
INF561: Du calcul probabiliste au calcul quantique Hiver 2012

Lecture 7 — 15 février
Lecturer: Frédéric Magniez Scribe: Anna-Isavella Rerra , Danai Boutara

The purpose of this course is to define the concept of interactive proof and apply it on
simple examples.

7.1 Definition of the model

Definition 7.1. (recall)
NP = {L : ∃V a deterministic and polynomial time algorithm (called verifier) s.t.

∀x ∈ L, ∃y ∈ {0, 1}poly(|x|) s.t. V (x, y) = 1 and Pr{V (x, y, r) = 1} = 1,
∀x /∈ L, ∃y ∈ {0, 1}poly(|x|) s.t. V (x, y) = 0 and Pr{V (x, y, r) = 0} ≥ 1

2
}.

Extensions

• Interaction ⇒ IPdet

• Randomness ⇒ Merlin Arthur (MA)

• Interaction + Randomness ⇒ IP

Definition 7.2. IP
Let V be a verifier and let P be a prover

q1 = V (x, 1), r1 = P (x, 1, a1)
...
qi = V (x, i, r1, ..., ri−1), ri = P (x, i, a1, ..., ai)

The protocol of questions-responses ends after m messages and we note the result:
< P, V > (x) accepts or rejects

Definition 7.3.
IPdet = {L : ∃V a deterministic and polynomial time verifier V with a polynomial number
of messages s.t.

∀x ∈ L, ∃P prover s.t. out < P, V > (x) = 1
∀x /∈ L, ∀P prover s.t. out < V, P > (x) = 0}.

Question: IPdet vs. NP ?

7-1

INF561 Lecture 7 — 15 février Hiver 2012

• NP ⊆ IPdet

Let L ∈ NP → Vo
V = {V (x) = 0,no query or (V, P)(x) = Vo(x, P (x))}
if x ∈ L then P (x) = y s.t. Vo(x, y) = 1
if x /∈ L ∀i, j Vo(x, y) = 0 and ∀PVo(x, P (x)) = 0

• IPdet ⊆ NP
Let L ∈ IPdet → V and Vo = out(x, a1, a2, ..)
if x ∈ L then ∃P that produces a1, a2, .. s.t. out(x, a1, a2, ..) = 1 → y = a1, a2, .. and
Vo(x, y) = 1
if x /∈ L then ∀P out(x, a1, a2, ..) = 0→ ∀y Vo(x, y) = 0

Definition 7.4 (Introduce random bits V ∈ {0, 1}∗).
(We only use polynomially many of them)

1. r private to V → P is deterministic

2. r public to V and P → P is deterministic but knows the coins of V

Definition 7.5. IP
Let V be a randomized and polynomial time verifier V , let P be a prover and r ∈ {0, 1}∗

q1 = V (x, r), a1 = P (x, 1, q1)
...
qi = V (x, i, r1, ..., ri−1), ai = P (x, i, q1, ..., qi)

Voutput out(V, P)(x, r) = out(x, a1, a2, .., r)

Definition 7.6.
IP = {L : ∃V a randomized and polynomial time verifier with a polynomial number of
messages s.t.

x ∈ L⇒ ∃P s.t. Prr(< P, V > (x, r) accepts) = 1
x /∈ L⇒ ∀P Prr(< P, V > (x, r) accepts) ≤ 1/2}

7.2 First examples

We look at problems in coNP.

7.2.1 Non-isomorphic graphs

Definition 7.7.
Let G = (V,E) or V = {1, ..., n} a graph and π ∈ Sn,we define π(G) = (V,E ′) the

permuted graph s.t. : (u, v) ∈ E ⇔ (π(u), π(v)) ∈ E ′.
G1
∼= G2 if it exists π ∈ Sn s.t. π(G1) = G2.

GNI = {(G1, G2) : G2 � G2}

Theorem 7.8. GI ∈ NP and GNI ∈ coNP, IP

7-2

INF561 Lecture 7 — 15 février Hiver 2012

Proof: Just give the permutation. �

Definition 7.9.
H = Gb permuted by π, P computes bit c
output = 1 if b = c or output = 0 if b 6= c.

Lemma 7.10. If (G1, G2) ∈ GNI then the set of permuted graphs
O1 = {G1 permuted by π : π ∈ Sn} and O2 = {G2 permuted by π : π ∈ Sn} are disjoint.
That means that either H ∈ O1 or H ∈ O2.

Definition 7.11.
Let P (H) = c s.t. H ∈ Oc. Since O1 ∩O2 = ∅, P (H) is well-defined and P (H) = b.
Therefore Pr(output = 1) = 1.

Lemma 7.12. If (G1, G2) /∈ GNI then G1, G2 are isomorphic. Therefore O1 = O2.
So H is a random graph of O1 = O2.
As a result, ∀P → Prr[out(V, P)(x, r) = 0] = 1

2
.

Definition 7.13.
IP (k) = IP with only k messages.

Theorem 7.14. ∀constant k, IP (k) ⊆ IP (2)

Theorem 7.15. ∀constant k, IP [k + 1] ⊆ IP [k]

Theorem 7.16. IP = PSPACE with poly many messages.

We will prove a restricted version of that theorem.

Definition 7.17.]SATD = {(ϕ, k) where ϕ = 3-SAT formula and k = number of positive
assignments to ϕ}.

Theorem 7.18.]SATD ∈ IP

7.2.2 Proof of]SATD ∈ IP
Arithmetization. Consider a formula ϕ = (0, 1)n → (0, 1) with n variables. We want to
construct in polynomial time a low degree polynomial Rϕ in n variables s.t.

∀a ∈ {0, 1}n, Rϕ(a1, a2, .., an) = ϕ(a1, a2, .., an).

Construction by induction over any field:

• x→ x

• x→ 1− x

• ϕ→ 1−Rϕ

7-3

INF561 Lecture 7 — 15 février Hiver 2012

• ϕ1 ∧ ϕ2 → ϕ1ϕ2

• ϕ1 ∨ ϕ2 → 1− (1− ϕ1)(1− ϕ2)

Lemma 7.19.
degRϕ ≤ 3m where m is the number of clauses in ϕ.
∀a ∈ {0, 1}n, ϕ(a) = Rϕ(a).
We can compute a representation of Rϕ in linear time.

We now consider the problem of checking that
∑

x1,...,xn∈{0,1} p(x1, x2, ..., xn) = c mod q,
where p is some polynomial of degree at most d. Then]SATD reduces to this problem by
letting p = Rϕ and q > 2n (since the number of solutions of ϕ is at most 2n).

Sumcheck protocol.

Definition 7.20 (IP protocol for Sumcheckq,n(p, c)).

• p a polynomial with n variables and c a natural integer.

• If n = 1, check that p(0) + p(1) = c (if 6= reject, otherwise accept)

• If n > 1, ask from the prover the polynomial p′(x) =
∑

x2,...,xn∈{0,1}

p(x, x2, ..., xn).

• Check that p′(0) + p′(1) = c (if 6= reject, otherwise continue)

• Choose at random r ∈ Zq and execute Sumcheckq,n−1(p(r, ...), p
′(r)).

Theorem 7.21. If
∑

x∈{0,1}n
p(x) = c mod q then Sumcheckq,n(p, c) accepts.

Otherwise it rejects with probability at least 1− nd
q

, where d = deg p.

Proof:
Case

∑
x∈{0,1}n p(x) = c mod q.

The proof is also by induction on n. If n = 1 we have p(0)+p(1) = c, therefore < P, V > (p, c)
accepts.
Otherwise:

p′(0) + p′(1) =
∑

x2,...,xn∈{0,1}

p(0, x2, ..., xn) +
∑

x2,...,xn∈{0,1}

p(1, x2, ..., xn)

=
∑

x1,...,xn∈{0,1}

p(x1, ..., xn) = c.

And by induction Sumcheckq,n−1(p(r, ...), p
′(r)) accepts so < P, V > (p, c) accepts.

Case
∑

x∈{0,1}n p(x) 6= c mod q.
The proof is also by induction on n. If n = 1 the verifier always rejects, therefore the result
is true.

7-4

INF561 Lecture 7 — 15 février Hiver 2012

Let n > 1 be an integer. If p′(x) =
∑

x2,...,xn∈{0,1}

p(x, x2, ..., xn) (ie P is the honest prover) then

p′(0) + p′(1) 6= c so the verifier always rejects.

Otherwise p′(x) 6=
∑

x2,...,xn∈{0,1}

p(x, x2, ..., xn) and we deduce:

Pr(Sumcheckq,n(p, c) accepts)

≤ Pr
r

(
∑

x2,...,xn∈{0,1}

p(r, x2, ..., xn) = p′(r))

+ Pr
r

(
Sumcheckq,n−1(p(r, ...), p

′(r)) accepts and
∑

x2,...,xn∈{0,1}

p(r, x2, ..., xn) 6= p′(r))
)
.

The first probability term is upper bounded by d
q

using the Shwartz-Zippel lemma, and the

second probability term by d(n−1)
q

using the induction hypothesis. Which shows the induction
hypothesis for n and completes the proof. �

Corollary 7.22. 3− SAT ∈ IP

Proof: Let q be a prime number > 2n. Then just run Sumcheckq,n(Pϕ, 0).
ϕ not satisfiable ⇒ Sumcheckq,n(Pϕ, 0) accepts.

ϕ satisfiable ⇒ Pr(Sumcheckq,n(Pϕ, 0) rejects) ≥ 1− 3mn

2n
. �

7.3 Program checking

Definition 7.23.
T is a computational task.
A checker for T is a poly time and randomized algo C s.t. given any program P satisfies :

1. if P is correct then ∀y → P (y) = T (y) and Pr(CpacceptsP (x)) = 1

2. if P (x) 6= T (x) then Pr(CprejectsP (x)) ≤ 1
2

Complexity of C

• the number of calls to P

• runtime complexity of C (where each call to P has zero cost)

• we want the number of calls to be small

• we want runtime complexity to be negligeable to the runtime complexity of any correct
program

7-5

