INF581: Du calcul probabiliste au calcul quantique

Hiver 2011

Cours 3 — 24 janvier

Enseignant : Frédéric Magniez

Rédacteur : Jean Rougé

3.1 Test d'associativité

Soit S un ensemble fini à n éléments, muni d'une loi de composition interne \circ .

But : On veut déterminer si \circ est associative. On mesure la complexité en comptant le nombre d'opérations effectuées (au sens de \circ).

Théorème 3.1. Il existe un algorithme probabiliste de type one-sided error répondant à ce problème en $\mathcal{O}(n^2)$ opérations¹.

Preuve: Soit p un nombre premier; notons $S = \mathbb{Z}_p[S]$ le \mathbb{F}_p -espace vectoriel des vecteurs $x = (x_i)_{i \in S}$ à coordonnées dans \mathbb{F}_p .

On note, pour tout $i \in S$, e_i le i-ième vecteur de la base canonique de S, et on munit S d'une loi de composition interne $\widetilde{\circ}$ définie sur la base canonique par

$$\forall (i,j) \in S^2, e_i \widetilde{\circ} e_j = e_{i \circ j}$$

puis étendue par linéarité à tout l'espace : pour tous les vecteurs $\left(x = \sum_{i \in S} x_i e_i, y = \sum_{j \in S} y_j e_j\right) \in \mathcal{S}^2$,

$$x \widetilde{\circ} y = \sum_{(i,j) \in S^2} x_i y_j e_{i \circ j}$$

Remarquons qu'on peut ré-écrire cette égalité sous la forme

$$x\widetilde{\circ}y = \sum_{k \in S} \left(\sum_{(i,j) \in S^2/i \circ j = k} x_i y_j \right) e_k \tag{3.1}$$

On va montrer, en utilisant le lemme 3.2 ci-dessous que l'algorithme suivant répond aux spécifications du théorème :

$$\left\{ \begin{array}{c} i_{0}\circ j_{0}=k_{0}\\ \forall\left(i,j\right)\neq\left(i_{0},j_{0}\right),\,i\circ j=i_{0} \end{array} \right.$$

^{1.} C'est clairement mieux qu'un algorithme exhaustif naïf en n^3 opérations. On peut même se convaincre qu'on ne peut pas faire mieux; on est bien obligés de construire la "table" de \circ : en effet, soient i_0 et j_0 deux éléments arbitraires de S, et soit $k_0 \neq i_0$, considérer par exemple la loi \circ définie par

Algorithme

- 1. Tirer au hasard trois vecteurs $(x, y, z) \in \mathcal{S}^3$
- 2. Calculer $[(x \widetilde{\circ} y) \widetilde{\circ} z x \widetilde{\circ} (y \widetilde{\circ} z)]$
- 3. Renvoyer VRAI si ce vecteur est nul, FAUX sinon.
 - * Tout d'abord, sa complexité est bien en $\mathcal{O}(n^2)$ opérations sur S, d'après la définition de $\tilde{\circ}$.
 - * Ensuite, d'après le lemme 3.2, si o est associative, il renvoie toujours VRAI
 - * Supposons enfin que \circ n'est pas associative, et calculons la probabilité d'erreur de notre algotithme.

Soient $\left(x = \sum_{i \in S} x_i e_i, y = \sum_{j \in S} y_j e_j, z = \sum_{k \in S} z_k e_k\right) \in \mathcal{S}^3$. Calculons, pour $l \in S$ fixé, la l-ième coordonnée du vecteur $(x \, \widetilde{\circ} y) \, \widetilde{\circ} z - x \, \widetilde{\circ} \, (y \, \widetilde{\circ} z)$, qu'on notera $P_l(x, y, z)$. En utilisant (3.1), on obtient

$$P_l\left(x,y,z\right) = \left(\sum_{(i,j,k)\in S^3/i\circ(j\circ k)=l} x_iy_jz_k\right) - \left(\sum_{(i,j,k)\in S^3/(i\circ j)\circ k=l} x_iy_jz_k\right)$$

qui est donc un polynôme de degré 3 sur \mathbb{F}_p (en $(x_i, y_j, z_k)_{(i,j,k) \in S^3}$). D'après le théorème de Schwartz-Zippel,

$$[P_l \neq 0] \Longrightarrow \left[\mathbb{P}_{(z,y,z) \in \mathcal{S}^3} \left(P_l \left(x, y, z \right) \neq 0 \right) \ge 1 - \frac{\deg\left(P_l \right)}{|\mathbb{F}_p|} \ge 1 - \frac{3}{p} \right]$$

Or, comme o n'est pas associative, d'après le lemme 3.2, il existe l dans S tel que $P_l \neq 0$. Ainsi, la probabilité d'erreur pour notre algorithme est inférieure à $\frac{3}{n}$.

Démontrons maintenant le lemme utilisé dans la preuve du théorème.

Lemme 3.2. \circ est associative dans S si et seulement si $\widetilde{\circ}$ est associative dans S

Preuve:

$$\Rightarrow$$
 Calculons pour $\left(x = \sum_{i \in S} x_i e_i, y = \sum_{j \in S} y_j e_j, z = \sum_{k \in S} z_k e_k\right) \in \mathcal{S}^3$,

$$(x \widetilde{\circ} y) \widetilde{\circ} z = \left(\sum_{(i,j)\in S^2} x_i y_j e_{i\circ j}\right) \widetilde{\circ} \left(\sum_{k\in S} z_k e_k\right)$$
$$= \sum_{(i,j,k)\in S^3} x_i y_j z_k \underbrace{e_{i\circ j} \widetilde{\circ} e_k}_{=e_{(i\circ j)\circ k}}$$

On obtient de même

$$x \widetilde{\circ} (y \widetilde{\circ} z) = \sum_{(i,j,k) \in S^3} x_i y_j z_k e_{i \circ (j \circ k)}$$

Or, comme \circ est associative dans S, on a

$$\forall (i, j, k) \in S^3, (i \circ j) \circ k = i \circ (j \circ k)$$

d'où l'égalité voulue

$$(x \, \widetilde{\circ} y) \, \widetilde{\circ} z = x \, \widetilde{\circ} \, (y \, \widetilde{\circ} z)$$

 \Leftarrow Il suffit de remarquer que $S \subset \mathcal{S}$ par

$$i \leadsto e_i$$

3.2 Retour sur k-SAT

On rappelle brièvement le problème k-SAT introduit au cours 2: on considère une formule $\varphi = \wedge_i C_i$ où les C_i sont des k-clauses, ie des unions de k littéraux choisis parmi n variables logiques $(x_i)_{1 \leq i \leq n}$ et leurs négations. Le but est de trouver une affectation a de ces variables logiques telles que $\varphi(a) = 1$.

3.2.1 Walk-SAT itéré pour 3-SAT

Considérons l'algorithme suivant :

ALGORITHME

- 1. Tirer au hasard (uniformément) une affectation $a \in \{0,1\}^n$
- 2. Répéter au plus 3n fois la boucle suivante :

Si $\varphi(a) = 1$, renvoyer a, et arrêter l'algorithme

Sinon, choisir une clause C telle que C(a) = 0, choisir un indice i tel que x_i apparaît dans C, et changer la valeur correspondante dans a (ie $a_i \leftarrow 1 - a_i$)

3. Retour en 1.

Pour éviter les confusions, on parlera dans la suite d'itérations pour désigner le retour en 1 et le tirage aléatoire d'une nouvelle affectation initiale, par opposition aux tours de boucle internes à l'étape 2, avec une affectation initiale a donnée.

Théorème 3.3. Il existe une constante K telle que si φ est satisfiable, pour toute affectation initiale a

$$\underbrace{\mathbb{P}\left(\text{l'algorithme termine en moins de } 3n \text{ tours de boucle}\right)}_{:=p} \geq \underbrace{\frac{K}{\sqrt{n}} \left(\frac{3}{4}\right)^n}_{:=q}$$

Preuve: Soit a une affectation initiale donnée; posons $s \in \{0,1\}^n$ une solution de φ , et $X = le \ nombre \ de \ bits \ différents \ entre \ a \ et \ s$. Notons par ailleurs

 $\forall j \in [0; n], p_j = \mathbb{P}(l'algorithme termine en moins de 3n tours de boucle | X = j)$

On a par la formule de Bayes

$$p = \sum_{j=0}^{n} p_j \underbrace{\mathbb{P}(X=j)}_{=\frac{\binom{n}{j}}{2n}}$$

Or, on a l'inégalité

 $p_i \geq \mathbb{P}\left(l'algorithme \ termine \ en \ exactement \ 3j \ tours \ de \ boucle \mid X=j\right)$

ce qui permet, en se ramenant à une marche aléatoire sur $\mathbb Z$ entier 2 d'écrire l'inégalité

$$p_j \geq \mathbb{P}\left(l'algorithme \text{ effectue 2j pas à gauche et j pas à droite}\right)$$

 $\geq \binom{3j}{j} \left(\frac{2}{3}\right)^j \left(\frac{1}{3}\right)^{2j}$

la dernière inégalité venant du fait qu'on sélectionne une variable parmi les 3 de la clause non vérifiée, et qu'on a donc au moins une chance sur 3 que cette variable soit fausse (et même plus, puisque 2, voire les 3 variables peuvent être fausses). Or, d'après la formule de Stirling,

$$\exists K / \binom{3j}{j} \sim \frac{K}{\sqrt{j}} \left(\frac{27}{4}\right)^j$$

d'où il vient pour n assez grand

$$p \geq \sum_{j=0}^{n} \frac{\binom{n}{j}}{2^{n}} \binom{3j}{j} \frac{2^{j}}{3^{3j}}$$
$$\geq \sum_{j=0}^{n} \frac{K}{2^{n}} \binom{n}{j} \frac{1}{\sqrt{j}2^{j}}$$
$$\geq \frac{K}{\sqrt{n}} \left(\frac{3}{4}\right)^{n}$$

Corollaire 3.4. Dans l'algorithme précédent, l'espérance du nombre d'itérations est plus petite que

$$\frac{1}{q} = \frac{\sqrt{N}}{k} \left(\frac{4}{3}\right)^n$$

On re-tombe sur des performances exponentielles, ce qui est plutôt normal, 3-SAT étant NP-complet...

^{2.} Cas clairement moins favorable que la marche aléatoire absorbante en 0 et repoussante en n que l'on considérait jusqu'à présent.

3.2.2 Généralisation à k-SAT

Théorème 3.5. Avec le même algorithme, si φ est satisfiable, le nombre moyen d'itérations est majoré par $\left(\frac{1}{2}\left(1+\frac{1}{k}\right)\right)^{-n}$.

Preuve: Reprenons les mêmes notations et les mêmes idées : on se ramène à une marche aléatoire sur \mathbb{Z} tout entier, et on majore cette fois p_i par

$$p_j \geq \sum_{i=0}^{j} \mathbb{P}\left(l$$
'algorithme effectue $j+i$ pas à gauche et i pas à droite) $\geq \sum_{i=0}^{j} {2i+j \choose i} \left(\frac{k-1}{k}\right)^i \left(\frac{1}{k}\right)^{i+j} \geq \left(1+\frac{1}{k}\right)^j$

d'où le résultat en sommant par la formule du binôme.

3.2.3 Exercice : application à la 3-Coloriabilité

Soit G = (X, E) un graphe non-orienté 3-coloriable, c'est-à-dire qu'il existe une application $C: X \to [0; 2]$ telle que

$$\forall (x,y) \in X^2, (x,y) \in E \Rightarrow c(x) \neq c(y)$$

On cherche un algorithme qui colorie G avec seulement 2 couleurs, de telle sorte qu'aucun triangle ne soit mono-chromatique.

Soit une application $a:X\longrightarrow \llbracket 0;1 \rrbracket$; considérons l'ensemble T des triangles de G, c'est-à-dire les sommets $(i,j,k)\in X^3$ tels que

$$\begin{array}{ccc} (i,j) & \in & E \\ (j,k) & \in & E \\ (i,k) & \in & E \end{array}$$

et pour chaque triangle posons la clause logique $C_{i,j,k} = (a(i) \vee a(j) \vee a(k)) \wedge \left(\overline{a(i)} \vee \overline{a(j)} \vee \overline{a(k)}\right)$. La formule logique

$$\varphi = \wedge_{(i,j,k) \in T} C_{i,j,k}$$

est une formule 3-SAT satisfiable, puisqu'il suffit par exemple de poser

$$a: \left\{ \begin{array}{ccc} X & \longrightarrow & & \llbracket 0;1 \rrbracket \\ x & \longmapsto & \left\{ \begin{array}{ccc} 0 & si \ C(x) = 0 \\ 1 & sinon \end{array} \right. \right.$$

où C est le 3-coloriage existant par hypothèse; on est donc ramenés à la résolution de 3-SAT, qu'on peut par exemple traiter avec WALK-SAT.

3.3 S-T CONNECTIVITÉ

3.3.1 Cas général

Soient G=(X,E) un graphe non-orienté et $(s,t)\in X^2$ deux sommets fixés de G. On cherche à déterminer s'il existe un chemin de s à t. On note |X|=n et |E|=m

Il existe des algorithmes déterministes (programmation dynamique notamment) de complexité $\mathcal{O}(m+n)$ en temps, mais $\mathcal{O}(n)$ en espace, ce qui peut poser problèmé si le graphe est trop gros (graphe d'Internet par exemple). On cherche ici un algorithme plus lent, mais moins gourmand en mémoire.

Théorème 3.6. Il existe un algorithme probabiliste de type one-sided error répondant à ce problème en $\mathcal{O}(mn)$ en temps et $\mathcal{O}(1)$ en espace.

Preuve: Considérons l'algorithme de marche aléatoire suivant : ALGORITHME

- 1. $u \leftarrow s$
- 2. Itérer tant que $u \neq t$

Soit v voisin aléatoire de u (choisi uniformément)

$$u \leftarrow v$$

- 3. Déclarer G S-T CONNEXE
 - * La complexité en espace est évidente.
 - * Si G n'est pas S-T CONNEXE, alors l'algorithme ne termine clairement pas.
 - * Reste à montrer la complexité en temps dans le cas où G est S-T CONNEXE.

Notons, pour tous sommets (i, j) dans la composante connexe de s, $h_{i,j}$ le nombre moyen d'étapes de la marche aléatoire pour aller de i à j; et C(G) le maximum pour $v \in X$ du temps moyen pour passer par tous les sommets de G en partant de v.

Remarquons qu'il existe un chemin $\tau = u_1 u_2 ... u_p$ de s à t de longueur majorée par 2n: il suffit en effet de construire un arbre couvrant de la composante connexe de s et de le parcourir en profondeur.

On note un chemin $\sigma \geq \tau$ si τ est une sous-séquence de σ ; C(G) est clairement majoré par le nombre d'étapes qu'il faut pour construire un chemin $\sigma \geq \tau$, donc par

$$C(G) \le h_{u_1,u_2} + h_{u_2,u_3} + \dots + h_{u_{p-1},u_p}$$

Comme la somme ci-dessus comporte au plus 2n termes, et que chacun est majoré par 2m d'après le lemme 3.7 ci-dessous, on obtient bien une complexité en $4nm = \mathcal{O}(mn)$.

Lemme 3.7. Avec les notations de la preuve du théorème,

i.

$$\forall i \in X, \ h_{i,i} = \frac{2m}{d(i)}$$

où d(i) est le degré de i dans G, ie son nombre de voisins immédiats

ii
$$\forall (i,j) \in X^2$$
,
$$(i,j) \in E^2 \Rightarrow h_{i,j} \leq 2m-1$$

Preuve: i . Le premier point est plus ou moins admis, mais on peut s'en convaincre par les arguments suivants : on formalise la marche aléatoire de l'algorithme par une chaîne de Markov de matrice de transition $P = (P_{i,j})_{(i,j) \in X^2} \in \mathcal{M}_n(\mathbb{R})$ où

$$\forall (i,j) \in X^2, P_{i,j} = \begin{cases} \frac{1}{d(i)} & \text{si } (i,j) \in E \\ 0 & \text{sinon} \end{cases}$$

Notons par ailleurs $X^k = (X_i^k)_{i \in X} \in \mathbb{R}^n$ le vecteur de probabilité d'état après la k-ième étape de marche aléatoire (ie pour tout sommet i, la probabilité de se trouver en i après k étapes vaut X_i^k), on a par définition

$$X^{k+1} = X^k P$$

On admet que si G est connexe (et sinon on peut simplement considérer la composante connexe de s), il existe une unique distribution stationnaire Π vérifiant

$$\Pi P = P$$

et on vérifie facilement par le calcul que la distribution Π est telle que

$$\forall i \in X, \ \Pi_i = \frac{d(i)}{2m}$$

Comme $X^k \underset{k \to +\infty}{\longrightarrow} \Pi$ (là encore, admis...), le lemme 3.8 nous convainc que pour tout sommet $i, h_{i,i} = \frac{1}{\Pi_i} = \frac{2m}{d(i)}$

ii . Soient deux sommets i et j tels que $(i,j) \in E$, remarquons que

$$h_{j,j} = \sum_{k/(k,j)\in E} \mathbb{E} (nombre\ d'étapes\ pour\ aller\ de\ k\ à\ j\ |\ la\ première\ étape\ en\ partant\ de\ j\ va\ en\ k)$$

$$= \frac{1}{d(j)} \sum_{k/(k,j)\in E} (1+h_{k,j})$$

En particulier,

$$\frac{2m}{d(j)} = h_{j,j} \ge \frac{1}{d(j)} (1 + h_{i,j})$$

d'où

$$h_{i,j} \le 2m - 1$$

3.3.2 Exercices : exemples

1. Si G est complet, le résultat ci-dessus donne

$$C\left(G\right) \leq 2n^3$$

mais on peut obtenir beaucoup mieux : partons d'un sommet quelconque, et pour tout $i \in [1; n]$, notons X_i la première étape où i sommets différents ont été visités. On cherche à calculer $C(G) = \mathbb{E}(X_n)$. Remarquons que $T_k := X_{k+1} - X_k$ suit une loi géométrique de paramètre $\frac{k}{n}$, et vérifie donc

$$\mathbb{E}\left(T_{k}\right) = \frac{n}{n-k}$$

Sommons

$$\mathbb{E}(X_n) = \mathbb{E}(X_1) + \sum_{k=1}^{n-1} \mathbb{E}(T_k)$$
$$= N\left(\sum_{k=1}^{n} \frac{1}{k}\right)$$

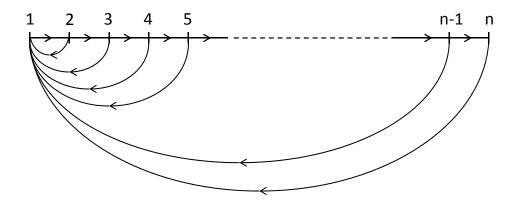
On retrouve la série harmonique, d'où

$$C(G) \sim n \ln n$$

2. Montrer qu'il existe un graphe orienté G tel que $C(G) \ge 2^n$. Considérons le graphe G = (X, V) défini par

$$\left\{ \begin{array}{l} V = [\![1;n]\!] \\ \forall i \in [\![1;n-1]\!], \, (i,i+1) \in V \\ \forall j \in [\![1;n-1]\!], \, (j,1) \in V \end{array} \right.$$

soit



En partant de 1, on voit que $C(G) = 2^n$

3. Jeu du chat et de la souris :

Soient un chat et une souris qui se déplacent de manière synchrone sur un graphe G. Montrer que le nombre moyen d'étapes avant qu'ils ne se rencontrent est majoré par $4nm^2$.

Considérons le graphe produit $G' = G \times G$, qui a n^2 sommets et m^2 arêtes; on cherche à savoir quand on passera sur un sommet du type (x,x). Il y a donc n sommets "gagnants", et d'après le théorème précédent, le nombre moyen d'étapes est majoré par

$$\frac{1}{n}4n^2m^2 = 4nm^2$$

Retour sur un résultat courant

Lemme 3.8. Soit $(X_i)_{i \in \mathbb{N}^*}$ une suite de variables aléatoires indépendantes identiquement distribuées selon la loi $\mathbb{P}(X_i = 1) = p = 1 - \mathbb{P}(X_i = 0)$.

Notons $T = \min (i \in \mathbb{N}^* / X_i = 1)$. On a

$$\mathbb{E}\left(T\right) = \frac{1}{p}$$

Preuve: Calculons

$$\forall k \in \mathbb{N}^*, \ \mathbb{P}\left(T = k\right) = \left(1 - p\right)^{k-1} p$$

d'où

$$\mathbb{E}(T) = \sum_{k \in \mathbb{N}^*} k \mathbb{P}(T = k)$$

$$= p \sum_{k \in \mathbb{N}^*} k (1 - p)^{k-1}$$

$$= \frac{p}{(1 - (1 - p))^2}$$

$$= \frac{1}{p}$$