INF561: Du calcul probabiliste au calcul quantique Hiver 2012

Lecture 7 — 15 février

Lecturer: Frédéric Magniez Scribe: Anna-Isavella Rerra , Danai Boutara

The purpose of this course is to define the concept of interactive proof and apply it on
simple examples.

7.1 Definition of the model

Definition 7.1. (recall)

NP ={L: 3V a deterministic and polynomial time algorithm (called verifier) s.t.
Ve e L, Jye€{0,1}w0) st V(z,y) =1 and Pr{V(x,y,r) =1} =1,
Vo ¢ L, Jy e {0, 1} st V(z,y) =0 and Pr{V(z,y,r) =0} > i}.

Extensions

e Interaction = [P,
e Randomness = Merlin Arthur (MA)
e Interaction + Randomness = IP

Definition 7.2. IP
Let V' be a verifier and let P be a prover
¢ =V(z,1), r =Pl a)

g =V(r,i,ry,...,mi21), 1= Px,i,a4,...,a;)
The protocol of questions-responses ends after m messages and we note the result:
< P,V > (x) accepts or rejects

Definition 7.3.
1Py = {L : 3V a deterministic and polynomial time verifier V with a polynomial number
of messages s.t.
Vo € L, 3P prover s.t. out < P,V > (x)
Vo ¢ L, VP prover s.t. out <V, P > (z)

1
0}.

Question: [P, vs. NP ?

7-1

INF561 Lecture 7 — 15 février Hiver 2012

e NP CIP,,
Let Le NP =V,
V ={V(z) =0mno query or (V,P)(z)="V,(z,P(x))}
if € L then P(x) =y s.t. V,(z,y)=1
ifex¢ L Vi,j Vo(r,y) =0 and VPV,(z,P(z))=0

e [P, CNP
Let L € [Py — V and V, = out(x, ay,as, ..)
if © € L then 3P that produces ay, asg, .. s.t. out(r,ay,as,..) =1 — y = ay,as,.. and
Vo(z,y) =1
if v ¢ L then VP out(x,ai,as,..)=0—Vy V,(z,y) =0

Definition 7.4 (Introduce random bits V' € {0, 1}*).
(We only use polynomially many of them)

1. r private to V' — P is deterministic

2. r public toV and P — P is deterministic but knows the coins of V'

Definition 7.5. IP
Let V' be a randomized and polynomial time verifier V, let P be a prover and r € {0,1}*
Q1:V($7T)7 G1:P($717Q1)

g =V(x,i,r1,...,mi21), a; = P(z,i,q,...,q)
Voutput out(V, P)(z,r) = out(x, ay, as, ..,r)

Definition 7.6.
IP = {L : 3V a randomized and polynomial time verifier with a polynomial number of
messages S.t.

x € L= 3P s.t. Pr.(< PV > (z,r) accepts) = 1

r¢ L=YP Pr.(< P,V > (x,r) accepts) < 1/2}

7.2 First examples

We look at problems in coNP.

7.2.1 Non-isomorphic graphs

Definition 7.7.

Let G = (V,E) or V. = {1,...,n} a graph and © € S,,we define n(G) = (V,E’) the
permuted graph s.t. : (u,v) € E < (n(u),n(v)) € E'.

G1 =2 Gy if it exists m € S, s.t. 7(G1) = Ga.

GNI = {(G1,G2) : G2 2 Go}

Theorem 7.8. GI € NP and GNI € coNP,IP

7-2

INF561 Lecture 7 — 15 février Hiver 2012

Proof: Just give the permutation. 0

Definition 7.9.
H = Gy, permuted by m, P computes bit ¢
output =1 if b = ¢ or output =0 if b # c.

Lemma 7.10. If (G1,G3) € GNI then the set of permuted graphs
0, = {G; permuted by 7 : 7 € S, } and Oy = {G5 permuted by 7 : 7 € S,} are disjoint.
That means that either H € O or H € O,.

Definition 7.11.
Let P(H) = ¢ s.t. H € O.. Since Oy N Oy =0, P(H) is well-defined and P(H) = b.
Therefore Pr(output = 1) = 1.

Lemma 7.12. If (G1,G3) ¢ GNI then G1, Gy are isomorphic. Therefore O = Os.
So H is a random graph of O1 = O.
As a result, VP — PrJout(V, P)(z,r) = 0] = 1.

Definition 7.13.
IP(k) = IP with only k messages.

Theorem 7.14. Vconstant k, IP(k) C [P(2)
Theorem 7.15. Vconstant k, IP[k + 1] C I P[k]
Theorem 7.16. [P = PSPACE with poly many messages.

We will prove a restricted version of that theorem.

Definition 7.17. $SATp = {(¢, k) where ¢ = 3-SAT formula and k = number of positive
assignments to ¢}.

Theorem 7.18. §SATp € IP

7.2.2 Proof of tSATp € IP

Arithmetization. Consider a formula ¢ = (0,1)" — (0, 1) with n variables. We want to
construct in polynomial time a low degree polynomial R, in n variables s.t.

Va € {0,1}", Ry,(ay,as,..,a,) = ¢(a, as, .., ay).
Construction by induction over any field:
° T =1
eT > 11—z

e p—1-R,

INF561 Lecture 7 — 15 février Hiver 2012

o 1 N\ Yy = P12
® o1 Vs —=1—(1—p)(1—¢o)

Lemma 7.19.

deg R, < 3m where m is the number of clauses in ¢.
Va € {0,1}", ¢(a) = Ry(a).

We can compute a representation of R, in linear time.

where p is some polynomial of degree at most d. Then §SATp reduces to this problem by
letting p = R, and ¢ > 2" (since the number of solutions of ¢ is at most 2").

Sumcheck protocol.
Definition 7.20 (IP protocol for Sumcheck,,(p,c)).
e p a polynomial with n variables and ¢ a natural integer.
e [fn =1, check that p(0) + p(1) = ¢ (if # reject, otherwise accept)

e Ifn > 1, ask from the prover the polynomial p'(z) = Z p(x, o, .y Ty,).

e Check that p'(0) 4+ p'(1) = ¢ (if # reject, otherwise continue)

e Choose at random r € Z, and execute Sumcheck,,,_1(p(r,...),p'(r)).

Theorem 7.21. If Z p(xz) = ¢ mod ¢ then Sumcheck,,(p,c) accepts.
z€{0,1}"
Otherwise it rejects with probability at least 1 — %d, where d = deg p.

Proof:

Case }_ 1y P(x) = ¢ mod g.

The proof is also by induction on n. If n = 1 we have p(0)+p(1) = ¢, therefore < P,V > (p, ¢)
accepts.

Otherwise:

PO+PA) = > p0zax)+ Y p(Las, 1)

And by induction Sumcheck,,,—1(p(r, ...),p'(r)) accepts so < P,V > (p, c) accepts.

Case >, i1y P(2) # ¢ mod g.
The proof is also by induction on n. If n = 1 the verifier always rejects, therefore the result
is true.

INF561 Lecture 7 — 15 février Hiver 2012

Let n > 1 be an integer. If p/(x) = Z p(z, xg, ..., x,) (ie P is the honest prover) then

P’ (0) 4+ p'(1) # ¢ so the verifier always rejects.
Otherwise p'(z) # Z p(x, o, ..., x,) and we deduce:

The first probability term is upper bounded by g using the Shwartz-Zippel lemma, and the
d(n—1)

second probability term by — using the induction hypothesis. Which shows the induction

hypothesis for n and completes the proof. O
Corollary 7.22. 3— SAT € IP

Proof: Let q be a prime number > 2". Then just run Sumcheck,,(P,,0).
¢ not satisfiable = Sumcheck,,,(P,,0) accepts.

3
¢ satisfiable = Pr(Sumcheck,,,(P,,0) rejects) > 1 — mn

A

7.3 Program checking

Definition 7.23.
T is a computational task.
A checker for T is a poly time and randomized algo C' s.t. given any program P satisfies :

1. if P is correct then Yy — P(y) = T(y) and Pr(CPacceptsP(x)) =1
2. if P(z) # T(z) then Pr(CfrejectsP(z)) < 3

Complexity of C

e the number of calls to P
e runtime complexity of C' (where each call to P has zero cost)

we want the number of calls to be small

e we want runtime complexity to be negligeable to the runtime complexity of any correct
program

