
INF561: Using randomness in algorithms Spring 2012

Lecture 2 — 11th of January
Lecturer: Fréderic Magniez Scribe: KUMAR Amrit

This lecture is meant to give an idea of the basic technique of fingerprinting and to
introduce the wide spectrum of its applications and last but not least an insight to the
probabilistic algorithms involved.

2.1 Hashing

A hash function takes a variable sized input message and produces a fixed-sized output.
The output is usually referred to as the hash code or the hash value or the message digest.We
can think of the hash code (or the message digest) as a fixed- sized fingerprint of a variable-
sized message.
Hashing can be incorporated in different ways for message authentication in a communica-
tion network. A hash function can be used in conjunction with an encryption scheme and
hence provides authentication in addition to confidentiality. A very different approach to
the use of hashing for authentication is applied in a scheme where nothing is encrypted.
However, the sender appends a secret string S, known also to the receiver, to the message
before computing its hash code. Before checking the hash code of the received message for
its authentication, the receiver appends the same secret string S to the message. Obviously,
it would not be possible for anyone to alter such a message, even when they have access to
both the original message and the overall hash code. We would be interested in the above
approach all over in this lecture.

2.1.1 A Classical Example : Polynomial Identity Testing

Input : Two multivariate polynomials

Q(x1, x2 . . . , xn)

R(x1, x2 . . . , xn)

Output : If Q = R then output YES otherwise NO.
If we were given both polynomials in expanded form, we could just compare coefficients.
However we might get something like

Q (x) =
n−1∏
i=1

(xi + xi+1)

which would take exponential time to just to expand ! Instead we do something clever :
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2.1.2 Schwartz and Zippel’s lemma (1979)

Let F be a field (finite or infinite) and S a subset of F. Consider P a multivariate
polynomial of degree d. If P is a non-zero polynomial (denoted as P 6= 0) over F, which is
equivalent to saying that : ∃x1, x2, . . . xn ∈ F st (P (x1, x2, . . . , xn) 6= 0) then,

Px1,x2...,xn∈S[P (x1, x2, . . . , xn) = 0)] ≤ d

|S|

Proof: We prove the above lemma by induction on n.
A non-zero polynomial in one variable of degree d has at most d roots and hence it has at
most d roots in S from which we have :

Px∈S[P (x) = 0] ≤ d

|S|
Supposing that the result is true for a certain n− 1 and we write :

P (X1, X2, . . . , Xn) =
d∑
i=0

X i
iQi (X2, X3, . . . , Xn)

Let j be the largest i such that Qi 6= 0. We have

P (X1, X2, . . . , Xn) =

j∑
i=0

X i
iQi (X2, X3, . . . , Xn)

Px1,x2,...,xn [P (x1, x2, . . . , xn) = 0] = Px1,x2,...,xn [(P (x1, x2, . . . , xn) = 0)∩(Qj (x2, x3, . . . , xn) 6= 0)]

+Px1,x2,...,xn [(P (x1, x2, . . . , xn) = 0) ∩ (Qj (x2, x3, . . . , xn) = 0)]

By induction hypothesis the second term T2 of the above sum verifies :

T2 ≤
degree (Qj)

|S|

=
d− j
|S|

Fixing x1, x2, . . . , xn such that Qj (x2, x3, . . . , xn) 6= 0, we have P (X1, x2, . . . , xn) : a
polynomial in X1 of degree j such that P 6= 0, for the coefficient of Xj

1 is non zero. Hence
we have

Px1 (P (x1, x2, . . . , xn) = 0) ≤
degreeX1

(P )

|S|
=

j

|S|
and hence the result.

�

Henceforth the subset S = F = Z/pZ where p is a prime. We suppose the following note :
we can always find a prime number p such that p lies between n and 2n for a given n. This

comes from the fact that the interval [n, 2n[ contains θ
(

n
logn

)
primes.
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� Polynomial P defined as X3 − X is a non identically zero polynomial but is a zero
polynomial over the field Z/3Z.

2.2 Fingerprinting and Applications

Fingerprinting

Suppose we have two copies of a large database in locations that are connected by an
expensive and error-prone communication link. We wish to test the integrity of the copies,
i.e. to check that both are the same. The obvious solution of sending one copy of the database
across the link and doing a direct comparison is ruled out because of cost and reliability issues.
In such situations, we would like to shrink our data down to a much smaller fingerprint which
is easier to transmit. Of course, this is useful only if the fingerprints of different pieces of
data are unlikely to be the same.

We model this situation with two spatially separated parties, Alice : A and Bob : B, each
of whom holds an n-bit number (where n is very large). Alice’s number is x = x1, x2, . . . , xn
and Bob’s is y = y1, y2, . . . , yn. Our goal is to decide if x = y without transmitting all n bits
of the numbers between the parties.

Protocol

Alice picks a prime number p in the interval [n2, 2n2[ and picks randomly an integer u
from the set {0, 1, 2, . . . p− 1}. These two entities are shared with Bob. Alice calculates her
fingerprint as Fp,x(u). She then sends p and Fp,x(u) to Bob. Using p, u and y Bob computes
Fp,y(u) and checks whether Fp,x(u) = Fp,y(u). If not he concludes that x 6= y, else he pre-
sumes that x = y.

Observe that if x = y then Bob will always be correct. However, if x 6= y then there
may be an error : this happens if the fingerprints of x and y happen to coincide. We now
show that, even for a modest value of p, if x 6= y then P[Fp,x(u) = Fp,y(u)] is small.

Here we define the fingerprint function Fp,x(u) to be

Fp,x(u) =
n∑
i=1

xiu
i modulo(p)

Note
Each of the fingerprint obtained has log2 2n2 bits. Each of these operations involves n

multiplication and additions.
If x 6= y, then (Fp,x − Fp,y) [X] is a polynomial non identically zero. Applying Schwartz-

Zeppel lemma we have :

Pu∈{0,1,...,p−1} [Fp,x(u)− Fp,y(u) = 0 modulo(p)] ≤ n

n2
=

1

n
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2.3 Applications

2.3.1 Arithmetic modulo a random prime

In many applications, we need to do arithmetic on very large integers (so large that
precision is lost or overflow occurs). For example, these can occur as a result of evaluating
a polynomial or a determinant. Frequently all we need to know is whether two such large
integers are equal or not (e.g., does a certain polynomial evaluate to zero at some given
point ?) We can deal with this problem using fingerprints in a very simple way : just do
all the arithmetic modulo a random prime p. From our analysis above we know that, if the
integers have n bits, then the number of bits needed in p to ensure a correct answer with
high probability is only O(logn), which is exponentially less and probably small enough to
avoid loss of precision.

2.3.2 Pattern Matching

Problem : Let u be a pattern st u ∈ {0, 1}m and a word ω ∈ {0, 1}n with n ≥ m. The
task is to find i if it exists such that u corresponds to the motif ω starting from the index i,
i.e. ω[i]ω[i+ 1]...ω[i+m− 1] = u.

A trivial greedy algorithm consists of verifying bits at each position i. This determi-
nistic algorithm has a complexity of O(m.n). We can as well improve this algorithm using
automata theory and obtain a better algorithm with complexity O(m + n). We can as well
desigin a probabilistic algorithm without trying to construct an automata and with the same
complexity. We elucidate the later one here :

Definition 2.1. For each word u ∈ {0, 1}n, we define a polynomial

Pu =
n∑
i=1

u[i]X i−1.

Theorem 2.2. Considering u, v ∈ {0, 1}n, et p a prime number such that p ≥ n3.
If u = v then ∀a ∈ {0, 1, ..., p− 1} we have Pu(a) = Pv(a) modulo (p).

If u 6= v then Pa∈{0,1,...,p−1}[Pu(a) 6= Pv(a) modulo (p)] ≥ 1− 1

n2
.

Proof: We considering the case where u 6= v. Here, Pu 6= Pv ou Pu − Pv 6= 0.
Schwartz-Zippel’s lemma gives :

Pa∈{0,1,...,p−1}[(Pu − Pv)(a) 6= 0 modulo p] ≥ 1− n− 1

n3
≥ 1− 1

n2
.

�

� Pu(a) mod p is the fingerprint of u.
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Algorithm : Let p be a prime number between n3 et 2n3.
Choose randomly a ∈ {0, 1, ..., p− 1}, and evaluate :
- b← am−1

- fu = Pu(a)
- fv = Pω[0,m−1](a)
- i← m− 1.
do : {

if fu = fv return i

fv ←
fv − ω[i−m+ 1]

a
+ ω[i+ 1]× b

i← i+ 1
} while i ≤ n− 1 ;

Return ∅

Analysis : Complexity of the above algorithm is O(m+ n).
For all i, if u is a motif of ω at the position i, then the algorithm returns with the result i
If u is not a motif of ω at the position i, i.e. u 6= ω[i−m+ 1, i] then the algorithm return i

with a probability ≤ n− 1

p
≤ 1

n2
.

Hence the algorithm has one-sided error. If u appears in ω, the algorithm returns the result
however, if u does not appear in ω, then

P[∃i st algorithm returns [i−m+ 1, i]]
= P[Algorithm returns [1,m] or [2,m+ 1] or ...or[n−m+ 1, n]]

≤ (m− n)× n

p
∼ 1

n
as p ∼ n3

2.3.3 Perfect matching in bipartite graphs

Definition 2.3. A bipartite graph G = (A,B,E) is specified by two disjoint sets U and V
of vertices, and a set E of edges between them. A perfect matching is a subset of the edge
set E such that every vertex has exactly one edge incident on it. Since we are interested
in perfect matchings in the graph G,we shall assume that |U | = |V | = n. The following
algorithm has no error if G does not have a perfect matching (no instance), and errs with
probability at most 1

2
if G does have a perfect matching (yes instance).

Theorem 2.4. The best known deterministic algorithm for a perfect matching has a com-
plexity of θ(n

5
2 ).

Theorem 2.5. The best probabilistic algorithm with one-sided error has a complexity of
θ(nω), where ω < 2.38. This cost corresponds to the cost of evaluating a determinant.

Definition 2.6. The Tutte matrix of bipartite graph G = (A,B,E) is an n × n matrix F
with the entry at row i and column j,

Fi,j =

{
0 if (i, j) /∈ E
Xij if (i, j) ∈ E

2-5



INF561 Lecture 2 — 11th of January Spring 2012

We also have :

Det(F ) =
∑
σ∈Sn

sgn(σ)
n∏
i=1

Fiσ(i)

which is a polynomial of degree at most n.

Lemma 2.7. Det(F ) 6= 0 iff the graph G has a perfect matching parfait.

Proof: If Det(F ) 6= 0 ∃σ st
∏n

i=1 Fiσ(i) 6= 0 i.e. ∀i (i, σ(i)) ∈ E. The following set M is a
perfect matching,

M = {(i, σ(i))}

where i ∈ 1, 2, 3 . . . n
In the other case, if M is a perfect matching, then considering ∀i σ(i) = j st (i, j) ∈ M

where σ ∈ Sn because M is a perfect matching. This entails that
∏n

i=1 Fiσ(i) 6= 0 and hence
Det(F ) 6= 0 because of the unique decomposition of Det(F ) .

�

Algorithm :

Let p be a prime, st n2 < p < 2n2.
– Choose randomly xij ∈ {0, 1, ...p− 1}.
– Evaluate d = Det(F )(xij) modulo p, and substitute Xij by xij in F .
– Return ACCEPT if d 6= 0.
– Else return REJECT .

Remark

– The complexity of the problem corresponds to the evaluation of a determinant.
– According to the above lemma, if the graph has no perfect matching, the algorithm

always returns REJECT.
– If it exists : We prove that the algorithm returns ACCEPT with a probability greater

than 1− 1
n
.

This is a direct consequence of the fact that Det(F ) is a polynomial of degree less than
n, with at most n2 variables and and the Schwartz-Zippel’s lemma .

2.3.4 Associativity Testing

Input : Let S be a set of n elements for example S = {1, 2, . . . , n} and a binary operation
◦ on S.
Output : Decide if ∀i, j, k (i ◦ j) ◦ k = i ◦ (j ◦ k)

Definition 2.8. For p ≥ 7, a prime number and A,B,C ∈ (Zp)
n define a binary operation

• over (Zp)
n st (A •B)k =

∑
i,j st i◦j=k Ai ×Bj

Let ei = (0, 0, . . . , 1, 0, 0 . . . , 0) where 1 is at the ith position. Then we have :
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A =
∑

Ai~ei

B =
∑

Bj ~ej

Remark

– We also have : ~ei • ~ej = ~ei◦j Its bilinear extension becomes :

A •B =

(∑
i∈S

Ai~ei

)
•

(∑
j∈S

Bj~ej

)

=
∑
i,j∈S

AiAj~ei◦j

– Associativity of ◦ on S ⇔ associativity of • over (Zp)
n

– If ◦ is not associative, then :

PA,B,C∈(Zp)n [(A •B) • C = A • (B • C)] ≤ 3

p

The first remark about the associativity of • becomes evident by expanding the product
using the basis vectors. For the second remark : fix r ∈ S and calculate :

∆r(A,B,C) = (A •B) • C − A • (B • C)

∆r(A,B,C) =
∑

i,j,k (i◦j)◦k=r

AiBjCk −
∑

i,j,k i◦(j◦k)=r

AiBjCk

which is a polynomial in (AiBjCk) of degree at most 3. If ◦ is not associative, then •
neither. Hence, ∃r0 st ∆r0 6= 0. Concluding, by Schwartz-Zippel’s lemma we obtain the result.

Using the last remark, we can easily design a probabilistic algorithm which can solve the
above problem of associativity testing. The complexity of this algorithm will be reduced to
the complexity of evaluating the following product :

A •B =

(∑
i∈S

Ai~ei

)
•

(∑
j∈S

Bj~ej

)
which is of order O(n2). So, verifying the expression (A • B)C = A • (B • C) entails a
complexity of O(4n2).

2.3.5 Tree Isomorphism

Definition 2.9. Informally, we say that two graphs are isomorphic if one can be transformed
into the other simply by renaming nodes. For example, in the illustration below, the first
two trees are isomorphic but the third is not isomorphic to either of the other two trees.
Formally, we say that two graphs T1 = (V1, E1) and T2 = (V2, E2) are isomorphic if there is
a 1-1 mapping f : V1 → V2 such that (v, w) is an edge in E1 iff (f(v), f(w)) is an edge in E2.
We call such a mapping a tree isomorphism.
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Problem :

Let T1, T2 be unordered trees of height h and with n nodes. Decide if T1 et T2 are
isomorphic. We look for an algorithm with time complexity O(n) and space complexity
O(n× logn).

Definition 2.10. For a tree T with root u, define inductively a polynomial fT,u correspon-
ding to T as follows :
- If T has just one node u, then fT,u = X0

- If the height of the tree is h ≥ 1 and T has k subtrees Ti, 1 ≤ i ≤ k with roots ui, then

fT,u =
k∏
i=1

(Xh − fTi,ui)

Theorem 2.11. Trees T1, T2 with roots u1, u2 are isomorphic iff

fT1,u1 = fT2,u2

Proof: Using the definition of the polynomial used as a fingerprint, the two trees are isomor-
phic, iff the polynomial f corresponding to them are identical. However, let fT1,u1 = fT2,u2 .
By construction, the degree d of these two polynomials is equal to one more than the height
h of the trees. We prove by induction on h that the two trees are isomorphic, where the
height of the tress are same.
For h = 0, the proposition is valid.
Suppose that the proposition is valid for all height < h. Consider fT1,u1 = fT2,u2 as a polyno-
mial in Xh. Since, this polynomial has a unique factorization in monomials in Xh ; T1 et T2
must have the same number of subtrees (i.e. k) and if Ti,j are the sub-trees of Ti, then there
exits a permutation π of {1, 2, ..., k} st

∀i = 1, 2, ..., k, fT1,i,u1,i = fT2,π(i),u2,π(i)

Using induction hypothesis, the subtree T1,i is isomorphic to the subtree T2,π(i) for all i, et
hence T1 is isomorphic to T2. �

Algorithm : Using the construction above we can assign a polynomial fT,u to each
tree T and the isomorphism of the trees is characterized by the fact that they have the
same polynomial representation. Application of Schwartz-Zippel’s lemma assures it to be a
probabilistic algorithm with one-sided error.
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2.4 Probabilistic algorithm for satisfiability : SAT

Definition 2.12. Let X1, X2, ..., Xn be n ≥ 1 logic variables. A literal l is of the form Xi or
Xi i.e. a literal is either a variable or the negation of a variable
A clause C is a disjunction of literals, ex : C = X1 ∨X2 ∨X3

A clause C containing at most k variables is also called a k-clause. A SAT formula θ is of the
form θ = C1 ∧ C2 ∧ ... ∧ Cm where Ci are clauses. A SAT formula θ is called k-SAT formula
if θ contains only k-clauses.
The k-SAT is a decision problem to decide if for a given k-SAT formula, there exists a
valuation for the boolean variables for which the formula is true.

Facts :

The following theorems have been given without their proof.

Theorem 2.13. 2-SAT ∈ P
k-SAT is NP-complete for all k ≥ 3

Theorem 2.14. 2-SAT can be solved by a deterministic algorithm with complexityO(n+m)
where n is the number of variables and m is the number of clauses.

We are interested in designing a probabilistic algorithm to solve k-SAT and which works
for all k.

Algorithm

– Choose randomly an a ∈ {0, 1}n
– Repeat until θ(a) 6= 1 (and at most 2kn2 iterations for the variant)

Choose arbitrarily a clause Cj st Cj(a) = 0
Flip the value of one of the variables in Cj
Update a

– If θ(a) = 1 accept else reject.

Remarks

– If ∀a, θ(a) = 0, algorithm (with no variant) does not terminate.
– If the algorithm (with no variant) stops then θ(a) = 1
– One iteration has a complexity of O(mk).

Theorem 2.15. If θ is 2-SAT and that it has a solution a st θ(a) = 1 then the average
number of iteration needed is ≤ n2.

Corollary 2.16. If ∀aθ(a) = 0 then the algorithm always rejects.
If ∃a st θ(a) = 1 then P[Algo rejects] ≤ 1

2
. This is a direct consequence of the above theorem

and Markov’s Inequality for a positive random variable T and any real µ ≥ 0 :
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Pr[T ≥ µ] ≤ 1

µ
(E(T ))

An extension to the above corollary is also true for a k-SAT where the probability of
rejection becomes (1

2
)k.

� When considering the variant that loops at most 2kn2, an execution with a total of 2kn2

iterations behaves as k independent runs whose each execution iterates 2n2.
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