INF 554: Using randomness in algorithms

Autumn 2013

Lecture 1 - 23th September 2013

Lecturer: Frédéric Magniez
Scribe: Jean-Matthieu Gallard

The goal of this course is to present a formal definition of randomized algorithms and some easy applications.

1.1 An introducing example : Freival's Algorithm

Decision problem:

- input: A, B and $C, n \times n$ matrices over an arbitrary ring
- output: decide if $A \times B=C$

Remarks: since 2011 with an improvement from Virginia Williams, an explicit matrix multiplication has an asymptotic complexity of $O\left(n^{2.3727}\right)$.

Freivald's test:

- Choose $r \in\{0,1\}^{n}$
- Evaluate $u=C r, v=B r$ and $w=A v$
- Return ACCEPT if $u=w$, else REJECT

This algorithm uses $O\left(n^{2}\right)$ additions and multiplications on the coefficients.
Theorem 1.1. Freivald's algorithm has a one-sided error:

- If $A B=C, \mathbb{P}($ algorithm accepts $)=1$
- If $A B \neq C, \mathbb{P}$ (algorithm rejects $) \geq \frac{1}{2}$

Remarks: If $A B \neq C$, since this algorithm has an one-sided error, by running k independent executions we have \mathbb{P} (algorithm accepts after k independent executions) $\leq 1 / 2^{k}$. In practice $k=100$ is acceptable. For comparison, cosmic rays induce errors on computer with larger probability. In 1996, a studies by IBM revealed that they induced one error per 256 megabytes of RAM per month, which means a probability of 1.4×10^{-15} per byte per second, which is greater than 2^{-49}. Another comparison on large number, is that 2^{100} is far greater than the age of the universe in second, which is less than $2^{6} 0$ (for now...).

Proof:

- If $A B=C$ then $u=C r=(A B) r=A(B r)=A v=w$ thus \mathbb{P} (algorithm accepts) $=1$.
- If $A B \neq C$: Particular case on \mathbb{Z}_{2}

Let $F=\left\{r \in\{0,1\}^{n}:(A * B) r=C r\right\} \subseteq 0,1^{n} . F \neq\{0,1\}^{n}$ and F is a subspace of vector space $\{0,1\}^{n}$. Thus using Lagrange's Theorem we have $|F| \leq \frac{1}{2}\left|\{0,1\}^{n}\right|$
Hence \mathbb{P} (algorithm accepts $)=\mathbb{P}(r \in F) \leq \frac{|F|}{\left|0,1^{n}\right|} \leq \frac{1}{2}$

- If $A B \neq C$: general case

Assume there are two indices i and j such that $(A B)_{i j} \neq C_{i j}$. Let $D=C-A B$. Then $D_{i j} \neq 0, D \neq 0$. We want to prove $\underset{r \in\{0,1\}^{n}}{\mathbb{P}}[D r=0] \leq \frac{1}{2}$.

$$
\begin{gathered}
(D r)_{i}=\sum_{k} D_{i k} r_{k}=D_{i j} r_{j}+f\left(\left(r_{k}\right)_{k \neq j}\right) \\
\mathbb{P}[D r=0] \leq \mathbb{P}\left[(D r)_{i}=0\right]
\end{gathered}
$$

Fix r_{1}, \ldots, r_{n} excepts r_{j}. Then $v=f\left(\left(r_{k}\right)_{k \neq j}\right)$.

- If $v=-D_{i j}:$ if $r_{j}=0$ then $(D r)_{i} \neq 0$, if $r_{j}=1$ then $(D r)_{i}=D_{i j}-D_{i j}=0$. Conditional probability of $(D r)_{i}=0$ is $\frac{1}{2}$.
- If $v=0$: if $r_{j}=0$ then $(D r)_{i}=0$, if $r_{j}=1$ then $(D r)_{i}=D_{i j} \neq 0$. Conditional probability of $(D r)_{i}=0$ is $\frac{1}{2}$.
- Otherwise: for $r_{j}=0,1(D r)_{i} \neq 0$.

$$
\mathbb{P}\left[(D r)_{i}=0\right] \leq \frac{1}{2}
$$

1.2 Formal basis

1.2.1 Deterministic and randomized algorithms

Deterministic algorithm

Input: $x \longrightarrow$ Algorithm \longrightarrow Output
Goal:

- correctly solve the problem on all inputs
- efficiently (wished): linear or polynomial time on input size

Randomized algorithm

A randomized algorithm, compared to a deterministic algorithm, has an additional input: the random variable r. We suppose that we have access to a source of uniform random bits or integers (which is basically equivalent).

Remarks:

- Behaviour depends on both x and r.
- Once r is fixed, the algorithm is deterministic.
- We do not know yet how to generate random numbers with computers, we have only access to pseudo-random generators.

Goal: find a randomized algo such that on all inputs x and given a time T :

- Monte Carlo algorithms:
$-\mathbb{P}[A(x, r)$ is correct $] \geq \frac{2}{3}$
- $\forall r$ execution time of $A(x, r) \leq T$
- Las Vegas algorithms:
- $\forall r, A(x, r)$ is correct
- $\mathbb{E}_{r}($ execution time of $A(x, r)) \leq T$

1.2.2 Monte-Carlo algorithms

One-sided error

Definition 1.2. A Monte-Carlo algorithm is said to have an one-sided error if it verify one of the following:

- It is always correct when returning ACCEPT (true-biased)
- It is always correct when returning REJECT (false-biased)

Example: matrix product (true-biased one-sided error algorithm)

- If $A B=C$ then $\mathbb{P}($ Algorithm on (A, B, C) accepts $)=1$
- Else $\mathbb{P}($ Algorithm on (A, B, C) reject $) \geq \frac{1}{2}$

Success probability amplification

Since $\mathbb{P}[A(x, r)$ is correct $] \geq \frac{2}{3}$, you can amplify the probability of a correct answer by doing k independent executions of the algorithm and returning the most answered output.

1.3 Reminder on probabilities

1.3.1 Definitions

- Discrete random variable X (finite) from Ω (finite)

Example: random bit B on $\Omega=\{0,1\}$

- Stochastic process: $\left(X_{t}\right)_{t \in T}$ with $T \in \mathbb{N}$
- Halting time τ such as $\tau=t$ depends only from X_{1}, \ldots, X_{t}

Example: τ : time to get a 0 from a random bit stream, $\mathbb{E}(\tau)=2$
$-\mathbb{P}[\tau=1]=1 / 2$
$-\mathbb{P}[\tau=2]=1 / 4$
$-\mathbb{P}[\tau=k]=1 / 2^{k}$
$-\mathbb{E}(\tau)=\sum_{k} k \mathbb{P}[\tau=k]=2$

1.3.2 Bernoulli

Theorem 1.3. If $\mathbb{P}\left[B_{t}=0\right]=p$, then $\mathbb{E}(\tau)=1 / p$

Application

Let $\Omega=\{1,2, \ldots, n\}, X$ a discrete random value from $\omega, X_{1}, \ldots, X_{t}$ a stochastic process Let τ be the smallest t such as $\left\{X_{1}, \ldots, X_{t}\right\}=\Omega$

Then $\mathbb{E}(\tau) \approx n \log (n)$

Proof

$\tau=\sum_{i=1}^{n} \tau_{i}$ with τ_{i} time to get a new value knowing we already have $i-1$ different values.
Then $\mathbb{P}\left(\tau_{i}\right)=\frac{n-i+1}{n}$ and using the theorem we have $\mathbb{E}\left(\tau_{i}\right)=\frac{n}{n-i+1}$
Hence $\mathbb{E}(\tau)=\sum_{i=1}^{n} \mathbb{E}\left(\tau_{i}\right)=\sum_{i=1}^{n} \frac{n}{n-i+1} \approx n \log (n)$

1.3.3 Markov inequality

Theorem 1.4. $X \geq 0$ a discrete random variable, $\mu=\mathbb{E}(X)$. Then $\forall a>0, \mathbb{P}(X>a \mu) \leq \frac{1}{a}$

1.3.4 Chernoff bound

Theorem 1.5. X_{1}, \ldots, X_{n} independent random variables from $\{0,1\}$ such as $\forall i, \mathbb{P}\left[X_{i}=1\right]=$ $\mu_{i}=\mathbb{E}\left(X_{i}\right)$. Let $X=\frac{1}{n} \sum X_{i}$ and $\mu=\frac{1}{n} \sum \mu_{i}=\mathbb{E}(X)$ Then $\forall \delta>0, \mathbb{P}[|X-\mu| \geq \delta \mu] \leq 2^{-\mu \delta^{2} n / 3}$

1.4 Application: Primality testing

Decision problem:

- input: an integer $N \geq 2$
- output: decide if N is prime
N is $n=\log _{2}(N)$ long. The sieve of Eratosthenes gives a result in \sqrt{N} steps which is too long ($O\left(2^{n / 2}\right)$ operations).

1.4.1 Fermat's little theorem approach

Fermat's little theorem
Theorem 1.6. $p \geq 2$ prime number $\Rightarrow \forall a \in[1, p-1], a^{p-1}=1[p]$

Tentative algorithm

Primality test algorithm:

- Input: $N \geq 2$
- Select a random $a \in[1, N-1]$
- If $a \wedge N \neq 1$ then reject (in this case N is not prime, because $(a \wedge N) \mid N)$
- Compute a^{N-1} with rapid exponentiation: $a^{2 r}=\left(a^{r}\right)^{2}, a^{2 r+1}=a\left(a^{r}\right)^{2}$
- Accept if $a^{N-1}=1[N]$, otherwise reject

Remarks:

- Running time is $O(\log N)$.
- If N is prime then the algorithm accepts N with probability 1.

Algorithm's proof

Lemma 1.7. Assume there is $1 \leq a<N$ such that $a \wedge N=1$ and $a^{N-1} \neq 1[N]$. Then $\underset{1 \leq a<N}{\mathbb{P}}\left[a^{N-1}=1[N] \mid a \wedge N=1\right] \leq \frac{1}{2}$

Proof: Let $G=\{b \in\{1, \ldots, N-1\} \mid G C D(b, N)=1\} . G$ is an abelian group for the operation $(\mathrm{X} \bmod \mathrm{N})$. Let $F=\left\{b \in G \mid b^{N-1}=1[N]\right\}$.
$F \neq G$ and F is a subgroup hence $|F| \leq 1 / 2|G|$ (Lagrange's Theorem)
Corollary 1.8. Assume there is $1 \leq a<N$ such that $a \wedge N=1$ and $a^{N-1} \neq 1[N]$. Then $\underset{a}{\mathbb{P}}($ algorithm accepts $N) \leq \frac{1}{2}$

Proof: Take N non prime such that there is $1 \leq a<N$ such that $a \wedge N=1$ and $a^{N-1} \neq 1[N]$

$$
\begin{aligned}
\underset{a}{\mathbb{P}}(\text { algorithm accepts } N) & =\underset{\leq}{\underset{P}{P}\left(a \wedge N=1 \text { and } a^{N-1}=1[N]\right)} \\
& =\underbrace{\mathbb{P}\left(a^{N-1}=1[N] \mid a \wedge N=1\right)}_{\leq \frac{1}{2}} \times \underbrace{\mathbb{P}(a \wedge N=1)}_{\leq 1} \\
& \leq \frac{1}{2}
\end{aligned}
$$

Carmichael number

Definition 1.9. An non-prime integer N is a Carmichael number if all $1 \leq a<N$ such that $a \wedge N=1$ satisfy $a^{N-1} \neq 1[N]$.

The smallest Carmichael number is $561=3 \times 11 \times 17$.
There are 255 Carmichael number ≤ 100000000

1.4.2 Miller-Rabin test

Lemma 1.10. If p is prime then the only solution of $x^{2}=1[p]$ are $\pm 1 \bmod p$.

Algorithm

- Input: $N \geq 2$
- If $N=2$, ACCEPT. Otherwise if $2 \mid N$, REJECT.
- Take $a \in[2, N-1]$ uniformly at random.
- If $a \wedge N \neq 1$, REJECT
- Let $N-1=2^{t} u\left(t \geq 1\right.$ since N is odd). Compute $b=a^{u}$. Let $i \leq t$ be the smallest integer such that $b^{2^{i}}=1$.
- If i does not exist, REJECT (since $b^{2^{t}} \neq 1[N]$, Fermat's test fails)
- If $i=0$ or $b^{2^{i-1}}=-1$, ACCEPT
- Otherwise, REJECT

Remark: Running time is $O(\log N)$.

