INF561: Utilisation de l'aléatoire en algorithmique

Hiver 2013

Cours 5 — 4 février

Enseignant : Frédéric Magniez Rédacteur : Svyatoslav Covanov

5.1

5.1.1Test d'associativité

Problème : $S = \{1, ..., n\}$

Input : $o: S \times S \longrightarrow S$ donné par une procédure

Output: Décider si o est associative, c'est-à-dire $\forall i, j, k \in S, (ioj)ok = io(jok)$

La complexité correspond au nombre d'évaluation de o.

1. Remarque : l'algorithme déterministe s'effectue en n^3 opérations 'o'.

2. Si l'on fixe
$$p = 7$$
, $\overrightarrow{S} = \{A \in (\mathbb{Z}/p\mathbb{Z})^n\}$ et $e_i = \begin{pmatrix} 0 \\ \dots \\ 1 \\ \dots \\ 0 \end{pmatrix} \longleftarrow i$

On définit $\overrightarrow{\sigma}: A, B \longrightarrow C = A \overrightarrow{\sigma} B$

$$= \sum_{i,j} A_i B_j(\overrightarrow{e_{ioj}})$$

On définit
$$\overrightarrow{\sigma}: A, B \longrightarrow \overrightarrow{S}$$

$$= \sum_{i,j} A_i B_j(\overrightarrow{e_{ioj}})$$

Propriété 1. (S, o) est associative si et seulement si $(\overrightarrow{S}, \overrightarrow{o})$ est associative.

Preuve: \Leftarrow Soient i, j, k. On a $\overrightarrow{e}_{(ioj)ok} = (\overrightarrow{e}_i o \overrightarrow{e}_j) o \overrightarrow{e}_k = \overrightarrow{e}_i o (\overrightarrow{e}_j o \overrightarrow{e}_k) = \overrightarrow{e}_{io(jok)}$. Donc (ioj)ok = io(jok).

 \implies Réciproquement, prenons A, B, C.

On a:
$$Ao(BoC) = \sum_{i,j,k} A_i B_j C_k e_{io(jok)} = \sum_{i,j,k} A_i B_j C_k e_{(ioj)ok} = (AoB)oC$$

Propriété 2. Si
$$(S,o)$$
 non associative alors $\mathbb{P}_{\overrightarrow{A},\overrightarrow{B}\in\overrightarrow{S}}(\overrightarrow{A}\overrightarrow{o}(\overrightarrow{B}\overrightarrow{o}\overrightarrow{C}) = (\overrightarrow{A}\overrightarrow{o}\overrightarrow{B})\overrightarrow{o}\overrightarrow{C})) \leq \frac{3}{8}$

Preuve: Choisissons A, B, C.

On a :
$$Ao(BoC) = \sum_{t \in S} (\sum_{i,j,k \in S, io(jok)=t} A_i B_j C_k) e_t$$
.
Alors $P = Ao(BoC) - (AoB)oC = \sum_t (\sum_{i,j,k \in S, io(jok)=t} A_i B_j C_k - \sum_{i,j,k \in S, (ioj)ok=t} A_i B_j C_k) e_t$.

On a donc en chaque e_t un polynôme en les variables (A_i, B_i, C_k) de degré inférieur à 3. Si o n'est pas associative, il existe i_0, j_0, k_0 tels que $t = i_0 o(j_0 o k_0) \neq (i_0 o j_0) o k_0$.

La t-ème coordonnée de P est alors non nulle pour $A=e_{i_0}, B=e_{j_0}, C=e_{k_0}$.

Donc par le lemme de Schwartz-Zippel, $\mathbb{P}_{A,B,C\in(\mathbb{Z}_p)^n}[P_t(A,B,C)=0]\leq \frac{3}{p}$.

Donc:
$$\mathbb{P}_{A,B,C\in(\mathbb{Z}_p)^n}[Ao(BoC) = (AoB)oC] \leq \frac{3}{p}.$$

Algorithme: On choisit $A, B, C \in (\mathbb{Z}_p)^n$ et on accepte si (AoB)oC = Ao(BoC).

Propriété 3. 1. Si o est associative, l'algorithme accepte avec probabilité 1.

- 2. Si o non associative, l'algorithme accepte avec probabilité inférieure à $\frac{3}{8}$.
- 3. La complexité est de $2n^2$ opérations o avec les additions et les multiplications modulo 7.

5.1.2 Application: 2-coloriage d'un graphe 3-coloriable

Soit G = (X, E) un graphe non-orienté 3-coloriable, c'est-à-dire qu'il existe une application $C: X \to [0; 2]$ telle que

$$\forall (x,y) \in X^2, (x,y) \in E \Rightarrow c(x) \neq c(y)$$

On cherche un algorithme qui colorie G avec seulement 2 couleurs, de telle sorte qu'aucun triangle ne soit mono-chromatique. Ceci est toujours possible pour un graphe 3-coloriable : en effet, il suffit de "fusionner" deux couleurs pour obtenir un graphe bicolore dans lequel aucun triangle n'est monochromatique.

On remarque qu'à un triangle (u, v, w), on peut associer une clause $C_{u,v,w}$ vraie si, et seulement si, le triangle (u, v, w) n'est pas monochromatique. En effet, si $c_u \in \{0, 1\}$ est la couleur du sommet u, alors (u, v, w) n'est pas monochromatique si, et seulement si, $C_{u,v,w} = 1$ avec :

$$C_{u,v,w} = \neg(a_u = a_v = a_w) = (a_u \lor a_v \lor a_w) \land ((\neg a_u) \lor (\neg a_v) \lor (\neg a_w))$$

Ceci ramène la résolution du problème à un problème 3-SAT. Dans ce cas particulier, l'algorithme est cependant polynomial :

2-COLORATION D'UN GRAPHE 3-COLORIABLE

- 1. Choisir une coloration $a: G \to \{Bleu, Vert\}$ quelconque
- 2. Tant qu'il existe un triangle monochromatique dans G colorié par a:

Choisir un triangle monochromatique

Changer la couleur de l'un des sommets au hasard

3. Retourner a

Soit $b: G \to \{R, B, V\}$ une 3-coloration du graphe. Pour $i \in \mathbb{N}$, on note X_i le cardinal, après i itérations de la boucle, de l'ensemble :

$$\{u \in V \mid (b(u) = B \land a(u) = V) \lor (b(u) = V \land a(u) = B)\}$$

Soit (u, v, w) un triangle monochromatique à l'étape i, par exemple a(u) = a(v) = a(w) = B. On peut de plus supposer, sans perte de généralité, que b(u) = R, b(v) = V, b(w) = B. Alors :

– Avec probabilité $\frac{1}{3}$, l'algorithme change la couleur de u:a(u)=V. On a alors : $X_{i+1}=X_i$;

- Avec probabilité $\frac{1}{3}$, l'algorithme change la couleur de v:a(v)=V. On a alors : $X_{i+1}=X_i-1$;
- Avec probabilité $\frac{1}{3}$, l'algorithme change la couleur de w:a(w)=V. On a alors : $X_{i+1}=X_i+1.$

Le temps nécessaire pour parcourir tout le graphe des possibilités est inférieur à $4|V||E| = 12(n+1)^2$.

5.2 Problème 3-SAT

5.2.1 Première tentative : Application de Walksat

ALGORITHME DE SCHOENING POUR 3-SAT

- 1. Choisir arbitrairement $a \in \{0,1\}^n$
- 2. Tant que $\phi(a) = 0$, répéter :

Choisir une clause C_j telle que $C_j(a) = 0$

Changer la valeur d'une variable de C_j au hasard

3. Renvoyer a si $\phi(a) = 1$, sinon rejeter

Si ϕ est 2-SAT et $T = 8kn^2$ alors :

- 1. Si ϕ est non satisfaisable alors l'algorithme rejette avec probabilité 1.
- 2. Si ϕ est satisfaisable alors l'algorithme renvoie a tel que $\phi(a)=1$ avec probabilité supérieure à $1-\frac{1}{2}^k$

Pour tout $i \in \mathbb{N}$, notons X_i le nombre de bits sur lesquels a et s diffèrent après i itérations. On a alors :

$$\mathbb{P}[X_{i+1} = n - 1 | X_i = n] = 1$$

$$\mathbb{P}[X_{i+1} = 0 | X_i = 0] = 1$$

$$\forall 1 \le j \le n - 1, \qquad \mathbb{P}[X_{i+1} = j - 1 | X_i = j] \ge \frac{1}{3}$$

$$\forall 1 \le j \le n - 1, \qquad \mathbb{P}[X_{i+1} = j + 1 | X_i = j] \le \frac{2}{3}$$

De même que dans l'analyse de l'algorithme pour 2-SAT, on considère donc le graphe linéaire dont l'ensemble des états est $\{0, 1, \dots, n\}$, avec les probabilités de transition :

$$\forall (n,m), \qquad \mathbb{P}_{n\to m} = \mathbb{P}[X_{i+1} = m | X_i = n]$$

L'analyse du nombre d'itérations dans l'algorithme modifié se ramène au calcul du temps moyen pour atteindre 0 en effectuant une marche aléatoire sur le graphe précédent, en partant de l'état n, que l'on note h_n . Dans le pire des cas 1 , ce temps moyen est donné par la relation de récurrence :

^{1.} c'est-à-dire dans le cas où $\mathbb{P}_{n\to n+1}=\frac{2}{3}$ et où $\mathbb{P}_{n\to n-1}=\frac{1}{3}$

$$\forall 1 \le j \le n-1, \qquad h_j = 1 + \frac{1}{3}h_{j-1} + \frac{2}{3}h_{j+1}$$

avec les conditions aux limites $h_0 = 0$, $h_n = 1 + h_{n-1}$.

On obtient ainsi un temps moyen qui exponentiel:

$$h_n = \Theta(2^n)$$

Cette "explosion", par rapport à 2-SAT ², du temps de calcul moyen, est liée au fait que la probabilité de s'éloigner de 0 est ici supérieure à la probabilité de s'en rapprocher. En parcourant le graphe aléatoirement, on aura naturellement tendance à s'éloigner de l'origine à long terme.

5.2.2 Une amélioration du temps de calcul moyen

Etant donné que cette tendance à s'éloigner de l'état 0, on peut penser qu'au lieu de pousser la marche aléatoire jusqu'à tomber sur l'état 0, on a intérêt à repartir, de manière régulière, d'une position aléatoire. D'où le nouvel algorithme :

ALGORITHME (WALKSAT MODIFIÉ 2)

- 1. $a \leftarrow (0, ..., 0)$
- 2. Tant que $\phi(a) = 0$, répeter
 - (a) Choisir aléatoirement $a \in \{0,1\}^n$
 - (b) Tant que $\phi(a) = 0$, répéter **au plus** 3n **fois** :

Choisir une clause C_j telle que $C_j(a) = 0$

Changer la valeur d'une variable de C_j au hasard

Si $\phi(a) = 1$ renvoyer a sinon retourner en 1 au plus T fois.

3. Renvoyer a

Comme prévu, l'algorithme modifié est plus efficace que l'algorithme WALKSAT:

Théorème 5.1 (Schoening, 1999). Dans l'algorithme précédent, le nombre moyen d'exécutions de la boucle 2 est majoré par :

$$\Theta(\sqrt{n}(\frac{4}{3})^n)$$

Preuve: Soit:

 $q = \mathbb{P}_{a_0}[L'algorithme trouve une solution en 3n itérations de la boucle (b), en partant de <math>a = a_0$

Et:

 $q_j = \mathbb{P}_{a_0}[L$ 'algorithme trouve une solution en 3n itérations de la boucle (b), en partant de $a = a_0|X_0 = j$

^{2.} On rappelle que pour 2-SAT, on avait $h_n = n^2$

On a:

$$q = \sum_{j} q_j \mathbb{P}[X_0 = j] = \sum_{j} q_j \frac{1}{2^n} \binom{n}{j}$$

Or:

 $q_j \geq \mathbb{P}_{a_0}[L'algorithme trouve en au plus 3j itérations, en partant de <math>a = a_0|X_0 = j]$

Or, partant de $X_0 = j$, et effectuant 2j transitions vers la gauche ³ et j transitions vers la droite, dans un ordre quelconque, on atteint forcément l'état 0 en au plus 3j itérations. Donc :

 $q_j \geq \mathbb{P}_{a_0}[L$ 'algorithme effectue 2j transitions vers la gauche et j transitions vers la droite]

Cette dernière quantité se calcule facilement : la probabilité d'effectuer 2j transitions vers la gauche et j transitions vers la droite est $(\frac{1}{3})^{2j}(\frac{2}{3})^j$, et il y a $\binom{3j}{j}$ manières d'ordonner ces transitions. Donc :

$$q \ge \sum_{j} \frac{1}{2^n} \binom{n}{j} \frac{2^j}{3^{3j}} \binom{3j}{j}$$

Par la formule de Stirling, on a pour $j \neq 0$:

$$\begin{pmatrix} 3j \\ j \end{pmatrix} \sim \frac{1}{\sqrt{2\pi}} \sqrt{\frac{3}{2j}} \frac{3^{3j}}{2^{2j}}$$

Donc:

$$q \geq \Theta(1) \left[\frac{1}{2^n} + \sum_{j=1}^n \frac{1}{2^n} \binom{n}{j} \frac{1}{\sqrt{j}} \frac{1}{2^j} \right]$$

$$\geq \Theta(1) \left[\frac{1}{2^n} + \sum_{j=1}^n \frac{1}{2^n} \binom{n}{j} \frac{1}{\sqrt{n}} \frac{1}{2^j} \right]$$

$$\geq \Theta(1) \left[\frac{1}{2^n} + \frac{1}{2^n} \frac{1}{\sqrt{n}} (1 + \frac{1}{2})^n \right]$$

$$\geq \Theta\left[\frac{1}{\sqrt{n}} (\frac{3}{4})^n \right]$$

On conclut à l'aide du lemme suivant :

Lemme 5.2. Soit $(z_k)_{k\in\mathbb{N}}$ une suite de variables aléatoire booléenne indépendante, telle que $\forall i\in\mathbb{N}, \mathbb{P}[z_i=1]=p$. Alors :

$$\mathbb{E}[\min\{t/z_t = 1\}] = \frac{1}{p}$$

^{3.} des transitions du type $k \to k-1$

Théorème 5.3. $Si T = \frac{2k}{q} alors$:

- 1. Si ϕ n'est pas satisfaisable alors l'algorithme rejette avec probabilité 1
- 2. Si ϕ a une solution, alors l'algorithme en renvoie une avec probabilité supérieure à $1-(\frac{1}{2})^k$

L'algorithme reste donc exponentiel, mais la constante sous l'exposant est meilleure que pour l'algorithme WALKSAT initial. Le même raisonnement donne, pour tout $k \geq 3$, un algorithme de complexité moyenne $\sqrt{n}(2-\frac{1}{k})^n$.

5.3 Algorithmes de streaming

5.3.1 Modèle et motivation

Définition 5.4 (Masive data). L'entrée x (Data stream) est trop grosse pour être écrite en mémoire RAM (Random Access Memory). Sa taille est o(n) (sous-linéaire), idéalement $O(\log(n))$.

- Nécessite un accès séquentiel à l'entrée : on lit x par morceaux (un bit, un entier, une lettre, ... un élément de taille fixée petite).
- Une seule passe ou plusieurs possibles selon les cas (mais toujours un nombre constant de passes).
- A la fin des passes, l'algorithme doit calculer ou approcher une fonction.

Exemple: Analyse de l'ADN, du graphe du WEB ... les données sont trop grandes pour être stoqués en mémoire RAM. Nombre constant de passes.

Exemple (Missing number):

Stream: suite de n entiers distincts de [[1; n+1]]

Sortie: trouver l'entier manquant

Contrainte: mémoire en $O(\log(n))$ bits, 1 passe

ALGORITHME

$$s \leftarrow 0$$

Tant que Stream non vide

 $x \leftarrow \text{lire Stream}$

$$s \leftarrow s + x$$

retourner $\frac{(n+1)(n+2)}{2} - s$

Définition 5.5 (Paramètres d'un algorithme de streaming).

paramètre	valeur idéale
nombre de passes	1 ou O(1) passes
mémoire RAM	$O(\log^{O(1)}(n))$ bits
temps par morceaux	$O(\log^{O(1)}(n))$ opérations
temps de post-processing	
(pour donner la réponse après passage du stream)	$ O(\log^{O(1)}(n)) \text{ opérations } $

Lemme 1. Tout langage régulier peut être reconnu en une passe par un algorithme de streaming de mémoire constante.

5.3.2Moments de Fréquence

Définition 5.6.

Stream: $a_1, a_2, ..., a_n \in [[1, m]]$. n est inconnu et m est connu

Fréquences: $f_j = |\{i \in [[1; n]], a_i = j\}|, j \in [[1; m]]$

Moments: $F_k = \sum_{j=1}^m (f_j)^k$

 $F_0 = |\{j \in [[1; m]], f_j \neq 0\}|$

 $-F_1 = n$

 $-F_2 =$ "repeat rate" ou "surprise index". F_2 grand $\Rightarrow f_j$ anormalement grand (possibilité d'attaque).

 $-F_{\infty} = \max_{i} f_{i}$

Algorithme pour estimer F_1 :

Déterministe: espace en $O(\log(n))$ bits

Probabiliste: espace en $O(\log(\log(n)))$ bits

ALGORITHME

 $a \leftarrow 0$

Tant que Stream non vide

lire Stream

 $a \leftarrow a + 1$ avec probabilité $1/2^a$

retourner $2^a - 1$

Théorème 5.7. Soit X_i la valeur de a après i éléments $(X_0 = 0, X_1 = 1, ...)$

$$\mathbb{E}(2^{X_i}) = i + 1 \tag{5.1}$$

Preuve: Soit $\mathbb{P}_{i,j} = \mathbb{P}(X_i = j)$

$$\mathbb{E}(2^{X_i}) = \sum_{j} \mathbb{P}_{i,j} 2^j$$

$$\mathbb{P}_{i,j} = \mathbb{P}(X_i = j | X_{i-1} = j) \mathbb{P}_{i-1,j} + \mathbb{P}(X_i = j | X_{i-1} = j - 1) \mathbb{P}_{i-1,j-1}
= (1 - \frac{1}{2^j}) \mathbb{P}_{i-1,j} + \frac{1}{2^{j-1}} \mathbb{P}_{i-1,j-1}$$

$$\mathbb{E}(2^{X_i}) = \sum_{j} (2^j - 1) \mathbb{P}_{i-1,j} + 2^{1-j} \mathbb{P}_{i-1,j-1}
= \sum_{j} \mathbb{P}_{i-1,j} 2^j - \sum_{j} \mathbb{P}_{i-1,j} + 2 \sum_{j} \mathbb{P}_{i-1,j-1}
= \mathbb{E}(2^{X_{i-1}}) - 1 + 2
\mathbb{E}(2^{X_i}) = \mathbb{E}(2^{X_{i-1}}) - 1$$