

$←− Π[n], , as well as r1, r2, r̃1, r̃2
$←− {0, 1}m the

distributions ofoorig andosim are indistinguishable. The distributions of
the first and the second commitments, csim0 and csim1 , that are opened are
then also indistinguishable from the distribution of corig0 and corig1 . Fi-
nally, the first commitments in both transcripts, namely, corig0 and csim0 ,
are not opened and, by the hiding property of the commitment scheme,
the distribution of the two is computationally indistinguishable.

To simplify the comparison with the original Stern scheme, in the rest
of the chapter, whenever we describe our version of the Stern protocol, we
observe it as if it was based on the generalized syndrome decoding problem.
Nevertheless, we assume that A-SDP in the key-generation part is replaced
by A-PKP whenever the underlying field Fq is of size q ̸= 2.

Communication cost The cost of communication of an interactive proto-
col is commonly expressed as the number of bits that are exchanged between
the prover and the verifier in the interactive part of the protocol. In the case
of Stern’s identification protocol, the communication cost, cost ∈ R, is cal-
culated as:

cost = r

(
3m+ log2(3) +

1

3

(
n log2(q) + log2(surfM(q, n, w)) + 2m

)
+

2

3

(
log2(n!) + n log2(q) + 2m

))
,

where m ∈ N is the number of bits of secret coins, surfM(q, n, w) ∈ N de-
notes the surface area of a sphere of radius w ∈ [∆n] in the vector space Fn

q
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endowed with the weight function wtM(·), where ∆ =: maxx∈Fn
q
wtM(x),

and r ∈ N denotes the number of parallel repetitions of Stern’s protocol
that guarantee the soundness error of (2/3)r. The term surfM(q, n, w) corre-
sponds to the cost of sending the permuted error vector, π(e), whilen log2(q)n
and log2 n! correspond to the cost of sending a random vector in Fn

q (such as
y or (y + e)), and a random permutation π, respectively.

For parameters used in practice, the communication cost of Stern’s pro-
tocol is considered to be rather high (order of ≈ 100kb) which implies that
the scheme is considered to be not efficient enough for practical implementa-
tion. We thus aim to reduce the communication cost by using pseudo-random
generators, as described in the following subsection.

4.1.2 A more efficient construction

To reduce the communication cost of the Stern protocol, we use the follow-
ing two approaches. The first one is the most common approach in practice
and it relies on the use of pseudo-random generators. Namely, we replace all
the randomly generated vectors and permutations in the provers’ openings
via random seeds, which are then expanded to pseudo-random permutations
and pseudo-random vectors in the committing phase and in the verification
part. This approach reduces the communication cost significantly and it is
considered to be rather reliable as its security relies on the security of pseu-
dorandom generators, which are well-studied.

Another approach, also commonly encountered in practice (see, for ex-
ample, [CVE11], [BGS21]), is to replace the (non-deterministic) commitment
schemewith a deterministic one. Like the use of previously introduced pseudo-
random generators, this approach reduces the communication cost signifi-
cantly. However, the approach based on deterministic commitments is less
studied and commonly introduced into schemes without much security anal-
ysis. As such, it sometimes reveals an unexpected weakness, as we will show
in the next subsection. We now present a version of the scheme that combines
the two above-described approaches.
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Stern’s protocol - a more efficient construction

Prover Verifier

. . . . . . . . . . . . . . . . . . . . . . . . Interaction . . . . . . . . . . . . . . . . . . . . . . . .

seed
$←− {0, 1}l,

(seedπ, seedy)← e(seed)

π ← eπ(seedπ), π(y)← ey(seedy)

t← Hπ−1(π(y))

c0 ← H(π, t),
c1 ← H(π(y)),
c2 ← H(π(y + e)))

{ci}i∈[3]

c
$←− [3]

c

o←


(seedy, π(e)), if c = 0

(seedπ,y + e), if c = 1

seed, if c = 2

.

o . . .

We denote by e : {0, 1}l → {0, 1}l × {0, 1}l, l ∈ N, a pseudo-random gen-
erator used for expanding a pseudo-random seed into another two pseudo-
random seeds, and by eπ : {0, 1}l → Π[n], and ey : {0, 1}l → Fn

q , the
pseudo-random generators used for expanding pseudo-random seeds into a
pseudo-random permutation and a pseudo-random vector, respectively.
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Stern’s protocol - a more efficient construction

Prover Verifier

. . . . . . . . . . . . . . . . . . . . . . . . . . . Verification . . . . . . . . . . . . . . . . . . . . . . . . . . .

if c = 0 :

π(y)← ey(o[0])

c̃1 ← H(π(y)), c̃2 ← H(π(y) + o[1])

if c1 = c̃1, c2 = c̃2 ∧ wtM (o[1]) = w :

a← 1

else : a← 0

end if
else if c = 1 :

π ← eπ(o[0])

c̃0 ← H(π,Ho[1]− s), c̃2 ← H(π(o[1]))
if c0 = c̃0 ∧ c2 = c̃2 :

a← 1

else : a← 0

end if
else if c = 2 :

(seedπ, seedy)← e(o[0]),

π ← eπ(seedπ), π(y)← ey(seedy)

c̃0 ← H(π,Hπ−1(π(y))), c̃1 ← H(π(y))
if c0 = c̃0 ∧ c1 = c̃1 :

a← 1

else : a← 0

end if
end if

a
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We observe here that the processing time increases as both the verifier
and the prover need to first expand the seeds and then continue with the
rest of the protocol. Nevertheless, the communication cost is significantly
reduced, as we will show in short.

Reduced communication cost The reduced cost of communication, ob-
tained by introducing pseudo-random generation and deterministic commit-
ments into the protocol, is calculated as:

cost =r
(
3m+ log2(3) +

1

3
(d+ log2(surfM(q, n, w)))

+
1

3
(d+ n log2(q)) +

1

3
d
)
,

where d ∈ N is the length of the seeds used for the pseudo-random gen-
eration, surfM(q, n, w) ∈ N denotes the surface area of a sphere of radius
w ∈ [∆n] in the vector space Fn

q endowed with the weight function wtM(·),
where∆ =: maxx∈Fn

q
wtM(x), and r ∈ N denotes the number of parallel rep-

etitions of Stern’s protocol that guarantee the soundness error of (2/3)r. The
term surfM(q, n, w) corresponds to the cost of sending the permuted error
vector, π(e), while n log2(q)n corresponds to the cost of sending a random
vector (y + e) ∈ Fn

q .
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4.2 Stern Digital Signature Scheme

What we refer to as the Stern digital signature scheme, is a digital signature
scheme derived from the r-fold parallel repetition version of the Stern identi-
fication protocol. In this section, we give the scheme description and explain
some of the techniques for reducing the signature size, which is taken as a
fundamental measure of the scheme’s efficiency.

4.2.1 Basic construction

Here we present the basic scheme construction, where the goal of the signer
is to convince the verifier that the messagem ∈ {0, 1}∗, signed on the signer
side, is authentic. To do so, the signer relies on the expected computational
hardness of the syndrome decoding problem (i.e. the permuted kernel prob-
lem). More precisely, the signer uses the tuples of commitments, challenges,
and openings, derived from the Stern identification protocol, to construct a
signature that convinces the verifier of its knowledge of the secret key. The
key generation part and the signing part are presented in the schemes that
follow.

Stern’s digital signature - basic construction

Signer Verifier

. . . . . . . . . . . . . . . . . . . . . Key Generation . . . . . . . . . . . . . . . . . . . . .

H
$←− F(n−k)×n

q , e
$←− SM (q, n, w),

s← He,

sk← e, pk← (H, s, w)

pk . . .

156



Stern Digital Signature Scheme

Stern’s digital signature - basic construction

Signer Verifier

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Signing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

for i ∈ [r] :

πi $←− Π[n], yi $←− Fn
q , t

i ← Hyi

ri0
$←− {0, 1}m, ci0 ← H(πi, ti, ri0),

ri1
$←− {0, 1}m, ci1 ← H(πi(yi), ri1),

ri2
$←− {0, 1}m, ci2 ← H(πi(yi + e), ri2)

end for
{ci}i∈[r] ← HFS(m, {cij}i∈[r], j∈[3])

oi ←


(πi(yi), πi(e), ri1, r

i
2), if ci = 0

(πi,yi + e, ri0, r
i
2), if ci = 1

(πi,yi, ri0, r
i
1), if c = 2

.

sign← ({cij}i∈[r], j∈[3], {ci}i∈[r], {oi}i∈[r])

sign . . .

We observe here that the signature is obtained by removing the interaction
present in the Stern identification scheme using the Fiat-Shamir transforma-
tion, as described in Chapter 1. Namely, the challenges {ci}i∈[r] are obtained
from the messagem and the commitments {cij}i∈[r],j∈[3] using the hash func-
tion HFS : {0, 1}∗ → {0, 1}r. Once the interaction with the verifier is re-
moved, the signature is constructed from the obtained commitments, chal-
lenges and openings.
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Stern’s digital signature - basic construction

Signer Verifier

. . . . . . . . . . . . . . . . . . . . . . . . . . . Verification . . . . . . . . . . . . . . . . . . . . . . . . . . .

for i ∈ [r] :

if ci = 0 :

c̃i1 ← H(oi[0],oi[2])
c̃i2 ← H(oi[0] + oi[1],oi[3])

if ci1 = c̃i1, c
i
2 = c̃i2 ∧ wtM (oi[1]) = w :

ai ← 1

else : ai ← 0

end if
else if ci = 1 :

c̃i0 ← H(oi[0],Hoi[1]− s,oi[2])

c̃i2 ← H(oi[0](oi[1]),oi[3])
if ci0 = c̃i0 ∧ ci2 = c̃i2 :

ai ← 1

else : ai ← 0

end if
else if ci = 2 :

c̃i0 ← H(oi[0],Hoi[1],o[2])

c̃i1 ← H(oi[0](oi[1]),oi[3])
if ci0 = c̃i0 ∧ ci1 = c̃i1 :

ai ← 1

else : ai ← 0

end if
end if

end for

∧i∈[r]ai
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The completeness of the above-presented scheme and the soundness error
of (2/3)r follow from the completeness and the soundness error of the cor-
responding identification scheme. Since the identification scheme is honest-
verifier zero-knowledge, the resulting signature scheme is EUF-CMA secure
in the random oracle model.2

Signature size

The basic measure of the scheme efficiency is given as the signature size,
expressed as:

size = r

(
3m+ log2(3) +

1

3

(
n log2(q) + surfM(q, n, w) + 2m

)
+

2

3

(
log2(n!) + n log2(q) + 2m

))
,

where m ∈ N is the number of bits of randomness, surfM(q, n, w) ∈ N de-
notes the surface area of a sphere of radius w ∈ [∆n] in the vector space Fn

q

endowed with the weight function wtM(·), where ∆ =: maxx∈Fn
q
wtM(x),

and r ∈ N denotes the number of parallel repetitions of the corresponding
Stern identification protocol that guarantee the soundness error of (2/3)r.
The term surfM(q, n, w) corresponds to the cost of sending the permuted er-
ror vector, π(e), while n log2(q)n and log2 n! correspond to the cost of send-
ing a random vector in Fn

q (such as y or (y+ e)), and a random permutation
π, respectively.

4.2.2 A more efficient construction

In a more efficient scheme construction, we use the same idea as in the case
of the Stern identification protocol. Namely, we replace the purely gener-
ated random vectors and permutations via pseudo-random generated ones
and then provide only their seeds in the openings. Moreover, we use only
deterministic commitments. In other words, we take the above-described
more efficient version of the Stern identification scheme and apply the Fiat-
Shamir transform to it to remove the interaction and obtain a digital signa-
ture scheme. As in the case of the identification scheme, the signer (i.e. the

2This follows from the security of the Fiat-Shamir transformation.

159



Chapter 4

prover in the identification scheme) needs to extract the original seeds and
expands these on its side when committing, and the verifier needs to extract
and expands the seeds while verifying the consistency between the commit-
ments and the openings. We illustrate this approach through the signing and
verifying parts of the scheme that follows.

Stern’s digital signature - a more efficient construction

Signer Verifier

. . . . . . . . . . . . . . . . . . . . . . . . . . . Signing . . . . . . . . . . . . . . . . . . . . . . . . . . .

for i ∈ [r] :

seedi
$←− {0, 1}l

(seediπ, seed
i
y)← e(seedi)

πi ← eπ(seed
i
π), π

i(yi)← ey(seed
i
y)

ti ← H(πi)−1(πi(yi))

ci0 ← H(πi, ti),

ci1 ← H(πi(yi)),

ci2 ← H(πi(yi + e))

ci ← H({cij}i∈[r], j∈[3])
end for
{ci}i∈[r] ← HFS(m, {cij}i∈[r], j∈[3])

oi ←


(seediy, π

i(e)), if ci = 0

(seediπ,y
i + e), if ci = 1

(seedi), if c = 2

.

sign← (ci, {cici}i∈[r], {c
i}i∈[r], {oi}i∈[r])

sign . . .
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Stern’s digital signature - a more efficient construction

Signer Verifier

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

for i ∈ [r] :

if ci = 0 :

πi(yi)← ey(o
i[0])

c̃i1 ← H(πi(yi)), c̃i2 ← H(πi(yi) + oi[1])

if wtM (oi[1]) ̸= w :

ai ← 0

end if
else if ci = 1 :

πi ← eπ(o
i[0])

c̃i0 ← H(πi,Hoi[1]− s), c̃i2 ← H(πi(oi[1]))

else if ci = 2 :

(seediπ, seed
i
y)← e(oi[0]),

πi ← eπ(seed
i
π), π

i(yi)← ey(seed
i
y)

c̃i0 ← H(πi,H(πi)−1(πi(yi))), c̃i1 ← H(πi(yi))

end if
c̃i ← H({c̃ij}i∈[r],j∈[3]\ci , {cici}i∈[r])

end for
if sign = (c̃i, {cici}i∈[r], {c

i}i∈[r], {oi}i∈[r]) :
a← 1

else : a← 0

end if

a
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Attack on the more efficient construction

Introducing pseudo-random generators, in general, improves the scheme’s
efficiency but comes with potential security risks when the scheme uses de-
terministic, unkeyed hash functions, defined in Chapter 1 when committing
to a certain value. However, if the values the prover commits to are sampled
uniformly at random from a big enough set of elements, the deterministic
hash functions do not pose a security threat. This is, in fact, the case in the
basic construction of the Stern signature scheme where the signer commits
to either random vectors from Fn

q , where |Fn
q | = qn, or to a random permu-

tation from Π[n], where |Π[n]| = n!. However, in the setting where instead
of purely random values, the signer gives the random seeds in its opening,
which are then expanded by pseudo-random generators on the verifier side,
using a pseudo-random generator decreases the security of the scheme. In
Algorithm 11, we describe an attack that exploits this vulnerability.

Algorithm 11Attack on Stern’s scheme (stern_attack) Running time

Input: H ∈ F(n−k)×n
q , s ∈ Fn−k

q , d, r, w ∈ N
Output: e ∈ SM(q, n, w) s.t. He = s

1: qs ← ⌈2
λ/2

r
⌉ ▷ O(1)

2: for all i ∈ [qs] do
3: m← {0, 1}∗ ▷ O(1)

4: sign[i]← get_signature(m) ▷ tsign
5: end for
6: for all i ∈ [qs] do
7: for all j ∈ [r] do
8: c0[i, j]← sign[i, j]. commitment(0) ▷ O(d)

9: c1[i, j]← sign[i, j]. commitment(1) ▷ O(d)

10: c2[i, j]← sign[i, j]. commitment(2) ▷ O(d)

11: c[i, j]← sign[i, j]. challenge() ▷ O(1)

12: o[i, j]← sign[i, j]. opening() ▷ O(max(l,m) + n)

13: end for
14: end for
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15: L0 ← collision_find(c1) ▷ tcollision_find
16: if |L0| = 0 then ▷ O(1)

17: goto 1: ▷ O(1)

18: end if
19: for all ((i, j), (i′, j′)) ∈ L0 do
20: if c[i, j] = 1 ∧ c[i′, j′] ̸= 1 then ▷ O(1)

21: goto 26: ▷ O(1)

22: end if
23: end for
24: goto 1: ▷ O(1)

25: seedπ ← o[i, j][0], seedy ← o[i′, j′][0] ▷ O(d)

26: y + e← o[i, j][1] ▷ O(n)

27: π ← eπ(seedπ), π(y)← ey(seedy) ▷ O(n)

28: return e← π−1(π(y + e)− π(y)) ▷ O(n)

The algorithm takes as input the parity check matrix, H ∈ F(n−k)×n
q , the

syndrome s ∈ Fn−k
q , and the weight w ∈ N, obtained as a public key in

the key generation part of the protocol, as well as r ∈ N that is the num-
ber of repetitions of the corresponding identification protocol that guarantee
soundness error of

(
2
3

)r. The algorithm’s goal is then to fully recover the se-
cret key, e ∈ Fn

q . It starts by extracting commitments, challenges, and open-
ings from the signature (lines 6 − 14 of the algorithm) to obtain the lists of
the first, the second, and the third commitments, namely, c0, c1, c2, the list of
challenges c, and the list of opening, o. Using the list of second commitments,
c1, the algorithm finds collisions between the list elements (line 15). The col-
lisions are then returned as another list, L0, comprising

(
(i, j), (i′, j′)

)
satis-

fying c1[i, j] = c1[i
′, j′]. If L0 is empty, the algorithm returns to the begin-

ning (lines 16-18). If L0 is non-empty, the algorithm continues with a search
for
(
(i, j), (i′, j′)

)
that, apart from satisfying the constraint on commitments,

also satisfies the constraint on challenges given as c[i, j] = 1 ∧ c[i′, j′] ̸= 1
(lines 19-23 of the algorithm). If such an ((i, j), (i′, j′)) exists, the algorithm
obtains seedπ and y+e from o[i, j], and seedy from the o[i′, j′], as presented
by the lines 25-26 of the algorithm. Having all three values, the algorithmfirst
expands seedπ into π and seedy into π(y) (line 27), and then reconstructs the
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error vector (line 28) as:

e← π−1(π(y + e)− π(y)).

We observe here that the core idea of the algorithm is to match the infor-
mation obtained through different openings, namely, an opening that reveals
information on the values the signer committed to in the first and the third
commitment, and an opening that reveals information on the value used for
the second commitment. By the scheme construction, it is impossible to ex-
tract the information on all three values used for the commitment in one
round of the corresponding identification protocol. However, by finding the
collision in the commitments, one can aim for gathering information about
matching commitments through different rounds of the protocol.

The reason this attack does not work for the original scheme is that find-
ing a collision in the second commitment happens with an overwhelmingly
small probability as the number of possible values to commit to is qn. Find-
ing a collision in the second commitment with a high probability would thus
require O(q2n) commitments. The more efficient scheme we described, on
the other hand, reduces the number of values from which the second com-
mitment can be obtained and increases the probability of finding a collision.
This probability becomes a constant value, which leads to a practically imple-
mentable attack. We summarize this reasoning in the following proposition.

Proposition 4.2.1 (Cost of the attack on the Stern’s protocol). The attack
presented above finds the secret key, e, in time O(2λ/2) having O

(
⌈2λ/2

r
⌉
)

signatures at its disposal. The scheme thus preserves at most λ/2 bits of
security.

Proof. Wefirst observe that under the assumption that the hash functionH(·)
is collision resistant, finding

(
(i, j), (i′, j′)

)
that satisfies c1[i, j] = c1[i

′, j′]

implies that the corresponding values of π(y) are equal. This further implies
that the values of seedy, used for calculating π(y), are also equal. Having
c[i, j] = 1 then gives the opening for the first and the third commitment,
namely the values of seedπ and y + e in o[i, j], and having c[i′, j′] ̸= 1 gives
the value of seedy in the opening for the second commitment, o[i′, j′][0]. The
three values are enough to recover the secret key e. The question now is
what is the probability of finding such

(
(i, j), (i′, j′)

)
.
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Let us observe that having ⌈2λ/2
r
⌉ signatures at the algorithm’s disposal

implies that there are rqs = r⌈2λ/2
r
⌉ ≥ 2λ/2 values of second commitment in

these signatures and the same number of corresponding seeds, seedy[i, j] ∈
{0, 1}λ, used for obtaining the second commitment. Now, since the algo-
rithm has 2λ/2 commitments at its disposal and there exists 2λ seeds taken
from the set {0, 1}λ, by birthday paradox, the probability that the algorithm
finds a collision in the seeds is lower bounded by Ω(1). Furthermore, the
probability that for the given

(
(i, j), (i′, j′)

)
, c[i, j] = 1 and c[i′, j′] ̸= 1 is a

constant value, more precisely, it is equal to 2/9. Therefore, the overall proba-
bility of finding

(
(i, j), (i′, j′)

)
that satisfies both the constraint on the second

commitment and the constraint on the challenge is given by Ω(1). Having
O
(
⌈2λ/2

r
⌉
)
signatures then guarantees that using the above-described attack,

the secret key is recovered with probability Ω(1).

This attack impacts in particular the scheme presented in [BGS21]. In the
next section, we propose a way to mitigate the attack.

Mitigating the attack

Given that the attack exploits the vulnerability of the approach suggested for
reducing the signature size, the method of preventing it relies primarily on
adding randomness to the hash functions used for committing and generat-
ing challenges through the Fiat-Shamir transformation. However, instead of
adding ’fresh’ randomness for each iteration of the corresponding identifica-
tion protocol, which would significantly increase the signature size, we use
the so-called salt ∈ {0, 1}∗ that is generated once per each signature and
used in each hash function. More precisely, we modify the scheme so that
the commitments are now obtained as follows:

ci0 ← H(πi, ti, salt, index),

ci1 ← H(πi(yi), salt, index),

ci2 ← H(πi(yi + e), salt, index),

and challenges are calculated as:

{ci}i∈[r] ← HFS(m, {cij}i∈[r], j∈[3], salt, index)
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where salt ∈ {0, 1}2λ is sampled uniformly at random for each call of the
signing oracle, and index ∈ N is initialized at 0 and then increased with each
next instantiation of index. The signature is then obtained as:

sign←
(
ci, {cici}i∈[r], {ci}i∈[r], {oi}i∈[r], salt, index

)
.

Finally, the verification part follows the same line of reasoning and adds the
random salt and the index when calculating the commitments, challenges,
and signature.

To see that the introducedmodification results in the signature scheme re-
sistant to the above-described attack, we recall that the previous attack relies
on finding the collision in the second commitment. In the previous version
of the protocol, namely, the version without the salt and the index in the
hash functions, finding the collision was possible with probability close to
1 when the algorithm had qs = ⌈2λ/2

r
⌉ signatures at its disposal. Introduc-

ing the index into the hash function enables one to reduce the probability of
finding the collision in one signature while introducing the salt reduces the
probability of finding a collision between different signatures. The salt size
of 2λ thus forces an attacker to obtain at least qs = ⌈2λ

r
⌉ signatures before

recovering the key, and thus regains λ bits of security. The signature scheme
then resists the attack in exchange for a slight increase of the signature size,
namely, at the cost of 2λ+1 bits, where λ ∈ N is a security parameter. While
we do not present here a full security argument that this method preserves
the security of the scheme, security arguments for this mitigation appear in
our preprint.

Signature size

The size of the signature in the more efficient construction is expressed as:

size = r

(
l + log2(3) +

1

3
(d+ log2(surfM(q, n, w))) +

1

3
(d+ n log2(q)) +

1

3
d

)
+ l + 2λ+ 1,

where l ∈ N is the length of the output of the hash function H : {0, 1}∗ →
{0, 1}l, d ∈ N is the length of the seeds used for the pseudo-random gen-
eration, surfM(q, n, w) ∈ N denotes the surface area of a sphere of radius
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w ∈ [∆n] in the vector space Fn
q endowed with the weight function wtM(·),

where∆ =: maxx∈Fn
q
wtM(x), and r ∈ N denotes the number of parallel rep-

etitions of Stern’s protocol that guarantee the soundness error of (2/3)r. The
term surfM(q, n, w) corresponds to the cost of sending the permuted error
vector, π(e), while n log2(q)n corresponds to the cost of sending a random
vector (y + e) ∈ Fn

q .

4.2.3 Numerical results

We present here the signature sizes obtained for the parameter choices cor-
responding to the hardest instances of the syndrome decoding problem over
the Hamming and Lee weight. To obtain these, we rely on the numerical re-
sults presented in Chapter 3, and the standard concrete security requirements
that dictate the choice of r, l, and d.3. We then obtain the following numerical
results for the basic and optimized schemes.

Signature sizes, size in kB

q Non-optimized scheme Optimized scheme
wtH wtL wtH wtL

2 253.05 253.05 26.21 26.21
3 116.54 116.54 21.81 21.81
5 138.54 95.48 27.62 21.41

7 126.47 90.94 28.29 22.71
13 113.23 79.27 29.38 23.29

Table 4.1: Signature sizes of non-optimized and optimized schemes

We observe here that the decrease in the signature size obtained by intro-
ducing pseudorandom generators is significantly bigger than the one intro-
duced by the change of the weight function. Nevertheless, we remark that,
as we have shown in the previous subsection, the use of pseudo-random gen-
erators can potentially lead to a security leak in certain settings. Replacing

3More details on the choices of the values of parameters r, l and d are presented in our
paper [CE23].
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the Hamming weight with the Lee weight, on the other hand, comes at no
security costs. Taking all of this into account, weight function replacement
can be seen not as a stand-alone optimization technique that, in combination
with some other techniques, can lead to a further decrease in the signature
sizes and potentially real-world applicable schemes. Another observation to
be made is about the choice of the alphabet size. Namely, we observe that the
smallest signature size is obtained for q = 5, which is the alphabet size that
is not commonly used in the design of cryptographic protocols. As such, it
might be an interesting choice for new protocol designs.
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Conclusion

The focus of this thesis was on the syndrome decoding problem, its gener-
alization, cryptanalysis, and application to post-quantum cryptography. We
now give a brief summary of the content presented in each chapter of the
thesis along with the final observations and directions for future work.

Chapter 1 We gave a brief overview of the concepts in coding theory, al-
gorithms and complexity, and cryptography that are relevant to the context
of this thesis.

Chapter 2 We introduced the generalized version of the syndrome decod-
ing problem and showed that its average-case version is polynomial-time
reducible to the average-case version of the permuted kernel problem. We
then explained the method for calculating the surface area of a sphere in an
arbitrary vector space endowed with an elementwise weight function. Cal-
culating the sphere surface area was a stepping stone for showing the above-
mentioned reduction as well as for determining the asymptotic complexity
of the problem from the cryptanalytic perspective, as presented in Chapter
3. The method itself, previously known only for the Lee weight, was gen-
eralized to encounter an arbitrary elementwise weight function and can be
observed as a contribution of its own.
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Chapter 3 We adapted the information set decoding framework, known
as the set of the best attacks against the syndrome decoding problem over
the Hamming weight, to our more general setting. We then used this frame-
work to determine the asymptotic complexity of the generalized syndrome
decoding problem in both classical and quantum settings. At the end of the
chapter, we presented the numerical results on the asymptotic running time
of these algorithms when attacking the syndrome decoding problem over the
Hamming weight and the Lee weight. The numerical results indicate that the
problem in the Lee weight setting can be considered a more consistent ver-
sion of the syndrome decoding problem when the alphabet size increases.
Moreover, the numerical results on the hardest instances of the problem in-
dicate that the problem over the Lee weight is harder than over the Hamming
weight for all alphabet sizes greater than 3.

Chapter 4 We finished our analysis with Chapter 4 in which we presented
the cryptographic application of the generalized syndrome decoding prob-
lem. Namely, we adapted the digital signature scheme, which was originally
based on the syndrome decoding problem over the Hamming weight, to our
more general setting. We then replaced the syndrome decoding problemwith
the permuted kernel problem to preserve the zero-knowledge property of the
original scheme. The scheme was then optimized to increase the efficiency
using pseudo-random generators. We then showed the vulnerability of this
optimization method through an attack on the scheme and then suggested a
method for mitigating this attack. We ended the chapter by presenting the
numerical results of the signature sizes of the digital signature we designed.

Future directions In the follow-up work, we would like to address the
following questions. The first, and the most natural one would be to ask
if we can combine some other, more recent optimization techniques, such as
MPC-in-the-head, to obtain more efficient digital signatures based on the gen-
eralized syndrome decoding problem. On the cryptanalysis side, we would
be interested to know if it would be possible to utilize some more advanced
ISD techniques, like those based on representations or a nearest neighbor
search, to obtain a better attack on the generalized problem, or in particular,
its Lee weight version. Would other quantum search algorithms outperform
our approach based on the Grover search and amplitude amplification?
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