Streaming algorithms
(an introduction)

Frédéric Magniez
LIAFA, CNRS, Université Paris Diderot
Data access model

- **Random access**
 - Input is loaded into the internal memory

- **Sequential access**
 - Input: data stream that cannot fit into internal memory

Streaming algorithms
Context

• Single pass
 • Network monitoring
 • Online with memory constraints

• Few passes
 • Genome decoding
 • Web databases

Once it’s gone, it’s gone!

sublinear memory
Streaming algorithms

• Input
 • Data stream

• Algorithm
 • Number of passes: one, constant or log
 • Internal memory size: polylog, sublinear
 • Processing time per symbol: polylog
First example

- Missing number
 - Input stream: n numbers in $\{1,2,\ldots,n+1\}$, all pairwise distinct
 - Output: the only missing number among $\{1,2,\ldots,n+1\}$

- Algorithm
 - Deterministic, 1 pass, memory $O(\log n)$
Next examples

- Statistics
 - Frequency moments
- Strings
 - Pattern matching
 - Formal languages
- Graphs
 - Maximum cardinality matching
Statistics
Frequency moments

- Problem
 - Input stream: \(a_1, a_2, \ldots, a_n \) in \(\{1, 2, \ldots, m\} \)
 - Output: \(F_k = (f_1)^k + (f_2)^k + \ldots + (f_m)^k \) where \(f_j = \text{multiplicity of } j \)

- Special cases
 - \(F_0 = \# \text{ of distinct values, } F_1 = n, F_\infty = \max f_j \)
 - \(F_2 = \text{surprise index} \)
F₁: Loglog Counter

• Theorem [Moris’78]
 • 1-pass randomized algorithm with $O(\log \log n)$ memory

• Key idea
 • Boolean random variable X
 • $T =$ # of samples of X in order to get value 1
 • Then $E(T) = 1/\Pr(X=1)$
Algorithm for F_1

```
a := 0
While stream is not empty
  With probability $2^{-a}$
    $a := a + 1$
Output $2^{a-1}$
```

• Analysis
 • $E(2^a) = n+1$
 • $\text{Var}(2^a) = O((E(2^a))^2)$

• Conclusion
 • 1-pass, memory $O((\log \log n) \times \log(1/\delta)/\varepsilon^2)$ s.t.
 $$\Pr(|\text{Output} - F_1| > \varepsilon F_1) \leq \delta$$
Estimator

• Theorem
 • Variable X s.t. $\text{Var}(X) = O(E(X)^2)$
 • Combining $O(\log(1/\delta)/\varepsilon^2)$ samples gives an (ε, δ)-estimator

• Construction
 • Amplifying the precision
 Mean of $O(1/\varepsilon^2)$ samples
 • Amplifying the confidence
 Median of $O(\log(1/\delta))$ means
F₀: Log estimator

- Theorem [Flajolet-Martin’83]
 - 1-pass randomized algorithm with $O(\log m)$ memory

- Key idea
 - Independent random variables $a₁, a₂, \ldots, aₙ$ in $\{1, 2, \ldots, m\}$
 - $T = \min(aᵢ)$
 - Then $T \approx l/m$ w.h.p.
Random hash functions

- **Our context**
 - Values a_1, a_2, \ldots, a_n are fixed (and not random)
 - They takes $l=F_1$ different values
 - Say a_1, a_2, \ldots, a_l

- **Main tool: Random hash function**
 - For a random function $h: \{1, 2, \ldots, m\} \rightarrow \{1, 2, \ldots, m\}$
 - Values $h(a_1), h(a_2), \ldots, h(a_l)$ are random and independent
Algorithm for F_0

Take random function $h:\{1,2,\ldots,m\} \rightarrow \{1,2,\ldots,m\}$
min := 0
While stream is not empty
 min := min(h(next element))
Output m/min

• Analysis
 • $h(a_1),h(a_2),\ldots,h(a_l)$ are random and independent
 • Therefore $\min \approx l/m$ (and output $\approx l$) w.h.p.

• Issue
 • Storing h requires $(m \log m)$ bits
k-wise independent hash functions

- Full independency is not required
 - Need \(h(a_1), h(a_2), \ldots, h(a_l) \) to be constant-wise independent
 - Even an approximate notion would be enough

- Theorem
 - There exists a family \(H \) of functions s.t.
 - Generating & storing \(h \) from \(H \) requires \(O(k \log m) \) bits
 - Values \(h(a_1), h(a_2), \ldots, h(a_l) \) are \(k \)-wise independent
Theorem [Alon-Matias-Szegedy’96: Godel prize’05]

- 1-pass randomized algorithm with $O(\log(mn))$ memory

Key idea

- Take a random function $h: \{1, 2, \ldots, m\} \rightarrow \{-1, 1\}$
- Let $X = h(a_1) + h(a_2) + \ldots + h(a_n) = f_1 h(1) + f_2 h(2) + \ldots + f_m h(m)$
- Then $E(X^2) = F_2$
- $E(h(i)^2) = 1$ and $E(h(i)h(j)) = 0$, when $i \neq j$
F_k: conclusion

- **Problem**
 - Input stream: a_1, a_2, \ldots, a_n in $\{1, 2, \ldots, m\}$
 - Output: $F_k = (f_1)^k + (f_2)^k + \ldots + (f_m)^k$ where $f_j =$ multiplicity of j

- **Results**
 - F_0: $\Theta(\log m)$ space
 - F_1: $\Theta(\log \log n)$ space
 - F_2: $\Theta(\log(mn))$ space
 - F_k, $k \geq 3$: $\Theta(m^{1-(2/k)})$ space
 - F_∞: $\Theta(m)$ space

also valid when items can be deleted (Turnstile model)
Strings
Equality testing

• Problem
 • Input stream: \(n \)-bit string \(u \) followed by \(n \)-bit string \(v \)
 • Output: Decide if \(u = v \)

• Key tool: Fingerprint
 • Let \(F(u,X) = u_1 X^{n-1} + u_2 X^{n-2} + \ldots + u_n \) and \(F(v,X) = \ldots \)
 • Let \(q \in [n^3, 2n^3] \) be a prime number
 • Then for a random \(a \in \{0,1,\ldots,q-1\} \)

 If \(u = v \), \(F(u,a) = F(v,a) \mod q \) always

 If \(u \neq v \), \(\Pr_a(F(u,a) = F(v,a) \mod q) \leq 1/n^2 \)
Property of Fingerprint

• Memory space
 • $O(\log(n^3)) = O(\log n)$

• Linearity
 • Assume $w = uv$

 Given 2 fingerprints, one can deduce the 3rd one using $O(\log n)$ arithmetic operations modulo q

• Application
 • Can be computed in 1-pass and memory $O(\log n)$ even if letters arrive in arbitrarily order
Fingerprint in streaming

Fu := 0 and Fv := 0
Find a prime q ∈ [n³,2n³]
Take at random a ∈ {0,1,…,q-1}
While stream u is not empty
 Fu := a × Fu + (next bit) mod q
While stream v is not empty
 Fv := a × Fv + (next bit) mod q
Output (Fu=Fv)

• Analysis
 • Memory space: $O(\log n)$
 • One sided error
 If $u=v$, output is always correct
 If $u\neq v$, output is incorrect with probability $\leq 1/n^2$
Pattern matching

- Problem
 - Input stream: \(m\)-bit pattern \(p\) followed by \(n\)-bit text \(t\)
 - Output: positions \(i\) where \(p\) appears in \(t\)

- Deterministic approach
 - \([\text{Knuth-Morris-Pratt’75}]: \text{memory } O(m)\)

- Fingerprint approach
 - \([\text{Porat-Porat’09}]: \text{memory } O(\log(n)\log(m))\)
Fingerprint approach

- **Idea**
 - Compute the fingerprint of pattern p
 - Compare it with fingerprint of each portion $t[i,i+m-1]$

- **Updating the fingerprints while reading $t[i+m]$**
 - Two consecutive fingerprints can be deduced from each other given $t[i]$ and $t[i+m]$
 - **Issue**: require memory $O(m)$ to remember $t[i]$ since also need to remember $t[i+1],...,t[i+m-1]$
Recursive matching

- Processus $P_0, P_1, \ldots, P_{\log m}$
 - P_i finds patterns $p[1,2^i]$ and transmit them to P_{i+1}
 - $F_i = $ fingerprint of $p[1,2^i]$

- Example

```
0 1 1 0 0 1 0 0 0 1 1 0 0 1 0 1 0 0 1 1 0
```

```
P_0
0 0 0 0 0 0 0 0 0

P_1
1 0 1 0 1

P_2
1 0 0 0 1 0 0 0
```

```
0 0 0
```

Recursive matching

- # of active fingerprints in each $P_i \leq 2^i \leq m$
 - At most 2, when $p[1, 2^{i-1}]$ is aperiodic
 - Always regularly placed: every $\text{period}(p[1, 2^{i-1}])$ letters

- Each P_i uses memory $O(\log n)$
 - For the first two active fingerprints
 - And the total number of pending fingerprints
Other applications

- Recognizing well-parenthesized expressions
 - [M-Mathieu-Nayak’10]
 1 pass: memory space $O(\sqrt{n \log n})$
 2 passes (one in each direction): memory space $O((\log n)^2)$

- Checking insert/extract sequences of priority queue
 - Similar results
 1 pass: [Chakrabarti-Cormode-Kondapally-McGregor’10]
 2 passes: [François-M’13]
Graphs
Graph matching

• Problem
 • Input stream: edges of a bipartite graph (with n vertices)
 • Output: a maximum size matching
 • Memory space $\leq n \text{polylog } n$

• Greedy approach (1 pass)
 • Provides a maximal (for inclusion) matching M...
 ...therefore a 0.5-approximation

\[|M| \geq 0.5 |\text{OPT}| \]
(\text{OPT}: maximum size matching)
Multiple passes

• Theorem
 • $(1-\varepsilon)$-approximation within $f(\varepsilon)$ passes [McGregor’05]
 \[f(\varepsilon) \leq \frac{\log\log(1/\varepsilon)}{\varepsilon^2} \] [Ahn-Guha’11]

• Idea
 At each pass, find larger and larger augmenting paths
Example for 3 passes

Pass 1
- Compute a maximal matching M between A and B

Pass 2
- Compute a maximal matching M_L between $B \setminus M(B)$ and $M(A)$
- Call M^* the edges of M that intersect M_L

Pass 3
- Compute a maximal matching M_R between $A \setminus M(A)$ and $M^*(B)$
- Augment M using M_L and M_R

Key lemma
If $|M| \leq (0.5+\varepsilon) |OPT|$ then M has $\geq (0.5+\varepsilon) |OPT|$ 3-augmentable edges
Random edge arrivals

- Model
 - Graph is fixed but edges arrive in uniform random order

- Theorem [Konrad-M-Mathieu’12]
 - There is an 0.519-approximation algorithm
 Idea: Divide the stream in 3 parts. Simulate each pass of the 3-pass algorithm on one part

 | Compute matching M | Find left wings | Find right wings | | | | |
|---|---|---|---|---|---|---|
 | 1 | $\frac{1}{3} |E|$ | $2\frac{1}{3} |E|$ |

Key lemma: If $|M_{\text{Greedy}}| \approx 0.5|OPT|$ for most of random orders, then $|M_{\text{Greedy}}|$ converges quickly
Vertex arrival order

- Restriction to specific edge order
 - Each left-node arrives with all its adjacent edges
- Online
 - [Karp-Vazirani-Vazirani’90]
 RANKING algorithm gives an \((1-1/e)\)-approximation (optimal)
 - [Devanur-Jain-Kleinberg’13]
 New Primal-Dual analysis
- Streaming
 - [Krapalov’13]: also optimal in streaming
 - [Goel-Krapalov-Khanna’12]: achieved by a deterministic pass
Conclusion
Conclusion

• Streaming algorithms for many problems with many tools
 • Randomization is central (often)
 • Tools: sketch, sparsification…

• Many extensions
 • Streams with annotations, sorting procedures…
 • Auxiliary Read-Write streams
 • Distributed streaming algorithms

• Lower bounds can be proven (sometimes)