
T
H
E
S
E

ED 386 : Sciences Mathématiques de Paris Centre

Doctorat

THÈSE

pour obtenir le grade de docteur délivré par

Université Paris Diderot
Discipline “Informatique”

présentée et soutenue publiquement par

Nathanaël François

le 2 Septembre 2015

Algorithmes et Bornes Inférieures
pour diverses variantes du Modèle de Streaming

Algorithms and Lower Bounds
for variants of the Streaming Model

Directeur de thèse : Frédéric Magniez

Jury
Frédéric Magniez, CNRS, Université Paris Diderot Directeur
Claire Mathieu, CNRS, École Normale Supérieure Rapportrice
Dana Ron, Tel Aviv University Rapportrice (absente)
Benjamin Doerr, École Polytechnique Examinateur
Christoph Dürr, CNRS, Université Pierre et Marie Curie Examinateur
Omar Fawzi, École Normale Supérieure de Lyon Examinateur
Ashwin Nayak, University of Waterloo Examinateur

2

Remerciements

Tout d’abord je voudrais remercier Frédéric de m’avoir apporté sa sagesse et son soutien depuis quatre ans et
demi qu’il m’encadre. Il a su me laisser de l’espace pour m’épanouir tout en n’hésitant pas à me stimuler
quand c’était nécessaire. Je ne prétendrais pas que tout a toujours été parfait: il y a notamment eu des
moments de frustration quand il me demandait de changer la structure d’une preuve trois fois de suite pour
finalement la remettre dans son état d’origine, mais je pense que son insistance sur la manière d’expliquer
était nécessaire, et a fini par payer. Ah, et puis je ne suis toujours pas convaincu qu’il n’a pas installé à la
porte de son bureau une sorte de barrière magique qui neuf fois sur dix rend fausses les preuves quand on y
entre.

Je voudrais aussi remercier Benjamin Doerr, Christoph Durr, Omar Fawzi et Ashwin Nayak d’avoir
accepté de faire partie de mon jury, ainsi que Claire Mathieu et Dana Ron d’avoir accepté d’être rapportrices
de ma thèse. Je remercie aussi Ashwin, Dana et Claire pour les possibilités qu’ils m’ont offertes d’être
accueuilli respectivement à Waterloo University, Tel Aviv University et Brown University pour des périodes
de temps allant de quelques jours à 3 mois. En plus de ces personnes, je remercie Rahul, Aarthi, Michel et
Olivier, avec qui j’ai eu le plaisir de collaborer scientifiquement. Je souhaite également remercier Christian
Sohler de m’acceuillir en postdoc l’année prochaine à Dortmund.

Cette thèse est le produit de plusieurs années passées au sein du LIAFA, que je quitte alors qu’il fusionne
avec PPS et change de nom pour devenir IRIF. En même temps j’avais voté pour un autre nom1, donc on va
dire que ça tombe bien. Je tiens donc à remercier tous mes collègues présents et passés. Je pense en particulier
à Loı̈c et Christian, mes “grands frères de thèse”, à Jad, pour les discussions de voisins de bureau commencées
en stage de M2 et qui continuent aujourd’hui, à Elie, pour sa classe incroyable et éternelle, à Antoine2, Arthur
et Clément, pour leur humours aussi inconventionnels les uns que les autres et les discussions absurdes entre
deux bureaux, à Lila, pour les parties de jeux de plateau et les longues conversations probablement beaucoup
trop sonores qui se terminent généralement par “Everything is terrible!”, à Florian, pour m’avoir aidé à soûler
tout le monde avec des discussions de “stratégie” à Magic: the Gathering3, et aussi en vrac à Carola, Moti,
Jaime, Vincent, Denis, Charles, Luc, Laure, Marc, Virginie, Nathanaël4, Irène, Jehanne, Hervé, Inès, Isabelle,
Olivier, et tous ceux que j’aurais oubliés.

Cependant, il serait absurde de prétendre que ma vie pendant ces quatre dernières années s’est résumé à
deux bâtiments. Déjà, il y avait les enseignements. Je remercie tous les étudiants que j’ai pu avoir en L1 et en
L2 pour m’avoir enseigné la patience, et tous les responsables de cours et les autres chargés de TD/TP avec
qui j’ai eu le plaisir de travailler. Je pense en particulier à Mehdi avec qui j’ai co-encadré un TP pendant
plusieurs mois, et qui m’a beaucoup appris dans ce domaine.

Plus sérieusement, il y a une vie en dehors de la thèse et je me dois de remercier tous les gens qui m’ont

1Ada Lovelace Institue, en bon fanboy de The thrilling adventures of Lovelace and Babbage.
2Les trois.
3Ces stratégies ayant souvent plus pour but de parvenir à montrer qu’on est un plus gros geek qu’à réellement gagner une partie.
4Non, pas moi évidemment, l’autre.

3

fait l’apprécier. Parfois la thèse peut être une entreprise quelque peu déprimante, et je dois beaucoup à Marthe,
Florence et Élisa pour avoir su trouver les mots qu’il fallait pour me remonter le moral à certains moments où
ça n’allait pas.

Je remercie Denise, Rémi, Christophe, Émilia, Jérôme, Averell, Claude, Ismaël, Auréliane, Adeline,
Chloé, Paul, et tous les autres du Club Cirque pour leur bonne humeur perpétuelle et la certitude inébranlable
que tant que ça tient on peut encore rajouter une voltigeuse de plus. C’est aussi grâce à eux que j’ai découvert
l’EJC et la FAC et ainsi rencontré plein de nouveaux gens cools venant de partout dans le monde.

Mon deuxième passe-temps favori après empiler des acrobates consistant à empiler des cartes Magic
(et jouer avec, aussi), je remercie Mikaël, Fathi, Max, David, François-Régis et Benoı̂t pour tous les bons
moments passés autour de ce jeu. Et pour les jeux qui ne sont pas Magic5 je remercie aussi Alice, Axel,
Sylvain et les autres.

Je remercie les escrimeurs du CÉANS pour avoir fait rimer Marrozo avec mauvais jeux de mots, et Fiore
dei Liberi avec humour pourri. Je crains de ne pas pouvoir croiser le fer souvent l’année prochaine mais ce
sport reste un des plus classes que j’ai pu pratiquer.

Je remercie aussi les membres du Club Inutile, unis dans la quête de l’absurde, du non-sens, et de la
manière la plus élaborée de faire absolument rien. Et aussi ceux du RATON-LAVEUR, unis dans presque la
même quête (contrevenant ainsi à l’article 12 du Club Inutile), mais avec des crêpes en plus. C’est cool les
crêpes. Et du spam aussi, mais ça ne se mange pas, sauf si on parle du spam que les vikings aiment bien mais
je crois comprendre que ça c’est pas bon.6

Je ne remercie pas, en revanche, Wizards of the Coast, Paradox Interactive et Fantasy Flight Games pour
les heures de productivité perdues dont ils sont à l’origine. Enfin si, mais quand même c’est un chiffre qui
fait peur...

Avant de finir, je veux saluer tous ceux que je n’ai pas mentionnés jusqu’ici mais pour qui ma recon-
naissance n’est pas moindre : Béatrice, Mathias, Caroline, Marie, Julia, Alexis, Ilia, Albane, Dan, Julie,
et toi-même lecteur. Je t’ai peut-être honteusement oublié, mais si tu es en train de lire ma thèse c’est
probablement que tu ne le méritais pas.

Enfin, je voudrais remercier ma famille qui me supporte depuis presque 25 ans. Je ne saurais pas trouver
les mots pour décrire ce que vous m’avez apporté.

En finissant d’écrire ces remerciements, je me suis rendu compte qu’ils étaient beaucoup plus brefs que
ce que je pensais. Moment de panique: suis-je un ingrat ? J’ai pourtant tellement de gens à remercier, qui
m’ont tant apporté pendant ces quatre années et avant... J’ai décidé de ne pas en rajouter cependant, parce que
ça serait mal vous aimer que de faire du remplissage dans mes sentiments. Pour ceux qui n’ont pas l’habitude
de me lire, vous savez maintenant que je suis aussi concis à l’écrit que je suis prolixe à l’oral. La taille de
cette thèse en est un autre témoin.

5Oui ça existe...
6Cette phrase assez décousue vous est offerte par l’esprit du RATON-LAVEUR.

4

5

List of publications
This dissertation is based on the following publications:

[18] Nathanaël François and Frédéric Magniez. “Streaming Complexity of Checking Prior-
ity Queues”. In: 30th International Symposium on Theoretical Aspects of Computer
Science (2013), p. 454

[17] Nathanaël François, Rahul Jain, and Frédéric Magniez. “Unidirectional Input/Output
Streaming Complexity of Reversal and Sorting”. In: Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques (2014), p. 654

[19] Nathanaël François, Frédéric Magniez, Michel de Rougemont, and Olivier Serre.
“Streaming Property Testing of Visibly Pushdown Languages”. In: arXiv preprint
arXiv:1505.03334 (2015)

6

Contents

1 Introduction 9
1.1 A (very) brief history of streaming and sublinear algorithms 9
1.2 Our results . 12

2 Models and languages 17
2.1 Languages and functions considered . 17

2.1.1 Visibly Pushdown Languages . 17
2.1.2 Priority Queues . 18
2.1.3 Reversing and Sorting . 19

2.2 The streaming model . 19
2.3 Distance and Property Testers . 20

2.3.1 Balanced/Standard Edit Distance . 20
2.3.2 Property Testers . 21

2.4 Information theory and communication complexity . 21
2.4.1 Information theory . 21
2.4.2 Communication Complexity . 23
2.4.3 The Hellinger distance . 23

3 Algorithms and Upper Bounds 25
3.1 Recognizing Priority Queues with one pass in each direction 25

3.1.1 Previous Results . 25
3.1.2 Our algorithm . 28
3.1.3 Multiple unidirectional passes . 37

3.2 Streaming Property Tester for Visibly Pushdown Languages 38
3.2.1 Sampling weighted words . 38
3.2.2 Property Tester for Regular Languages in the Query Model 38
3.2.3 Our result . 41

3.3 Input/Output Streaming Algorithms . 55
3.3.1 Reversing the Input stream . 55
3.3.2 Sorting the Input stream . 57

4 Lower Bounds 61
4.1 Recognizing Priority Queues with Timestamps in one pass 61

4.1.1 Reduction from communication protocols to the streaming algorithms 62
4.1.2 Lower bound of the communication complexity of RAINDROPS(m,n) 66

7

4.1.3 Final proof of Theorem 4.1.3 . 71
4.2 Reversing an Input stream in the Input/Output model . 72

4.2.1 With Read-Only Input and Burn-Only Output . 72
4.2.2 With either Read-Write Input or Read-Write Output 75

5 Perspectives 79

8

Chapter 1

Introduction

1.1 A (very) brief history of streaming and sublinear algorithms
When faced with a resource-hungry process that is not trusted to be correct, one may want to check it in real
time while using minimal space resources. For example, while it can be useful to have an algorithm running
on a server that can detect a Denial Of Service (DOS) attack before it crashes the server, it is impractical
to use a significant fraction of the server’s processing power or cache to do so, as DOS attacks are not very
frequent. In a DOS attack, a relatively small number of clients send a very high number of requests in order
to exceed the server’s capacity. This can be distinguished from a normal peak in number of requests (which
should not cause the serve to preemptively shut down) by the fact that some clients send many more requests
than the rest. In 1996, Alon, Matias and Szegedy introduced the Data Streaming Model [2] for that purpose,
and showed that given a stream of requests from clients with their addresses, it was possible to compute an
approximation of the second frequency moment of the addresses, which is enough to detect a DOS attack,
using only O(log n) memory. In this model, the algorithm sees the input as a stream, and processes it with a
head that can only move forward. The algorithm also has a random access working memory, but its space
is restricted to some sublinear function of n the size of the input, for example O(

√
n). Ideally, we want

polylog(n) memory; having a better upper bound than log n is not possible in most cases as the algorithm
needs that much memory just to maintain an index of the element it is reading in the stream. The restriction
on memory is both what makes this model relevant for practical applications, and what makes the results
different from standard algorithmic results, as otherwise the algorithm would just copy the input in its working
memory. In the vast majority of cases, streaming algorithms are randomized, and deterministic algorithms for
most problems require linear memory.

While it was introduced as a model for real-time processing of data, the streaming model later also
became used to compute functions on very large inputs that do not fit in a random access memory. When
a streaming algorithm checks a process in real time, such as in the frequency moments example above,
naturally only one pass is allowed. This approach can be compared to online algorithms, but there are two
key differences. First, an online algorithm has to make decisions, which will determine the output, while
processing its input, unlike a streaming algorithm which can output the result at the end. Second, an online
algorithm is not bounded computationally. It can remember the entire history if it needs to, and perform long
computations between bits of the input. This contrasts to a real time streaming algorithm, where in addition
to the memory constraints, we usually aim for polylog(n) time between processing bits. In the main other
paradigm for streaming algorithm, the input corresponds to a very large amount of data stored in a way that
makes random access costly, and multiple passes can be allowed, potentially in both directions. An example
would be very large graph, such as the web graph (i.e. the graph representing all web-pages and hyperlinks),

9

which we can visit several times but cannot store in our working memory. Maximum weighted matchings,
for example, are significantly easier to approximate with a streaming algorithm that makes multiple passes
((2 + ε)-approximation) than with a single pass algorithm (4.911-approximation) [33]. Another potential
application is the currently open problem of finding ways to fold an RNA sequence that maximize the number
of pairs. RNA sequences can be very long but if an algorithm is reading them, they have presumably been
stored in some sort of memory already.

The streaming model can be seen as part of a larger trend. When the field of algorithmic complexity was
first developed, the gold standard for an algorithm was linear time and linear space, as it was understood
that the algorithm needs to store and read the input. The research focused on the complexity of the
computations involved in computing many functions, in particular with famous complexity classes like
P or BPP representing problems that can be solved either deterministically or using randomness in time
polynomial in the input size. However, beginning in the 90s, as big data, i.e. problems with huge inputs,
became more prevalent, it became apparent that even linear time and linear memory could be too much. The
input would be stored in some external memory, different from the working memory, or even not stored locally
and accessed by querying various parties. This new approach, called sublinear algorithms, includes the
streaming model (sublinear memory), property testing (sublinear time), and distributed computing (sublinear
communication in the congestion model, or sublinear time in the local model)1. Property testers, in the
query complexity model, are algorithms which do not directly access the input but instead query an oracle
for a small, possibly random, portion of it. Distributed computing in the congestion model is linked to
communication complexity, as some number of players want to compute a function of their respective inputs
by sending each other messages of total length sublinear in the total input size. As with streaming algorithms,
randomness is almost always present in sublinear algorithms, as the functions we wish to compute generally
depend on the whole input and not just the sublinear part of it we can access, remember, or share.

Communication complexity

Limitations of streaming algorithms are closely linked to lower bounds in communication complexity. In
communication complexity, which was introduced by Yao in 1979 [41], two or more players have private
inputs and want to compute some function of their inputs by sending message to each other.

A protocol determines the message each player will send based on the messages they previously received,
and their input. The communication complexity of a protocol is the total size of the messages sent by its
players in the worst case. For any functions, there exists a trivial protocol to compute it where each player
will communicate their entire input to the others. The goal is therefore to find protocols that use sublinear
communication, or to prove that no such protocols exist.

Communication complexity is a very rich field with many variants and many applications, but one of
them in particular is extremely relevant to streaming algorithms. The most common way to prove a streaming
lower bound (with only one pass and one stream) is to consider the communication problem defined by
cutting the input in two in some natural way, giving the first half to Alice, the second half to Bob, and show
that the resulting communication problem is hard. If there existed a streaming algorithm with small memory,
Alice could just run it on her half of the input and send the memory to Bob, who would finish running the
algorithm and output the value of the function. Therefore a communication complexity lower bound can be
used to prove a streaming complexity lower bound.

More generally, we can cut the input in k consecutive parts and give each factor of the input obtained this
way to a different player. The players are arranged in a cycle, know only their own input and send messages to
the next player in the cycle: this is known as number-in-hand message-passing. For any streaming algorithm

1In the local model, players are unrestricted in the size of the messages they send, but messages are sent simultaneously during
each round and the goal is to minimize the number of rounds. In the congestion model, the message size is the limiting factor.

10

using p passes and s memory space, k players can simulate this algorithm with total communication ksp:
each player receives the current memory of size at most s from the previous player, runs the algorithm on
their input, and sends their current memory to the next player, until the computation ends. By contraposition,
if we can cut the input of a function in such a way that the resulting communication problem is hard, then we
can prove that the streaming complexity of the function is high.

Property Testers

The third field in sublinear algorithms is property testing. Property testing was first implictly used in 1990
by Blum, Luby and Rubinfeld [8] although the concepts were formally introduced by Gemmell, Lipton,
Rubinfeld and Sudan in 1991 [21]. for program checking and self correction: given a black-box program
claimed to compute some function, the goal is to verify that, with high probability, the program is right on
most inputs (program checking), and from this to build a program that is correct with high probability on all
inputs (self correction). Property testing then expanded beyond program checking to include among others
testing properties of graphs [23], membership in a language (such as the language of well-parenthesized words
with two types of parentheses [36], regular languages [1],[35], or closeness of two probability distributions [9].
In each of those extensions, the goal of a tester is to accept with high probability all correct inputs and reject
with high probability all inputs that are too far (with regard to a normalized distance) from being correct, but it
may behave in an undefined manner for inputs that are not quite correct but close. For example, an ε-property
tester for a language L and the Hamming distance distH is an algorithm that, with high probability, accepts
inputs u ∈ L and rejects inputs u such that distH(u, L) > ε|u| (with |u| the length of u). This definition
naturally lends itself to a (randomized) sublinear time approach, as if an algorithm is allowed to accept inputs
that are only close to being correct, it can afford to not read all of it. We consider the query complexity of
such a tester. In the query complexity model, the algorithm does not have direct access to the input and must
query any bit it wants to see. This is considered the most costly operation and the query complexity, i.e. the
number of queries the algorithm must send, represents best the complexity of the algorithm. Property testing
and query complexity go naturally together as an algorithm with a small number of queries is always very
unlikely to distinguish two inputs that are very close, but property testers get around this limitation by being
allowed to accept bad inputs that are close to good ones.

Variations on the query model have also been considered. One of them is the trial-and-error model,
where the algorithm is trying to solve some problem with small witnesses (for example, a problem in NP)
where the input is hidden, and can submit a tentative answer with a witness to an oracle, which will either
accept it, or refuse it by pointing to a part of the input which contradicts the witness [6]. Another variation is
to allow the algorithm, either in addition to or instead of the standard query, to ask the oracle other questions
about the input. For example, in the case of a graph, the algorithm could ask for the distance between two
vertices [27]. A more recent variation involves testing dynamic environments [22], with the environment
evolving over time and queries only being possible on the current state, similar to an online model.

However property testing is not inherently tied to the query model: we can also consider streaming
property testing, which are simply streaming algorithms that are property testers. Streaming property
testers, then called spot-checkers, were first introduced in 1998 by Ergün, Kannan, Kumar, Rubinfeld and
Viswanathan [14], and have been used several times since [15],[12]. Here the algorithm will have access to
the entire input, but will be forced to discard some of it by the restriction of having a sublinear memory. Any
non-adaptive tester in the query model using s queries can easily be modeled by a streaming property tester
using memory space s, as it just needs to remember the bits corresponding to the queries. However, adaptive
testers, where queries potentially depend on the result of the previous ones, cannot be so easily simulated by
a streaming algorithm. Note that streaming property testers can also be linked to the previously mentioned
testers on dynamic environments: a streaming property tester using O(f(n)t) memory for an input of size

11

O(nt) with t > n/f(n) can simulate a dynamic environment property tester (even with adaptive queries)
for an environment of size n evolving over t steps which queries at most f(n) elements at each step. The
algorithm can simply store the entire environment at any step in memory because t > f(n), and then choose
the queries it wants to remember.

Note that, if there exists results in property testing that do not rely solely on a query model, the reverse is
also true: the first results on query complexity (i.e. deciding properties while looking at only a fraction of the
input), date from 1976 with Rivest and Vuillemin [37] for graph properties recognized for adjacency matrices,
well before property testing. The query complexity of evaluating decision trees such as an AND-OR tree,
was also extensively studied, and particularly gaps between algorithms with one-sided and two-sided error
[39], [31]2. Another major application of randomized queries is the study of the complexity class PCP, a
generalization of NP defined as the class of problems for which there exists a (possibly exponential in size)
witness, or proof, that can be probabilistically checked by a verifier in polynomial time [7].

1.2 Our results
In this thesis, we consider relaxations of the streaming model, and give algorithms and lower bounds for
problems in those models. Two types of relaxations are considered:

• Augmenting the model to give more resources to our algorithm (more passes, more streams...)

• Relaxing constraints on the output (such as with streaming property testing)

Each time our study of relaxations comes from a double question : “what is the minimal relaxation we need
to solve efficiently some given problem?” and “given this relaxation, what is the hardest problem we can
efficiently solve with it?”. Although we do not fully answer these guiding questions in every case, they
structure our study.

Multiple passes is one of the most immediate relaxations. For multiple passes in the same direction the
outcome is often either that the complexity does not change much (s(p) the space required for p passes is
equal to s(1)/p) or that the problem becomes much easier (polylog(n) memory) after some number of passes.
For example, it requires Ω(|Σ|) memory to test if more than half the letters of u ∈ Σn are the same with
only one pass, but with two passes an algorithm can use the first pass to select the only possible candidate3,
and then use the second pass to check that it represents indeed more than half the letters of u, all with
only O(log |Σ|+ log n) memory [28]. In this basic model, we generalized a lower bound result originally
by Chakrabarti, Cormode, Kondapalli, and McGregor [10] on priority queues. This language consists of
tasks requested with a certain priority, that we call insertions, and tasks effected, that we call extractions,
and any extraction must match the highest priority currently inserted but not yet extracted. They showed
that recognizing priority queues in streaming with one pass required memory Ω(

√
n), which matched their

algorithm up to a logarithmic factor. This result was a consequence of the demonstration [26] that recognizing
DYCK[2], the languages of well-parenthesized words with two types of parentheses, in p passes requires
memory space Ω(

√
n/p), as parenthesis languages can be seen as priority queues.

In Section 3.1, using similar information theory tools, we show that recognizing priority queues
augmented with timestamps in streaming with p passes requires memory space Ω(

√
n/p).

2Very recently, a decision tree with a gap larger than any previously known one was found, settling a 30 year old open problem
[5].

3The first letter is the first candidate. Whenever the candidate is read, a counter is incremented. Whenever a non-candidate is
read, the counter is decremented, except if it is already zero, in which case the current letter becomes the new candidate.

12

The language of priority queues with timestamps cannot, in general, be compared to DYCK[2], although
both languages can be seen as special cases of priority queues. This is especially relevant as prior to the
algorithm from [10], the best streaming results on priority queues were both for priority queues augmented
with timestamps [12]: a streaming algorithm using memory O(

√
n log n), as well as a streaming property

tester using memory O(log n). The hard distribution we construct for our communication problem has a key
difference to what can be seen in earlier proofs: it relies on the information complexity of an asymmetric
3-player communication problem, whereas several lemmas used for the proof of DYCK[2], notably the
cut-and-paste lemma, only work for 2 players.

After multiple passes in the same direction, multiple passes in different directions is a natural evolution:
Magniez, Mathieu and Nayak [32] showed that having one pass in each direction dramatically speeds up
the recognition of the languages of DYCK[2] from Ω(

√
n) to polylog(n). Improving on the techniques

developed there, we showed that the same is true for the language of priority queues. While it is not a visibly
pushdown language like DYCK or XML, it still consists of extractions and insertions. This allows us to
use a technique similar to the one used for the bidirectional algorithm for DYCK[2]: divide the part of the
input already read into a logarithmic number of blocks. Each time a new letter is read, a block of size 1
is created, and when two blocks have the same size they merge. This means the sequence of block sizes
corresponds to a binary decomposition of the index of the letter the stream is currently processing. If the
total size of the stream is a power of 2 (it can easily be with some padding), then the same blocks appear on
passes in both direction. Merging naturally destroys some information: while the process does not cause the
algorithm to forget everything about the order of the elements inside the block, the amount of information
we use per block cannot depend on the size of the block. The difficulty therefore lies in finding a way to
detect any witness of the input’s non-membership in the language before block merging makes the witness
undetectable. This is why we want the same blocks to exist in both directions, as sometimes witnesses will
be seen from right to left, and sometimes from left to right. Things are further complicated by the fact that,
unlike well-parenthesized words, priority queues are not stable by symmetry: insertions can happen in any
order, and we need a different algorithm for the pass from left to right and the pass from right to left.

In Section 4.1, we show that there exists a bidirectional algorithm for recognizing priority queues
using memory space O(log n2).

The natural question is to ask whether this can be extended to other languages of the same form. However,
beyond specific cases like Dyck languages [32], or XML documents representing binary trees [30], even
general visibly push-down languages, let alone all languages composed of insertions and extractions, are
hard to recognize with bidirectional streaming algorithms. Even an XML document representing a ternary
tree can be reduced to a Disjointness communication problem, and therefore verifying its validity requires
Ω(n) memory. Two relaxed approaches either add another stream, or loosen the constraints on the output (i.e.
streaming property testing).

We first consider streaming property testers for visibly pushdown languages. Visibly pushdown languages
are defined as the languages recognized by stack automata such that each letter in the alphabet either always
causes a push, always causes a pop, or never affects the stack. In addition to being hard to recognize with
streaming algorithms, VPLs are also relatively hard to test in the regular query model, requiring Ω(n1/3)
queries4. We also have an example of a visibly pushdown language, a variation of DISJOINTNESS, that
streaming algorithms cannot recognize with less than Ω(n) memory and for which property testers need

4Consider the XML encoding of a tree with n2/3 branches of length n1/3. Branches have to be of the form a∗b∗. This cannot be
tested without two random samples in the same (random) branch, selected from the whole branch. By the birthday paradox, this
requires at least n1/3 samples.

13

Ω(n1/11) queries5. This language is the set of xy with x ∈ {0, 1}n, y ∈ {0, 1} such that for all i xiyi = 0.
The streaming lower bound for the communication complexity lower bound follows naturally form the
communication lower bound on DISJOINTNESS, whereas the query complexity lower bound for the property
tester can be deduced from the proof of the lower bound for a property tester for DYCK[2] in [36]. We
designed a streaming property tester for visibly pushdown languages that uses logarithmic memory. The first
step is to manage a sequence of push symbols followed by a sequence of pop symbols, which we call a peak:
even recognizing peaks in a VPL has polynomial complexity in the models mentioned above. The way we do
it is by seeing peaks as elements of a regular language over Σ× Σ, where each push symbol is matched to a
pop symbol on the other side. We can design a streaming property tester for peaks by using a non-adaptive
query model property tester by [1], refined in [35]: the algorithm remembers the push symbols corresponding
to queries it wants to make, and then obtain those queries by completing them with the matching pop symbols.
We then show that this algorithm can be used more generally to transform such a peak into a big neutral
symbol representing the possible transitions of the stack automaton. Ideally, we would like to repeat the
process whenever we see such a sequence, however we must be careful not to accumulate error in a nested
way that could result in us either accepting inputs too far from the language, or having to use too much
memory for the first tester in order to keep the error small. This can be managed with a stack of peaks waiting
to either be transformed or be resumed as a later peak is transformed.

In Section 3.2, we give an ε-property tester with memory space O(log7 n/ε4) for ε > 0 and any
visibly pushdown language with the edit distance.

Finally, we discuss machines with more than one streaming tape. With a relatively small (O(log n))
number of passes and three tapes, it is very easy to sort a stream (and [24] proved that this is optimal),
which makes it possible to transform or annotate inputs in order to recognize languages that are otherwise
hard, such as XML (Konrad and Magniez [30], also some more general results for deterministic context free
languages (which include VPLs) can be derived from results in [29] and [38]). The transformations that can
be performed in this manner include sorting a subset of the input in O(log n) passes and O(log n) memory.
This in turn allows for example evaluation of XPath expressions on an XML document. Here, our interest lies
with transformations that can be done with a less powerful model : only two streaming tapes, one of them the
input and the other the output, and passes are only from left to right. We then add other restrictions, such as
preventing the algorithm from overwriting on the input stream (Read-only), or preventing the algorithm from
reading its own output (Write-only), justified by the lower cost of such memory (compact disks and their
successors, for example, are generally read-only). In this model, even the simple problem of reversing the
input stream becomes non-trivial.

We show in Section 4.2.1 that unsurprisingly, in the model where the algorithm can only read
the input and can only write on the output, and only once in each cell (Burn-only), the naive
algorithm that during each pass remembers as much as it can from the input, reverses it and
writes the result in the correct place on the output streams performs best: the required memory
space is Ω(n/p) for p passes for any randomized algorithm.

What is more unexpected is that this bound is not known to be true for randomized algorithms when the output
stream is Write-only instead (i.e. the algorithm can write multiple times in a cell), even though intuitively it
should not change anything.

When either of the streams is Read-Write instead, then we show in Section 4.2.2 that the required
space drops to Ω(n/p2) and in Section 3.3.1.1 that this bound is met by a deterministic algorithm.

5Possibly more, this is not a tight bound.

14

For two Read-Write streams, we show in Section 3.3.1.2 that there exists a deterministic algorithm
using O(log n) passes and O(log n) memory.

Because this model has two independent streams, we were unable to use communication complexity, as
it would be common to do to prove streaming lower bounds. Indeed if a player has a part of each stream,
they could have “communicate” with other players simply by making one of the heads move while the other
stayed in place. This would cause the two heads be in parts belonging to two different players, allowing
communication that does not go through the algorithm’s memory. We therefore had to develop new techniques
for those proofs. When both streams are Read-Write, it is still possible to sort with O(log n) passes and
O(log n) memory [11], as with three streams. However there is an apparent trade-off:

In Section 3.3.2, we give both a deterministic algorithm, based on Merge Sort, that may use
significantly more space on the stream than the input size, O(n log n), and a randomized
algorithm, based on Quick Sort, that always returns the correct result and does not expand the
stream by more than a linear factor, but may require more than the expected O(log n) passes to
finish6.

We do not know if there exists an algorithm in O(log n) passes and O(log n) memory that combines the best
of both worlds by being deterministic and not requiring more than linear expansion of the stream.

6Alternatively, it always ends after O(logn) passes but sometimes outputs nothing.

15

16

Chapter 2

Models and languages

2.1 Languages and functions considered
All languages we define in this section consist of push symbols, or insertions, and pop symbols, or extractions.
A word is said to be balanced if it has as many push symbols (resp. insertions) as pop symbols (resp.
extractions). Note that all the definitions will require in particular that the words be balanced, and a streaming
algorithm can check that simply by counting the height of the stack, using O(log n) memory. Therefore in
the rest of this work we will often assume that the input is balanced.

2.1.1 Visibly Pushdown Languages
Visibly pushdown languages are languages recognized by stack automata where each symbol determines
whether the automaton pushes or pops on the stack, and it does not depend on the state or current stack.
They form a subclass of deterministic context free languages. Notable visibly pushdown languages include
the XML language, the language of well-parenthesized words (or Dyck language), and the language of
valid traces of the execution of a program. For Dyck language, we write DYCK[k] for the language of
well-parenthesized words with k types of parentheses.

A finite state automaton is a tuple of the form A = (Q,Σ, Qin , Qf ,∆) where Q is a finite set of control
states, Σ is a finite input alphabet, Qin ⊆ Q is a subset of initial states, Qf ⊆ Q is a subset of final states and
∆ ⊆ Q× Σ×Q is a transition relation. For a pair of states p, q ∈ Q and u ∈ Σ∗, we write p u−→q, to mean
that there is a sequence of transitions in A from p to q while processing u, and we call (p, q) a u-transitions.
For Σ′ ⊆ Σ, the Σ′-diameter (or simply diameter when Σ′ = Σ) of A is the maximum over all possible pairs
(p, q) ∈ Q2 of min{|u| : p u−→q and u ∈ Σ′∗}, whenever this minimum is not over an empty set. We say that

A is Σ′-closed, when p u−→q for some u ∈ Σ∗ if and only if p u′−→q for some u′ ∈ Σ′∗.
A pushdown alphabet is a triple 〈Σ+,Σ-,Σ=〉 that comprises three disjoint finite alphabets: Σ+ is a finite

set of push symbols, Σ- is a finite set of pop symbols, and Σ= is a finite set of neutral symbols. For any such
triple, let Σ = Σ+ ∪Σ- ∪Σ=. Intuitively, a visibly pushdown automaton [4] over 〈Σ+,Σ-,Σ=〉 is a pushdown
automaton restricted so that it pushes onto the stack only upon reading a push symbol, it pops the stack only
upon reading a pop symbol, and it does not modify the stack on reading a neutral symbol. Up to coding, this
notion is similar to the one of input driven pushdown automata [34] and of nested word automata [3].

Definition 2.1.1 (Visibly pushdown automaton [4]). A visibly pushdown automaton (VPA) over 〈Σ+,Σ-,Σ=〉
is a tuple A = (Q,Σ,Γ, Qin , Qf ,∆) where Q is a finite set of states, Qin ⊆ Q is a set of initial states,
Qf ⊆ Q is a set of final states, Γ is a finite stack alphabet, and ∆ ⊆ (Q× Σ+ ×Q× Γ) ∪ (Q× Σ- × Γ×
Q) ∪ (Q× Σ= ×Q) is the transition relation.

17

To represent stacks we use a special bottom-of-stack symbol ⊥ that is not in Γ. A configuration of a VPA

A is a pair (σ, q), where q ∈ Q and σ ∈ ⊥ · Γ∗. For a ∈ Σ, there is an a-transition from a configuration
(σ, q) to (σ′, q′), denoted (σ, q)

a−→(σ′, q′), in the following cases:
• If a is a push symbol, then σ′ = σγ for some (q, a, q′, γ) ∈ ∆, and we write q a−→(q′, push(γ)).
• If a is a pop symbol, then σ = σ′γ for some (q, a, γ, q′) ∈ ∆, and we write (q, pop(γ))

a−→q′.
• If a is a neutral symbol, then σ = σ′ and (q, a, q′) ∈ ∆, and we write q a−→q′.

For a finite word u = a1 · · · an ∈ Σ∗, if (σi−1, qi−1)
ai−→(σi, qi) for every 1 ≤ i ≤ n, we also write

(σ0, q0)
u−→(σn, qn). The word u is accepted by a VPA if there is (p, q) ∈ Qin×Qf such that (⊥, p) u−→(⊥, q).

The language L(A) of A is the set of words accepted by A, and we refer to such a language as a visibly
pushdown language (VPL). Note that a VPA can always be determinized, which implies that visibly pushdown
languages are a subclass of deterministic context-free languages.

The way our algorithm works in Section 3.2 requires us to consider weighted words. A weight function
on a word u with n letters is a function λ : [n] → N∗ on the letters of u, whose value λ(i) is called the
weight of u(i). A weighted word over Σ is a pair (u, λ) where u ∈ Σ∗ and λ a weight function on u. We
define |u(i)| = λ(i) and |u[i, j]| = λ(i) + λ(i+ 1) + . . .+ λ(j). The length of (u, λ) is the length of u. For
simplicity, we will denote by u the weighted word (u, λ). Note that in our model, some letters can only be of
certain weights.

2.1.2 Priority Queues
Data structures such as stacks, dictionnaries, symbol tables and priority queues were formalized by Flajolet,
Françon and Vuillemin [16], who studied their combinatorial properties as well as give efficient implemen-
tations of those structures using lists and trees. Priority queues form a data structure where elements can
be added with any key (priority) in an ordered set, but a deletion operation will always delete the element
with the highest key. As their name indicate, they have applications for managing traffic with an insufficient
bandwith and similar ressource allocation problems. Another application is to improve the running time of
Dijkstra’s algorithm for finding the shortest paths in a graph, although the best improvement uses a more
powerful variant of priority queues that we do not study here [20]. There exist many ways of implementing
priority queues using either tournaments or sorted lists [40].

In this thesis however we do not consider the problem of implementing a priority queue, but rather of
externally checking that a priority queue is correct. The problem is therefore to recognize the language of
valid priority queues history. From now on, we will use the name priority queues to refer to that language.

To formally define it, we first consider a more general language, COLLECTION. It corresponds to the
valid history of dictionaries, i.e. a data structure where elements are inserted and extracted, but with no
restriction on keys. We can then define Priority queues as a particular case of Collections.

Definition 2.1.2 (COLLECTION,PQ). Let Σ0 be some alphabet. Let Σ = {ins(a),ext(a) : a ∈ Σ0}.
For w ∈ ΣN , define inductively multisets Mi by M0 = ∅, Mi = Mi−1 \ {a} if w[i] = ext(a), and
Mi = Mi−1 ∪ {a} if w[i] = ins(a).
Then w ∈ COLLECTION(Σ0) if and only if Mn = ∅ and a ∈Mi−1 when w[i] = ext(a), for i = 1, . . . , N .
Moreover, w ∈ PQ(U), for U ∈ N, if and only if w ∈ COLLECTION({0, 1, . . . , U}) and a = max(Mi−1)
when w[i] = ext(a), for i = 1, . . . , N .

A variant on priority queues involves adding timestamps. Timestamps point each extraction to the index
of the matching insertion. Note that in the context we consider here, of an external verification of a system,
requiring that the system adds the timestamps costs very little. Indeed, the system already has to manage the
priority queue so know at each time the list of all requested tasks, and storing the additional information of
the date of request costs little.

18

Definition 2.1.3 (PQ-TS). Let Σ = {ins(a),ext(a) : a ∈ {0, 1, . . . , U}} × N. Let w ∈ ΣN . Then
w ∈ PQ-TS(U) if and only if w ∈ COLLECTION(Σ), w[1, . . . , N][1] ∈ PQ(U), and w[i][2] = i when
w[i][1] = ins(a).

2.1.3 Reversing and Sorting
Last, we also consider the problem of sorting and reversing a stream, which are not language recognition
tasks, we define formally the functions Sort and Reverse as follows.

Definition 2.1.4 (Reverse and Sort). For a sequence w = w[1]w[2] . . . w[n] ∈ Σn, let us define Reverse(w)
as w[n]w[n− 1] . . . w[1]. When Σ has a total order, also define Sort(w) as the sorted permutation of w.

2.2 The streaming model
A data stream is a sequence x = x1, . . . , xn ∈ Σn where Σ is some finite alphabet. In the problems we
consider, Σ will often be a set of insertions, or opening tags, or push symbols, and extractions, or closing
tags, or pop symbols, and will also sometimes contain other symbols, called neutral symbols. However, in a
general context, Σ could be many other finite sets: for example pairs of integers in {1, . . . ,m} for some m,
with x the multiset of edges in a graph of size m. In particular in many of those contexts, the order of x does
not matter with regard to the object it represents, and can be assumed to have been chosen by an adversary.
This is however not the case in the problem considered in this thesis.

Definition 2.2.1. A k-stream unidirectional streaming algorithm is an algorithm A with a set of streams
X1, . . . , Xk such that:

• Initially X1 contains the input and all other streams are empty

• At each time step, for each i ∈ [k], the algorithm processes a single symbol xi,j on stream Xi. We says
that the i-th head is on xi. It cannot read or write on other letters of that stream.

• For all streams Xi with i ∈ [k], the head can only move to the right, or back to the beginning of Xi.
This means that if A is processing xi,j then at the next time step it can either still be processing xi,j , be
processing xi,j+1 instead, or be processing xi,1 instead.

We say that A makes p passes and uses memory space s on input u if for each computation on u, for each
stream Xi with 1 ≤ i ≤ k the head moves back to the beginning of Xi at most p times, and the size of the
memory never exceeds s bits.

We also define bidirectional streaming algorithms. The definition is similar, except that each stream may
run in different directions at different times.

Definition 2.2.2. A k-stream bidirectional streaming algorithm is a deterministic algorithm A with a set of
streams X1, . . . , Xk and a function dir : {1, . . . , k} × N −→ {−1,+1} such that:

• Initially X1 contains the input and all other streams are empty

• At each time step, for each i ∈ [k], the algorithm processes a single symbol xi,j on stream Xi. We says
that the i-th head is on xi.

• For all streams Xi with i ∈ [k], the head can only move in the direction of dir(i, t), or jump to any
end of Xi, where t is the number of time the head has jumped to an end of Xi. This means that if A is
processing xi,j then at the next time step it can either still be processing xi,j , be processing xi,j+dir(i,t)

instead, or be processing xi,1 or xi,n instead.

19

We say that A makes p passes and uses memory space s on input u if for each computation on u, for each
stream Xi with 1 ≤ i ≤ k the head jumps to an end of Xi at most p times, and the size of the memory never
exceeds s bits.

We also must define what exactly the algorithm can do with streams. The most common model is for the
algorithm to only read an input stream, however other cases are possible.

Definition 2.2.3. Let A be a streaming algorithm, X one of its streams. We say that X is:

• Read-only: if A does not change X ,

• Write-only: if actions performed by A never depend of the content of the letter currently processed on
X ,

• Burn-only: if it is Write-only and, in addition, during any computation, A can change each letter of X
at most once,

• Read-Write: if it is neither Read-only nor Write-only.

From now on, if we do not specify otherwise, we will assume a streaming algorithm only uses one stream
(which by definition contains the input) and that this stream is Read-only. This will be the case whenever we
consider the problem of recognizing a language.

For algorithms with Read-Write streams, we define the concept of expansion. While a streaming algorithm
is limited in memory, it could potentially “cheat” by expanding the stream and using the additional space
for more memory. While multiplying the size of the stream by a constant can plausibly be afforded, even
logarithmic expansion could be too much for very large inputs.

Definition 2.2.4. A streaming algorithm has expansion λ(n) if for an input of size n, all its streams have
total length at most λ(n)× n during its execution.

2.3 Distance and Property Testers
2.3.1 Balanced/Standard Edit Distance
A property tester is defined for a certain distance. The usual distance between words in property testing is the
Hamming distance. In this work, we consider an easier distance to manipulate in property testing but still
natural and relevant for most applications, which is the edit distance.

Given any word u, we define two possible edit operations: a deletion of a letter in position i with
corresponding cost |u(i)|, and its converse operation, the insertion, where we also select a weight, compatible
with the restrictions on λ, for the new u(i). Then the (standard) edit distance dist(u, v) between two weighted
words u and v is simply defined as the minimum total cost of a sequence of edit operations changing u to v.
Note that all letters that have not been inserted or deleted must keep the same weight. For a restricted set of
letters Σ′, we also define distΣ′(u, v) where the insertions are restricted to letters in Σ′.

We will also consider a restricted version of this distance for balanced words, motivated by our study of
VPL. Similarly, balanced-edit operations can be deletions or insertions of letters, but each deletion of a push
symbol (resp. pop symbol) requires the deletion of the matching pop symbol (resp. push symbol). Similarly
for insertions: if a push (resp. pop) symbol is inserted, then a matching pop (resp. push) symbol must also be
inserted simultaneously. The cost of these operations is the weight of the affected letters, as with the edit
operations. Again, only insertions of letters with weight 1 are allowed. We define the balanced-edit distance

20

bdist(u, v) between two balanced words as the total cost of a sequence of balanced-edit operations changing
u to v. Similarly to distΣ′(u, v) we define bdistΣ′(u, v).

When dealing with a visibly pushdown language, we will always use the balanced-edit distance, whereas
we will use the standard-edit distance for regular languages. We also say that u is (ε,Σ′)-far from v if
distΣ′(u, v) > ε|u|, or bdistΣ′(u, v) > ε|u|, depending on the context. We omit Σ′ when Σ′ = Σ.

2.3.2 Property Testers
An ε-tester for a language L accepts all inputs which belong to L with probability 1 and rejects with high
probability all inputs which are ε-far from L, i.e. that are ε-far from any element of L.

Definition 2.3.1 (Property tester). Let ε > 0 and let L be a language. An ε-tester for L with one-sided error
η is a randomized algorithm A such that, for any input x of length n:

• If u ∈ L, then A accepts with probability 1;

• If u is ε-far from L, then A rejects with probability at least 1− η;

A property tester can be a query property tester, which accesses the input through queries and where
the goal is to minimize the number of queries, or a streaming property tester, which accesses the input as a
stream in a single pass and where the goal is to minimize the memory space used. We do not discuss other
models in this thesis.

A query property tester is said to be non-adaptive if the queries it makes do not depend on the result of
previous queries.

2.4 Information theory and communication complexity
Information theory was introduced by Claude Shannon in 1948 to study the limits on compression and
communication of data. Communication complexity was introduced by Andrew Yao in 1979 to study the
limit on communication needed between two players to compute some function of their private inputs. More
recently, it was found that one of the best lower bounds for the communication complexity of a function was
its information complexity, i.e. the information each player will learn about the other player’s input from
the transcript of a protocol, under a certain distribution. Shannon’s compression theorems then imply it is
impossible to have a transcript of smaller size than the information learned this way.

As explained in the introduction, communication complexity lower bounds are very useful for proving
streaming complexity lower bounds. In Chapter 4, we rely on the definitions and facts presented here for our
proofs.

2.4.1 Information theory
One of the most important concepts developed by Shannon is the entropy of a random variable. The entropy
of a random variable X is the smallest number of bits required on average to describe the value of X , and
can be though of as the quantity of randomness in X .

Definition 2.4.1. Let X be a random variable taking its values in some set S. For x ∈ S, let px be
Pr(X = x). Then the entropy of X is H(X) = −

∑
x∈S

px log px.

For example, the entropy of a uniform random variable in {1, . . . , n} is log n, while the entropy of a
variable that only takes one value is 0.

Entropy can also be defined conditioned on another variable:

21

Definition 2.4.2. Let X and Y be a random variables, X taking its values in some set S and Y in some
set T . For x ∈ S and y ∈ T , let px,y be Pr(X = x|Y = y). Then the entropy of X conditioned on Y is

H(X|Y) = −Ey∈T

(∑
x∈S

px,y log px,y

)
.

The entropy of X conditioned on Y can be seen as the amount of information needed to describe the
value of X knowing the value of Y . Mutual information is the complement of this, the information that the
value of X gives on the value of Y .

Definition 2.4.3. The mutual information between two random variables X,Y is I(X : Y) = H(X) −
H(X|Y).

For example, the mutual information of two independent coin tosses is 0. However, the mutual information
between the result of the first toss and the number of heads obtained is 1/2, as knowing the result of the first
toss reduced the randomness of the number of heads.

Definition 2.4.4. Let X,Y, Z be three random variables. The conditional mutual information of X and Y
on Z is I(X : Y |Z) = H(X|Z)−H(X|Y, Z).

We now state some generally useful facts regarding entropy and mutual information. For a proof of those,
we refer to [13].

Fact 2.4.5. For any two random variables X,Y , we have I(X : Y) = I(Y : X) = H(X) + H(Y) −
H(X,Y) = H(X,Y)−H(X|Y)−H(Y |X).

Fact 2.4.6 (Data processing inequality). Let X,Y, Z,R be random variables such that R is independent from
X,Y, Z. Then for every function f ,

H(X|Y,Z) ≤ H(f(X,R)|Y,Z) and I(X : Y |Z) ≥ I(f(X,R) : Y |Z).

Fact 2.4.7. Let X,Y, Z,R be random variables such X and Z are independent when conditioning on R,
namely when conditioning on R = r, for each possible values of r. Then I(X : Y |Z,R) ≥ I(X : Y |R).

Fact 2.4.8. Let W,X, Y, Z be random variables. Then

I(W : X|Z)−H(Y |Z) ≤ I(W : X|Y, Z) ≤ I(W : X|Z) + H(Y |Z).

Fact 2.4.9. Let X be a random variable uniformly distributed over {0, 1}n, and let J be some random
variable on {0, 1, . . . , n} that may depend on X . Then :

H(X[1, J]|J) ≤ E(J) and H(X[1, J]|X[J + 1, n]) ≥ E(J)−H(J).

Similarly,

H(X[J + 1, n]|J) ≤ n− E(J) and H(X[J + 1, n]|X[1, J]) ≥ n− E(J)−H(J).

Proof. H(X[1, J]|J) ≤ E(J) and H(X[J + 1, n]|J) ≤ n− E(J) are direct. The second part uses the first
one as follows:

H(X[1, J]|X[J + 1, n]) = H(X|J,X[J + 1, n])−H(X[J + 1, n]|J,X[J + 1, n])

= H(X|J)−H(X[J + 1, n]|J)

≥ H(X)−H(J)− n+ E(J) = E(J)−H(J).

22

2.4.2 Communication Complexity
Many different models of communication complexity have been studied in the literature : deterministic,
randomized, non-deterministic, blackboard, one-way, message passing, number-in-hand, number-on-forehead,
etc... Here we will only consider deterministic and randomized message passing number-in-hand communi-
cation complexity.

Players compute messages based on their input and the messages they received. We do not in general
restrict them in their computing power, since in this thesis we only use this model to prove lower bounds.
However it is common when building protocols to only consider those that have polynomial time complexity.
We now define formally the notions of protocol and of communication complexity.

Definition 2.4.10. Let A0, . . . , Ak−1 be players, and let player Ai have input Xi for each 0 ≤ i ≤ k − 1. A
deterministic communication protocol is defined by a k-tuple of functions P = (P0, . . . , Pk−1). The output
of the protocol is computed in the following way: at step t player it = t mod k computes Pit(Xit ,Mit),
where Mit is an initially empty word. The result, which we call a message from Ait to Ait+1 mod k, is then
added to Mit+1 mod k the list of messages received. The output of P is the final non-empty message sent.

A randomized communication protocol is defined similarly, excepts Pi is a function of Xi, Mi, R a source
of randomness shared by all players, and Ri a source of randomness private to player Ai. R is called the
public coins, and Ri the private coins.

The public coins along with the set of all messages sent by players is called Π the transcript of P .

Definition 2.4.11. Let A1, . . . , Ak be players, and let player Ai have input Xi for each 1 ≤ i ≤ k. Let f be
a k-ary function, and P be a communication protocol for A1, . . . , Ak.

For a deterministic protocol P , we say that P computes f if the protocol eventually stops on all k-tuples
of inputs and the output is f(X1, . . . , Xk).

For a randomized protocol P , we say that P computes f with probability at least 1− ε if the protocol
eventually stops on all k-tuples of inputs and all sources of randomness and the output is f(X1, . . . , Xk)
with probability at least 1− ε.

Definition 2.4.12. The communication cost of a protocol P is the total size of messages sent by it in the
worst case. The randomized (resp. deterministic) communication complexity of a function is the minimal
communication cost of a randomized (resp. deterministic) communication protocol computing f .

A useful tool for proving deterministic communication complexity lower bounds is the cut-and-paste
property. It is trivial in this setting but we will see later how it can be adapted to a randomized setting.

Fact 2.4.13 (Cut and paste). Let P be a 2-player deterministic protocol. Let Π(x, y) denote the transcript
in P when Players A,B have resp. inputs x, y. Then if Π(x, y) = Π(x′, y′) for some (x, y) and (x′, y′),
Π(x, y′) = Π(x′, y).

2.4.3 The Hellinger distance
The Hellinger distance is the 2-norm on probability distributions expressed as vectors. Because of its
properties, it is especially useful to prove streaming lower bounds using communication complexity.

Definition 2.4.14. Let µ and ν be probability distributions with their supports included in some set
{a1, . . . , an}. Then the Hellinger distance between µ and ν is h2(µ, ν) = 1/2

∑k
i=1(

√
µ(ai)−

√
ν(ai)).

Note that the square of the Hellinger distance is convex, and that the Hellinger distance and the `1 distance
are connected by the usual relation between 2-norm and 1-norm.

23

Fact 2.4.15. h(X,Y)2 ≤ 1
2‖X − Y ‖1 ≤

√
2h(X,Y).

The mutual information between two random variables is connected to the Hellinger distance. Because it
is a distance between distributions but we deal mostly with random variables, for simplicity we write X for
the underlying distribution of a random variable X . We also write X|Y=y for the marginal distribution of X
when the random variable Y takes the value y.

Lemma 2.4.16 (Average encoding). Let X,Y be random variables. Then Ey←Y h2(X|Y=y, X) ≤ κI(X :
Y), where κ = ln 2

2 .

The Hellinger distance also generalizes the cut-and-paste property of deterministic protocols to random-
ized ones.

Lemma 2.4.17 (Randomized Cut and paste). Let P be a 2-player randomized protocol. Let Π(x, y) denote the
random variable representing the transcript in P when players A,B have resp. inputs x, y. Let X,X ′, Y, Y ′

be random variables taking their values in the input space of A for the first two and of B for the last two.
Then h(Π(X,Y),Π(X ′, Y ′)) = h(Π(X,Y ′),Π(X ′, Y)).

For a reference on these results, see [26].

24

Chapter 3

Algorithms and Upper Bounds

3.1 Recognizing Priority Queues with one pass in each direction
3.1.1 Previous Results

3.1.1.1 A major tool: Hashcodes

In order to check that in a given subword of the input, the insertions and extractions match, we want a linear
sketch that uses less memory than the whole factor. For this we use a hash function based on the one used by
the Karp-Rabin algorithm for pattern matching.

For the rest this section, let p be a prime number in {max(2U + 1, nc+1), . . . , 2 max(2U + 1, nc+1)},
for some fixed constant c ≥ 1, and where U is the maximal priority in the input and n the size of the input.
Let α be a randomly chosen integer in [0, p− 1]. Since our hash function is linear we only define it for single
insertion/extraction as

hash(ins(a)) = αa mod p, and hash(ext(a)) = −αa mod p.

This is the unique use of randomness in all the algorithms presented in this section.
A hashcode h encodes a sequence v if h = hash(v) as a formal polynomial in α. In that case we say that

each letter v[i] in v is encoded in h. Moreover v is strongly balanced if the same integers have been inserted
and extracted1. In that case it must be that h = 0. We also say that h is strongly balanced it it encodes a
strongly balanced sequence w. The converse is also true with high probability by the Schwartz-Zippel lemma.

Fact 3.1.1. Let v be some sequence that is not strongly balanced. Then Pr(hash(v) = 0) ≤ N
p ≤

1
Nc .

3.1.1.2 Best unidirectional algorithm

The best unidirectional algorithm is due to Chakrabarti, Cormode, Kondapalli and McGregor in [10]. It uses
Õ(
√
n/p) memory for p passes on an input of size n, and does not require timestamps2. In that same article,

they show using the lower bound on the complexity of recognizing Dyck language that this bound is tight up
to a polylogarithmic factor if the algorithm does not use timestamps. We will show in Section 4.1 it is in fact
tight even in that case.

1v is (not necessarily strongly) balanced if it contains as many insertions as extractions, but this notion is not useful in this section.
We use it in Section 3.2 however.

2An earlier article [12] gave an algorithm using timestamps.

25

ins(2)

ins(5)

ins(3)

ext(5)

ext(3)

ins(8)

ins(5)

ins(4)

ext(8)

ins(7)

ins(1)

ext(7)

ext(5)

ext(4)

ext(2)

ext(1)
m0 = 0

m1 = 3

m2 = 8

Figure 3.1: Algorithm 3.1 encodes each element in the hashcode matching the earliest possible block in
which it could have appeared. For example, ext(2) is encoded in h0 because 2 < 3 and the first ext(5) is
encoded in h0 because it comes before ext(3). However, ext(4) comes after ext(3) and 3 < 4, therefore

it is encoded in h1.

1 Data structure:
2 i← 0 // block index corresponding to a valley
3 m0 ← 0 // mi minimum value of extractions before the i-th valley
4 h0 ← 0 // hi hashcode for i-th block
5 For i ≥ 1, δ→i counts the number of appearances of mi after the i-th valley
6 x is the current symbol and y the previous symbol
7 Code:
8 While u not finished
9 x← Next(u) // Read and process next symbol x

10 If x = ins(a) then
11 If y = ext(b) then // New valley
12 i← i+ 1, mi ← b, hi ← 0, δ→i ← 0
13 k ← max{j ≤ i : mj < a} // Earliest possible valley before x
14 Update(hk, x)
15 For l in {k, . . . , i}
16 If ml = a then δ→l ← δ→l + 1
17 Else x = ext(a) then
18 If y = ext(b) and a > b then Reject // Check local order
19 k ← max{j ≤ i : mj < a} // Earliest possible valley before x
20 Update(hk, x)
21 For l in {k, . . . , i}
22 If ml = a then δ→l ← δ→l − 1
23 For all mi and δ→i :
24 If mi 6= 0 or δ→i > 0 then Reject
25 Accept

Algorithm 3.1: One-Pass Algorithm Recognizing Priority Queues.
The differences with Algorithm 3.1 are highlighted in red.

26

Theorem 3.1.2 (Chakrabarti, Cormode, Kondapalli, McGregor). There is a unidirectional 1-pass randomized
streaming algorithm recognizing PQ(U) with memory space O((logU + log n)

√
n), and one-sided bounded

error n−c, for inputs of length n and any constant c > 0.

We give a slightly modified form of the algorithm for one pass used in [10] as its structure will be
necessary to understand the two-pass algorithm. We define a valley as places in the input where a sequence of
extractions ends and a sequence of insertion begins. Blocks are factors delimited by two consecutive valleys.
The final algorithm is based on algorithm 3.1, which maintains a hashcode for each block. It encodes each
insertion and extraction in the hashcode of the earliest block where it could have occurred with the
input remaining a priority queue (see Figure 3.1). At the end, it checks that all hashcodes evaluate to zero.
Another test can be necessary in some cases for elements that appear multiple times, as hashcodes are linear
and do not depend on the order of elements encoded. Because Algorithm 3.1 maintains as many hashcodes as
there are blocks, the memory it requires is O((log n+ logU)r), where r is the number of blocks in the input.

The real algorithm is then obtained by having another algorithm pre-process the next
√
n symbols of the

stream, checking their local consistency and rearranging them so that they contain at most two valleys. This
can be further simplified into one valley by removing matching insertions and extractions. Algorithm 3.2
does this using memory space O(

√
n logU) (see Figure 3.2). Because it guarantees that Algorithm 3.1

will have an input with at most 2
√
n blocks, this results in an algorithm that uses at most memory space

O((log n+ logU)
√
n).

1 Input:
2 v a subword of u
3 Data structure:
4 I ← ∅ // multiset of unmatched insertions
5 E ← ∅ // multiset of unmatched extractions
6 m← 0 // min of extractions seen so far
7 Code:
8 For x in v
9 If x = ins(a) then I ← I ∪ {a}

10 If x = ext(a) then
11 If a < max(I) then Reject
12 If a = max(I) then I ← I \ {a}
13 If a > max(I) then
14 If a > m then Reject
15 E ← E ∪ {a}
16 m = min(m, v)
17 Output ext(E|E|), . . . ,ext(E1),ins(I1), . . . ,ins(I|I|)

Algorithm 3.2: Algorithm for Checking Local Consistency of Priority Queues

27

ins(4)

ins(7)

ext(8)

ins(6)

ext(7)

ins(2)

ext(6)

ext(3)

ins(5)

ins(1)

Factor of size
√
n containing 3 valleys

Valleys

ins(4)

ext(8)

ext(3)

ins(2)

ins(5)

ins(1)Output of Algorithm 3.2
Only 1 valley

Figure 3.2: Transformation performed by Algorithm 3.2 on a factor of u of length
√
n log n. Note that the

occurrence of ins(4) on the left of the picture is incompatible with the occurrence ext(3) later, but because
Algorithm 3.2 only performs local checks it does not reject : Algorithm 3.1 will however reject with high
probability when the matching occurrence of ext(4) is encoded in the hashcode for block i (if the current

valley is the i-th valley) whereas ins(4) is encoded no later than in block i− 1.

3.1.2 Our algorithm
As said above, we want to use an approach similar to the one in [32] with passes in each direction where
the past is compressed into a logarithmic number of blocks. However, a crucial difference between priority
queues and the Dyck language is that u ∈ PQ does not imply ū ∈ PQ. In particular,, we first need to devise
an algorithm for recognizing Reverse(u) when we have u ∈ PQ. This algorithm is designed similarly to
Algorithm 3.1. We do not need to improve it with Algorithm 3.2, as the sliding widow it provides would only
help us get to Õ(

√
n) memory, and we want polylogn memory, which will be achieved instead by modifying

this algorithm, as well as Algorithm 3.1 as described above.
We will then show that using a modified form of Algorithm 3.1 and Algorithm 3.3 with blocks as in [32],

namely Algorithms 3.4 and 3.5, we can detect any u 6∈ PQ with high probability before the blocks containing
the witnesses of an error merge.

The analysis is complicated by the fact that some insertions and extractions may appear multiple times.
For each value a, if u ∈ PQ then the occurrences of ins(a) and ext(a) in u form a well-parenthesized
word. Let us define the notion of a-balance:

Definition 3.1.3. Let v ∈ Σn and a ∈ {1, . . . , U}. We say that v is a-balanced if it contains as many
ins(a) as ext(a), i.e. |{t|v[t] = ins(a)}| = |{t|v[t] = ext(a)|. It is ins(a)-unbalanced (resp. ext(a)-
unbalanced) if it has an excess of ins(a) (resp. of ext(a)), i.e. |{t|v[t] = ins(a)}| > |{t|v[t] = ext(a)}|
(resp. |{t|v[t] = ins(a)}| < |{t|v[t] = ext(a)}|).

Note that if u in PQ, then none of its prefixes are ext(a)-unbalanced. Also note that a word in Σ∗ is
strongly balanced if and only if it is a-balanced for all a ∈ {1, . . . , U}

3.1.2.1 One-reverse-pass algorithm for PQ

Our one-reverse-pass algorithm, uses memory space O(r), where r is the number of valleys in w. As stated
above, while we could use less memory space by combining it with Algorithm 3.2, this serves no purpose as
our algorithm will eventually be modified for the bidirectional two-passes algorithm.

28

Theorem 3.1.4. There is a 1-reverse-pass randomized streaming algorithm for PQ(U) with memory space
O(r(logN + logU)) and one-sided bounded error N−c, for inputs of length N with r valleys, and any
constant c > 0.

As with algorithm 3.1, Algorithm 3.3 decomposes the input u into blocks, and associates a hashcode hi
and two integers mi and δ←i to each block. As before mi is the minimum of extractions in the block. Here
δ←i counts how many times mi has been encoded in the block (we do not keep track of the absolute number
of occurrences of mi since the block was created however, as we did with δ→i in Algorithm 3.1). The main
difference lies in the fact that instead of encoding both insertions and extraction to the earliest possible block
for the insertion, extractions are encoded in their own block, and insertions are encoded in the block of
their matching extraction, which can be known unambiguously. Figure 3.3 illustrates this.

We first state a crucial property of Algorithm 3.3, and then show that it satisfies Theorem 3.1.4.

Lemma 3.1.5. Consider Algorithm 3.3 right after processing u[t] = ins(a). Assume some u[t′] = ext(a)
has been already processed (i.e. t′ > t). Let hk, hk′ be the respective hashcodes encoding u[t], u[t′]. Then
k = k′ if and only if all ext(b) occurring between u[t] and u[t′] satisfy b ≥ a, and no factor u[t+ 1, t′′] with
u[t′′] in a block left of k′ is ext(a)-unbalanced.

Proof. The algorithm always encodes extractions in the hashcode matching their block. Therefore the block
index when u[t′] is processed is k′. Let k̃ be the current block index when u[t] is processed.

Let us first assume k = k′. Then no block left of the k′-th can have been a viable candidate at line 18. In
particular, for all k′ < l ≤ k̃, we have ml ≥ a. Since ml is the minimum of extractions in the block l, and
extractions left of t′ in the block k′ have to be greater than a, then all ext(b) occurring between u[t] and
u[t′] satisfy b ≥ a. Now assume there exists some u[t′′] in a block l with k′ < l ≤ k̃ such that u[t+ 1, t′′] is
ext(a)-unbalanced. Let us choose the leftmost possible block, i.e. the largest possible l. Then we know
ml ≤ a, as block l must contain at least one ext(a), and ml ≥ a from our augment above. Since u[t+ 1, t′′]
is ext(a)-unbalanced and l is the leftmost block with such a t′′, then after u[t + 1] is processed we must
have δ←l > 0, and k′ = l which is a contradiction. Therefore for all k′ < l < k̃, for all indices t′′ such that
u[t′′] is in l, u[t+ 1, t′′] is not ext(a)-unbalanced.

Now let us assume k 6= k′. Then for block k to be a viable candidate at line 18 when u[t] is processed,
we must have either mk < a, or mk = a and δ←k > 0. The first implies there exists an extraction
u[t′′] = ext(mk) with t < t′′ < t′ and mk < a. The second implies u[t+ 1, t′′] is ext(a)-unbalanced.

ins(2)

ins(5)

ins(3)

ext(5)

ext(3)

ins(8)

ins(5)

ins(4)

ext(8)

ins(7)

ins(1)

ext(7)

ext(5)

ext(4)

ext(2)

ext(1)

m3 = 3

m2 = 8

m1 = 1

Figure 3.3: Algorithm 3.3 running on the same input as in Figure 3.1. As can be seen extractions are always
encoded in their own block, unlike with Algorithm 3.1.

29

1 Data structure:
2 i← 0 // block index corresponding to a valley
3 m0 ← 0 // mi minimum value of extractions before the i-th valley
4 For i ≥ 1, hi hashcode for i-th block
5 For i ≥ 1, δ←i counts the number of times mi is encoded in hi
6 x is the current symbol and y the symbol to the right in u
7 Code:
8 While Reverse(u) not finished
9 x← Next(Reverse(u))

10 If x = ext(a)
11 If y = ins(b) OR x rightmost letter of u //This is a valley.
12 i← i+ 1, mi ← a, hi ← 0, δ←i ← 1 //We start a new block.
13 Else y = ext(b)
14 If (a > b) then Reject //Check local order
15 Update(hi, x)
16 If mi = a then δ←i ← δ←i + 1
17 Else x = ins(a)
18 k ← max{j ≤ i : mj < a OR (mj = a AND δj > 0)} //only block where ā can be
19 If k = 0 then Reject
20 Update(hk, x)
21 If mk = a then δ←k ← δ←k − 1
22 For all hj:
23 If hj 6= 0 then Reject
24 Accept

Algorithm 3.3: One-reverse-pass algorithm for recognizing priority queues.
The differences with Algorithm 3.1 are highlighted in red. Note that the role of insertions and extractions is

mostly switched, except for the test on the local order (line 14 here and line 18 in Algorithm 3.1) which
only occurs when reading an extraction.

Proof of Theorem 3.1.4. We show that Algorithm 3.3 suits the conditions. Let u ∈ PQ(U). Then u always
passes the test at line 14. Moreover, by Lemma 3.1.5, each insertion ins(a) is necessarily in the same
hashcode than its matching extraction ext(a). Therefore, all hashcodes equal 0 at line 23 since they are
strongly balanced. In conclusion, the algorithm accepts w with probability 1.

Assume now that u 6∈ PQ. First we show that unbalanced inputs are rejected with high probability, that is
at least 1−N−c, at line 23, if they are not rejected before. Indeed, since each letter of u is encoded in some hj ,
at least one hj must be unbalanced. Then by Fact 3.1.1, the algorithm rejects w.h.p. We end the proof assuming
u balanced. We remind that we process the stream from right to left. The two remaining possible errors are:
(1) For some a, there exists a prefix of u that is ext(a)-unbalanced; and (2) ext(a),ext(b),ins(a) are
processed in this order with b < a and possibly intermediate insertions/extractions. In both cases, we show
that either some hashcodes are unbalanced at line 23, and therefore fail the test w.h.p by Fact 3.1.1, or the
algorithm rejects with one of the other tests.

Consider case (1). Since u is strongly balanced, there must be u[t, n] a suffix of u that is ins(a)-
unbalanced. Consider the largest such t. Let k be the block where u[t] = ins(a) is encoded. There is at
least one valley between u[t] and the next ext(a), which means they will not be encoded in the same block,
and hk will be unbalanced at line 23. Consider now case (2). Lemma 3.1.5 gives that ext(a) and ins(a)
are encoded in different hashcodes, that are again unbalanced at line 23.

30

3.1.2.2 Block structure for a bidirectional algorithm

Our algorithm uses an approach similar to the one used in [32] for Dyck languages: by making a pass in
each direction, it is possible to compress the part of the input already seen in a stack of blocks of logarithmic
height, where older blocks are longer and the size of each block is a power of 2. While we will not extensively
describe the algorithm for recognizing Dyck languages here, the block data structure is the same as the one
our algorithm uses.

A block of size 2i is of the form [(q − 1)2i + 1, q2i], for 1 ≤ q ≤ N/2i. Two such blocks are always
disjoint unless one is included in the other. We decompose dynamically the part of the input u that has been
processed into a stack of blocks as follows. Each new letter of u defines a new block, put on top of the stack.
When two blocks have same size, they merge. Note that only the two topmost blocks may merge (although
the resulting block may merge again with the block that is now second from the top). Because the size of
each block is a power of 2 and at most two blocks have the same size (before merging), there are at most
logN + 1 blocks at any time. To each block, we associate among other things a hashcode.

At the end there will remain only one block, and if the input is strongly balanced then the hashcode
associated to the block will evaluate to 0. Therefore it is important to perform checks on hashcodes as soon
as we know from the other data associated to the block (notably, the minimal height of a parenthesis in the
block for DYCK[2], or as we will see, the minimal extraction for PQ) that an hashcode should evaluate to 0.

From now on, we assume without loss of generality that the input size is a power of 2. Indeed, any
strongly balanced input will have even size. The algorithm can simply pad the end of the input with repetitions
of the pattern ins(1)ext(1) until the size is a power of 2.

Lemma 3.1.6. The same blocks appear in the pass from left to right and in the pass from right to left.
Furthermore, if blocks B and C merge together in one of those passes, they also merge together in the other.

Proof. We have n = 2k for some k. Any block that appears on the pass from left to right is of the form
[2i(q−1)+1, 2iq] with q an integer. If q is even, it will merge with a block on the left, otherwise with a block
on the right. Any block appearing on the pass from right to left is of the form [2n− 2iq′+ 1, 2n− 2i(q′− 1)].
It suffices to take q′ = 2n−i − q + 1 to have both blocks be equal. This block will merge with a block on the
left if q′ is odd, otherwise with a block on the right. Since q′ and q are of different parities, the block will
merge with the same block in both directions.

Lemma 3.1.6 point is crucial for the analysis, as merging blocks can potentially make us lose the
information needed to detect an error. The main difficulty (which is significantly harder for PQ than for
DYCK[2]) is to show that any error that would be lost after the blocks are merged is detected in at least one of
the passes with high probability. The main idea is shown on Figure 3.4.

We also want to show that the padding will not affect the time per processing item. Because the padding
is deterministic and only contains ins(1) and ext(1), in the pass from left to right all its elements will
be encoded in the last block, and cancel each other out immediately. Therefore all the algorithm has got to
do is to look at the size of the two blocks on top of the stack, increase the size of the top one until it is of
the same size as the second one from top (which takes at most log(n) time), merge and repeat. The whole
operation takes at most polylog(n) time. For the pass from right to left, the same is true except it is made
even easier by the lack of input before the padding, so the state depending on the size of the padding could
even be pre-computed.

31

B1 B2 B3

m2

m3

ins(a)

ext(b)

u

B3 B2 B1

m3

m2

ins(a)

ext(b)

Reverse(u)

Figure 3.4: If the size of u is a power of 2, then the block decomposition is the same in both direction. In
particular if the blocks about to merge contain an error, the (very simplified) general idea is that one of the

blocks will have a smaller minimal extraction, and that this will cause us the algorithm to evaluate the
hashcode in the corresponding direction and reject. In this case, the rejection would happen on the pass from

right to left, as the hashcode started in the green block would be finished and could be checked at 0.

3.1.2.3 Bidirectional two-passes algorithm

Theorem 3.1.7. There is a bidirectional 2-pass randomized streaming algorithm recognizing PQ(U) with
memory space O((log n)(logU + log n)), time per processing item polylog(n,U), and one-sided bounded
error n−c, for inputs of length n and any constant c > 0.

Our algorithm performs one pass in each direction using Algorithms 3.4 and 3.5. We use the following
description of a blockB: its hashcode hB , the minimummB of its extractions, a counter δ→B of δ←B (depending
on the direction of the pass) to deal with multiple occurrences of mB (we will define them more precisely
later), and its size `B . For the analysis, let tB be an index such that u[tB] = ext(mB). Note that tB may not
be unique. On the pass from right to left, all extractions from the block and matching insertions are encoded
in hB , similarly to Algorithm 3.3. On the pass from left to right, insertions are encoded in the hashcode
of the earliest possible block where they could have been, and extractions are encoded with their matching
insertions, similarly to Algorithm 3.1. The minimums (mB)B are used to decide where to encode values.

At the end, only one block is left, and if u is strongly balanced then the only hashcode will evaluate to
0. Therefore we must check hB = 0 during the execution, as soon as we know from mB and δB that the
hashcode should encode matching insertions and extractions. In the case of Algorithm 3.5 for the pass from
right to left, in some cases we even need to evaluate a hashcode hB when some insertions ins(mB) are
missing. However with the counter δ←B we know their number and can update hB before evaluating. These
tests are performed at line 26 of Algorithm 3.4 and line 25 of Algorithm 3.5.

Similarly to its role in Algorithm 3.1, δ→B counts the difference between the number of occurrences of
ins(mB) and the number of occurrences of ext(mB) since the earliest possible choice for tB . Algorithm 3.4
does not use δ→B to decide where to encode a particular element, only to check that if u[t] = ext(a) with
a < mB , then u[tB + 1, t] is not ins(mB)-unbalanced. This is crucial in Lemma 3.1.10. On the contrary,
like in Algorithm 3.3, δ←B is used to assign elements to a particular hashcode. When ins(a) is read and the
leftmost block satisfying mB ≤ a in fact satisfies mB = a, Algorithm 3.5 only encodes ins(a) in hB if
there is still a spot left for an insertion of a, i.e. if δ←B > 0. This value represents the difference between the
number of ext(mB) and the number of occurrences of ins(mB) encoded in hB . Its value can never be
negative, and it is also used as explain above when we need to evaluate a hashcode but hB is still missing
some instances of ins(mB).

32

m0 = 0

m1 = 5

m2 = 3

m3 = +∞

δ→1 = 1

ins(2)

ins(5)

ins(3)

ext(5)

ext(3)

ins(8)

ins(5)

ins(4)

ext(8)

ins(7)

ins(1)

ext(7)

ext(5)

ext(4)

ext(2)

ext(1)
B1 B2 B3

m0 = 0

m1 = 3

m2 = 7

m3 = 5

ins(2)

ins(5)

ins(3)

ext(5)

ext(3)

ins(8)

ins(5)

ins(4)

ext(8)

ins(7)

ins(1)

ext(7)

ext(5)

ext(4)

ext(2)

ext(1)
B1 B2 B3

Figure 3.5: Evolution of the information contained in the blocks when the example from Figures 3.1 and 3.3
is read on the pass from left to right. The colored area represents the interval covered by the block, the

north-east corners delimited by dashed lines represent values encoded in a hashcode. Note that on when
ext(3) was first read, B1 covered the same part of the input as on the upper figure, and Algorithm 3.4

checked that h1 = 0 and δ→1 ≤ 0. Later on δ→1 increased, but that information was lost in a block merge.

Note that `B is the size of the factor of u attributed to the block, not the number of letters of u encoded in
hB . Only hB and δB can change without B being merged with another block. When there is some ambiguity,
we denote by h→B and h←B the hashcodes for the left-to-right and right-to-left passes. Observe that mB, tB, `B
are identical in both directions. Figure 3.5 shows how the information associated to blocks can evolve as
Algorithm 3.4, the pass from left to right, is run on the input.

As with the 0-th block in Algorithm 3.1, in Algorithm 3.4 the stack S starts with a block of size 0 that
will never merge or match a non-empty factor of u.

Proof of Theorem 3.1.7. We show that execution of both Algorithms 3.4 and 3.5 suits the conditions. The
space constraints are satisfied because elements of S have size O(logN + logU) and S has size O(logN).
The processing time is from inspection.

As with Algorithms 3.1 and 3.3, inputs in PQ(U) are accepted with probability 1, and unbalanced inputs
are rejected with high probability (at least 1−N−c).

Let u 6∈ PQ be strongly balanced. For ease of notations, we create fictional letters corresponding to the
empty block at the bottom of S for the pass from left to right: let u[−1] = ins(−∞) and u[0] = ext(−∞).
Then because u is not a valid priority queue history, there are τ < ρ such that u[τ] = ext(b), u[ρ] = ext(a),
where a > b and u[τ, ρ] is ext(a)-unbalanced (i.e. {t|u[t] = ins(a), τ < t < ρ} is smaller than
{t|u[t] = ext(a), τ < t < ρ}).

33

Among such pairs (τ, ρ), consider the ones with the smallest ρ. From those, select the one with the
largest τ . Let B, C be the largest possible disjoint blocks such that τ is in B and ρ in C. Then B and C have
same size, are contiguous, and by Lemma 3.1.6 they are simultaneously present in each direction before they
merge.

Consider τ < υ < ρ such that u[υ] = ext(c). If c < a, then since u[τ, ρ] is ext(a) unbalanced then
either u[υ, ρ] is ext(a)-unbalanced, which contradicts the maximality of τ as υ is a better candidate, or
u[τ, υ] is ext(a)-unbalanced. In the latter case there is a least one t′ ∈ [τ, υ] such that u[t′] = ext(a).
The largest such t′ still verifies that u[τ, t′] is ext(a)-unbalanced, which contradicts the minimality of ρ.
Therefore c ≥ a. In particular, we can assume that the indices tB and tC of block minimal extractions mB

and mC satisfy tC ≥ ρ and tB ≤ τ .

1 Data Structure:
2 S ← [(0, 0, 0, 0)] // S starts with a 0-size block.
3 Elements of S are of the form B = (hB ,mB , δ

→
B , `B).

4 In this direction δ→B counts the occurrences of mB since block B.
5 x is the current letter of u.
6 Code:
7 While u not finished
8 Read(next letter x on stream) // See below
9 While the 2 topmost elements of S have same block size `

10 (h1,m1, δ
→
1 , `)← S.pop(), (h2,m2, δ

→
2 , `)← S.pop()

11 If m1 < m2

12 S.push(h1 + h2 mod p,m1, δ
→
1 , 2`)

13 Else m2 ≤ m1

14 S.push(h1 + h2 mod p,m2, δ
→
2 , 2`)

15 If S = [(0, 0, 0, 0), (0,m, δ→, N)] for some δ→ ≤ 0 then Accept else Reject
16

17 Function Read(x):
18 Case x = ins(a) // When reading an insertion
19 Let (h,m, δ→, `) be the topmost item of S with a > m
20 h← Update(h, v)
21 For all (h′,m′, δ′→, `′) in S such that a = m
22 δ′→ ← δ′→ + 1
23 S.push(0,+∞, 0, 1, 0)
24 Case x = ext(a) // When reading an extraction
25 For all items (h,m, δ→, `) on S such that m ≥ a:
26 If h 6= 0 or (m > a and δ→ > 0) then Reject
27 Let (h,m, δ→, `) be the topmost item of S from top such that a > m
28 h← Update(h, v)
29 For all (h′,m′, δ′→, `′) in S such that a = m
30 δ′→ ← δ′→ − 1
31 S.push(0,a, 0, 1)

Algorithm 3.4: Pass from left to right.
The differences with Algorithm 3.5 are highlighted in red.

34

Similarly, there exists τ ′ < τ such that u[τ ′] = ins(b) and u[τ ′, τ] is b-balanced. Let us choose the
largest such τ ′. If there exists ρ′ < ρ such that u[ρ′] = ins(a) and u[ρ′, ρ] is a-balanced, we also pick the
largest such ρ′, otherwise we pick the smallest ρ′ such that u[ρ′] = ins(a) and u[ρ, ρ′] is a-balanced, which
is guaranteed to exist as u is strongly balanced.

We distinguish three cases based on the position of index ρ′ (see Figure 3.6): ρ′ 6∈ [tB, tC], tB < ρ′ < τ ,
and ρ < ρ′ < tC . These cases determine in which hashcode ins(a) is encoded. We prove that in each
of these cases, either Algorithm 3.4 or Algorithm 3.5 rejects with high probability in Lemmas 3.1.8, 3.1.9
and 3.1.10. This concludes the proof of Theorem 3.1.7.

1 Data Structure:
2 S ← [] // S starts as an empty stack
3 Elements of S are of the form B = (hB ,mB , δ

←
B , `B)

4 In this direction δ←B counts the occurrences of mB encoded in hB
5 x is the current letter of u
6 Code:
7 While Reverse(u) not finished
8 Read(next letter x on stream) // See below
9 While the 2 topmost elements of S have same block size `

10 (h1,m1, δ
←
1 , `)← S.pop(), (h2,m2, δ

←
2 , `)← S.pop()

11 If m1 < m2

12 S.push(h1 + h2 mod p,m1, δ
←
1 , 2`)

13 Else if m2 < m1

14 S.push(h1 + h2 mod p,m2, δ
←
2 , 2`)

15 Else m1 = m2

16 S.push(h1 + h2 mod p,m1,δ
←
1 + δ←2 , 2`)

17 If S = [(0,m, 0, N)] then Accept else Reject
18

19 Function Read(x):
20 Case v = ext(a) // When reading an extraction
21 For all items (h,m, δ←, `) on S such that m ≥ a:
22 If m = a
23 For j from 1 to δ←

24 h← Update(h,ins(m))
25 If h 6= 0 then Reject
26 If m = a
27 For j from 1 to δ←

28 h← Update(h,ext(m))
29 S.push(hash(v), a, 1, 1)
30 Case x = ins(a) // When reading an insertion
31 Let (h,m, δ←, `) be the topmost item of S with a > m or (a = m and δ← > 0)
32 h← Update(h, v)
33 If a = m then δ← ← δ← − 1
34 S.push(0,+∞, 0, 1)

Algorithm 3.5: Pass from right to left.
The differences with Algorithm 3.4 are highlighted in red. Note that the role of insertions and extractions is
mostly switched, except for the rejection test (line 25 here and line 26 in Algorithm 3.4) which only occurs

when reading an extraction.

35

ext(b)

ext(a)

ext(mB)
ext(mC)

τ ρtB tC

ins(a): case 1 ins(a): case 2 ins(a): case 3 ins(a): case 1

ρ′ ρ′ ρ′ ρ′

B C

Figure 3.6: Relative positions of insertions and extractions in u 6∈ PQ for the proof of Theorem 3.1.7.
Because all ext(c) in the hatched part verify c ≥ a, tB and tC can be assumed to lie outside of it without
loss of generality. The three cases analyzed in Lemmas 3.1.8, 3.1.9 and 3.1.10 depend on the position of ρ′

relative to tB and tC .

Lemma 3.1.8 (Case 1). If ρ′ 6∈ [tB, tC], with high probability Algorithm 3.4 or Algorithm 3.5 rejects u.

Proof. This is the most typical case, and also the one that corresponds the best to the very simplified
Figure 3.4.

We will proceed by showing that h→B and h←C are unbalanced respectively when u[tC] and u[tB] are
processed. From this it results that if mC ≤ mB , w.h.p. Algorithm 3.4 detects h→B 6= 0, and otherwise,
mB < mC and w.h.p. Algorithm 3.5 detects h←C 6= 0. Note that for the second case, mB = mC would not
be enough as we need Algorithm 3.5 to evaluate h←C without modifying it.

We first prove that h→B is unbalanced when u[tC] is processed by Algorithm 3.4. Let us assume there
exists B1 (B such that u[ρ′] = ins(a) is encoded in h→B1

when u[tB] is processed. Then, by definition of
mB , mB1 ≥ mB . Therefore, Algorithm 3.4 checks h→B1

= 0 at line 26 when processing u[tB]. Moreover,
ρ ∈ C, so u[ρ] = ext(a) is not processed yet and not encoded in hB1 . Therefore, Algorithm 3.4 rejects
w.h.p.

We can now assume that there is no such B1 (B, and therefore that hB does not encode u[ρ′] = ins(a)
when u[tC] is processed by Algorithm 3.4. But at this date h→B encodes ext(a), as all extractions ext(c)
between τ and ρ satisfy c ≥ a. Therefore h→B is unbalanced when tC is processed.

The proof that h←C is unbalanced when u[tB] is processed by Algorithm 3.5 is similar. Let us assume
there exists C1 (C such that u[ρ′] = ins(a) is encoded in h←C1

when u[tB] is processed. If mC < mC1 , or
mC < a, we can continue as above, as h←C1

would be unbalanced, which would be detected at line 25. We
would then go on to assume that no such C1 exist and conclude as above.

In the case that mC = mC1 = a, Algorithm 3.5 may add some ins(a) to hC1 before performing the
check at line 25. Since u[ρ′] is encoded in hC1 even though a = mC1 , we know that u[ρ′ + 1, tC1] is
ext(a)-unbalanced. By definition of ρ′ and because ρ′ > tC ≥ ρ, we know that for any t < ρ, u[t, ρ] is
ext(a)-unbalanced. In particular, it follows that u[tB, tC1] is ext(a)-unbalanced. Any other instanced of
ins(a) and ext(a) from C to the right of tC1 may only add to the unbalance as mC = a and the counter δ←D
makes it impossible for any block D to encode more instances of ins(mD) than of ext(mD). Therefore,
h←C is unbalanced when tB is processed.

Lemma 3.1.9 (Case 2). If tB < ρ′ < τ , with high probability Algorithm 3.5 rejects u.

Proof. We show that when Algorithm 3.5 processes u[tB] = ext(mB), it checks h←D = 0 at line 25 for
some h←D encoding u[ρ′] but not u[ρ]. By maximality of ρ′, this factor of u cannot be a-balanced, thus
Algorithm 3.5 will reject with high probability.

When u[ρ′] = ins(a) is processed on the right-to-left pass, τ ∈ B1 with B1 a block in the stack. τ ∈ B,
therefore B1 ⊂ B. Because u[τ] = ext(b), we have a > b ≥ mB1 , and block B1 is eligible at line 31

36

of Algorithm 3.5, meaning that u[ρ′] = ins(a) is encoded in either h←B1
or a more recent hashcode h←B2

.
Since ρ′ ∈ B, again B2 ⊂ B. Last, when Algorithm 3.5 processes u[tB] = ext(mB), since we are still
within B, some hashcode hB3 , with B3 ⊂ B, encodes u[ρ′]. Moreover, h←B3

does not encode u[ρ] = ext(a)
since ρ ∈ C and C was processed before B, and is therefore ins(a)-unbalanced. Last, mB3 ≥ mB , by
definition of mB . Hence, Algorithm 3.5 checks h←B3

= 0 at line 25 when processing u[tB]. Because h←B3

is ins(a)-unbalanced, any insertions Algorithm 3.5 may add to it will not make it balanced, and it rejects
w.h.p.

Lemma 3.1.10 (Case 3). If ρ < ρ′ < tC , with high probability Algorithm 3.4 or Algorithm 3.5 rejects u.

Proof. We show that unless u can also be made to match Case 1 and Lemma 3.1.8 by choosing another tC ,
then when Algorithm 3.4 processes u[tC] = ext(mC), it checks h→D = 0 at line 26 for some h→D encoding
u[ρ′] but not u[ρ]. By minimality of ρ′, this factor of u cannot be a-balanced, thus algorithm 3.4 will rejects
with high probability.

When Algorithm 3.4 processed u[ρ] = ext(a), it encodes it in hB as mB ≤ b < a and for every t < ρ
in C such that u[t] = ext(c), c ≥ a. When this same algorithm processes u[ρ′] = ins(a), either it encodes
it in hB , or in some hC1 with C1 ⊂ C. Let us first assume it encodes it in hB , and let C2 ⊂ C be the
block containing ρ as u[ρ′] is processed. Clearly mC2 = a, otherwise C2 would be eligible at line 19 of
Algorithm 3.4, and u[ρ′] would not be encoded in hB . Then we have δ→C2

> 0 by minimality of ρ′, and
Algorithm 3.4 will reject as soon as it encounters ext(d) with d < a if B and C have not merged. This
implies that if the algorithm does not reject, then mC = a. In particular, we could take tC = ρ and be in the
conditions of Lemma 3.1.8.

We now assume without loss of generality that u[ρ′] is encoded in some hC1 . Then a > mC1 ≥ mC .
When Algorithm 3.4 processes u[tC] = ext(mC), since we are still within C, some hashcode hC3 with
C3 ⊂ C encodes u[ρ′], but not u[ρ] = ext(a) which is still encoded in h→B . Hence, Algorithm 3.4 checks
h→C3

= 0 at line 26 when processing u[tC], and rejects w.h.p.

3.1.3 Multiple unidirectional passes
While the authors did not mention it in their paper [10] as their focus was on one-pass algorithms, the result
of Theorem 3.1.2 can easily be extended with a slightly modified algorithm to multiple passes. It suffices to
first divide {1, . . . , U} in O(p) intervals such that all of them have roughly the same number of elements,
and then run the algorithm only on that reduced interval, while checking that the number of insertions and
extractions above each of the bounds of the interval is coherent. Choosing the intervals requires potentially
O(log n) passes for each interval, but those can be parallelized since the algorithm has memory presumably
larger than p (if it does not, then p is very large and other more costly strategies still use a negligible number
of passes), so we only require that p ≥ 2 log n.

Another improvement on the memory is to make the factors of u given as input to Algorithm 3.2 of size√
n(log n+ logU) instead of

√
n, which gives us even less valleys in u after it has been pre-processed.

Finally, it is possible to keep the processing time per letter low even though the we preprocess the input
with Algorithm 3.2 first. For this it suffices to decrease the size of the factors by O(log n+logU) at each step
so that their total number stays the same and the last factor is of size O(log n+ logU). Then Algorithm 3.1
can be consistently one factor behind Algorithm 3.1 and still catch up in the end.

Corollary 3.1.11 (Chakrabarti, Cormode, Kondapalli, McGregor). For all p ≥ 2 log n there is
a unidirectional p-pass randomized streaming algorithm recognizing PQ(U) with memory space
O(
√
n(logU + log n)/p), and one-sided bounded error n−c, for inputs of length n and any constant

c > 0. Furthermore, the processing time per letter is polylog(nU).

37

3.2 Streaming Property Tester for Visibly Pushdown Languages

We design a streaming property tester for visibly pushdown languages. Our algorithm works by reducing the
problem to a query-model tester for weighted regular languages. It therefore uses a lot of sampling. We first
describe how we obtain a random sampling of a weighted word in streaming.

3.2.1 Sampling weighted words

We want a sampling on small factors of u according to their weights. We introduce a specific notion adapted
to our setting. For a weighted word u, we denote by k-factor sampling on u the sampling over factors
u[i, i + l] with probability |u[i]|/|u|, where l ≥ 0 is the smallest integer such that |u[i, i + l]| ≥ k if it
exists, otherwise l is such that i+ l is the last letter of u. More generally we call k-factor such a factor. For
the special case of k = 1, we call this sampling a letter sampling on u. Observe that both of them can be
implemented using a standard reservoir sampling (see Algorithm 3.6 for letter sampling).

1 Input: Data stream u, Integer parameter t > 1
2 Data structure:
3 σ ← 0 // Current weight of the processed stream
4 S ← empty multiset // Multiset of sampled letters
5 Code:
6 i← 1, a← Next(u), σ ← |a|
7 S ← t copies of a
8 While u not finished
9 i+ +, a← Next(u), σ ← σ + |a|

10 For each b ∈ S
11 Replace b by a with probability |a|/σ
12 Output S

Algorithm 3.6: Reservoir Sampling

Even though our algorithm will require several samples from a k-factor sampling, we can simulate
that with only a sampling of either larger factors, more factors, or both. LetW1 be a sampler producing a
random multiset S1 of factors of some given weighted word u. ThenW2 over samplesW1 if it produces a
random multiset S2 of factors of u such that Pr(W2 samples S2 ≥ S1) ≥ Pr(W1 samples S1), where each
probability term refers to random choices of the corresponding sampler.

3.2.2 Property Tester for Regular Languages in the Query Model

Our main algorithm uses as a basic routine a non-adaptive query property tester for weighted regular languages.
Property testing of regular languages was first considered in [1] for the Hamming distance. A slightly different
approach with the edit distance was considered by Ndione et al. in [35]. Here we consider a slightly weaker
version of that tester to simplify our proof. For the proof we consider the graph of components of the
automaton and focus on paths in this graph; we also introduce the criterion, κ-saturation, for some parameter
0 < κ < 1, that significantly simplifies the correctness proof of the tester compared to the original.

For the rest of this section, fix a regular language L recognized by some finite state automaton A on Σ
with a set of states Q of size m ≥ 2, and a diameter d ≥ 2. Define the directed graph GA on vertex set Q
whose edges are pairs (p, q) when p a−→q for some a ∈ Σ.

38

Theorem 3.2.1 (Ndione, Lemay and Niehren). LetA be an automaton recognizing a language L with m ≥ 2
states and diameter d ≥ 2. There is an algorithm that:

1. Takes as input ε > 0, η > 0 and t factors of v1, . . . , vt of some weighted word u, such that
t ≥ 2d2dm3(log 1/η)/εe;

2. Accepts if u ∈ L;
3. Rejects with probability at least 1 − η if dist(u, L) > ε|u|, when each factor vi comes from an

independent k-factor sampling on u with k ≥ d2dm/εe.
This is still true if the algorithm is given an over-sampling of each of factors vi instead.

A component C of GA is a maximal subset (w.r.t. inclusion) of vertices of GA such that for every p1, p2

in C one has a path in GA from p1 to p2. The graph of components GA of GA describes the transition relation
of A on components of GA: its vertices are the components and there is a directed edge (C1, C2) if there is
an edge of GA from a vertex in C1 toward a vertex in C2.

Definition 3.2.2. Let C be a component of GA, let Π = (C1, . . . , Cl) be a path in GA.
• A word u is C-compatible if there are states p, q ∈ C such that p u−→q.
• A word u is Π-compatible if u can be partitioned into u = v1a1v2 . . . al−1vl such that pi

vi−→qi and
qi

ai−→pi+1, where vi is a factor, ai a letter, and pi, qi ∈ Ci.
• A sequence of factors (v1, . . . , vt) of a word u is Π-compatible if they are factors of another Π-

compatible word with the same relative order and same overlap.

Note that the above properties are easy to check. Indeed, C-compatibility is a reachability property while
the two others easily follow from C-compatibility checking.

We now give a criterion that characterizes those words u that are ε-far to every Π-compatible word. Note
that it will not be used in the tester that we design for Theorem 3.2.1 for weighted regular languages, but only
in Lemma 3.2.4 which is the key tool to prove its correctness.

For a component C and a C-incompatible word v, let v1 · a be the shortest C-incompatible prefix of v.
We define and denote the C-cut of v as v = v1 · a · v2. When v1 is not the empty word, we say that v1 is a
C-factor and a is a C-separator for v1, otherwise we say that a is a strong C-separator.

Fix a path Π = (C1, . . . , Cl) in GA, a parameter 0 < κ ≤ 1, and consider a weighted word u. We
define a natural partition of u according to Π, that we call the Π-partition of u. For this, start with the first
component C = C1, and consider the C1-cut u1 · a · u2 of u. Next, we inductively continue this process with
either the suffix a · u2 if a is a C1-separator, or the suffix u2 if a is a strong C1-separator. Based on some
criterion defined below we will move from the current component Ci to a next component Cj of Π, where
most often j = i + 1, until the full word u is processed. If we reach j = l + 1, we say that u κ-saturates
Π and the process stops. We now explain how we move on in Π. We stay within Ci as long as both the
number of Ci-factors and the total weight of strong Ci-separators are at most κ|u| each. Then, we continue
the decomposition with some fresh counting and using a new component Cj selected as follows. One sets
j = i+ 1 except when the transition is the consequence of a strong Ci-separator a of weight greater than
κ|u|, that we call a heavy strong separator. In that case only, one lets j ≥ i+ 1, if exists, to be the minimal
integer such that q a−→q′ with q ∈ Cj−1 ∪ Cj and q′ ∈ Cj , and j = l + 1 otherwise.

Proposition 3.2.3. Let 0 < κ ≤ ε/(2dl). If u is ε-far to every Π-compatible word, then u κ-saturates Π.

Proof. The proof is by contraposition. For this we assume that u does not κ-saturate Π and we correct u to a
Π-compatible word as follows.

First, we delete each strong separator of weight less that κ|u|. Their total weight is at most 2lκ|u|.
Because u does not saturate, each strong separator of weight larger than κ|u| fits in the Π-partition, and does
not need to be deleted.

39

We now have a sequence of consecutive Ci-factors and of heavy strong Ci-separators, for some 1 ≤ i ≤ l,
in an order compatible with Π. However, the word is not yet compatible with Π since each factor may
end with a state different than the first state of the next factor. However, for each such pair there is a path
connecting them. We can therefore bridge all factors by inserting a factor of weight at most d, the diameter
of A. The resulting word is then Π-compatible by construction, and the total cost of the edit operations is at
most (2l + dl)κ|u| ≤ ε|u|, since d ≥ 2.

For a weighted word u, we recall that the k-factor sampling on u is defined in Section 3.2.1. The following
lemma is the key lemma for the proof of Theorem 3.2.1.

Lemma 3.2.4. Let u be a weighted word, let Π = C1 . . . Cl be a path in GA. Let 0 < κ ≤ ε/(2dl) and let
W denote the d2/κe-factor sampling on u. Then for every 0 < η < 1 and t ≥ 2l(log 1/η)/κ, the probability
P (u,Π) = Pr(v1,...,vt)∼W⊗t [(v1, . . . , vt) is Π-compatible] satisfies P (u,Π) = 1 when u is Π-compatible,
and P (u,Π) ≤ η when u is ε-far for from being Π-compatible.

Proof. The first part of the theorem is immediate. For the second part, assume that u is ε-far from any
Π-compatible word. For simplicity we assume that 2/κ and κ|u|/2 are integers. We first partition u according
to Π and κ. Then, Proposition 3.2.3 tells us that u κ-saturates Π. For each Ci, we have three possible cases.

1. There are κ|u| disjoint Ci-factors in u. Since they have total weight at most |u|, there are at least
κ|u|/2 of them whose weight is at most 2/κ each. Since each letter has weight at least 1, the total
weight of the first letters of each of those factors is at least κ|u|/2. Therefore one of them together
with its Ci-separator is a sub-factor of some sampled factor vj with probability at least 1− (1− κ/2)t.

2. The total weight of strong Ci-separators of u is at least κ|u|. Therefore one of them is the first letter of
some sampled factor vj with probability at least 1− (1− κ)t.

3. There is not any Ci-factor and any Ci-separator of u, because of a strong Ci′-separator of weight
greater than κ|u|, for some i′ < i. This separator is the first letter of some sampled factor vj with
probability at least 1− (1− κ)t.

By union bound, the probability that one of the above mentioned samples fails to occurs is at most
l(1− κ)t ≤ η. We assume now that they all occur, and we show that they form a Π-incompatible sequence.
For each i, let wi be the above described sub-factors of those samples. Each wi appears in u after wi−1 or,
in the case of a strong separator of heavy weight, wi = wi−1. Moreover each factor wi which is distinct
from wi−1 forces next factors to start from some component Ci′ with i′ > i. As a result (w1, . . . , wl) is not
Π-compatible, and as a consequence (v1, . . . , vt) neither, so the result.

From Lemma 3.2.4 we can design a non-adaptive tester for L and, even more, also approximate the action
of u on A. The existence of the second algorithm, from Theorem 3.2.6, implies Theorem 3.2.1.

Definition 3.2.5. Let Σ′ ⊆ Σ and R ⊆ Q × Q. Then R (ε,Σ′)-approximates a word u on A (or simply
ε-approximates when Σ′ = Σ), if for all p, q ∈ Q: (1) (p, q) ∈ R when p u−→q; (2) u is (ε,Σ′)-close to some
word v satisfying p v−→q when (p, q) ∈ R.

40

Theorem 3.2.6 (Inspired by Ndione, Lemay and Niehren). Let A be an automaton with m ≥ 2 states and
diameter d ≥ 2. There is an algorithm that:

1. Takes as input ε > 0, η > 0 and t factors of v1, . . . , vt of some weighted word u, such that
t ≥ 2d2dm3(log 1/η)/εe;

2. Outputs a set R ⊆ Q ×Q that ε-approximates u on A with one-sided error η, when each factor vi
comes from an independent k-factor sampling on u with k ≥ d2dm/εe.

This is still true with any combination of the following generalization:
• The algorithm is given an over-sampling of each of factors vi instead.
• When A is Σ′-closed, and d is the Σ′-diameter of A, then R also (ε,Σ′)-approximates u on A.

Proof. The algorithm is very simple:

1. Set R = ∅

2. For all states p, q ∈ Q

(a) Check if factors v1, . . . , vt could come from a word v such that p v−→q
// Step (a) is done using the graph GA of connected components of A

(b) If yes, then add (p, q) to R

3. Return R

It is clear that this R contains every (p, q) such that p u−→q. Now for the converse, we will show that,
with bounded error η, the output set R only contains pairs (p, q) such that there exists a path Π = C1, . . . , Cl
on GA such that p ∈ C1, q ∈ Cl, and u is Π-compatible. In that case, there is an ε-close word v satisfying
p

v−→q.
Indeed, using l ≤ m and Lemma 3.2.4 with t, κ = ε/(2dm) and η′ = η/2m, the samples satisfy

P (u,Π) ≤ η/2m, when u is not Π-compatible. Therefore, we can conclude using a union bound argument
on all possible paths on GA, which have cardinality at most 2m, that, with probability at least 1− η, there is
no Π such that the samples are Π-compatible but u is not Π-compatible.

The structure of the tester is such that it has only more chances to reject a word that is not Π-compatible
given an over-sampling as input instead. Words u such that p u−→q will always be accepted no matter the
amount and length of samples. Therefore the theorem still holds with an over sampling.

Last,A being Σ′-closed ensures that the notions of compatibility and saturation remain unchanged. Using
the Σ′-diameter in Lemma 3.2.4 (and therefore in Proposition 3.2.3) let us use bridges in Σ′∗ instead of Σ∗

with weight at most d.

3.2.3 Our result
Theorem 3.2.7. LetA be a VPA for L with m ≥ 2 states, and let ε, η > 0. Then there is a streaming ε-tester
for L and the edit distance with one-sided error η and memory space O(m523m2

(log6 n)(log 1/η)/ε4),
where n is the input length.

The notions of edit distance and balanced edit distance are defined in Section 2.3.1. Note that for all
balanced u and v, dist(u, v) ≤ bdist(u, v), so a property tester for the balanced edit distance is also a property
tester for the edit distance. From now on, we will always use the balanced edit distance for words in a visibly
push-down languages (which have pop and push symbols), and use the edit distance in a regular language
(since the balanced edit distance is not properly defined).

41

3.2.3.1 A simple case : Non-Alternating Sequences

We first consider restricted instances consisting only of a peak, that is sequences of push symbols followed by
a sequence of pop symbols, with possibly intermediate neutral symbols. These sequences are elements of the
language Λ =

⋃
j≥0((Σ=)∗ · Σ+)j · (Σ=)∗ · (Σ- · (Σ=)∗)j .

Those instances are already hard for both streaming algorithms and property testing algorithms. Indeed,
consider the language DISJOINTNESS ⊆ Λ over alphabet Σ = {0, 1, 0, 1, a} and defined by the union of all
a∗ · x(1) · a∗ · . . . · x(j) · a∗ · y(j) · a∗ · . . . · y(1) · a∗, where j ≥ 1, x, y ∈ {0, 1}j , and x(i)y(i) 6= 1 for all i.

Then DISJOINTNESS can be recognized by a VPA with 3 states, Σ+ = {0, 1}, Σ- = {0, 1} and
Σ= = {a}. However, DISJOINTNESS is hard to recognize for both models. The hardness for streaming
algorithms (without any notion of approximation) comes from a standard reduction to a communication
complexity problem known as Set-Disjointness, and remains valid for p-pass streaming algorithms, that
is streaming algorithms that are allowed to make up to p sequential passes (in any direction) on the input
stream. The hardness for query model property testing algorithms comes from a similar result due to [36] for
parenthesis languages with two types of parenthesis (note that, since we consider a non-alternating sequence,
the language has to include a neutral symbol a for that result to hold), and for the Hamming distance. The
result remains valid for both our language: we take the hard instance, and write 01 for (, 10 for [, 10 for) and
01 for]. The balanced edit distance is, in the case of non-alternating sequences, within a constant factor of
the Hamming distance, so this does not affect the proof either.

Fact 3.2.8. Any randomized p-pass streaming algorithm for DISJOINTNESS with bounded error 1/3 re-
quires memory space Ω(n/p), where n is the input length. Moreover, any (non-streaming) (2−6)-tester for
DISJOINTNESS requires to query Ω(n1/11/ log n) letters of the input word.

Surprisingly, for every ε > 0, such languages (actually any language of the form L ∩ Λ where L is a
VPL) become easy to ε-test by streaming algorithms. This is mainly because, given their full access to the
input, streaming algorithms can perform an sample the input at a given height with only a single pass and
few memory. This makes the property testing task significantly easier. We will first prove it in the case of a
sequence of pushes and pops with no neutral symbol, and then generalize our proof to the case where neutral
symbols exist.

These results are not only interesting as a simpler toy problem: our algorithm presented in Section 3.2.3.2
will work by reducing a general element of L to several elements of Λ. However the test will not be to
determine whether these elements are in L but to which transitions of the automaton for L they could
correspond, similarly to the difference between Theorem 3.2.1 and Theorem 3.2.6. Therefore we will not use
the tester from Theorem 3.2.10 as a subroutine, but instead design another algorithm based on the exact same
proof.

Theorem 3.2.9. Let A be a VPA for L with Σ= = ∅ and let ε > 0. There is a streaming ε-tester for L ∩ Λ
with constant one-sided error with memory space O((c log n)(log 1/ε)/ε), where n is the input length and
c > 0 depends only on A.

Theorem 3.2.10. Let A be a VPA for L with m ≥ 2 states, and let ε, η > 0. Then there is a streaming
ε-tester for L∩Λ with one-sided error η and memory space O(m8(log 1/η)/ε2), where n is the input length.

We will show that, for every VPL L, one can construct a regular language L̂ such that testing whether
u ∈ L ∩ Λ is equivalent to test whether some other word û belongs to L̂. This will let us use the query
model property tester from Theorem 3.2.6. For this, let I be a special symbol not in Σ=. Consider a word
u =

(∏j
i=1 vi · ai

)
· vj+1 ·

(∏1
i=j bi ·wi

)
, where ai ∈ Σ+, bi ∈ Σ-, and vi, wi ∈ (Σ=)∗. Define the slicing

42

of u (see Figure 3.7) as the word û over the alphabet Σ̂ = (Σ+ ×Σ-) ∪ (Σ= × {I}) ∪ ({I} ×Σ=) defined by
û =

(∏j
i=1(vi(1), I) · · · (vi(|vi|), I) ·(I, wi(1)) . . . (I, wi(|wi|)) ·(ai, bi)

)
·(vj+1(1), I) · · · (vj+1(|vj+1|), I).

Definition 3.2.11. Let A = (Q,Σ,Γ, Qin , Qf ,∆) be a VPA. The slicing of A is the finite automaton
Â = (Q̂, Σ̂, Q̂in , Q̂f , ∆̂) where Q̂ = Q×Q, Q̂in = Qin ×Qf , Q̂f = {(p, p) : p ∈ Q}, and the transitions
∆̂ are:

1. (p, q)
(a,b)−→(p′, q′) when p a−→(p′, push(γ)) and (q′, pop(γ))

b−→q are both transitions of ∆.

2. (p, q)
(c,I)−→(p′, q), resp. (p, q)

(I,c)−→(p, q′), when p c−→p′, resp. q c−→q′, is a transition of ∆.

u = v1 w1a1 · · · aivi vi+1 · · · ahvh+1 b1· · ·bi wiwi+1· · ·bh

•

•

•

•

•

•

•

•

•

•

•

p

p′ q′

q

qin qf

r

p a
i
−→

(p ′, push(γ)) (q
′ , p
op

(γ
))
b i

−→
q

Run in the VPA A on u

•(r, r)

•(qin, qf)

•(p, q)

•(p′, q′)

(a
i
,b

i
)

(v
1
(1
),
I
)
··
·

··
·(
a
h
,b

h
)

û
=

Run in the slicing automaton Â on û

Figure 3.7: Slicing of a word u ∈ Λ and evolution of the stack height for u.

Lemma 3.2.12. If A is a VPA accepting L, then Â is a finite automaton accepting L̂ = {û : u ∈ L ∩ Λ}.

Proof. Because transitions on push symbols do not depend on the top of the stack, transitions in ∆̂ correspond
to slices that are valid for ∆ (see Figure 3.7). Finally, Q̂in ensures that a run for L must start in Qin and end
in Qf , and Q̂f that a state at the top of the peak is consistent from both sides.

Observe also that, for u, v ∈ Λ, we have bdist(u, v) ≤ 2dist(û, v̂). Those non-adaptive samples from the
property tester of Theorem 3.2.6 of û can be understood as a random sketch of u. To adapt this to a streaming
algorithm for testing whether u ∈ L ∩ Λ, we need to build an appropriate sampling procedure on u. In the
case where u contains only pushes and pops (i.e. Σ= = ∅), performing a reservoir sampling on the pushes
and then taking the matching pops is enough. We can now prove Theorem 3.2.9.

Proof of Theorem 3.2.9. The tester of Theorem 3.2.6 samples uniformly at random several factors of the
input word of several given lengths and it is still correct if it takes an over-sampling. Those samples on û can
be done in two steps. We describe it for a single factor of length k. Let u+ be the prefix of u before its first
pop symbol, and let u− be the remaining suffix including the first pop symbol. First we sample uniformly
a random position in u+ and remember its position, which requires O(log n) memory, and the following
k letters in u+. This sampling can be done without knowing the length of u+ in advance, using standard
reservoir sampling techniques. Second, we complete the factor while reading u−. That way, we simply have
more letters than needed in the sampled factor.

43

We could directly generalize the previous algorithm when Σ= 6= ∅ by slightly modifying our sampling
procedure. However, we prefer to take a different approach enlightening the main idea of our general
algorithm in Section 3.2.3.2. Given any maximal factor v ∈ (Σ=)∗ (for the sub-factor relation ≤) of the input
stream, we will consider it as a single letter of weight |v|. More precisely, fix a VPA A recognizing L. Then,
we compress v by its corresponding relation Rv = {(p, q) : p

v−→q}, and we see the subset Rv ⊆ Q×Q as a
new letter, call it R, and the possible weights for R correspond to the weights of words v such that R = Rv.
We augment Σ= by those new letters, and call this new (finite) alphabet Σ0.

We also extend the automaton A and the language L with Σ0. Doing so, we have compressed u ∈ Λ to a
weighted word of Λ1 =

⋃
j≥1(Σ0 · Σ+)j · Σ0 · (Σ- · Σ0)j . Since there is a correspondence between letters

R ∈ Σ0 and words v ∈ (Σ=)∗ with |v| = |R| and R = Rv, we can arbitrarily reason on either the old or the
new alphabet. Moreover, the corresponding slicing automaton Â has still diameter at most 2m2.

Lemma 3.2.13. Let v ∈ Λ1 be s.t. (p, q)
v̂−→(p′, q′). There is w ∈ Λ1 s.t. |w| ≤ 2m2 and (p, q)

ŵ−→(p′, q′).

Proof. This is simply due to the fact that the diameter of Â is at most m2 its number of states, given that all
transitions have weight 1. Therefore |ŵ| ≤ m2 and |w| ≤ 2m2.

Let us now build a tester for L ∩ Λ using the same idea as in Theorem 3.2.9: to test a word u we use a
tester for û against L̂, which is now a language of weighted words. More precisely, the weight of a letter
in û is defined by |(a+, a−)| = 1 and |(I, R)| = |(R, I)| = |R|. Theorem 3.2.6 gives us such a tester. The
remaining difficulty is to provide to this tester an appropriate sampling on û while processing u.

Our tester for weighted regular languages is based on k-factor sampling on û that we will simulate by an
over-sampling built from a letter sampling on u, that is according to the weights of the letters of u only. This
new sampling can be easily performed given a stream of u using a standard reservoir sampling.

Definition 3.2.14. For a weighted word u ∈ Λ, denote byWk(u) the sampling over factors of û constructed
as follows: (1) sample a letter u(i) of u with probability |u(i)|/|u|; (2) if u(i) is in a push sequence, extends
it to the factor u[i, i+ l + 1] where u[i, i+ l] is a k-factor, and complete it with its matching pop sequence.

Lemma 3.2.15. Let u be a weighted word, and let k be such that 4k ≤ |u|. Then 4k independent copies of
Wk(u) over samples the k-factor sampling on û.

Proof. Denote by Ŵ the k-factor sampling on û, and byW some 4k independent copies ofWk(u). For any
k-factor v of û, we will show that the probability that v is sampled by Ŵ is at most the probability that v is a
factor of an element sampled byW . For that, we distinguish the following three cases:

• v is a single letter. Then, if v = (R, I) the probability that it is sampled by Ŵ equals the probability
that Wk(u) samples the factor v augmented by one letter; if v = (I,R) the probability that it is
sampled byW again equals the probability thatWk(u) samples it. Hence, the probability that v is
sampled by Ŵ is at most the probability that v is a factor of an element sampled byW .

• v is not a single letter and starts by a letter in Σ+ × Σ− or by a letter in Σ0 × {I}. Then the
probability that it is sampled by Ŵ equals at most twice the probability thatWk(u) samples the factor
v augmented by one letter, as a (push,pop) pair in û has weight 2 when a push has weight 1 in u.
Hence, the probability that v is sampled by Ŵ is at most the probability that v is a factor of an element
sampled byW .

44

• v is not a single letter and starts by a letter in Σ0 × {I}. Since |û| ≥ |u|/2, we get

Pr(Wk(u) samples the factor (a, b) · v) = 1/|u| and Pr(Ŵ samples v)≤k/|û| ≤ 2k/|u|.

Thus the probability that one of the 4k samples ofW has the factor (a, b) · v is 1− (1− 1/|u|)4k. As
1− (1− 1/|u|)4k ≥ 1− 1

1+4k/|u| = 4k
|u|+4k ≥

2
k when |u| ≥ 4k, we conclude again that the probability

that v is sampled by Ŵ is at most the probability that v is a factor of an element sampled byW .

We know have everything we need to prove Theorem 3.2.10.

Proof of Theorem 3.2.10. Observe that bdist(u, v) ≤ 2dist(û, v̂), and moreover the slicing automaton has
diameter d at most 2m2 by Lemma 3.2.13. Given a word u as a data stream, we simulate a data stream on its
compression u1, which is a weighted word in Λ1, and then obtain with Lemma 3.2.15 an over-sampling of
t k-factor samplings on û1, with t = 4d4dm3(log 1/η)/εe and k = d4dm/εe. We then use the tester from
Theorem 3.2.6 on the samples. Note that this is possible because this tester has non-adaptive queries.

3.2.3.2 Exact Algorithm

We first describe an exact algorithm for recognizing VPLs with the same structure as our final algorithm, but
require linear memory. We will then modify it to reduce the memory used, which will create the ε gap.

Fix a VPA A recognizing some VPL L. A general balanced input instance u will have more than one peak
v ∈ Λ and we cannot easily interpret u as an element of a regular language. However, we will recursively
replace each factor v ∈ Λ by Rv = {(p, q) : p

v−→q} with weight |v|. The alphabet Σ= of neutral symbols
will increase as follows. We start with Σ0 encoding all possible relations Rv for v ∈ Σ∗=. Then Λh+1 is
simply Λ over an alphabet Σ= = Σh, and Σh encodes all possible relations Rv for words v ∈ (Λh)∗. As
before, we naturally augment the automaton A and the language L with these new sets. However we keep the
notation Σ as Σ+ ∪ Σ− ∪ Σ=.

Since there is a finite set of possible relations, this construction has smallest fixed points Σ∞ and Λ∞.
Denote by Prefix(Λ∞) the language of prefixes of words in Λ∞. For Σ′ = (Σ+ ∪ Σ− ∪ Σ∞), the Σ̂′-
diameter of the slicing automaton Â is simply the Σ-diameter of A, that we bound as follows. For simpler
languages, as those coming from DTD, this bound can be lowered to m.

Fact 3.2.16. Let A be a VPA with m states. Then the Σ-diameter of A is at most 2m
2
.

Proof. A similar statement is well known for any context-free grammar given in Chomsky normal form. Let
N be the number of non-terminal symbols used in the grammar. If the grammar produces one balanced word
from some non-terminal symbol, then it can also produce one whose length is at most 2N from the same
non-terminal symbol. This is proved using a pumping argument on the derivation tree. We refer the reader to
the textbook [25].

Now, in the setting of visibly pushdown languages one needs to transform A into a context-free grammar
in Chomsky normal form. For that, consider first an intermediate grammar whose non-terminal symbols are
all the Xpq where p and q are states from A: such a non-terminal symbol will produce exactly those words u
such that p u−→q, hence our initial symbol will be those of the form Xq0qf where q0 is an initial state and qf
is a final state.

45

The rewriting rules are as follows:

• Xpp → ε

• Xpq → XprXrq

• Xpq → aXp′q′b whenever one has in the automaton p a−→(p′, push(γ)) and (q′, pop(γ))
a−→q for some

push symbol a, pop symbol b and stack letter γ.

• Xpq → aXp′q whenever one has in the automaton p a−→p′ for some neutral symbol a.

• Xpq → Xpq′a whenever one has in the automaton q′ a−→q for some neutral symbol a.

Obviously, this grammar generates language L(A).
As we are here interested only in the length of the balanced words produced by the grammar, we can

replace any terminal symbol by a dummy symbol]. Now, once this is done we can put the grammar in
Chomsky normal form by using an extra non-terminal symbol (call it X] as it is used to produce the]
terminal). As we have m2 + 1 non-terminal in the resulting grammar we are almost done. To get to the tight
bound announced in the statement, one simply removes the extra non-terminal symbol X] and reasons on the
length of the derivation directly.

We start by a simple algorithm maintaining a stack of small height, but whose elements can be of linear
size. We will later explain how to replace the stack elements by appropriated small sketches. While having
processed the prefix u[1, i] of the data stream u, Algorithm 3.7 maintains a suffix u0 ∈ Prefix(Λ∞) of u[1, i],
that is an unfinished peak, with some simplifications of factors v in Λ∞ by their corresponding relation Rv.
Therefore u0 consists of a sequence of push symbols and neutral symbols possibly followed by a sequence of
pop symbols and neutral symbols. The algorithm also maintains a subset Rtemp ⊆ Q×Q that is the set of
transitions for the maximal prefix of u[1, i] in Λ∞. When the stream is over, the set Rtemp is used to decide
whether u ∈ L or not.

We now need define the • operation used by the algorithm, to concatenate while merging adjacent neutral
symbols, and the depth of a factor for the analysis.

Definition 3.2.17. Let u be a weighted word, and let a, b be weighted letters such that b is neutral. Then
(ua) • b is defined as uab when a is not neutral, and otherwise as u · Rab, where Rab denotes the set of
ab-transitions.

Definition 3.2.18. For each factor constructed in Algorithm 3.7, Depth is defined dynamically by
Depth(a) = 0 when a ∈ Σ, Depth(v) = maxi Depth(v(i)) and Depth(Rv) = Depth(v) + 1.

When a push symbol a comes after the pop sequence, u0 is no longer in Prefix(Λ∞), and Algorithm 3.7
puts it on a stack of unfinished peaks (see lines 10 to 11 and the upper part of Figure 3.8) and u0 is reset to a.
In other situations, one adds a to u0. In case u0 becomes a word of Λ∞ (see lines 13 to 16 and the middle part
of Figure 3.8), Algorithm 3.7 computes the set of u0-transitions Ru0 ∈ Σ∞, and adds Ru0 to the previous
unfinished peak, which is found on top of the stack and now becomes the current unfinished peak; in the
special case where the stack is empty one simply updates the set Rtemp by taking its composition with Ru0 .

In order to bound the size of the stack, Algorithm 3.7 considers the maximal well-balanced suffix v2 of
the topmost element v1 · v2 of the stack and, when |u0| ≥ |v2|/2, it computes the relation Rv2 and continues
with a bigger current peak starting with v1 (see lines 17 to 19 and the lower par of Figure 3.8). A consequence
of this compression is that the elements in the stack have geometrically decreasing weight and therefore the
height of the stack used by Algorithm 3.7 is logarithmic in the length of the input stream.

46

1 Input: Well-balanced data stream u
2 Data structure:
3 Stack ← empty stack // Stack of items v with v ∈ Prefix(Λ∞)
4 u0 ← ∅ // u0 ∈ Prefix(Λ∞) is a suffix of the processed part u[1, i] of u
5 // with possibly some factors v ∈ Λ∞ replaced by Rv
6 Rtemp ← {(p, p)}p∈Q // Set of transitions for the maximal prefix of u[1, i] in Λ∞
7 Code:
8 While u not finished
9 a← Next(u) //Read and process a new symbol a

10 If a ∈ Σ+ and u0 has a letter in Σ- // u0 · a 6∈ Prefix(Λk)
11 Push u0 on Stack, u0 ← a
12 Else u0 ← u0 • a
13 If u0 is well-balanced // u0 ∈ Λ∞: compression
14 Compute Ru0 the set of u0-transitions
15 If Stack = ∅, then Rtemp ← Rtemp •Ru0, u0 ← ∅
16 Else Pop v from Stack, u0 ← v •Ru0

17 Let (v1 · v2)← top(Stack) s.t. v2 is maximal and well-balanced // v2 ∈ Λ∞
18 If |u0| ≥ |v2|/2 // u0 is big enough and v2 can be replaced by Rv2
19 Compute Rv2 the set of v2-transitions, Pop v from Stack, u0 ← (v1 ·Rv2) · u0
20 If (Qin ×Qf) ∩Rtemp 6= ∅, Accept; Else Reject // u = u0 and Rtemp = Ru

Algorithm 3.7: Exact Tester for a VPL

The following proposition comes from a direct inspection of Algorithm 3.7.

Proposition 3.2.19. Algorithm 3.7 accepts exactly words u ∈ L, while maintaining a stack of at most log n
items of types v with v ∈ Prefix(ΛDepth(v)), and a variable u0 with u0 ∈ Prefix(ΛDepth(u0)).

We state that Algorithm 3.7 considers at most O(log n) nested picks, that is Depth(u) = O(log n),
where Depth is dynamically defined in each letter and factor inside Algorithm 3.7.

Lemma 3.2.20. Let v be the factor used to compute Rv at line either 14 or 19 of Algorithm 3.7. Then
|v(i)| ≤ 2|v|/3, for all i. In particular, it holds that Depth(u) = O(log n).

Proof. One only has to consider letters in Σ∞. Hence, let Rw belongs to v for some w: either w was
simplified into Rw at line 14 or at line 19 of Algorithm 3.7.

Let us first assume that it was done at line 19. Therefore, there is some v′ ∈ Prefix(Λ∞) to the right of w
with total weight greater than |w|/2 = |Rw|/2. This factor v′ is entirely contained within v: indeed, when
Rw is computed v includes v′. Therefore |Rw| ≤ 2|v|/3.

If Rw comes from line 14, then w = u0 and this u0 is well-balanced and compressed. We claim that at
the previous round the test in line 18 failed, that is |u0| − 1 ≤ |v2|/2 where v2 is the maximal well-balanced
suffix of top(Stack). Indeed, when performing the sequence of actions following a positive test in line 18,
the number of unmatched push symbols in the new u0 is augmented at least by 1 from the previous u0: hence,
it cannot be equal to 1 as the elements in the stack have pending call symbols and therefore in the next round
u0 cannot be well-balanced. Therefore one has |u0| − 1 ≤ |v2|/2. Now when Rw = Ru0 is created, it is
contains in a factor that also contains v2 and at least one pending call before v2. Hence, |Rw| ≤ 2|v|/3.

Finally, the fact that Depth(u) = O(log n) is a direct consequence of the definition of Depth and of the
fact that the weight decreases at least geometrically with nesting.

47

Rest of Stack Top of Stack u0 a

→

Rest of Stack Top of
Stack

u0

Rest of Stack Top of Stack u0

→

Stack new u0

Rformer u0

Rest of Stack Top of Stack u0

v2v1

→

Stack new u0

Rv2v1 former u0

Figure 3.8: Illustration of Algorithm 3.7. The upper part corresponds to lines 10 to 11, the middle part to
lines 13 to 16, and the lower part to lines 17 to 19

3.2.3.3 Sketching using Suffix Sampling

We now describe the sketches our algorithm uses. They are based on a notion of suffix samplings, which
ensures a good letter sampling on each suffix of some data stream. Recall that the letter sampling on a
weighted word u samples a random letter u(i) (with its position) with probability |u(i)|/|u|.

Definition 3.2.21. Let u be a weighted word and let α > 1. An α-suffix decomposition of u of size s is a
sequence of suffixes (ul)1≤l≤s of u such that: u1 = u, us is the last letter of u, and for all l, ul+1 is a strict
suffix of ul and if |ul| > α|ul+1| then ul = a · ul+1 where a is a single letter.

48

An (α, t)-suffix sampling on u of size s is an α-suffix decomposition of u of size s with t letter samplings
on each suffix of the decomposition.

An (α, t)-suffix sampling can be either concatenated to another one, or compressed as stated below.

Proposition 3.2.22. Given as input an (α, t)-suffix sampling Du on u of size su and another one Dv on v of
size sv, there is an algorithm Concatenate(Du, Dv) computing an (α, t)-suffix sampling on the concatenated
word u · v of size at most su + sv in time O(su).
Moreover, given as input an (α, t)-suffix samplingDu on u of size su, there is also an algorithm Simplify(Du)
computing an (α, t)-suffix sampling on u of size at most 2dlog |u|/ logαe in time O(su).

We describe those procedures in Algorithm 3.8. A direct inspection suffices to prove that it satisfies
Proposition 3.2.22.

1 Data structure:
2 // D, Du, Dv, Dtemp stacks of items (σ, b), one for each suffix
3 // of the decomposition where σ encodes the weight and b the t samples
4 Code:
5 Concatenate(Du, Dv)
6 D ← Du

7 (c1, . . . , ct)← all t samples on v (the largest suffix in Dv)
8 For each (σ, b) ∈ S where b = (b1, . . . , bt)
9 Replace each bi by ci with probability |v|/(|v|+ σ)

10 Replace (σ, b) by (σ + |v|, b)
11 Append Dv to the top of D
12 Return D
13 Simplify(Du)
14 D ← Du

15 For each (σ, b) ∈ D from top to bottom
16 Dtemp ← elements (τ, c) ∈ D below (σ, b) with τ ≤ ασ
17 Replace Dtemp in D by the bottom most element of Dtemp

18 Return D
19 Online-Suffix-Sampling
20 D ← ∅
21 While u not finished
22 a← Next(u)
23 Concatenate(D, a) where a encodes the suffix sampling (|a|, (a, . . . , a))
24 Simplify(D)
25 Return D

Algorithm 3.8: α-Suffix Sampling

Using this Proposition 3.2.22, one can easily design a streaming algorithm constructing online a suffix
decomposition of small size. Starting with an empty suffix-sampling S, simply concatenate S with the next
processed letter a of the stream, and then simplify it. We formalize this together with functions Concatenate
and Simplify in Algorithm 3.8.

3.2.3.4 Algorithm with sketches

We first describe a data structure that can be used to encode each unfinished peak v of the stack and u0.
Then, we explain how the operations of Algorithm 3.7 can be performed using our data structure. As a result
our final algorithm is simply Algorithm 3.7 with the new data structure described in Algorithm 3.9 and the
adapted operations defined in Algorithm 3.10. We will refer to the whole algorithm as Algorithm 3.7+3.10.

49

1 Parameters: real ε′ > 0, integer T ≥ 1

2 Data structure for a weighted word v ∈ Prefix(Λε
′

∞)
3 Weights of v and of its first letter v(1)
4 Heights of v(1)
5 Boolean indicating whether v contains a pop symbol
6 (1 + ε′)-suffix decomposition v1, . . . , vs of v encoded by
7 Estimates |vl|low and |vl|high of |vl|
8 T independent samplings Svl on vl // see details below
9 with corresponding weights and heights

Algorithm 3.9: Sketch for an unfinished peak

We now detail the methods, where we implicitly assume that each letter processed by the algorithm
comes with its respective height and (exact or approximate) weight. They use functions Concatenate and
Simplify form Algorithm 3.8, while adapting them.

1 Adaption of functions from Proposition 3.2.22
2 Concatenate(Du, Dv) with an exact estimate of |v| is modified s.t.
3 the replacement probability is now |v|/(σhigh + |v|)
4 and |ul · v|z ← |ul|z + |v|, for z = low, high
5 Simplify(Du) with α = 1 + ε′ has now the relaxed condition τhigh ≤ (1 + ε′)σlow
6 Adaption of operations on factors used in Algorithm 3.7
7 Bullet-concatenation with a neutral letter: v ← u • a
8 b← last letter of u
9 Dv ← Concatenate(Du, a)

10 If b is neutral
11 Rba ← set of ba-transitions
12 Delete suffix b from Dv

13 Replace every samples consisting of either a or b by Rab
14 Dv ← Simplify(Dv)
15 Compute relation: Rv
16 Run the algorithm of Corollary 3.2.28 using samples in Dv

17 Decomposition: v1 · v2 ← v
18 Find largest suffix vi in Dv s.t. vi ∈ Prefix(Λ∞) // i.e. s.t. vi is in v2
19 Dv|v1 ← suffixes (vl)l<i with their samples
20 Dv2 ← suffix vi with its samples and weight estimates: // for computing Rv2
21 - (|vi|high, |vi|low) when vi−1 and vi differ by exactly one letter (then vi = v2)
22 - (|vi−1|high, |vi|low) otherwise
23 Test: |u0| ≥ |v2|/2 using |v2|low instead of |v2|
24 Concatenation: u0 ← (v1 ·Rv2) · u0
25 Dv′ ← (Dv|v1 , Rv2) replacing each samples of Dv|v1 in v2 by Rv2
26 \\ The height of a sample determines whether it is in v2
27 Du0

← Simplify(Concatenate(Dv′ , Du0
))

Algorithm 3.10: Adaptation of Algorithm 3.7 using sketches

In Section 3.2.3.5, we show that the samplings Svl are close enough to an (1 + ε′)-suffix sampling
on vl. This lets us build an over sampling of an (1 + ε′)-suffix sampling. We also show that it only
require a polylogarithmic number of samples. Then, we explain how to recursively apply an adaptation of
Theorem 3.2.6 (with ε′) in order to obtain the compressions at line 14 and 19 while keeping a cumulative
error below ε. We now state our main result whose proof uses results from the following section.

50

Proof of Theorem 3.2.7. We use Algorithm 3.7+3.10, which the tester from Corollary 3.2.28 for the com-
pressions at lines 14 and 19 of Algorithm 3.7. We know from Lemma 3.2.29 and Lemma 3.2.15 that
it is enough to choose ε′ = ε/(6 log n), η′ = η/n, and Fact 3.2.16 gives us d = 2m

2
. Therefore we

need T = 2304m422m2
(log2 n)(log 1/η)/ε2 independent k-factor samplings of u augmented by one, with

k = 24m2m
2
(log n)/ε. Lemma 3.2.26 tells us that using twice more samples from our algorithm, that is for

each Svl , is enough in order to over-sample them.
Because of the sampling variant we use, the size of each decomposition is at most 96(log2 n)/ε+O(log n)

by Lemma 3.2.26. The samplings in each element of the decomposition use memory space k, and there
are 2T of them. Furthermore, each element of the stack has its own sketch, and the stack is of height
at most log n. Multiplying all those together gives us the upper bound on the memory space used by
Algorithm 3.7+3.10.

3.2.3.5 Final analysis

As our final algorithm may fail at various steps, the relations it considers may not correspond to any word.
But still, it will produces relations R such that for any (p, q) ∈ R, there is a balanced word u ∈ Σ∗, such that
p

u−→q. We therefore consider the alphabet extension by any such relations R with any weight. We define
ΣQ to be the alphabet Σ= augmented by all such relations R, and we again extend the automaton and the
language. Then, ΛQ is simply Λ1 with Σ= = ΣQ.

Proposition 3.2.23. Each relation R that Algorithm 3.7+3.10 produces is in ΣQ.

Still the resulting automaton is Σ̂′-closed with Σ′ = (Σ+ ∪ Σ− ∪ Σ∞), and we remind that Fact 3.2.16
bounds the Σ̂′-diameter of Â by 2m

2
.

Proposition 3.2.24. The slicing automaton Â that we define over ̂(Σ+ ∪ Σ− ∪ ΣQ)) is Σ̂′-closed with
Σ′ = (Σ+ ∪ Σ− ∪ Σ∞).

Stability. We want to show that the decomposition, weights and sampling we maintain are close enough to
an (1 + ε′)-suffix sampling with correct weights. Recall that ε′ = ε/(6 log n).

Proposition 3.2.25. Let v be an unfinished peak, and let v1, . . . , vs be the suffix decomposition maintained
by the algorithm. The following is true:
(1) v1, . . . , vs is a valid (1 + ε′)-suffix decomposition of v.
(2) For each letter a of every vl, and for every sample s, Pr[Svl = a] ≥ |a|/|vl|high.
(3) Each vl satisfies |vl|high − |vl|low ≤ 2ε′|vl|low/3.

Proof. Property (1) is guaranteed by the (modified) Simplify function used in Algorithm 3.10, which
preserves even more suffixes than the original algorithm.

Properties (2) and (3) are proven by induction on the last letter read by Algorithm 3.7+3.10. Both are true
when no symbol has been read yet.

We start with property (2). Let us first consider the case where we use bullet-concatenation after the
last letter was read. Then for all vl, the (modified) Concatenate function ensures Svl becomes a with
probability 1/|vl|high. Otherwise, Svl remains unchanged and by induction Svl = b with probability at least
(1− 1/|vl|high)|b|/(|vl|high − 1) = |b|/|vl|high, for each other letter b of vl. If a is a neutral symbol and u0

ends with some R ∈ ΣQ, any sample that would be either R or a is replaced by R • a.
The other case is that some Rv2 is computed at line 19 of Algorithm 3.7. In this case, v is equal to

some (v1 · Rv2) · u0 concatenation. For each suffix (v1 · v2)l in D(v1·v2) containing Rv2 , we proceed in
the same way with the Concatenate function, replacing any sample in v2 with Rv2 . Now consider vi2 the

51

largest suffix of D(v1·v2) contained in v2, and vl = Rv2 · u0. We use the fact that Concatenate looks at
|vl|high ≥ |u0| + |Rv2 | for replacing samples. This means that we choose Rv2 as a sample for vl with
probability (|vl|high − |u0|)/|vl|high ≥ |Rv2 |/|vl|high, and therefore the property is verified.

We now prove property (3). If vl has just been created, it contains only one letter of weight 1, and obviously
|vl|low = |vl|high = |vl|. In addition, unless some Rv2 has been computed at line 19 of Algorithm 3.7 when
the last letter was read, then |vl| is only augmented by some exactly known |a| or |u0| compared to the
previous step. Therefore the difference |vl|high− |vl|low does not change, and by induction it remains smaller
than 2ε′|vl|low/3 which can only increase. Now consider Rv2 computed at line 19 and vl = Rv2 · u0. We
again consider vi2 for the largest suffix in the decomposition of v1 · v2 that is contained within v2, as used in
Algorithm 3.10, and vi−1

2 is the suffix immediately preceding vi2 in that decomposition.
If |vi−1

2 |high > (1+ε′)|vi2|low, then from the Simplify function, the difference between those two suffixes
cannot be more than one letter, and then vi2 = v2. Therefore, we have |Rv2 · u0|high = |v2|high + |u0| and
|Rv2 · u0|low = |v2|low + |u0|. We conclude by induction on |v2|.

We end with the case |vi−1
2 |high ≤ (1 + ε′)|vi2|low. By definition, |Rv2 · u0|high = |vi−1

2 |high + |u0| and
|Rv2 · u0|low = |vi2|low + |u0|. Therefore the difference |vl|high − |vl|low is at most ε′|vi2|low. Since the test
at line 18 of Algorithm 3.7 (modified by Algorithm 3.10) was satisfied, we know that |vi2|low ≤ 2|u0|. This
implies that ε′|vi2|low ≤ 2ε′(|vi2|low + |u0|)/3 ≤ 2ε′|vl|low/3, which concludes the proof.

From this we prove that the Swl
can actually generate a (1 + ε′)-suffix sampling on the suffix decomposi-

tion, and that this decomposition is not too large so it will fit in our polylogarithmic memory.

Lemma 3.2.26. Let v,W be an unfinished peak with a sampling maintained by the algorithm. ThenW⊗2

over-samples an (1 + ε′)-suffix sampling on v, andW has size at most 144(log |v|)(log n)/ε+ O(log n).

Proof. The first property is a direct consequence of property (1) and (2) in Proposition 3.2.25, as in the proof
of Lemma 3.2.15.

The second is a consequence of the (modified) Simplify used in Algorithm 3.10: Dtemp is defined
as the set of suffixes below with m < l such that |vm|high ≤ (1 + ε′)|vl|low. Because Simplify deletes
all but one elements from Dtemp, it follows that |vl−2|high > (1 + ε′)|vl|low. Now, from property (3) of
Proposition 3.2.25 we have that |vl|low ≥ |vl|high − 2ε′|vl|low/3 ≥ (1− 2ε′/3)|vl|high. Therefore we have
that |vl−2|high > (1 + ε′)(1− 2ε′/3)|vl|high

By successive applications, we have |vl−6|high > (1 + ε′)3(1− 2ε′/3)3|vl|high. Now, as |vl|high > |vl|
and |vl| ≥ |vl|low ≥ (1 − 2ε′/3)|vl|high, we obtain |vl−6|/(1 − 2ε′/3) > (1 + ε′)3(1 − 2ε′/3)3|vl|.
Equivalently, |vl−6| > (1 + ε′)3(1− 2ε′/3)4|vl|

Thus, the size of the suffix decomposition is at most 6 log(1+ε′)3(1−2ε′/3)4 |v| ≤ 6 log |v|/ log(1 + ε′/3 +

O(ε′2)) ≤ 144(log |v|)(log n)/ε+ O(log(n)).

Robustness. We first extend the notion of ε-approximation of words for a finite automaton (Definition 3.2.5)
to any VPA when words are in ΛQ.

Definition 3.2.27. Let R ⊆ Q2. Then R (ε,Σ)-approximates a balanced word u ∈ (Σ+ ∪ Σ- ∪ ΣQ)∗ on A,
if for all p, q ∈ Q: (1) (p, q) ∈ R when p u−→q; (2) u is (ε,Σ)-close to some word v satisfying p v−→q when
(p, q) ∈ R.

Then, we state an analogue of Theorem 3.2.10 for words in ΛQ instead of Λ1. We present the result as an
algorithm with an output R as in Theorem 3.2.6. We also need to adapt it to the sampling we have. Indeed
the suffixes from which we sample do not exactly match the peaks we want to compress, but we know that
for each peak at least one suffix is within a factor (1 + ε′) from Lemma 3.2.26.

52

Corollary 3.2.28. Let A be a VPA with m ≥ 2 states and Σ-diameter d ≥ 2. There is an algorithm that:
1. Take as input ε′, η > 0 and T k-factors of w1, . . . , wT of some weighted word v ∈ ΛQ, such that
T = 4kt, t = 2d4dm3(log 1/η)/ε′e and k = d4dm/ε′e;

2. Output a set R ⊆ Q×Q that (ε′,Σ)-approximates v on A with bounded error η, when each factor wi
come from an independent k-factor sampling on v̂.

Let v′ be obtained from v by at most ε′|v| balanced deletions. Then, the conclusion is still true if the
algorithm is given an independent k-factor sampling on v̂′ for each wi instead, except that R now provides a
(3ε′,Σ)-approximation. Last, each sampling can be replaced also by an over-sampling.

Proof. The argument is similar to the one of Theorem 3.2.10, and we use again as a subroutine the algorithm
of Theorem 3.2.6 for Â with restricted alphabet Σ̂′, where Σ′ = (Σ+ ∪ Σ− ∪ Σ∞). Remind that A is
Σ′-closed and its Σ′-diameter is the Σ-diameter of A.

For the case when we do not have exact k-factor sampling on v however, we need to compensate for the
prefix of v of size ε′|v| that may not be included in the sampling. This introduces potentially an additional
error of weight 2ε′|v| on the approximation R.

We are now ready to state the robustness of our algorithm. For u ∈ Σn, we apply all compressions from
lines 14 and 19 of Algorithm 3.7 using the tester from Corollary 3.2.28 with ε′ = ε/(6 log n) and η′ = η/n.
This leads to a final Rtemp ∈ ΣQ.

Rfinal

R
R′

Figure 3.9: Constructing the words u0, u1 and u2 as in Lemma 3.2.29 where Depth(Rfinal) = 2

Lemma 3.2.29. Let A a VPA recognizing L and let u ∈ Σn. Let Rfinal the final value of Rtemp in the
Algorithm 3.7 with sketches. If u ∈ L, then Rfinal ∈ L; and if Rfinal ∈ L, then bdistΣ(u, L) ≤ εn with
probability at least 1− η.

Proof. One way is easy. A direct inspection reveals that each substitution of a factor w by a relation R
enlarges the set of possible w-transitions.Therefore Rfinal ∈ L when u ∈ L.

For the other way, consider some word u such that Rfinal ∈ L. Since the tester of Corollary 3.2.28 has
bounded error η′ = η/n and was called at most than n times, none of the calls fails with probability at least
1− η. From now on we assume that we are in this situation.

Let h = Depth(Rfinal). We will inductively construct sequences u0 = u, . . . , uh = Rfinal and vh =
Rfinal, . . . , v0 such that for every 0 ≤ l ≤ h, ul, vl ∈ (Σ+ ∪ Σ− ∪ ΣQ)∗, bdistΣ(ul, vl) ≤ 3(h − l)ε′|ul|
and vl ∈ L. Furthermore, each word ul will be the word u with some substitutions of factors by relations
R computed by the tester. Therefore, Depth(ul) is well defined and will satisfy Depth(ul) = l. This will

53

conclude the proof using that Depth(u) ≤ log3/2 n from Lemma 3.2.20. Indeed, since h ≤ Depth(u), it
will give us bdistΣ(u, v0) ≤ 6ε′n log n ≤ εn.

We first define the sequence (ul)l (see Figure 3.9 for an illustration). Starting from u0 = u, let ul+1 be the
word ul where some factors in ΛQ have been replaced by a (3ε′,Σ)-approximation in ΣQ. These correspond
to all the approximations eventually performed by the algorithm that did not involve a symbol already in ΣQ.
Some approximations are eventually collapsed together into a single symbol by the • operation (in Figure 3.9
this is the case for R′). Observe that after this collapse, the symbol is still a (3ε′,Σ)-approximation. In
particular, uh = Rfinal, ul ∈ (Σ+ ∪ Σ− ∪ ΣQ)∗ and Depth(ul) = l by construction.

We now define the sequence (vl)l such that vl ∈ L. Each letter of vl will be annotated by an accepting run
of states forA. Set vh = Rfinal with an accepting run from pin to qf for some (pin , qf) ∈ Rfinal∩ (Qin×Qf).
Consider now some level l < h. Then vl is simply vl+1 where some letters R ∈ ΣQ in common with ul+1

are replaced by some factors in w ∈ (ΛQ)∗ as explained in the next paragraph. Those letters are the ones that
are present in ul but not ul+1, and are still present in vl+1 (i.e. they have not been further approximated down
the chain from ul+1 to uh, or deleted by edit operations moving up from vh to vl+1).

Let w ∈ (ΛQ)∗ be one of those factors and R ∈ ΣQ its respective (3ε′,Σ)-approximation.
By hypothesis R is still in vl+1 and corresponds to a transition (p, q) of the accepting run of vl+1. We

replace R by a factor w′ such that p w′−→q and bdistΣ(w,w′) ≤ 3ε′|w|, and annotate w′ accordingly. By
construction, the resulting word vl satisfies vl ∈ L and bdistΣ(ul, vl) ≤ 3(h− l)ε′|ul|.

54

3.3 Input/Output Streaming Algorithms
3.3.1 Reversing the Input stream
The naive algorithm for reversing the Input stream using p passes in total (i.e. p ≥ 2) is to copy to memory the
first 2n/p bits of the input stream, then write them on the output stream in the correct order. During the next
pair of passes, we do the same thing for the next 2n/p bits of the input. This approach clearly uses O(n/p)
memory space. We will show in Section 4.2.1 that if we restrict ourselves to the Read-Only/Burn-Only model
it is optimal.

For other models, we however have algorithms that perform better than the naive one.

3.3.1.1 With either Read-Write Input or Read-Write Output

If we can read the output stream again, we can use it to store some of the input in order to maximize our use of
memory. While every bit written on the wrong part of the input stream will have to go through our algorithm’s
memory in order to be written at the correct place eventually, if the bits that we must moved are placed at
well chosen locations along the stream, we can move many of them in one pass with just O(log n) bits of
memory, each time moving one, discarding it from memory and storing the next one with its destination.

Theorem 3.3.1. There is a deterministic algorithm such that, given n and p ≤
√
n, it is a p-pass RO/RW

streaming algorithm for Reverse on Σn with space O(log n+ (n log |Σ|)/p2) and expansion 1.

We first present Algorithm 3.11, which performs O(
√
n) passes and uses memory space O(log n+log |Σ|).

It works by copying blocks of size O(
√
n) directly from the input stream to the output stream without reversing

them (otherwise there would not be enough space in the memory), but writing different blocks in the correct
order pairwise. In addition, during each pass on the output, it moves one element from each block already
copied to the correct place. Since blocks have as many elements as there are passes left after they are copied,
the output stream is in the correct order at the end of the execution.

The real algorithm for generic p and s will use Algorithm 3.11 with alphabet Σ set to be Σs/ log |Σ|.

1 Data Structure:
2 p =

√
2n passes, t← 1 // current pass

3 i1 ← p // last index of the current block of X
4 R register for one letter
5 l original index of R // total memory O(log n+ log |Σ|)
6 Code:
7 While {t ≤ p}
8 If t > 1 then (R, l)← (Y [n− it], n− it)
9 If it < n then

10 Y [n− it − (p− t), n− it]← X[it − (p− t), it] // Order is unchanged
11 it+1 ← it + p− t
12 For m = t− 1 to 1
13 Put R in the right place Y [l′] // l′ computed from l,m, p, n
14 (R, l)← (Y [l′], l′)
15 t← t+ 1

Algorithm 3.11: RO/RW streaming algorithm for Reverse

Proof of Theorem 3.3.1. We will prove that Algorithm 3.11 satisfies the theorem when p = 2
√
n. First,

observe that every element of the input is copied on the output, as
∑p

t=1(p− t) = p(p+ 1)/2 = n+
√
n ≥ n.

Let 1 ≤ t < p. The blockX[it−(p−t)−1, it] is initially copied at line 10 on Y [n−it−(p−t)−1, n−it].
Therefore only Y [n− it] is correctly placed. Let Bt be {n− it − (p− t), n− it − 1}. Then Bt denotes the

55

indices (on Y) of elements copied during the t-th iteration of the While loop that are incorrectly placed. For
each l ∈ Bt, the correct place for Y [l] is in {n−it+1, n−it+p−t} = {n−it−1−(p−t+1), n−(it−1+1)},
which is Bt−1 (where by convention B0 is defined with i0 = 0). Therefore, in the (t+ 1)-th iteration of the
while loop, the first Y [l] we place correctly goes from l = n− it+1 + 1 = n− it − (p− t) ∈ Bt to some
l′ ∈ Bt−1. Then recursively the previous value of Y [l′] goes in Bt−2, and so on until we reach B0 where
nothing was written initially.

Thus, the For loop places correctly one element of each of Bt−1, Bt−2, . . . , B1. Observe that Bm has at
most p−m elements incorrectly placed. Moreover, there are (p−m) remaining iterations of the While loop
after Bm is written. Therefore all elements are places correctly when Algorithm 3.11 ends.

For p = 2
√
n, the complexity can be seen by examining Algorithm 3.11. For the general case, the

algorithm treats groups of m = 4n/p2 letters as though they were just one letter of alphabet Σm, then
runs Algorithm 3.11. This requires memory space O(log(n/m) + (n/m)(log |Σm|)/p2) = O(log n +
(n log |Σ|)/p2).

We also prove a similar result in the Read-Write/Write-Only model. The proof structure is the same, and
it uses Algorithm 3.12 instead as a subroutine.

Theorem 3.3.2. There is a deterministic algorithm such that, given n and p ≤
√
n, it is a p-pass RW/WO

streaming algorithm for Reverse on Σn with space O(log n+ (n log |Σ|)/p2) and expansion 1.

1 Data Structure:
2 p =

√
2n passes, t← 1 // current pass

3 i1 ← n // first/last index of the current block of X
4 R register for one letter
5 l original index of R // total memory O(log n+ log |Σ|)
6 Code:
7 While {t ≤ p}
8 (R, l)← (X[t], t)
9 Y [n− it + 1, n− it + t]← X[it, it + t− 1] // Order is unchanged

10 it+1 ← it − t− 1
11 For m = 1 to (p− t)
12 Put R in X[l′] // l′ computed from l,m, p, n
13 (R, l)← (X[l′], l′)
14 t← t+ 1

Algorithm 3.12: RW/WO streaming algorithm for Reverse

Proof of Theorem 3.3.2. We will prove that Algorithm 3.12 satisfies the theorem when p = 2
√
n. First, we

must define blocks more properly to explain what the algorithm does at line 12. X is divided into p − 1
blocks, the first one of length p − 1 and the last one of length 1. This covers the entirety of X . The last
element in each block does not move, but every other element does in order to change the order of the block.
The last index of a block, which is equal to some it, therefore becomes the first one by the time the block is
copied. If R is in a block where the pivot is it, th algorithm will move it to its symmetrical position with
regard to it.

When X[it, it + t − 1] is copied in the t-th iteration, it therefore corresponds to the block that was
originally in position X[it − t + 1, it], and has been reversed. Therefore its correct position on Y is
Y [n − it + 1, n − (it − t + 1) + 1] = Y [n − it + 1, n − it + t]. This means that each element is copied
directly in its correct place by Algorithm 3.12.

56

For p = 2
√
n, the complexity can be seen by examining Algorithm 3.12. For the general case, as before

the algorithm treats groups of m = 4n/p2 letters as though they were just one letter of alphabet Σm, and
then runs Algorithm 3.12. This requires memory space O(log n+ (n log |Σ|)/p2).

3.3.1.2 With Read-Write Input and Read-Write Output

In the case where both streams are Read-Write, an algorithm using a logarithmic number of passes can
be much more powerful. While a logarithmic number of passes may seem like a lot, one can think of the
streaming augmented with a sorting primitive model [38]. In this model, every use of the sorting primitive
uses Θ(log n) passes, presumably on three streams.

Theorem 3.3.3. Algorithm 3.13 is a deterministic O(log n)-passes RW/RW streaming algorithm for Reverse
on Σn with space O(log n) and expansion 1.

Algorithm 3.13 proceeds by dichotomy. For simplicity, we assume that n is a power of 2, but the algorithm
can easily be adapted while keeping λ = 1. At each step, it splits the input in two, copies one half to its
correct place on the stream, then makes another pass to copy the other half, effectively exchanging them.

1 Data Structure:
2 W0 ← X, W1 ← Y // Rename the streams as they will switch roles
3 α← 0 // Which stream is considered the input stream
4 k ← n // Size of current blocks
5 Code:
6 While k > 1
7 k ← k/2
8 For i = 1 to n/2k − 1
9 W1−α[(2i+ 1)k + 1, (2i+ 2)k]←Wα[2ik + 1, (2i+ 1)k] // One pass

10 For i = 0 to n/2k − 1
11 W1−α[2ik + 1, (2i+ 1)k]←Wα[(2i+ 1)k + 1, (2i+ 2)k] // Another pass
12 α← 1− αn, erase W1−α // Exchange the roles of the streams
13 Y ←Wα // Copy the final result on output tape

Algorithm 3.13: RW/RW streaming algorithm for Reverse

Proof of Theorem 3.3.3. Since the algorithm can read and write on both tapes, they perform very similar
roles. We rename the input streamW0 and the output streamW1. By a simple recursion, we see that whenever
a block W1−α[tk, (t+ 1)k] is moved, it is moved in the place that Reverse(W1−α[tk, (t+ 1)k]) will occupy.
Therefore, the algorithm is correct.

Now we prove the bounds on s and p. Algorithm 3.13 never needs to remember a value, only the current
index and current pass, so s = O(log n). Since the length of blocks copied is divided by 2 at each execution
of line 7, it ends after a logarithmic number of executions of the While loop. Each iteration of the While loop
requires two passes, one for each of the two For loops (lines 8 and 10). Therefore the total number of passes
is in O(log n).

3.3.2 Sorting the Input stream
Sort is generally more useful, as it allows us to simulate streaming algorithms augmented with sorting
primitives, but also more complex than Reverse. Even in the RW/RW model, we are not able to present a
deterministic algorithm as efficient as Algorithm 3.13 for Reverse. With three streams, the problem becomes
easy since we can Merge Sort two streams, and write the result of each step on the third one.

57

3.3.2.1 Merge Sort

We begin with an algorithm inspired from [11]. The algorithm works as a Merge Sort. We call Bt
i the i-th

sorted block at the t-th iteration of the While loop, consisting of the sorted values of X[2ti+ 1, 2t(i+ 1)].
Since there is no third stream to write on when two blocks Bt

2i−1 and Bt
2i are merged into Bt+1

i , we label
each element with its position in the new block. Then both halves are copied on the same stream again so that
they can be merged with the help of the labels. This improves the expansion (Definition 2.2.4) of [11] from n
to log n. However it is somewhat unsatisfying because when Σ is of constant size, our algorithm still has
Ω(log n) expansion.

Theorem 3.3.4. Algorithm 3.14 is a deterministic O(log n)-pass RW/RW streaming algorithm for Sort on
Σn with space O(log n) and expansion O((log n)/log |Σ|).

1 Data Structure:
2 W0 ← X, W1 ← Y // Rename the streams as they will switch roles
3 α← 0 // Which stream is considered the input stream
4 t← 1 // Current pass
5 k ← 1 // Size of the sorted blocks
6 Code:
7 Expand the input so that each element has a label of size log n.
8 While k < n
9 For i = 1 to n/2k

10 Copy Bt2i on W1−α
11 For i = 1 to n/2k
12 For each Wα[j] ∈ Bt2i−1 ∪Bt2i
13 Wα[j]← index of Wα[j] in Bt+1

i

14 For i = 1 to n/2k
15 Copy Bt2i at the end of Wα after Bt2i−1
16 For i = 1 to n/2k
17 For each Wα[j] ∈ Bt2i−1
18 Write Wα[j] at its position on W1−α
19 For i = 1 to n/2k
20 For each Wα[j] ∈ Bt2i
21 Write Wα[j] at its position on W1−α
22 α← 1− α erase W1−α, t← t+ 1, k ← 2k
23 Y ←Wα

Algorithm 3.14: RW/RW streaming algorithm implementing Merge Sort

Proof. Since it is an implementation of the Merge Sort algorithm, Algorithm 3.14 is correct. Each iteration
of the While loop corresponds to five passes on each tape, and therefore the total number of passes is in
O(log n). Since the algorithm only needs to remember the position of the heads, current elements and the
counters k, t, it only uses memory O(log n). Finally, since the label for each element uses at most space log n
on the stream, the therefore the expansion is at most (log |Σ|+ log n)/log |Σ| = O((log n)/log |Σ|).

3.3.2.2 Quick Sort

With a Quick Sort algorithm instead of a Merge Sort, we only need to store the current pivot (of size at most
log n), without labeling elements. However, Quick Sort comes with its own issues: the expected number of
executions of the While loop is O(log n), but unless we can select a good pivot it is Ω(n) in the worst case.
For this reason, we use a randomized Las Vegas algorithm.

58

A block in Algorithm 3.15 is a set of elements that are still pairwise unsorted, i.e. elements that have
the same relative positions to all pivots so far. The block Bt

i is the i-th lower one during the t-th iteration
of the While loop, and P ti is its pivot. The block Bt+1

2i−1 consists of all elements in Bt
i lower than P ti and all

elements equal P ti with a lower index. The block Bt+1
2i is the complementary. Algorithm 3.15 marks the

borders of blocks with the symbol].
Algorithm 3.15 selects each pivot P ti at random among the elements of Bt

i . While it may not do so
uniformly with only one pass because |Bt

i | is unknown, it has an upper bound k ≥ |Bt
i |. Algorithm 3.15

selects l ∈ {1, . . . , k} uniformly at random, then picks li the remainder modulo 2dlog |Bt
i |e of l. This can

be computed in one pass with O(log n) space by updating li as the lower bound on |Bt
i | grows. It uses

P ti = Bt
i [li]. P

t
i is selected uniformly at random from a subset of size at least half of Bt

i , which guarantees
that with high probability min(|Bt+1

2i−1|, |Bt
2i|) = Ω(|Bt

i |).

Theorem 3.3.5. For all 0 < ε ≤ 1/2, Algorithm 3.15 is a randomized O((log n)/ε)-pass RW/RW Las Vegas
streaming algorithm for Σn with failure ε, space O(log n) and expansion O(1).

1 Data Structure:
2 W0 ← X, W1 ← Y // Rename the streams as they will switch roles
3 α← 0 // Which stream is considered the input stream
4 t← 1 // Current pass
5 K ← 1 // Number of sorted blocks
6 Code:
7 While K > 0
8 Abort if the total number of passes is Ω((log n)/ε)
9 Expand W0 adding O(K) space for] and pivots

10 For i = 1 to K
11 Find P ti at random
12 W1−α[i]← P ti
13 Replace P ti with a ⊥ on Wα

14 For i = 1 to K
15 Copy W1−α[i] = P ti at the start of Bti on Wα

16 For i = 1 to K
17 Write all elements in Bt+1

2i−1 on W1−α
18 Write]Pi] on W1−α.
19 Leave space for the rest of Bt+1

2i

20 For i = 1 to K
21 Write all elements in Bt+1

2i in the space left on W1−α
22 α← 1− α; Erase W1−α; t← t+ 1
23 K ← new number of unsorted blocks // using an additional pass
24 Y ←Wα

Algorithm 3.15: RW/RW streaming algorithm implementing Quick Sort

Proof. Algorithm 3.15 is an implementation of the Quick Sort algorithm, and is therefore correct. Its
correctness does not depend on the quality of the pivots. The bound on the memory and the expansion are
direct. While it uses additional symbols ⊥ and], they can be easily replaced by an encoding with symbols
of Σ appearing in the input with only O(1) expansion. Because for each i and t, with high probability
min(|Bt+1

2i−1|, |Bt
2i|) = Ω(|Bt

i |), with high probability Algorithm 3.15 terminates in O(log n) passes.

59

60

Chapter 4

Lower Bounds

4.1 Recognizing Priority Queues with Timestamps in one pass
A tight lower bound on the space complexity of recognizing priority queues without timestamps in streaming
comes from the lower bound on the streaming complexity of Dyck languages by [32]. By attributing to each
parenthesis the priority 2h+ k, where h is the height of the parenthesis, and k is 0 for ′′(′′ and ′′)′′ and 1 for
′′[′′ and ′′]′′, we can reduce DYCK[2] to PQ.

Corollary 4.1.1 (Chakrabarti,Cormode, Kondapalli,McGregor). Every p-pass randomized streaming algo-
rithm recognizing PQ(N) with bounded error 1/3 requires memory space Ω(

√
N/p) for inputs of length

N .

However, the original algorithm by Chu, Kannan and McGregor [12] was for priority queues augmented
with timestamps. In this model, extractions are of the form (ext(a), i), with the promise that u[i] = ins(a)
matches this extraction. More precisely:

Definition 4.1.2 (PQ-TS). Let Σ = {ins(a),ext(a) : a ∈ {0, 1, . . . , U}} × N. Let u ∈ Σn. Then
u ∈ PQ-TS(U) if and only if:

• u ∈ COLLECTION(Σ).

• u[1, . . . , n][1] ∈ PQ(U)

• u[i][2] = i when u[i][1] = ins(a)

Note that the first and third properties guarantee that timestamps are actually what we could intuitively call
timestamps. Indeed if u[i] = (ext(a), j), u[j][1] = ins(a), as there must exists an element (ins(a), j) for
u to be in COLLECTION(Σ). Note that timestamps also have no collisions, which means that for u ∈ PQ-TS,
if u[i][2] = u[i′][2] = j, then either j = i or j = i′. Because the first and third properties are trivial to check
in streaming (the first only requires a single hashcode, the third not even that), recognizing PQ-TS cannot be
harder than recognizing PQ.

We also remark that we cannot reduce DYCK[2] to PQ-TS in the same way: if parentheses have
timestamps, then an algorithm can just make a hashcode with the type of parenthesis and the timestamp,
and verify that an input is in the language with memory O(log n). To prove a lower bound on the streaming
complexity of recognizing PQ-TS, we therefore need to find a hard distribution on PQ that does not
correspond to well-parenthesized words.

61

In [12], the authors give a sketch of what they believe to be a hard distribution for PQ-TS. However, as
they note, proving the hardness of this distribution using communication complexity tools does not seem to be
feasible. The reason for that is that the timestamps in the instances in the support of their distribution contain
information, and cannot be strictly deduced from u[1, . . . , n][1]. We will instead give a hard distribution for
which the timestamps can be computed by the algorithm from u[1, . . . , n][1] using O(log n) memory.

Theorem 4.1.3. Every p-pass randomized streaming algorithm recognizing PQ-TS(3N/2) with bounded
error 1/3 requires memory space Ω(

√
N/p) for inputs of length N .

As in many proofs of lower bounds for streaming complexity before, the technique we used in our proof
is to reduce a communication problem, where each player has part of the input, to the streaming problem
(with our hard distribution). For any streaming algorithm using p passes and s memory space, the k players
can simulate the algorithm on their part of the input and send the memory to the next player, which results
in a randomized public-coins message-passing communication protocol with communication complexity at
most ksp. By contraposition, a lower bound on the communication complexity of such a protocol implies a
lower bound on the space complexity of a streaming algorithm for our problem.

One of the big difficulties with this technique is that it is often hard to prove lower bounds in communica-
tion complexity for more than 2 players, but in this case we would most likely need to use Θ(

√
n) players

to prove our bound. We use a technique from [32] here; they reduce a O(
√
n)-player communication prob-

lem consisting of O(
√
n) nested independent 2-player communication problems to the streaming problem,

then use a direct sum argument to bound the information complexity of that problem with the information
complexity of a 2-player problem, and conclude by using the information complexity as a lower bound for
communication complexity.

Here however, this approach is made even harder by the fact that we were not able to find a decomposition
into nested independent 2-player problems with a satisfying lower bounds: instead we have 3-player problems,
which both complicates the proof of the lower bound for information complexity of the small problem, and
the direct sum to bound the information complexity of the global 3m-player problem.

4.1.1 Reduction from communication protocols to the streaming algorithms

4.1.1.1 Hard distribution

For our hard distribution to have easily computable timestamps, we should make it so the insertions and
extractions at each index are in disjoint sets that depend on as few variables other than the index as possible.
If every extraction can take two values, and therefore be sometimes larger and sometimes smaller than another
extraction, then we may have a hard set of instances. Consider the following set of instances of length
N = (2n+ 2)m:

RAINDROPS(m,n) (see Figure 4.1)

• For i = 1, 2, . . . ,m, repeat the following pattern:

– For j = 1, 2, . . . , n, insert either vi,j = 3(ni− j) or vi,j = 3(ni− j) + 2

– Insert either bi = 3(ni− (ki − 1)) + 1 or bi = 3(ni− ki) + 1, for some ki ∈ [2, n]

– Extract vi,1, vi,2, . . . , vi,ki−1, bi in decreasing order

• Extract everything left in decreasing order

Observe that because the ki are not fixed, if u is a word formed this way, the index of vi,j or bi cannot be
deduced only from i. However, the timestamps can still be easily computed by a streaming algorithm:

62

Lemma 4.1.4. If there exists a p-pass randomized streaming algorithm recognizing PQ-TS((2n + 2)m)
with bounded error ε and memory space s, then there exists a p-pass randomized streaming algorithm
recognizing the instances of RAINDROPS(m,n) which are in PQ with bounded error ε and memory space
s+ O(log(mn)).

Proof. When reading an extraction that is part of the first patter (i.e. ext(vi,j) with j < ki), the algorithm
knows the timestamp is t− n− 1, or t− n− 2, depending on whether it saw ext(bi) already, with t the
current index. During the final sequence when everything remaining is extracted, the timestamp of ext(vi,j)
at index t is t− (m− i)(2n+ 2)− n− 2. Therefore the algorithm only needs to keep track of the index at
which ins(bi) is read until it reads ext(bi) to be able to compute all the timestamps as extractions are read,
and simulate the first algorithm on RAINDROPS(m,n).

Using this result, we now only consider whether an instance u of RAINDROPS(m,n) is in PQ. There
is only one potential error in each occurrence of the pattern that can make u not be in PQ. Indeed,
vi,1, vi,2, . . . , vi,ki−1, bi are extracted in decreasing order, and the only insertion before that which might be
larger than the minimal extraction in that sequence is vi,ki . This only happens if vi,ki is as large as it can be
(i.e. 3(ni− ki) + 2) and bi is as small as it can be (i.e. bi = 3(ni− ki) + 1).

Given such an instance as a stream, an algorithm for PQ-TS must decide if an error occurs with ext(bi)
and ins(vi,ki) as the witnesses, for some i. Intuitively, if the memory space is less than εn, for a small
enough constant ε > 0, then the algorithm cannot remember all the values (vi,j)j when bi is extracted, and
therefore cannot check that vi,ki = 3(ni − ki) + 2, which is a necessary condition for an error to exist in
the i-th occurrence of the pattern. The next opportunity is during the last sequence of extractions. But then,
the algorithm would have to remember all values (bi)i to check that bi = 3(ni − ki) + 1, which is again
impossible if the memory space is less than εm.

4.1.1.2 Reduction of a 3m-player communication problem to the hard distribution

In order to formalize the intuition above, Lemma 4.1.5 first translates our problem into a communication one
between 3m players as shown in Figure 4.2. Then we will analyze its complexity using information theory
arguments.

Any insertion and extraction of an instance in RAINDROPS(m,n) can be described by its index and
a single bit. Let xi ∈ {0, 1}n such that vi,j = 3(ni − j) + 2xi[j]. Similarly, let di ∈ {0, 1} such that
bi = 3(ni− ki) + 1 + 3di. For simplicity, we write x instead of (xi)1≤i≤m. Similarly, we use the notations
k and d. Then our related communication problem is:

WEAKINDEX(m,n)

• Input for players (Ai, Bi, Ci)1≤i≤m:

– Player Ai has a sequence xi ∈ {0, 1}n

– Player Bi has xi[1, ki − 1], with ki ∈ [2, . . . , n] and di ∈ {0, 1}
– Player Ci has xi[ki, n]

• Output: fm(x,k,d) =
∨m
i=1 f(xi, ki, di), where f(x, k, d) = [(d = 0) ∧ (x[k] = 1)]

• Communication settings:

– One round: each player sends a message to the next player according to the diagram
A1 → B1 → A2 → · · · → Bm → Cm → Cm−1 → · · · → C1.

– Multiple rounds: If there is at least one round left, C1 sends a message to A1, and then
players continue with the next round.

63

ins(2)

ins(5)

ins(6)

ins(9)

ins(7)

ext(9)

ext(6)

ext(7)

ins(14)

ins(17)

ins(18)

ins(23)

ins(16)

ext(23)

ext(18)

ext(16)

ext(17)

ext(14)

ext(5)

ext(2)

i = 1

k1 = 3

i = 2

k2 = 3

i = 3

Figure 4.1: First two occurrences of the pattern in an instance of RAINDROPS(m, 4) with one error in the
second occurrence (b2 = 16 is extracted before v2,k2 = 17). The hatched part corresponds the factor of u

with all other occurrences of the pattern, not represented here. For each insertion, the dashed ellipse below or
above represents the other possible value for that vi,j or bi. Insertions and extractions of bi are respectively
represented in cyan and orange. Note that in the first occurrence of the pattern, bi > vi,ki−1 and therefore

ext(bi) comes before ext(vi,ki−1).

64

ins(2)

ins(5)

ins(6)

ins(9)

ins(7)

ext(9)

ext(6)

ext(7)

ins(14)

ins(17)

ins(18)

ins(23)

ins(16)

ext(23)

ext(18)

ext(16)

ext(17)

ext(14)

ext(5)

ext(2)

A1

x1 = (0, 0, 1, 1)

B1

x1[1, k1 − 1] = (0, 0)

b1 = 1

A2

x2 = (1, 0, 1, 1)

B2

x1[1, k1 − 1] = (1, 0)

b2 = 0

C2

x2[k2, n] =

(1, 1)

C1

x1[k1, n] =

(1, 1)

Figure 4.2: Cutting the same instance of RAINDROPS(m, 4) as in Figure 4.1 into 3m pieces to make it an
instance of WEAKINDEX(m,n). Players’ input are within each corresponding region.

65

We named our problem WEAKINDEX because of the resemblance to AUGMENTEDINDEX used in [32]
and [26] to prove the lower bound on DYCK[2]. The main difference here is that instead of having only two
players per level (in the reduction from AUGMENTEDINDEX to DYCK[2], Alice would have the same input
as here, but also be in control of the final set of closing parentheses), there are three. Note that neither Alice
nor Charlie know d, so they cannot by themselves determine the value of f . However if we had “Charlice” as
super-player taking both Alice’s and Charlie’s place, she would know k which would make her much more
powerful than Alice in the original AUGMENTEDINDEX, as she would be able to send x[k] to Bob using only
one bit of communication.

We now prove the reduction from WEAKINDEX(n,m) to PQ(3mn) using the standard method.

Lemma 4.1.5. If there exists a p-pass randomized streaming algorithm for deciding if an instance of
RAINDROPS(m,n) is in PQ(3mn) with memory space s(m,n) and bounded error ε, Then there is a p-round
randomized protocol for WEAKINDEX(n,m) with bounded error ε such that each message has size at most
s(m,n).

Proof. Assume that there exists a p-pass randomized streaming algorithm with memory space s(m,n),
that decides if an instance of RAINDROPS(m,n) belongs or not to PQ-TS(3nm). Each instance of
RAINDROPS(m,n) can be encoded by an input of WEAKINDEXnm, where each of the 3m players has
one part of it.

Each player simulates alternatively the algorithm, until it reaches a part of input belonging the next player.
At this points, the first player sends the current memory to the next player, who continues the simulation.
Since the algorithm uses at most memory space s(m,n), the current memory can be encoded using s(m,n)
bits. Each pass corresponds to one round of communication between players, which finishes the proof.

4.1.2 Lower bound of the communication complexity of RAINDROPS(m,n)

4.1.2.1 Direct sum and reduction of a 3-player communication problem to the 3m-player problem

We now show that we can reduce a single instance of WEAKINDEX(n, 1) with 3 players to the general
problem WEAKINDEX(n,m) with 3m players. In order to do so we use the direct sum property of the
information cost. For this we need to choose a collapsing distribution where f is always 0. Let µ0 be the
uniform distributions on the (x, k, d) ∈ 0, 1n × [2, n]× 0, 1 verifying f(x, k, d) = 0.

The resulting communication problem will have asymmetrical constraints, as shown on Figure 4.3. For
each i, Ai can just send a message to Bi. However if Bi wants to send a message to Ci, that message has
to transit through all intermediate players, in particular its information content has to go from Bm to Cm.
Similarly, any information that C1 wants to send to Ai has to transit from C1 to A1.

A1 B1 A2 B2 A3 B3 . . . Cm Cm−1 . . . C1

MA1 MA2 MA3MB1 MB1 ,MB2

MB1 MB1 ,MB2

MB1 , . . . ,MBm

MCm

MB1 , . . . ,MBm−1

MB1

MC2 , . . . ,MCm MC1 , . . . ,MCm

Figure 4.3: While for each i, Ai may send a relatively large message to Bi, all messages from all Bi to all Ci
transit through the same point, and the same is true of all messages from all Ci to all Ai. Therefore in the
3-player problem, the information sent by Bob to Charlie and sent by Charlie to Alice has to be less than a
constant amount. This figure only represents the first pass: otherwise there would be thick arrows everywhere

since each Ai also has to send the messages from Ci′ to Ai′ for i′ > i.

66

Lemma 4.1.6. If there is a p-round randomized protocol P for WEAKINDEX(n,m) with bounded er-
ror ε and messages of size at most s(m,n), then there is a (p + 1)-round randomized protocol P ′

for WEAKINDEX(n, 1) with bounded error ε, and transcript Π′ satisfying |Π′| ≤ 3(p + 1)s(m,n) and
max {Iµ0(D : Π′B|X,K), Iµ0(K,D : Π′C |X)} ≤ p+1

m s(m,n).

Given a protocol P , we show how to construct another protocol P ′ for any instance (x, k, d) of
WEAKINDEX(n, 1). In order to avoid any confusion, we denote by A, B and C the three players of
P ′, and by (Ai, Bi, Ci)i the ones of P .

Protocol P ′

• Using public coins, all players generate uniformly at random j ∈ {1, . . . ,m}, and xi ∈
{0, 1}n for i 6= j

• Players A, B and C set respectively their inputs to the ones of Aj , Bj , Cj

• For all i > j, Player B generates, using its private coins, uniformly at random ki ∈ [2, n],
and then it generates uniformly at random di such that f(xi, ki, di) = 0

• For all i < j, Player C generates, using its private coins, uniformly at random ki ∈ [2, n],
and then it generates uniformly at random di such that f(xi, ki, di) = 0

• Players A, B and C run P as follows. A simulates Aj only, B simulates Bj and
(Ai, Bi, Ci)i>j , and C simulates Cj and (Ai, Bi, Ci)i<j .

Observe that A starts the protocol if j = 1, and C starts otherwise. Moreover C stops the simulation after
p rounds if j = 1, and after p+ 1 rounds otherwise.

Proof. We show that P ′ satisfies the conditions of Lemma 4.1.6. For all i 6= j, f(xi, ki, ai) = 0. Therefore
fm(X,k,d) = f(xj , kj , aj) = f(x, k, a), and P ′ has the same bounded error than P .

Let us now show that P ′ satisfies the conditions on its transcript under the distribution µ0. Let Π,Π′ be
the respective transcripts of P, P ′. For convenience, we write ΠCm+1 = ΠBm and ΠB0 = ΠCm . As always,
the public coins of a protocol are included in its transcript.

First, each player of P ′ sends 3 messages by round, and there are (p+ 1) rounds. Since each message
has size at most s(m,n), we derive that the length of Π′ is at most 3(p+ 1)s(m,n).

Then, in order to prove that there is only a small amount of information in the transcripts of Bob and
Charlie, we show a direct sum of some appropriated notion of information cost. Consider first the transcript
of Player C1. Because of the restriction on the size of his messages, we know that |ΠC1 | ≤ (p+ 1)s(m,n).
From this we derive a first inequality on the amount of information this transcript can carry, using that the
entropy of a variable is at most its number of bits:

Iµ0(K,D : ΠC1 |X) ≤ |ΠC1 | ≤ (p+ 1)s(m,n).

67

We now use the chain rule in order to get a bound about the information carried by P ′ on a single instance.

Iµ0(K,D : ΠC1 |X) =
m∑
j=1

Iµ0((Ki, Di)i≤j : ΠC1 |X, (Ki, Di)i<j) (by chain rule)

≥
m∑
j=1

Iµ0(Kj , Dj : ΠBj−1 |X, (Ki, Di)i<j) (by DPI (Lemma 2.4.6))

≥
m∑
j=1

Iµ0(Kj , Dj : ΠBj−1 |X) (by Fact 2.4.7)

= m× Iµ0(KJ , DJ : ΠBJ−1
|X, J) (by conditioning on J)

= m× Iµ0(KJ , DJ : ΠBJ−1
, J, (Xi)i 6=J |XJ) (independence of J, (Xi)i 6=J)

= m× Iµ0(K,D : Π′C |X) (since J, (Xi)i 6=J are public coins of P ′).

We then do similarly for Player Bm and therefore conclude the proof. First the size bound on messages
of Bm gives Iµ0(ΠBm : D|X,K) ≤ (p+ 1)s(m,n). Then as before we get:

Iµ0(D : ΠBm |X,K) =

m∑
j=1

Iµ0(Dj : ΠBm |X,K, (Di)i>j) ≥
m∑
j=1

Iµ0(Dj : ΠCj+1 |X,K, (Di)i>j)

≥ m× Iµ0(DJ : ΠCJ+1
, J, (Xi)i 6=J |XJ ,KJ) = m× Iµ0(D : Π′B|X,K).

4.1.2.2 Information complexity of the 3-player problem

We now prove a trade-off between the bounded error of a protocol for a single instance of WEAKINDEX(n, 1)
and its information cost. The proof involves some of the tools of [26] but with some additional obstacles to
apply them. The average encoding theorem tells us that because of the small mutual information between
the transcript and the input under our distribution µ0, if we change the inputs of Alice and Charlie without
affecting Bob’s input and while staying in the support of µ0, then the transcript does not change too much
(Lemma 4.1.7). Lemma 4.1.8 says that the same is true if we change Bob’s input without affecting Alice and
Charlie or leaving the support of µ0. However since f is always 0 on the support of µ0 that is not conclusive
by itself.

We will then want to apply the cut-and-paste Lemma to show that two inputs where f takes different
values have almost always the same transcript. One difficulty lies in the fact that the cut-and-paste lemma
only applies to 2-player protocols, but we have 3 players. For this we group Alice and Charlie together as
one player. Note that we could not have done this from the start or we would not have obtained the result of
Lemma 4.1.7. The whole process is summed up by Figure 4.4.

In the following lemmas, we denote by Π(x, k, a) the random variable describing the transcript Π of our
protocol for (x, k, a) an input of WEAKINDEX(n, 1).

Lemma 4.1.7. Let P be a randomized protocol for WEAKINDEX(n, 1) with transcript Π satisfying |Π| ≤ αn
and Iµ0(K,D : ΠC |X) ≤ α. Then

Ex[1,l−1],l h
2(Π(x[1, l − 1]0X[l + 1, n], l, 1),Π(x[1, l − 1]1X[l + 1, n], l, 1)) ≤ 22α,

where l ∈ [n2 + 1, n] and x[1, l − 1] are uniformly distributed.

68

Proof. We will first show that we can change the value of k for a given x without affecting too much the
messages sent by Alice and Charlie. In other words, ΠA,C(x, j, 1) and ΠA,C(x, l, 1) will be roughly the same
for j < l. We will then show that if k = j, with l > j we can change x[l] without affecting the ΠA,C much
either. This will allow us to deduce the inequality on ΠA,C . The inequality on Π will follow from the fact
that if neither Bob’s input nor the message that Bob receives change, then the message Bob sends should also
stay the same.

From the second hypothesis and the data processing inequality (Lemma 2.4.6) we get that
Iµ0(K,D : ΠA,C |X) ≤ α, which after applying the average encoding lemma (Lemma 2.4.16) leads to
E(x,k,d)∼µ0 h2(ΠA,C(x, k, d),ΠA,C(x,K,D)) ≤ κα, with κ = ln 2

2 . We now restrict µ0 by conditioning
on D = 1. Then (X,K) is uniformly distributed. Moreover, since D = 1 with probability 2/3 on µ0, we
get Ex,k h2(ΠA,C(x, k, 1),ΠA,C(x,K, 1)) ≤ 3

2κα. Let J, L be uniform integer random variables respec-
tively in [2, n2] and [n2 + 1, n]. Then the above implies Ex,j h2(ΠA,C(x, j, 1),ΠA,C(x,K, 1)) ≤ 3κα and
Ex,l h2(ΠA,C(x, l, 1),ΠA,C(x,K, 1)) ≤ 3κα. Using that (u+v)2 ≤ 2(u2 +v2), with the triangle inequality
we get

Ex,j,l h2(ΠA,C(x, j, 1),ΠA,C(x, l, 1)) ≤ 12κα. (4.1)

Using the convexity of h2, we finally obtain for b = 0, 1:

Ex[1,l−1],j,l h
2(ΠA,C(x[1, l − 1]bX[l + 1, n], j, 1),ΠA,C(x[1, l − 1]bX[l + 1, n], l, 1)) ≤ 24κα. (4.2)

Now the chain rule allow us to measure the information about a single bit in ΠA,C as

I(X[L] : ΠA,C(X, J, 1)|X[1, L− 1]) = El←L I(X[l] : ΠA,C(X, J, 1)|X[1, l − 1])

=
2

n
× I(X[n2 + 1, n] : ΠA,C(X, J, 1)|X[1, n2]).

Since the entropy of a variable is at most its bit-size, we get that the last term is upper bounded by |ΠA,C |,
which is at most αn by the first hypothesis. Then combining equality 4.1 with the average encoding lemma
(Lemma 2.4.16) and the triangle inequality leads to

Ex[1,l−1],j,l h
2(ΠA,C(x[1, l − 1]0X[l + 1, n], j, 1),ΠA,C(x[1, l − 1]1X[l + 1, n], j, 1)) ≤ 14κα. (4.3)

Combining equalities 4.2 and 4.3 gives

Ex[1,l−1],l h
2(ΠA,C(x[1, l − 1]0X[l + 1, n], l, 1),ΠA,C(x[1, l − 1]1X[l + 1, n], l, 1)) ≤ 62κα.

This is almost what we want for the theorem as 62κ < 22, we just need to know that ΠB does not change
too much either. Let RB be the random coins of B. Since they are independent from all variables, including
the messages, the previous inequality is still true when we concatenate RB to ΠA,C . Then ΠB is uniquely
determined from RB once K,D,X[1,K − 1] are fixed, which is the case in that inequality. Therefore
replacing RB by ΠB can only decrease the distance, concluding the proof.

Lemma 4.1.8. Let P be a randomized protocol for WEAKINDEX(n, 1) with transcript Π satisfying
I(D : ΠB|X,K) ≤ α. Then

Ex[1,l−1],l h
2(Π(x[1, l − 1]0X[l + 1, n], l, 0),Π(x[1, l − 1]0X[l + 1, n], l, 1)) ≤ 12α,

where l ∈ [n2 + 1, n] and x[1, l − 1] are uniformly distributed.

69

Proof. Using the data processing inequality (Lemma 2.4.6) on the hypothesis gives Iµ0(D : Π|X,K)) ≤ α.
Therefore by average encoding (Lemma 2.4.16), E(x,k,d)∼µ0 h2(Π(x, k, d),Π(x, k,D)) ≤ κα.

Let L be a uniformly random variable in [n2 + 1, n]. Then E(x,l,d)∼mu0 h2(Π(x, l, d),Π(x, l,D)) ≤ 2κα.
Using the convexity of h2 and the fact that X[l] is a uniform random bit, we derive

Ex[1,l−1],l,d h2(Π(x[1, l − 1]0X[l + 1, n], l, d),Π(x[1, l − 1]0X[l + 1, n], l, D)) ≤ 4κα.

Since D = 0 with probability 1/2 when X[l] = 0 and K = l, we finally get the two inequalities

Ex[1,l−1],l h
2(Π(x[1, l − 1]0X[l + 1, n], l, 0),Π(x[1, l − 1]0X[l + 1, n], l, D)) ≤ 8κα,

Ex[1,l−1],l h
2(Π(x[1, l − 1]0X[l + 1, n], l, 1),Π(x[1, l − 1]0X[l + 1, n], l, D)) ≤ 8κα,

leading to the conclusion using the triangle inequality and that (u+ v)2 ≤ 2(u2 + v2).

We end this section with the a lemma which combines both previous ones and applies the cut-and-paste
property, where Players A,C are grouped.

Lemma 4.1.9. Let P be a randomized protocol for WEAKINDEX(n, 1) with bounded error ε, and transcript
Π satisfying |Π| ≤ αn and max {I(D : ΠB|X,K), I(K,D : ΠC |X)} ≤ α. Then α ≥ (1− 2ε)2/100.

Proof. Let L be a uniform integer random variable in [n2 + 1, n]. Remind that we enforce the output of P
to be part of Π. Therefore, any player, and in particular B, can compute f with bounded error ε given Π.
Since f(x[1, l− 1]0X[l+ 1, n], l, 0) = 0 and f(x[1, l− 1]1X[l+ 1, n], l, 1) = 1, the error parameter ε must
satisfies

Ex[1,l−1],l‖Π(x[1, l − 1]0X[l + 1, n], l, 0)−Π(x[1, l − 1]1X[l + 1, n], l, 0)‖1 ≥ 2(1− 2ε).

The rest of the proof consists in upper bounding the left-hand side of this inequality by 20
√
α.

Applying the triangle inequality and that (u + v)2 ≤ 2(u2 + v2) on the inequalities of Lemmas 4.1.7
and 4.1.8 gives

Ex[1,l−1],l h
2(Π(x[1, l − 1]0X[l + 1, n], l, 0),Π(x[1, l − 1]1X[l + 1, n], l, 1)) ≤ 68α.

We then apply the cut-and-paste property by considering a different protocol where (A,C) is a single player
and sends the message ΠA,C . Such a protocol would clearly not be the best for its input (otherwise we would
have considered a 2-player protocol from the start), but it can be easily created from P and applying the
property to it gives:

Ex[1,l−1],l h
2(Π(x[1, l − 1]0X[l + 1, n], l, 1),Π(x[1, l − 1]1X[l + 1, n], l, 0)) ≤ 68α.

Combining again with the inequality from Lemma 4.1.8 gives

Ex[1,l−1],l h
2(Π(x[1, l − 1]0X[l + 1, n], l, 0),Π(x[1, l − 1]1X[l + 1, n], l, 0)) ≤ 80α.

Last, we use the connection between the Hellinger distance and the `1-distance from Fact 2.4.15 and the
convexity of the square function to conclude with:

Ex[1,l−1],l‖Π(x[1, l − 1]0X[l + 1, n], l, 0),Π(x[1, l − 1]1X[l + 1, n], l, 0)‖1 ≤
√

160
√

2α < 20
√
α.

70

A B C

0

0

1

0

0

1
d = 0

A B C

0

0

1

0

0

1
d = 1

A B C

0

1

1

0

1

1
d = 1

A B C

0

1

1

0

1

1
0

A B C

0

0

1

0

0

1
1

A B C

0

1

1

0

1

1
1

Lemma 4.1.8 Lemma 4.1.7

Lemma 4.1.7Cut and

Paste

Figure 4.4: Illustration of the proof of Lemma 4.1.9. The green and blue borders show how the cut-and-paste
property is applied. In the end, the lower-right instance and the lower-left instance should have close

transcripts, although one verifies f(x, k, d) = 0 and the other f(x, k, d) = 1, and Bob’s input is the same in
both cases. This creates a contradiction.

4.1.3 Final proof of Theorem 4.1.3
We are now ready to combine all previous lemmas to prove that recognizing PQ-TS with a streaming
algorithm is not easier than recognizing PQ.

Proof of Theorem 4.1.3. Let n,N be positive integers such that N = (2n+ 2)n. Assume that there exists a
p-pass randomized streaming algorithm that recognizes PQ-TS(3N/2), with memory space αn and with
bounded error ε, for inputs of size N . Then, by Lemma 4.1.4, there is a p-pass randomized streaming
algorithm that decides whether an instance of RAINDROPS(n, n) is in PQ(3n2) = PQ(3N/2) using memory
space αn+ β log n and with bounded error ε for some constant β. For n large enough, this is smaller than
2αn. Lemma 4.1.5 then implies that there exists a p-round randomized protocol P for WEAKINDEX(n, n)
such that each message has size at most 2αn. By Lemma 4.1.6, one can derive from P another (p + 1)-
round randomized protocol P ′ for WEAKINDEX(n, 1) with bounded error ε, and transcript Π′ satisfying
|Π′| ≤ 6(t + 1)αn and max {I(D : Π′B|X,K), I(K,D : Π′C |X)} ≤ 2(p + 1)α. Then by Lemma 4.1.9,
6(p+ 1)α ≥ (1− 2ε)2/100, that is α = Ω(1/p), concluding the proof.

71

4.2 Reversing an Input stream in the Input/Output model
In this section we consider a slightly different model from Section 3.3: The algorithm processes a stream
containing the input u from left to right, and most copy u on an output stream it processes from right to left.
The reason we consider this model with streams in two directions instead of the equivalent model where
both streams are read from left to right and the goal is to output Reverse(u) is that this allows for a greater
simplicity in notations. For example, we can refer clearly to an index at which the heads meet.

We call X the input stream and Y the output stream, and also use those names to describe their content.
Since they can change over time, we will often refer to Xt and Y t the contents after pass t. To avoid
confusion, the original input (which is equal to X0) will be called u, as in other sections.

4.2.1 With Read-Only Input and Burn-Only Output
Unsurprisingly, the naive algorithm in this setting is optimal, although the proof is far from trivial. More
surprisingly, we were unable to prove it in the general Read-Only/Write-Only model and had to use the more
restrictive model where the output stream is Burn-Only.

Theorem 4.2.1. Let 0 ≤ ε ≤ 1/10. Every p-pass randomized RO/BO algorithm with the input stream read
from left to right and the output stream written on from right to left for copying the input u with error ε
requires space Ω(n/p).

To prove this theorem, we had to develop new techniques. Indeed the normal technique using a reduction
from some communication problem cannot work. If we tried something of the sort, logically each player
would have a part of u, and would write a part of the output v that is different, and we could try to show
that if we want v = u then all players have to send their input to another player. However, that would not
imply the theorem, as a streaming algorithm with two streams cannot be simulated by a communication
protocol. Consider the situation illustrated in Figure 4.5. Here, Alice is able to write directly on Bob’s part of
the output without using the algorithm’s memory. This sort of trick is also the reason why there are more
efficient algorithms than the naive ones in the Read-Only/Read-Write and Read-Write/Write-Only models
(see Theorems 3.3.1 and 3.3.2).

Alice Bob

Alice runs the first pass on her part.

Alice sends the

memory to Bob.
Alice Bob

Bob runs the first pass on his part,
then sends the memory to Alice.

Alice Bob

Alice runs the second pass on her part.

??? Alice Bob

No one can run the algorithm now.

Figure 4.5: A streaming algorithm with two streams and multiple passes cannot be simulated by a
communication protocol. The first pass determines where the cut-off for the second stream is in relation to
the cut-off for the first stream. Then in the second pass, the algorithm can be processing Alice’s part of the
first stream and Bob’s part of the second stream. Information can transit this way between the two players

without using the algorithm’s memory, i.e. without communication.

72

Instead, we directly apply information theory tools. If the input is a uniformly distributed random variable
X , and Zt is what is written at pass t, we will want to show that for most i the mutual information between
X[i] and Zt[i] is small. But if that mutual information is small, then the algorithm has a high probability
of either not writing anything at index i on the output stream, or writing something wrong. We can then
conclude by using the fact that the output stream is Burn-Only, and therefore that if at any pass it contains a
wrong symbol, then the output will be wrong.

In the proof below, we actually use the entropy ofX[i] conditioned on Zt[i] instead of mutual information.
This is because we need to condition on some other variable that affects the entropy of X[i]: otherwise
H(X[i]) would just be one and using the entropy or the mutual information would be equivalent.

Proof of Theorem 4.2.1. Consider a deterministic algorithm which is correct on a fraction at least 1− ε of
the inputs, and satisfying the other constraints in the theorem. By Yao’s principle, if there exists a randomized
algorithm with error probability at most ε on every input, then there exists a deterministic algorithm which is
correct on a fraction at least 1− ε of the inputs. Assume without loss of generality s ≥ log n (we will show
that s is much larger anyway). For simplicity, we assume that passes are synchronized : whenever a pass
on one stream ends, the head on the other stream ends its own pass, and then eventually moves back to its
original position. This costs us at most a factor 2 in p.

Let the input stream X be uniformly distributed in {0, 1}n. For each pass 1 ≤ t ≤ p, let Zt ∈ {0, 1,⊥}n
be the data written on the output stream Y : if nothing is written at pass t and index i, then Zt[i] = ⊥. Note
that because the algorithm cannot overwrite a letter, for each i there is at most one t such that Zt[i] 6= ⊥.
Last, let Lt be the index where the reading head and the writing head meet during pass t. Since passes
are synchronized, Lt is unique (but possibly depends on the input and random choices). For 1 ≤ i ≤ n,
1 ≤ t ≤ p, let M t

i be the state of the memory after the algorithm reads X[i] on pass t.
For 1 ≤ t ≤ p, since s bounds the size of memory, we have :

s ≥ I(X[1, Lt] : M t
Lt |X[Lt + 1, n])) and s ≥ I(X[Lt + 1, n] : M t+1

n |X[1, Lt])).

Using the definition of mutual information, we get the following inequalities:

s ≥ H(X[1, Lt]|X[Lt + 1, n])−H(X[1, Lt]|M t
Lt , X[Lt + 1, n]),

s ≥ H(X[Lt + 1, n]|X[1, Lt])−H(X[Lt + 1, n]|M t−1
n , X[1, Lt]).

We define the following probabilities : qti(l) = Pr(Zt[i] 6= ⊥|Lt = l), qti = Pr(Zt[i] 6= ⊥), εti(l) =
Pr(Zt[i] 6= ⊥, Zt[i] 6= X[i]|Lt = l) and εti = Pr(Zt[i] 6= ⊥, Zt[i] 6= X[i]). By definition, they also satisfy
εti = El∼Lt(εti(l)) and qti = El∼Lt(qti(l)). Because there is no rewriting, the events Zt[i] 6= ⊥ for 1 ≤ t ≤ p
are mutually exclusive. Therefore by hypothesis1, for all i,

∑p
t=1 ε

t
i = Pr(∃t, Zt[i] 6= ⊥, Zt[i] 6= X[i]) ≤ ε.

Lemmas 4.2.2 and 4.2.3 give us these inequalities:

2s ≥ n−
n∑
i=1

H(X[i]|Zt[i], Lt)−O(log n),

H(X[i]|Zt[i], Lt) ≤ 1− qti
(
1−H(εti/q

t
i

)
).

Combining them yields :

2s ≥
n∑
i=1

qti
(
1−H

(
(εti/q

t
i)
))
−O(log n).

1Note that we only need the hypothesis that each bit of Y is wrong with probability at most ε, and not the stronger hypothesis
that Y 6= X with probability at most ε.

73

Let αi =
∑p

t=1 q
t
i . Then αi = Pr[Y [i] 6= ⊥] satisfies αi ≥ 1− ε by hypothesis. Now summing over all

passes leads to 2ps ≥
∑n

i=1 αi
∑p

t=1(qti/αi)(1−H(εti/q
t
i))−O(p log n).

The concavity of H gives us
∑p

t=1(qti/αi)H(εti/q
t
i) ≤ H(ε/(1− ε)). This means, replacing αi and εti by

their upper bounds, that 2ps ≥ n(1− ε)(1−H(ε/(1− ε)))−O(p log n). Since Theorem 4.2.1 has ε ≤ 0.1
as an hypothesis, our algorithm verifies ps ≥ Ω(n).

Lemma 4.2.2. For any given pass t,

2s ≥ n−
n∑
i=1

H(X[i]|Zt[i], L)−O(log n).

Proof. In this proof, we write Z[i] for Zt[i] since there is generally no ambiguity. We similarly omit
the t on other notations. The data processing inequality (Fact 2.4.6) gives us the following inequality :
H(X[1, L]|ML, X[L+ 1, n], L) ≤ H(X[1, L]|Z[1, L], L). We can rewrite it as

H(X[1, L]|ML, X[L+ 1, n], L) ≤ El∼L(H(X[1, l]|Z[1, l], L = l)).

Using the chain rule and removing conditioning, we get

H(X[1, L]|ML, X[L+ 1, n], L) ≤ El∼L(
l∑

i=1

H(X[i]|Z[i], L = l)).

Similarly,

H(X[L+ 1, n]|M t−1
n , X[1, L], L) ≤ El∼L(

l∑
i=1

H(X[i]|Z[i], L = l)).

Using that both ML (where ML = M t
Lt) and M t−1

n are of size at most s bits, we get

2s ≥ I(X[1, L] : M t
Lt |X[L+ 1, n]) + I(X[L+ 1, n] : M t−1

n |X[1, L]).

Then we conclude by combining the above inequalities and using Fact 2.4.9 as follows:

2s ≥ E(L)−H(L) + n− E(L)−H(L)

−H(X[1, L]|M t
L, X[L+ 1, n])−H(X[L+ 1, n]|M t−1

n , X[1, L])

≥ n− El∼L

(
l∑

i=1

H(X[i]|Z[i], L = l) +

n∑
i=l+1

H(X[i]|Z[i], L = l)

)
−O(log n)

= n−
n∑
i=1

H(X[i]|Z[i], L)−O(log n).

74

Lemma 4.2.3. For any pass t, H(X[i]|Zt[i], Lt) ≤ 1− qti(1−H(εti/q
t
i))

Proof. As above, we omit the t in the proof, as there is no ambiguity.
The statement has some similarities with Fano’s inequality. Due to the specificities of our context, we

have to revisit its proof as follows. First we write

H(X[i]|Z[i], L) ≤ El∼L(H(X[i]|Z[i], L = l))

≤ El∼L(qi(l)H(X[i]|Z[i], L = l, Z[i] 6= ⊥)

+(1− qi(l))H(X[i]|L = l, Z[i] = ⊥)

≤ El∼L
(
qi(l)H

(
εi(l)

qi(l)

)
+ 1− qi(l)

)
= 1− qi + El∼L

(
qi(l)H

(
εi(l)

qi(l)

))
. (4.4)

By replacing the entropy with its definition, we can see that for any 1 ≥ q ≥ ε > 0, we have
qH
(
ε
q

)
= H(q − ε, ε, 1 − q) − H(q), where H(x, y, z) is the entropy of a random variable R in {0, 1, 2}

with Pr(R = 0) = x, Pr(R = 1) = y and Pr(R = 2) = z. Let Ri be such that Ri = 0 if X[i] = Z[i],
Ri = 2 if Z[i] = ⊥ and Ri = 1 otherwise. Note that (Z[i] = ⊥) is a function of Ri. Therefore:

El∼L
(
qi(l)H

(
εi(l)

qi(l)

))
= El∼L(H(Ri|L = l)−H((Z[i] = ⊥)|L = l))

= H(Ri|L)−H((Z[i] = ⊥)|L)

= H(Ri)−H((Z[i] = ⊥)) + I((Z[i] = ⊥)|L)− I(Ri|L).

By the data processing inequality, I((Z[i] = ⊥) : L) ≤ I(Ri : L), so

El∼L(qi(l)H(εi(l)/qi(l)))) ≤ qiH(εi/qi)).

Combining this with inequality 4.4 gives us the lemma.

4.2.2 With either Read-Write Input or Read-Write Output
We first prove the lower bound in the situation where the input stream is Read-Only and the output stream
Read-Write. For this, we employ techniques similar to the ones we used in the proof of Theorem 4.2.1.
However, here we will not consider individual cells on the stream but instead blocks of size k =

√
ns, where

s is the memory space. we call the blocks content Xi (for the input stream) and Yi (for the output stream).
This allows us to bound the amount of information each block receives during each pass, i.e. the difference in
the mutual information between Xi and Yi at pass t− 1 and at pass t. Indeed, during each pass, the heads
will cross in some block i. In this block, Yi may potentially receive all the content of Xi (although not in
the correct order), as shown on the left side of Figure 4.6. However, for every j 6= i, all information that Yj
received about Xj must either already have been in Y (but in another block), and have been stored in memory
since that block of Y was last processed, or come directly from Xj and have been stored in memory while
the heads crossed in block i, as shown on the right side of Figure 4.6. This lets us bound the information Yj
gained about Xj during pass t with s. We then obtain our lower bound on s by summing over all blocks and
all passes.

75

Up to k bits
of information

k

Memory Previous
passes

Earlier in
the pass

Earlier in
the pass

k

Figure 4.6: During each pass of a RO/RW algorithm, a lot of information can be exchanged at the block
where the heads meet (red block), but for all other blocks (green block) the total information gained in Yj

about Xj can be bounded by s the size of the memory.

Theorem 4.2.4. Let 0 < ε ≤ 1/3. Every p-pass randomized λ-expansion RO/RW algorithm with the input
stream read from left to right and the output stream processed from right to left for copying the input u with
error ε requires space Ω(n/p2).

Proof. Consider a deterministic algorithm which is correct on a fraction at least 1 − ε of the inputs, and
satisfying the other constraints in the theorem. Assume without loss of generality s ≥ log n. As in the
proof of Theorem 4.2.1, we assume passes are synchronized at the cost of a factor at most 2 in p. We also
keep similar notations : X is the input stream uniformly distributed in {0, 1}n, and for each 1 ≤ t ≤ p,
Y t ∈ {0, 1,⊥}n is the data currently on output stream Y at pass t. Unlike with Zt in the previous section,
this includes the data previously written, as in this model we can read it and modify it. Let 1 ≤ k ≤ n be
some parameter. We now think on X,Y t as sequences of k blocks of size n/k, and consider each block as a
symbol. We call Xi the i-th block of X . If λ > 1, then everything written on the output stream (the only one
that can grow) after the n-th bit is considered to be part of the Y t

k . We write X−i for X without its i-th block,
and X>i (resp. X<i) for the last (k − i) blocks of X (resp. the first (i− 1) blocks). For each 1 ≤ t ≤ p, let
Lt ∈ {0, . . . , k − 1} be the block where the input head and the output head meet during the t-th pass. Since
passes are synchronized, Lt is unique and is the only block where both heads can be simultaneously during
the t-th pass. Let M t

i be the memory state as the output head enters the i-th block during t-th pass.
Consider a pass t and a block i. We would like to have an upper bound on the amount of mutual

information between Y t
i and Xi that is gained during pass t (with regards to information known at pass

t − 1). Let ∆t
i,j = I(Xi : Y t

i |Lt = j,X−i) − I(Xi : Y t−1
i |Lt = j,X−i) for some i and j. Of course, if

i = j, without looking inside the block structure we only have the trivial bound ∆t
i,i ≤ H(Xi) = n/k. It

is however easier to bound other blocks. Assume without loss of generality that i < j. We use the data
processing inequality I(f(A) : B|C) ≤ I(A : B|C) with Y t

i as a function of M t
i and Y t−1

i . This gives us

∆t
i,j ≤ I(Xi : X>i,M

t
i , Y

t−1
i |Lt = j,X−i)− I(Xi : Y t−1

i |Lt = j,X−i).

We can remove X>i which is contained in the conditioning. Applying the chain rule, we cancel out the
second term and are left with

∆t
i,j ≤ I(Xi : M t

i |Lt = j,X−i, Y
t−1
i) ≤ H(M t

i) ≤ s.

The same holds if j < i instead. If j = i, then ∆t
i,j ≤ n/k because H(Xi) = n/k.

76

We fix j, sum over i and get
∑k−1

i=0 ∆t
i,j ≤ n/k + ks. The expectation over j ∼ Lt is

k−1∑
i=0

I(Xi : Y t
i |Lt, X−i)− I(Xi : Y t−1

i |Lt, X−i) ≤ n/k + ks.

From Fact 2.4.8, we get the following inequalities:

I(Xi : Y t
i |Lt, X−i) ≥ I(Xi : Y t

i |X−i)−H(Lt),

I(Xi : Y t−1
i |Lt, X−i) ≤ I(Xi : Y t−1

i |X−i) + H(Lt).

Therefore,
k−1∑
i=0

I(Xi : Y t
i |X−i)− I(Xi : Y t−1

i |X−i) ≤ n/k + ks+ k log k.

Summing over t yields
k−1∑
i=0

I(Xi : Y p
i |X−i) ≤ p(n/k + ks+ k log k).

By hypothesis s ≥ log n, ε ≤ 1/3 and I(Xi : Y p
i |X−i) ≥ (1 − H(ε))n/k. If k =

√
n/s, it follows that

s = Ω(n/p2).

We now prove a similar theorem for the Read-Write/Read-Only model. The proof is very similar to the
one of Theorem 4.2.4, as we consider again the information gained in Yj about Xj during pass t. The main
difference is what happens when j is different from i the block where the heads meet: here it is possible to
copy on Yj the entirety of block X ′j , which could conceivable contain the entire content of Xj , as shown
in Figure 4.7. However, we also bound the information X ′j can have gained on Xj based on the number of
passes, which lets us as before sum over all passes and all blocks to obtain the lower bound.

Theorem 4.2.5. Let 0 < ε ≤ 1/3. Every p-pass randomized λ-expansion RW/WO algorithm with the input
stream read from left to right and the output stream processed from right to left for copying the input u with
error ε requires space Ω(n/p2).

Up to k bits
of information

k

Memory

Earlier in
the pass

Unlimited
≤ s bits

Up to st bits
of information k

Figure 4.7: As with an RO/RW algorithm, during each pass of an RW/WO algorithm, a lot of information
can be exchanged at the block where the heads meet (red block). For all other blocks however (green block),
Yj could also gain a lot of information from another block on the input stream X ′j (hatched green block). We
show that X ′j does not contain too much information on Xj based on the number of passes already done.

77

Proof. Consider a deterministic algorithm which is correct on a fraction at least of the inputs, and satisfying
the other constraints in the theorem. Assume without loss of generality s ≥ log n. As before we assume
passes are synchronized at the cost of a factor at most 2 in p. We also keep similar notations : X is the
input stream uniformly distributed in {0, 1}n, and for each 1 ≤ t ≤ p, Xt ∈ {0, 1}n is the content of the
input stream and Y t ∈ {0, 1,⊥}n is the content of the output stream Y at pass t. Let 1 ≤ k ≤ n be some
parameter. As before, we think of X,Xt, Y t as sequences of k blocks of size n/k, and Xi denotes the i-th
block of X . If λ > 1, then everything written on the input stream after the n-th bit is considered part of Xt

k.
We write X−i, X>i and X<i as before. We also define X≤ti as the (t+ 1)-uple (Xi, X

1
i , . . . , X

t
i), i.e. the

history of the i-th block until pass t.
As in previous proofs, for each 1 ≤ t ≤ p, let Lt ∈ {0, . . . , k − 1} be the block where the input head

and the output head meet during the t-th pass. Lt is unique and is the only block where both heads can be
simultaneously during the t-th pass. Let M t

i be the memory state as the output head enters the i-th block
during t-th pass.

Consider a pass t and a block i. As with Theorem 4.2.4, we would like to have an upper bound on
the amount of mutual information between Y t

i and Xi that is gained during pass t, assuming Lt 6= i. Let
∆t
i,j = I(Xi : Y t

i |Lt = j,X≤t−1
−i) − I(Xi : Y t−1

i |Lt = j,X≤t−1
−i) for some j > i. By the data processing

inequality, we have I(f(A) : B|C) ≤ I(A : B|C). Therefore,

∆t
i,j ≤ I(Xi : Xt−1

>i ,M
t
i , Y

t−1
i |Lt = j,X≤t−1

−i)− I(Xi : Y t−1
i |Lt = j,X≤t−1

−i).

We can remove Xt−1
>i which is contained in the conditioning. Applying the chain rule, we cancel out the

second term and are left with

∆t
i,j ≤ I(Xi : M t

i |Lt = j,X≤t−1
−i , Y t−1

i) ≤ H(M t
i) ≤ s.

The same holds if j < i instead. If j = i, then ∆t
i,j ≤ n/k because H(Xi) = n/k.

We fix j, sum over i and get
∑k−1

i=0 ∆t
i,j ≤ n/k + ks. As before, by taking the expectation over j ∼ Lt

and then using Fact 2.4.8, we can remove the condition Lt = j. This gives us

k−1∑
i=0

I(Xi : Y t
i |X

≤t−1
−i)− I(Xi : Y t−1

i |X≤t−1
−i) ≤ n/k + ks+ k log k.

We cannot sum over t yet because the conditioning X≤t−1
−i depends on t. However, because Xt

−i is a function
of Xt−1

−i , the memory state at the beginning of the pass and the memory as the head on the input tape leaves
the i-th block, applying Fact 2.4.8 again yields

I(Xi : Y t
i |X

≤t
−i)− I(Xi : Y t

i |X
≤t−1
−i) ≤ H(Xt

−i|X
≤t−1
−i) ≤ 2s.

This is a consequence of the output stream being write-only, which we had not used until now.
Therefore

∑k−1
i=0 I(Xi : Y t

i |X
≤t−1
−i) − I(Xi : Y t−1

i |X≤t−1
−i) ≤ n/k + 3ks + k log k. Summing over t

yields
k−1∑
i=0

I(Xi : Y p
i |X−i) ≤ p(n/k + 3ks+ k log k).

By hypothesis s ≥ log n, ε ≤ 1/3 and I(Xi : Y p
i |X−i) ≥ (1 − H(ε))n/k. If k =

√
n/s, it follows that

s = Ω(n/p2).

78

Chapter 5

Perspectives

This work does not pretend to be an exhaustive study of the domain of streaming algorithms. Even within the
models consider, several problems remain open.

Language recognition with multiple streams

In Sections 3.3 and 4.2, we considered the model of an algorithm receiving the input on one stream and
writing its output on the other stream. While several algorithms presented in Section 3.3 use the input stream
as a working space as well, the goal is still to compute some function (Reverse or Sort), the size of which is
equal to the input size.

An alternative model to consider would be one where the algorithms simply outputs YES or NO, such as
in the case of language recognition. For example, one can combine Algorithm 3.13 (from Section 3.3.1.2)
and Algorithms 3.4 and 3.5 (from Section 3.1) to obtain an algorithm on two Read-Write streams capable of
recognizing PQ(n) in O(log n) unidirectional passes using O(log2 n) memory1. The question is whether we
can do better than this, or achieve the same complexity using a more restrictive model (such as only one of
the streams being Read-Write). Because of the lower bounds we have, we could not achieve this by reversing
the input stream and using Algorithm 3.5.

Another question deals with the difference between the RO/RW and RW/WO models. While Algo-
rithms 3.11 and 3.12 in those two models have the same complexity, Algorithm 3.12 changes the input in a
way that does not appear to be easily reversible. This means it loses the option of comparing the input u and
Reverse(u) while still being able to read the entirety of u. It would be interesting to find a problem where
this difficulty is relevant, and try to prove a gap between the two models for that problem.

Trade-off between expansion and randomness

In Section 3.3.2 we give two algorithms for sorting the input stream with two Read-Write streams. They
have similar complexities, but the first one is deterministic and has potentially Ω(log n) expansion, while the
second one is a randomized Las Vegas algorithm. Proving that it is not possible to deterministically sort with
no expansion and two streams in O(log n) passes and O(log n) memory would show an interesting trade-off.
It would also be interesting to find problems exhibiting a bigger gap.

Improvements on streaming property testing

In Section 3.2, we presented a streaming property tester for visibly pushdown languages under the edit
distance. A possible improvement would be to try to prove the same result under the Hamming distance. We
know that the tester for regular languages from [35] that we use as a subroutine can work for the Hamming

1Similarly, we can recognize DYCK[2] or even DISJOINTNESS with the same complexity.

79

distance, however our method of suffix sampling would no longer be adapted as we can no longer simply
ignore a prefix of unknown size.

Another question is whether the result extends beyond visibly push-down languages, for example to
deterministic context-free languages. DCFLs are languages recognized by a stack automaton, and unlike with
VPLs some symbols may cause the automaton either to push or pop depending on the state. Our algorithm
makes extensive use of the fact that each letter is either a push, pop, or neutral symbol in a VPL, but on the
other hand we were unable to find a likely candidate for a DCFL that would be hard to test in streaming, and
give us a lower bound. Ideally, we would want the push/pop signification of letters in a later part of the words
to completely change based on some property of the first part that is hard to know in advance.

Finally, we believe the complexity of our tester O(log7 n/ε4) can be improved. Notably, the instances
that give us the biggest problems and are the reason for this high complexity tend to have a lot of small push
and pop sequences alternating. But such an instance would have small maximal stack height, potentially
O(log n), and the question of its membership in the language can be decided exactly using O(log n) memory
by simply running the stack automaton. If we could find a way to exploit this trade-off, we could potentially
have a better complexity in n.

Combining other models

Another subject of interest related to property testing (but not streaming) is to combine the query model with
the trial-and-error model. On the toy problem of finding the minimum in a list, the query model and the
trial-and-error model (i.e. asking an oracle whether an element is the minimum. If not, the oracle returns
a smaller element.) each require time Ω(n). However, by combining both a randomized algorithm can
achieve expected time O(

√
n) by querying comparisons between

√
n random elements, and then asking

trial-and-error queries starting from the minimum. We have tried to find other problems where the two types
of queries together would be significantly more powerful than either alone.

80

Bibliography

[1] Noga Alon, Michael Krivelevich, Ilan Newman, and Mario Szegedy. “Regular languages are testable
with a constant number of queries”. In: SIAM Journal on Computing 30.6 (2001), pp. 1842–1862.

[2] Noga Alon, Yossi Matias, and Mario Szegedy. “The Space Complexity of Approximating the Frequency
Moments”. In: Journal of Computer and System Sciences 58.1 (1999), pp. 137–147.

[3] Rajeev Alur and Parthasarathy Madhusudan. “Adding nesting structure to words”. In: Journal of the
ACM 56.3 (2009), p. 16.

[4] Rajeev Alur and Parthasarathy Madhusudan. “Visibly pushdown languages”. In: Proceedings of the
thirty-sixth annual ACM symposium on Theory of computing (2004), pp. 202–211.

[5] Andris Ambainis, Kaspars Balodis, Aleksandrs Belovs, Troy Lee, Miklos Santha, and Juris Smotrovs.
“Separations in Query Complexity Based on Pointer Functions”. In: arXiv preprint arXiv:1506.04719
(2015).

[6] Xiaohui Bei, Ning Chen, and Shengyu Zhang. “On the complexity of trial and error”. In: Proceedings
of the forty-fifth annual ACM symposium on Theory of computing (2013), pp. 31–40.

[7] Mihir Bellare, Shafi Goldwasser, Carsten Lund, and Alexander Russell. “Efficient probabilistically
checkable proofs and applications to approximations”. In: Proceedings of the twenty-fifth annual ACM
symposium on Theory of computing (1993), pp. 294–304.

[8] Manuel Blum, Michael Luby, and Ronitt Rubinfeld. “Self-testing/correcting with applications to
numerical problems”. In: Proceedings of the twenty-second annual ACM symposium on Theory of
computing (1990), pp. 73–83.

[9] Clément Canonne and Ronitt Rubinfeld. “Testing probability distributions underlying aggregated data”.
In: Automata, Languages, and Programming (2014), pp. 283–295.

[10] Amit Chakrabarti, Graham Cormode, Ranganath Kondapally, and Andrew McGregor. “Informa-
tion cost tradeoffs for augmented index and streaming language recognition”. In: SIAM Journal on
Computing 42.1 (2013), pp. 61–83.

[11] Jianer Chen and Chee-Keng Yap. “Reversal complexity”. In: SIAM Journal on Computing 20.4 (1991),
pp. 622–638.

[12] Matthew Chu, Sampath Kannan, and Andrew McGregor. “Checking and spot-checking the correctness
of priority queues”. In: Automata, Languages and Programming (2007), pp. 728–739.

[13] Thomas M Cover and Joy A Thomas. Elements of information theory. John Wiley & Sons, 2012.

[14] Funda Ergün, Sampath Kannan, S Ravi Kumar, Ronitt Rubinfeld, and Mahesh Viswanathan. “Spot-
checkers”. In: Proceedings of the thirtieth annual ACM symposium on Theory of computing (1998),
pp. 259–268.

81

[15] Joan Feigenbaum, Sampath Kannan, Martin Strauss, and Mahesh Viswanathan. “Testing and spot-
checking of data streams”. In: Algorithmica 34.1 (2002), pp. 67–80.

[16] Philippe Flajolet, Jean Françon, and Jean Vuillemin. “Sequence of operations analysis for dynamic
data structures”. In: Journal of Algorithms 1.2 (1980), pp. 111–141.

[17] Nathanaël François, Rahul Jain, and Frédéric Magniez. “Unidirectional Input/Output Streaming Com-
plexity of Reversal and Sorting”. In: Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques (2014), p. 654.

[18] Nathanaël François and Frédéric Magniez. “Streaming Complexity of Checking Priority Queues”. In:
30th International Symposium on Theoretical Aspects of Computer Science (2013), p. 454.

[19] Nathanaël François, Frédéric Magniez, Michel de Rougemont, and Olivier Serre. “Streaming Property
Testing of Visibly Pushdown Languages”. In: arXiv preprint arXiv:1505.03334 (2015).

[20] Michael L. Fredman and Robert Endre Tarjan. “Fibonacci Heaps and Their Uses in Improved Network
Optimization Algorithms”. In: Journal of the ACM 34.3 (1987), pp. 596–615.

[21] Peter Gemmell, Richard Lipton, Ronitt Rubinfeld, Madhu Sudan, and Avi Wigderson. “Self-
testing/correcting for polynomials and for approximate functions”. In: Proceedings of the twenty-third
annual ACM symposium on Theory of computing (1991), pp. 32–42.

[22] Oded Goldreich and Dana Ron. “On learning and testing dynamic environments”. In: Foundations of
Computer Science, 2014 IEEE 55th Annual Symposium on (2014), pp. 336–343.

[23] Oded Goldreich and Dana Ron. “Property testing in bounded degree graphs”. In: Proceedings of the
twenty-ninth annual ACM symposium on Theory of computing (1997), pp. 406–415.

[24] Martin Grohe, André Hernich, and Nicole Schweikardt. “Lower bounds for processing data with few
random accesses to external memory”. In: Journal of the ACM 56.3 (2009), p. 12.

[25] John E Hopcroft, Rajeev Motwani, and Jeffrey D Ullman. “Introduction to Automata Theory, Lan-
guages, and Computation”. In: (2006).

[26] Rahul Jain and Ashwin Nayak. “The space complexity of recognizing well-parenthesized expressions
in the streaming model: the Index function revisited”. In: arXiv preprint arXiv:1004.3165 (2010).

[27] Sampath Kannan, Claire Mathieu, and Hang Zhou. “Graph Verification and Reconstruction via Distance
Oracles”. In: arXiv preprint arXiv:1402.4037 (2014).

[28] Richard M Karp, Scott Shenker, and Christos H Papadimitriou. “A simple algorithm for finding
frequent elements in streams and bags”. In: ACM Transactions on Database Systems 28.1 (2003),
pp. 51–55.

[29] Philip N Klein and John H Reif. “Parallel Time O(\logn) Acceptance of Deterministic CFLs on an
Exclusive-Write P-RAM”. In: SIAM Journal on Computing 17.3 (1988), pp. 463–485.

[30] Christian Konrad and Frédéric Magniez. “Validating XML documents in the streaming model with
external memory”. In: ACM Transactions on Database Systems 38.4 (2013), p. 27.

[31] László Lovász, Moni Naor, Ilan Newman, and Avi Wigderson. “Search problems in the decision tree
model”. In: SIAM Journal on Discrete Mathematics 8.1 (1995), pp. 119–132.

[32] Frédéric Magniez, Claire Mathieu, and Ashwin Nayak. “Recognizing well-parenthesized expressions
in the streaming model”. In: SIAM Journal on Computing 43.6 (2014), pp. 1880–1905.

82

[33] Andrew McGregor. “Graph stream algorithms: A survey”. In: ACM SIGMOD Record 43.1 (2014),
pp. 9–20.

[34] Kurt Mehlhorn. Pebbling mountain ranges and its application to DCFL-recognition. Springer, 1980.

[35] Antoine Ndione, Aurélien Lemay, and Joachim Niehren. “Approximate membership for regular
languages modulo the edit distance”. In: Theoretical Computer Science 487 (2013), pp. 37–49.

[36] Michal Parnas, Dana Ron, and Ronitt Rubinfeld. “Testing membership in parenthesis languages”. In:
Random Structures & Algorithms 22.1 (2003), pp. 98–138.

[37] Ronald L Rivest and Jean Vuillemin. “On recognizing graph properties from adjacency matrices”. In:
Theoretical Computer Science 3.3 (1976), pp. 371–384.

[38] Jan Matthias Ruhl. “Efficient algorithms for new computational models”. PhD thesis. Massachusetts
Institute of Technology, 2003.

[39] Miklos Santha. “On the Monte carlo boolean decision tree complexity of read-once formulae”. In:
Random Structures & Algorithms 6.1 (1995), pp. 75–87.

[40] Jean Vuillemin. “A data structure for manipulating priority queues”. In: Communications of the ACM
21.4 (1978), pp. 309–315.

[41] Andrew Chi-Chih Yao. “Some complexity questions related to distributive computing (preliminary
report)”. In: Proceedings of the eleventh annual ACM symposium on Theory of computing (1979),
pp. 209–213.

83

	Introduction
	A (very) brief history of streaming and sublinear algorithms
	Our results

	Models and languages
	Languages and functions considered
	Visibly Pushdown Languages
	Priority Queues
	Reversing and Sorting

	The streaming model
	Distance and Property Testers
	Balanced/Standard Edit Distance
	Property Testers

	Information theory and communication complexity
	Information theory
	Communication Complexity
	The Hellinger distance

	Algorithms and Upper Bounds
	Recognizing Priority Queues with one pass in each direction
	Previous Results
	Our algorithm
	Multiple unidirectional passes

	Streaming Property Tester for Visibly Pushdown Languages
	Sampling weighted words
	Property Tester for Regular Languages in the Query Model
	Our result

	Input/Output Streaming Algorithms
	Reversing the Input stream
	Sorting the Input stream

	Lower Bounds
	Recognizing Priority Queues with Timestamps in one pass
	Reduction from communication protocols to the streaming algorithms
	Lower bound of the communication complexity of Raindrops(m,n)
	Final proof of Theorem 4.1.3

	Reversing an Input stream in the Input/Output model
	With Read-Only Input and Burn-Only Output
	With either Read-Write Input or Read-Write Output

	Perspectives

