| INF561: Du calcul probabiliste au calcul quantique | Hiver 2012 |  |
| :--- | :---: | :---: |
|  | Lecture $7-15$ février |  |
| Lecturer: Frédéric Magniez | Scribe: Anna-Isavella Rerra, Danai Boutara |  |

The purpose of this course is to define the concept of interactive proof and apply it on simple examples.

### 7.1 Definition of the model

Definition 7.1. (recall)
$N P=\{L: \exists V$ a deterministic and polynomial time algorithm (called verifier) s.t.

$$
\begin{array}{ll}
\forall x \in L, & \exists y \in\{0,1\}^{\text {poly }(|x|)} \text { s.t. } V(x, y)=1 \text { and } \operatorname{Pr}\{V(x, y, r)=1\}=1, \\
\forall x \notin L, & \left.\exists y \in\{0,1\}^{\text {poly }(|x|)} \text { s.t. } V(x, y)=0 \text { and } \operatorname{Pr}\{V(x, y, r)=0\} \geq \frac{1}{2}\right\} .
\end{array}
$$

## Extensions

- Interaction $\Rightarrow I P_{\text {det }}$
- Randomness $\Rightarrow$ Merlin Arthur (MA)
- Interaction + Randomness $\Rightarrow$ IP

Definition 7.2. IP
Let $V$ be a verifier and let $P$ be a prover

$$
\begin{aligned}
& q_{1}=V(x, 1), \quad r_{1}=P\left(x, 1, a_{1}\right) \\
& \ldots \\
& q_{i}=V\left(x, i, r_{1}, \ldots, r_{i-1}\right), \quad r_{i}=P\left(x, i, a_{1}, \ldots, a_{i}\right)
\end{aligned}
$$

The protocol of questions-responses ends after $m$ messages and we note the result:

$$
<P, V>(x) \text { accepts or rejects }
$$

## Definition 7.3.

$I P_{\text {det }}=\{L: \exists V$ a deterministic and polynomial time verifier $V$ with a polynomial number of messages s.t.

$$
\begin{array}{ll}
\forall x \in L, & \exists P \text { prover s.t. out }<P, V>(x)=1 \\
\forall x \notin L, & \forall P \text { prover s.t. out }<V, P>(x)=0\} .
\end{array}
$$

Question: $I P_{\text {det }}$ vs. $N P$ ?

- $N P \subseteq I P_{\text {det }}$

Let $L \in N P \rightarrow V_{o}$
$V=\left\{V(x)=0\right.$, no query or $\left.\quad(V, P)(x)=V_{o}(x, P(x))\right\}$
if $x \in L$ then $P(x)=y$ s.t. $V_{o}(x, y)=1$
if $x \notin L \forall i, j V_{o}(x, y)=0 \quad$ and $\quad \forall P V_{o}(x, P(x))=0$

- $I P_{\text {det }} \subseteq N P$

Let $L \in I P_{\text {det }} \rightarrow V$ and $V_{o}=\operatorname{out}\left(x, a_{1}, a_{2}, ..\right)$
if $x \in L$ then $\exists P$ that produces $a_{1}, a_{2}, .$. s.t. $\operatorname{out}\left(x, a_{1}, a_{2}, ..\right)=1 \rightarrow y=a_{1}, a_{2}, .$. and $V_{o}(x, y)=1$
if $x \notin L$ then $\forall P \quad \operatorname{out}\left(x, a_{1}, a_{2}, ..\right)=0 \rightarrow \forall y \quad V_{o}(x, y)=0$
Definition 7.4 (Introduce random bits $V \in\{0,1\}^{*}$ ).
(We only use polynomially many of them)

1. $r$ private to $V \rightarrow P$ is deterministic
2. $r$ public to $V$ and $P \rightarrow P$ is deterministic but knows the coins of $V$

Definition 7.5. IP
Let $V$ be a randomized and polynomial time verifier $V$, let $P$ be a prover and $r \in\{0,1\}^{*}$

$$
\begin{aligned}
& q_{1}=V(x, r), \quad a_{1}=P\left(x, 1, q_{1}\right) \\
& \cdots \\
& q_{i}=V\left(x, i, r_{1}, \ldots, r_{i-1}\right), \quad a_{i}=P\left(x, i, q_{1}, \ldots, q_{i}\right)
\end{aligned}
$$

Voutput out $(V, P)(x, r)=\operatorname{out}\left(x, a_{1}, a_{2}, . ., r\right)$

## Definition 7.6.

$I P=\{L: \exists V$ a randomized and polynomial time verifier with a polynomial number of messages s.t.

$$
\begin{aligned}
& x \in L \Rightarrow \exists P \text { s.t. } \operatorname{Pr}_{r}(<P, V>(x, r) \text { accepts })=1 \\
& \left.x \notin L \Rightarrow \forall P \quad \operatorname{Pr}_{r}(<P, V>(x, r) \text { accepts }) \leq 1 / 2\right\}
\end{aligned}
$$

### 7.2 First examples

We look at problems in coNP.

### 7.2.1 Non-isomorphic graphs

## Definition 7.7.

Let $G=(V, E)$ or $V=\{1, \ldots, n\}$ a graph and $\pi \in \mathcal{S}_{n}$, we define $\pi(G)=\left(V, E^{\prime}\right)$ the permuted graph s.t. : $(u, v) \in E \Leftrightarrow(\pi(u), \pi(v)) \in E^{\prime}$.
$G_{1} \cong G_{2}$ if it exists $\pi \in \mathcal{S}_{n}$ s.t. $\pi\left(G_{1}\right)=G_{2}$.
$G N I=\left\{\left(G_{1}, G_{2}\right): G_{2} \not \equiv G_{2}\right\}$
Theorem 7.8. $G I \in N P$ and $G N I \in \operatorname{coN} P, I P$

Proof: Just give the permutation.
Definition 7.9.
$H=G_{b}$ permuted by $\pi, \quad P$ computes bit $c$
output $=1$ if $b=c$ or output $=0$ if $b \neq c$.
Lemma 7.10. If $\left(G_{1}, G_{2}\right) \in G N I$ then the set of permuted graphs
$O_{1}=\left\{G_{1}\right.$ permuted by $\left.\pi: \pi \in \mathcal{S}_{n}\right\}$ and $O_{2}=\left\{G_{2}\right.$ permuted by $\left.\pi: \pi \in \mathcal{S}_{n}\right\}$ are disjoint.
That means that either $H \in O_{1}$ or $H \in O_{2}$.

## Definition 7.11.

Let $P(H)=c$ s.t. $H \in O_{c}$. Since $O_{1} \cap O_{2}=\emptyset, P(H)$ is well-defined and $P(H)=b$.
Therefore $\operatorname{Pr}($ output $=1)=1$.
Lemma 7.12. If $\left(G_{1}, G_{2}\right) \notin G N I$ then $G_{1}, G_{2}$ are isomorphic. Therefore $O_{1}=O_{2}$.
So $H$ is a random graph of $O_{1}=O_{2}$.
As a result, $\forall P \rightarrow \operatorname{Pr}_{r}[\operatorname{out}(V, P)(x, r)=0]=\frac{1}{2}$.
Definition 7.13.
$I P(k)=I P$ with only $k$ messages.
Theorem 7.14. $\forall$ constant $k, I P(k) \subseteq I P(2)$
Theorem 7.15. $\forall$ constant $k, I P[k+1] \subseteq I P[k]$
Theorem 7.16. $I P=P S P A C E$ with poly many messages.
We will prove a restricted version of that theorem.
Definition 7.17. $\sharp S A T_{D}=\{(\varphi, k)$ where $\varphi=3$-SAT formula and $k=$ number of positive assignments to $\varphi\}$.

Theorem 7.18. $\sharp S A T_{D} \in I P$

### 7.2.2 Proof of $\sharp S A T_{D} \in I P$

Arithmetization. Consider a formula $\varphi=(0,1)^{n} \rightarrow(0,1)$ with $n$ variables. We want to construct in polynomial time a low degree polynomial $R_{\varphi}$ in $n$ variables s.t.

$$
\forall a \in\{0,1\}^{n}, \quad R_{\varphi}\left(a_{1}, a_{2}, . ., a_{n}\right)=\varphi\left(a_{1}, a_{2}, . ., a_{n}\right)
$$

Construction by induction over any field:

- $x \rightarrow x$
- $\bar{x} \rightarrow 1-x$
- $\bar{\varphi} \rightarrow 1-R_{\varphi}$
- $\varphi_{1} \wedge \varphi_{2} \rightarrow \varphi_{1} \varphi_{2}$
- $\varphi_{1} \vee \varphi_{2} \rightarrow 1-\left(1-\varphi_{1}\right)\left(1-\varphi_{2}\right)$


## Lemma 7.19.

$\operatorname{deg} R_{\varphi} \leq 3 m$ where $m$ is the number of clauses in $\varphi$.
$\forall a \in\{0,1\}^{n}, \quad \varphi(a)=R_{\varphi}(a)$.
We can compute a representation of $R_{\varphi}$ in linear time.
We now consider the problem of checking that $\sum_{x_{1}, \ldots, x_{n} \in\{0,1\}} p\left(x_{1}, x_{2}, \ldots, x_{n}\right)=c \bmod q$, where $p$ is some polynomial of degree at most $d$. Then $\sharp S A T_{D}$ reduces to this problem by letting $p=R_{\varphi}$ and $q>2^{n}$ (since the number of solutions of $\varphi$ is at most $2^{n}$ ).

## Sumcheck protocol.

Definition 7.20 (IP protocol for Sumcheck $_{q, n}(p, c)$ ).

- $p$ a polynomial with $n$ variables and $c$ a natural integer.
- If $n=1$, check that $p(0)+p(1)=c$ (if $\neq$ reject, otherwise accept $)$
- If $n>1$, ask from the prover the polynomial $p^{\prime}(x)=\sum_{x_{2}, \ldots, x_{n} \in\{0,1\}} p\left(x, x_{2}, \ldots, x_{n}\right)$.
- Check that $p^{\prime}(0)+p^{\prime}(1)=c$ (if $\neq$ reject, otherwise continue)
- Choose at random $r \in \mathbb{Z}_{q}$ and execute Sumcheck $_{q, n-1}\left(p(r, \ldots), p^{\prime}(r)\right)$.

Theorem 7.21. If $\sum_{x \in\{0,1\}^{n}} p(x)=c \bmod q$ then $\operatorname{Sumcheck}_{q, n}(p, c)$ accepts.
Otherwise it rejects with probability at least $1-\frac{n d}{q}$, where $d=\operatorname{deg} p$.

## Proof:

Case $\sum_{x \in\{0,1\}^{n}} p(x)=c \bmod q$.
The proof is also by induction on $n$. If $n=1$ we have $p(0)+p(1)=c$, therefore $<P, V>(p, c)$ accepts.
Otherwise:

$$
\begin{aligned}
p^{\prime}(0)+p^{\prime}(1) & =\sum_{x_{2}, \ldots, x_{n} \in\{0,1\}} p\left(0, x_{2}, \ldots, x_{n}\right)+\sum_{x_{2}, \ldots, x_{n} \in\{0,1\}} p\left(1, x_{2}, \ldots, x_{n}\right) \\
& =\sum_{x_{1}, \ldots, x_{n} \in\{0,1\}} p\left(x_{1}, \ldots, x_{n}\right)=c .
\end{aligned}
$$

And by induction Sumcheck $_{q, n-1}\left(p(r, \ldots), p^{\prime}(r)\right)$ accepts so $<P, V>(p, c)$ accepts.
Case $\sum_{x \in\{0,1\}^{n}} p(x) \neq c \bmod q$.
The proof is also by induction on $n$. If $n=1$ the verifier always rejects, therefore the result is true.

Let $n>1$ be an integer. If $p^{\prime}(x)=\sum_{x_{2}, \ldots, x_{n} \in\{0,1\}} p\left(x, x_{2}, \ldots, x_{n}\right)$ (ie P is the honest prover) then $p^{\prime}(0)+p^{\prime}(1) \neq c$ so the verifier always rejects.
Otherwise $p^{\prime}(x) \neq \sum_{x_{2}, \ldots, x_{n} \in\{0,1\}} p\left(x, x_{2}, \ldots, x_{n}\right)$ and we deduce:

$$
\begin{aligned}
& \operatorname{Pr}\left(\text { Sumcheck }_{q, n}(p, c) \text { accepts }\right) \\
\leq & \operatorname{Pr}_{r}\left(\sum_{x_{2}, \ldots, x_{n} \in\{0,1\}} p\left(r, x_{2}, \ldots, x_{n}\right)=p^{\prime}(r)\right) \\
& \left.+\operatorname{Pr}_{r}\left(\text { Sumcheck }_{q, n-1}\left(p(r, \ldots), p^{\prime}(r)\right) \text { accepts and } \sum_{x_{2}, \ldots, x_{n} \in\{0,1\}} p\left(r, x_{2}, \ldots, x_{n}\right) \neq p^{\prime}(r)\right)\right) .
\end{aligned}
$$

The first probability term is upper bounded by $\frac{d}{q}$ using the Shwartz-Zippel lemma, and the second probability term by $\frac{d(n-1)}{q}$ using the induction hypothesis. Which shows the induction hypothesis for $n$ and completes the proof.

Corollary 7.22. $\overline{3-S A T} \in I P$
Proof: Let q be a prime number $>2^{n}$. Then just run $\operatorname{Sumcheck}_{q, n}\left(P_{\varphi}, 0\right)$. $\varphi$ not satisfiable $\Rightarrow$ Sumcheck $_{q, n}\left(P_{\varphi}, 0\right)$ accepts.
$\varphi$ satisfiable $\Rightarrow \operatorname{Pr}\left(\operatorname{Sumcheck}_{q, n}\left(P_{\varphi}, 0\right)\right.$ rejects $) \geq 1-\frac{3 m n}{2^{n}}$.

### 7.3 Program checking

## Definition 7.23.

$T$ is a computational task.
A checker for $T$ is a poly time and randomized algo $C$ s.t. given any program $P$ satisfies :

1. if $P$ is correct then $\forall y \rightarrow P(y)=T(y)$ and $\operatorname{Pr}\left(C^{p} \operatorname{accepts} P(x)\right)=1$
2. if $P(x) \neq T(x)$ then $\operatorname{Pr}\left(C^{p}\right.$ rejects $\left.P(x)\right) \leq \frac{1}{2}$

## Complexity of $C$

- the number of calls to $P$
- runtime complexity of $C$ (where each call to $P$ has zero cost)
- we want the number of calls to be small
- we want runtime complexity to be negligeable to the runtime complexity of any correct program

