INF 554: Using randomness in algorithms

Autumn 2013

Lecture 1 — 23th September 2013

Lecturer: Frédéric Magniez Scribe: Jean-Matthieu Gallard

The goal of this course is to present a formal definition of randomized algorithms and some easy applications.

1.1 An introducing example: Freival's Algorithm

Decision problem:

- input: A, B and C, $n \times n$ matrices over an arbitrary ring
- output: decide if $A \times B = C$

Remarks: since 2011 with an improvement from Virginia Williams, an explicit matrix multiplication has an asymptotic complexity of $O(n^{2.3727})$.

Freivald's test:

- Choose $r \in \{0,1\}^n$
- Evaluate u = Cr, v = Br and w = Av
- Return ACCEPT if u = w, else REJECT

This algorithm uses $O(n^2)$ additions and multiplications on the coefficients.

Theorem 1.1. Freivald's algorithm has a one-sided error:

- If AB = C, $\mathbb{P}(algorithm\ accepts) = 1$
- If $AB \neq C$, $\mathbb{P}(algorithm\ rejects) \geq \frac{1}{2}$

Remarks: If $AB \neq C$, since this algorithm has an one-sided error, by running k independent executions we have $\mathbb{P}(\text{algorithm accepts after k independent executions}) \leq 1/2^k$. In practice k = 100 is acceptable. For comparison, cosmic rays induce errors on computer with larger probability. In 1996, a studies by IBM revealed that they induced one error per 256 megabytes of RAM per month, which means a probability of 1.4×10^{-15} per byte per second, which is greater than 2^{-49} . Another comparison on large number, is that 2^{100} is far greater than the age of the universe in second, which is less than 2^6 0 (for now...).

Proof:

• If AB = C then u = Cr = (AB)r = A(Br) = Av = w thus $\mathbb{P}(\text{algorithm accepts}) = 1$.

• If $AB \neq C$: Particular case on \mathbb{Z}_2

Let $F = \{r \in \{0,1\}^n : (A*B)r = Cr\} \subseteq 0,1^n$. $F \neq \{0,1\}^n$ and F is a subspace of vector space $\{0,1\}^n$. Thus using Lagrange's Theorem we have $|F| \leq \frac{1}{2} |\{0,1\}^n|$

Hence $\mathbb{P}(\text{algorithm accepts}) = \mathbb{P}(r \in F) \leq \frac{|F|}{|0.1^n|} \leq \frac{1}{2}$

• If $AB \neq C$: general case

Assume there are two indices i and j such that $(AB)_{ij} \neq C_{ij}$. Let D = C - AB. Then $D_{ij} \neq 0, D \neq 0$. We want to prove $\mathbb{P}_{r \in \{0,1\}^n}[Dr = 0] \leq \frac{1}{2}$.

$$(Dr)_i = \sum_k D_{ik} r_k = D_{ij} r_j + f((r_k)_{k \neq j})$$

$$\mathbb{P}\left[Dr=0\right] \leq \mathbb{P}\left[(Dr)_i=0\right]$$

Fix r_1, \ldots, r_n excepts r_j . Then $v = f((r_k)_{k \neq j})$.

- If $v = -D_{ij}$: if $r_j = 0$ then $(Dr)_i \neq 0$, if $r_j = 1$ then $(Dr)_i = D_{ij} D_{ij} = 0$. Conditional probability of $(Dr)_i = 0$ is $\frac{1}{2}$.
- If v=0: if $r_j=0$ then $(Dr)_i=0$, if $r_j=1$ then $(Dr)_i=D_{ij}\neq 0$. Conditional probability of $(Dr)_i = 0$ is $\frac{1}{2}$.
- Otherwise: for $r_i = 0, 1 (Dr)_i \neq 0$.

$$\mathbb{P}\left[(Dr)_i = 0 \right] \le \frac{1}{2}$$

Formal basis 1.2

1.2.1Deterministic and randomized algorithms

Deterministic algorithm

Input:
$$x \longrightarrow$$
 Algorithm Output

Goal:

- correctly solve the problem on all inputs
- efficiently (wished): linear or polynomial time on input size

Randomized algorithm

A randomized algorithm, compared to a deterministic algorithm, has an additional input: the random variable r. We suppose that we have access to a source of uniform random bits or integers (which is basically equivalent).

Remarks:

- Behaviour depends on both x and r.
- ullet Once r is fixed, the algorithm is deterministic.
- We do not know yet how to generate random numbers with computers, we have only access to pseudo-random generators.

Input:
$$x \longrightarrow Algorithm \longrightarrow Output$$

Random bits / integers: r

Goal: find a randomized algo such that on all inputs x and given a time T:

- Monte Carlo algorithms:
 - $-\mathbb{P}[A(x,r) \text{ is correct}] \geq \frac{2}{3}$
 - $\forall r$ execution time of $A(x,r) \leq T$
- Las Vegas algorithms:
 - $\forall r, A(x,r)$ is correct
 - $\mathbb{E}_r(\text{execution time of } A(x,r)) \leq T$

1.2.2 Monte-Carlo algorithms

One-sided error

Definition 1.2. A Monte-Carlo algorithm is said to have an one-sided error if it verify one of the following:

- It is always correct when returning ACCEPT (true-biased)
- It is always correct when returning REJECT (false-biased)

Example: matrix product (true-biased one-sided error algorithm)

- If AB = C then $\mathbb{P}(Algorithm \text{ on } (A, B, C) \text{ accepts}) = 1$
- Else $\mathbb{P}(Algorithm on (A, B, C) reject) \geq \frac{1}{2}$

Success probability amplification

Since $\mathbb{P}[A(x,r) \text{ is correct}] \geq \frac{2}{3}$, you can amplify the probability of a correct answer by doing k independent executions of the algorithm and returning the most answered output.

1.3 Reminder on probabilities

1.3.1 Definitions

• Discrete random variable X (finite) from Ω (finite)

Example: random bit B on $\Omega = \{0, 1\}$

- Stochastic process: $(X_t)_{t\in T}$ with $T\in \mathbb{N}$
- Halting time τ such as $\tau = t$ depends only from $X_1, ..., X_t$

Example: τ : time to get a 0 from a random bit stream, $\mathbb{E}(\tau) = 2$

$$- \mathbb{P}[\tau = 1] = 1/2$$

$$- \mathbb{P}[\tau = 2] = 1/4$$

$$-\mathbb{P}[\tau=k]=1/2^k$$

$$-\mathbb{E}(\tau) = \sum_{k} k \mathbb{P}[\tau = k] = 2$$

1.3.2 Bernoulli

Theorem 1.3. If $\mathbb{P}[B_t = 0] = p$, then $\mathbb{E}(\tau) = 1/p$

Application

Let $\Omega = \{1, 2, ..., n\}$, X a discrete random value from ω , $X_1, ..., X_t$ a stochastic process Let τ be the smallest t such as $\{X_1, ..., X_t\} = \Omega$

Then $\mathbb{E}(\tau) \approx nlog(n)$

Proof

 $au = \sum_{i=1}^n au_i$ with au_i time to get a new value knowing we already have i-1 different values. Then $\mathbb{P}(au_i) = \frac{n-i+1}{n}$ and using the theorem we have $\mathbb{E}(au_i) = \frac{n}{n-i+1}$ Hence $\mathbb{E}(au) = \sum_{i=1}^n \mathbb{E}(au_i) = \sum_{i=1}^n \frac{n}{n-i+1} \approx nlog(n)$

1.3.3 Markov inequality

Theorem 1.4. $X \geq 0$ a discrete random variable, $\mu = \mathbb{E}(X)$. Then $\forall a > 0, \mathbb{P}(X > a\mu) \leq \frac{1}{a}$

1.3.4 Chernoff bound

Theorem 1.5. $X_1, ..., X_n$ independent random variables from $\{0, 1\}$ such as $\forall i, \mathbb{P}[X_i = 1] = \mu_i = \mathbb{E}(X_i)$. Let $X = \frac{1}{n} \sum X_i$ and $\mu = \frac{1}{n} \sum \mu_i = \mathbb{E}(X)$ Then $\forall \delta > 0, \mathbb{P}[|X - \mu| \ge \delta \mu] \le 2^{-\mu \delta^2 n/3}$

1.4 Application: Primality testing

Decision problem:

- input: an integer $N \ge 2$
- \bullet output: decide if N is prime

N is $n = log_2(N)$ long. The sieve of Eratosthenes gives a result in \sqrt{N} steps which is too long $(O(2^{n/2}))$ operations).

1.4.1 Fermat's little theorem approach

Fermat's little theorem

Theorem 1.6. $p \geq 2$ prime number $\Rightarrow \forall a \in [1, p-1], a^{p-1} = 1[p]$

Tentative algorithm

Primality test algorithm:

- Input: $N \ge 2$
- Select a random $a \in [1, N-1]$
- If $a \wedge N \neq 1$ then reject (in this case N is not prime, because $(a \wedge N)|N)$
- Compute a^{N-1} with rapid exponentiation: $a^{2r} = (a^r)^2$, $a^{2r+1} = a(a^r)^2$
- Accept if $a^{N-1} = 1[N]$, otherwise reject

Remarks:

- Running time is $O(\log N)$.
- $\bullet\,$ If N is prime then the algorithm accepts N with probability 1.

Algorithm's proof

Lemma 1.7. Assume there is $1 \le a < N$ such that $a \wedge N = 1$ and $a^{N-1} \ne 1[N]$. Then $\underset{1 \le a < N}{\mathbb{P}}[a^{N-1} = 1[N] | a \wedge N = 1] \le \frac{1}{2}$

Proof: Let $G = \{b \in \{1, ..., N-1\} | GCD(b, N) = 1\}$. G is an abelian group for the operation (X mod N). Let $F = \{b \in G | b^{N-1} = 1[N]\}$. $F \neq G$ and F is a subgroup hence $|F| \leq 1/2|G|$ (Lagrange's Theorem)

Corollary 1.8. Assume there is $1 \le a < N$ such that $a \land N = 1$ and $a^{N-1} \ne 1[N]$. Then $\mathbb{P}(\text{algorithm accepts } N) \le \frac{1}{2}$

Proof: Take N non prime such that there is $1 \le a < N$ such that $a \land N = 1$ and $a^{N-1} \ne 1$ [N]

$$\begin{array}{ll} \mathbb{P}(algorithm\ accepts\ N) &=& \mathbb{P}(a \wedge N = 1\ and\ a^{N-1} = 1\ [N]) \\ &=& \underbrace{\mathbb{P}(a^{N-1} = 1\ [N]\ | a \wedge N = 1)}_{\leq \frac{1}{2}} \times \underbrace{\mathbb{P}(a \wedge N = 1)}_{\leq 1} \\ &\leq& \frac{1}{2} \end{array}$$

Carmichael number

Definition 1.9. An non-prime integer N is a Carmichael number if all $1 \le a < N$ such that $a \land N = 1$ satisfy $a^{N-1} \ne 1[N]$.

The smallest Carmichael number is $561 = 3 \times 11 \times 17$. There are 255 Carmichael number ≤ 100000000

1.4.2 Miller-Rabin test

Lemma 1.10. If p is prime then the only solution of $x^2 = 1[p]$ are $\pm 1 \mod p$.

Algorithm

- Input: $N \geq 2$
- If N=2, ACCEPT. Otherwise if 2|N, REJECT.
- Take $a \in [2, N-1]$ uniformly at random.
- If $a \wedge N \neq 1$, REJECT
- Let $N-1=2^t u$ $(t \geq 1 \text{ since } N \text{ is odd})$. Compute $b=a^u$. Let $i \leq t$ be the smallest integer such that $b^{2^i}=1$.

- If i does not exist, REJECT (since $b^{2^t} \neq 1[N]$, Fermat's test fails)
- If i = 0 or $b^{2^{i-1}} = -1$, ACCEPT
- Otherwise, REJECT

Remark: Running time is $O(\log N)$.