
INF 554: Using randomness in algorithms Autumn 2013

Lecture 2 — September 30th, 2013
Lecturer: Frédéric Magniez Scribe: Clément Pit--Claudel

2.1 Additional notes on primality testing
Note Although deterministic polynomial-time solutions to the PRIME problem are
known (AKS), probabilistic algorithms remain significantly faster (Miller-Rabin’s algo-
rithm runs in O (lg(n)2)).

2.1.1 Application: Finding primes
Fast primality testing algorithms can be used to construct prime-finding algorithms (in-
deed, no easily computable formula to enumerate prime numbers is known).

FIND-PRIME

Input Integer N

Output Prime p ∈ JN, 2NK

Algorithm

• Draw p uniformly from JN, 2NK.

• Check if p is prime (e.g. using MILLER-RABIN):

– If MILLER-RABIN accepts p, return p.
– Otherwise, start over.

Theorem 2.1 (Chebyshev). Let π(x) be the number of primes ≤ x. Then π(x) ≥
x

2 ln(x) .

Theorem 2.2. π(x) ∼
x→∞

x
ln(x) .

Corollary 2.3. The number of primes in Jn, 2nK is Ω
(

n
ln(n)

)
.

Corollary 2.4. P
p∈Jn,2nK

(p prime) = Ω
(

1
ln(n)

)

Average time complexity O(ln(N)) iterations; each iteration costsO(ln(N)) modular
additions/multiplications. Hence O(ln(N)2).

Error Same as that of MILLER-RABIN.

2-1

INF 554 Lecture 2 — September 30th, 2013 Autumn 2013

Notes Errors do not accumulate. Also, the number of iterations can be bounded (thus
turning this Las Vegas algorithm into a Monte-Carlo one) by failing after a set num-
ber of iterations (the probability of returning nothing after k iterations, or equivalently
Θ(k ln(n)) operations, would then be 1

2k).

2.2 Polynomial identity testing

2.2.1 Problem definition
POLYNOMIAL-IDENTITY-TESTING (PIT)

Input Q and R, two n-variables polynomials of degree ≤ d.

Output ACCEPT iff Q = R.

Notes Expanding P andQ and comparing individual coefficients takes exponential time
in the size of their representation – in other words, compact representations exist that
allow for fast evaluation of polynomials whose expanded form contains an exponential
number of coefficients.
In the black-box model nothing is known about P and Q, and the only available oper-
ation is x 7→ P (x), Q(x). This single operation is assumed to be fast.

Example 1: Determinant Let Q = ∏
1≤i<j≤n (Xi −Xj) and R = det

(
Xj
i

)
. Then

Q = R, evaluating Q and R takes linear time in n, and expanding Q and R takes
exponential time in n.

Example 2: Arithmetic circuits Arithmetic circuits are a tree-based representation
of polynomial factorizations.

x1 x2 x3 x4

+

×

×

Figure 2.1. x1x2x4(x1 + x2 + x3)

2-2

INF 554 Lecture 2 — September 30th, 2013 Autumn 2013

State of the art Deterministic solutions for the PIT problems are known for polyno-
mials represented as arithmetic circuits of depth ≤ 2. Partial results were also obtained
for multi-linear polynomials of depths 3, 4.
(Additional note: depth 4 is the most important one; deterministically solving PIT for
arithmetic circuits of depth 4 would represent a significant leap forward for complexity
theory.)

Lemma 2.5 (Schwartz-Zippel). Let F denote an arbitrary field, and S denote a finite
subset of F . Then for any non-zero polynomial T (X1, . . . , Xn) of degree d,

P
a1,...,an∈S

(T (a1, . . . , an) = 0) ≤ d

|S|

Proof (by induction): If n = 1, then T has at most d roots, and P
a∈S

(T (a) = 0) ≤ d
|S| .

If n > 1, expanding T by its first variable yields T = ∑
iX

i
1Ti(X2, . . . , Xn). Let j be the

degree of T relative to X1 – that is, the highest i such that Ti 6= 0. Then

P
a1,...,an∈S

(T (a1, . . . , an) = 0) = P
a1,...,an∈S

(T (a1, . . . , an) = 0 and Tj(a2, . . . , an) = 0)

+ P
a1,...,an∈S

(T (a1, . . . , an) = 0 and Tj(a2, . . . , an) 6= 0)

Noting that Tj is a n − 1 variables polynomial of degree d′ = d − j and applying the
induction hypothesis yields P

a1,...,an∈S
(Tj(a2, . . . , an) = 0) ≤ d−j

|S| , which implies that

P
a1,...,an∈S

(T (a1, . . . , an) = 0 and Tj(a2, . . . , an) = 0) ≤ d− j
|S|

To bound the second term, introduce a2, . . . , an such that Tj(a2, . . . , an) 6= 0. The strong
induction hypothesis applied to T (X1, a2, . . . , an) (a single-variable polynomial of degree
j) yields P

a1∈S
(T (a1, . . . , an) = 0) ≤ j

|S| . In other words,

P
a1,...,an∈S

T (a1, . . . , an) = 0︸ ︷︷ ︸
E

∣∣∣∣∣∣∣Tj(a2, . . . , an) = 0︸ ︷︷ ︸
F

 ≤ j

|S|

Finally, note that

P
a1,...,an∈S

(T (a1, . . . , an) = 0 and Tj(a2, . . . , an) 6= 0) = P (E ∪ F)

= P (E | F)P (F)

≤ P (E | F)

≤ j

|S|

Combining both results yields the stated inequality:

P
a1,...,an∈S

(T (a1, . . . , an) = 0) ≤ d

|S|

�

2-3

INF 554 Lecture 2 — September 30th, 2013 Autumn 2013

Algorithm
• Draw a1, . . . , an randomly from J1, 2dK

• Accept iff P (a1, . . . , an) = Q(a1, . . . , an)

Time complexity Two polynomial evaluations.

Error
• One sided

• True-biased
If P 6= Q, then by Schwartz-Zippel’s lemma P (ACCEPT) ≤ d

|S| ≤
1
2 .

Notes In practice, evaluating P and Q can yield extremely large values. To circumvent
this problem, all calculations are generally made modulo a large prime value p. Carefully
choosing this value is crucial to ensure that P = Q mod p is indeed equivalent to P = Q.
Denoting the largest coefficient of P and Q as M , p can obtained by choosing a prime
value larger than twice the maximum of d and M .

2.2.2 Fingerprints
FINGERPRINT Let A and B denote two players.
First player’s input n-bits sequence u.

Second player’s input n-bits sequence v.

Output ACCEPT iff u = v.

Complexity Number of bits exchanged.

Naive solution
• A sends u to B.

• B accepts iif u = v.

Complexity n bits.

Hash functions Vectors of Zn
2 are mapped to elements of Z2[X1, . . . , Xn] through the

hash function H : (ai) 7→
∑

0≤i<n ai+1X
i (or H̃ : (ai) 7→

∑
0≤i<n an−iX

i). These functions
are such that H(u) = H(v) ⇐⇒ u = v.

Algorithm
• A picks a prime number p ∈ Jn2, 2n2K.

• A picks a random number a ∈ J1, n− 1K.

• A sends (p, a,H(u)(a) mod p) to B.

• B accepts iff H(v)(a) = H(u)(a) mod p.

2-4

INF 554 Lecture 2 — September 30th, 2013 Autumn 2013

Error

• One-sided

• True-biased

If u 6= v, then B accepts with probability ≤ 1
n
.

Complexity 6 lg(n) + o(1) bits.

Time complexity n modular additions and multiplications for both A and B.

Note This algorithm is insecure: it is vulnerable to collision-based attacks.

2.2.3 Pattern-matching
PATTERN-MATCHING

Input Word w ∈ Zn
2 , pattern p ∈ Zk

2. k ≤ n.

Output Positions where p occurs in w: {i | p = w [i : i+ k − 1]}.

Note A naive deterministic algorithm (for each index i ∈ J1, n − k + 1K in w, check
whether p = w [i : i+ k − 1]) runs in O(nk) time. Many efficient, deterministic, linear-
time solutions are known (Rabin–Karp, Knuth–Morris–Pratt, Boyer-Moore, etc.), but
all are tricky to implement. Probabilistic algorithms, on the other hand, achieve similar
performance and are very easy to implement.

Note The nature of our hash functions allows for easy calculation of checksums of
overlapping subwords. Recall that H̃ : (aj) 7→

∑
0≤j<n an−jX

j, and assume that hi(a) =
H̃(w [i : i+ k − 1])(a) = ∑

0≤j<k wi−1+(k−j)a
j is known. Then hi+1(a) can be derived in

O(1) from hi. Indeed,

hi+1 = H̃(w [i+ 1 : i+ k])
=

∑
0≤j<k

wi+(k−j)X
j

=
∑

1≤j<k
wi+(k−j)X

j + wi+k

= X
∑

0≤j<k−1
wi−1+(k−j)X

j + wi+k

= X(hi − wiXk−1) + wi+k

Evaluating in a yields hi+1(a) = wi+k + a
(
hi(a)− wiak−1

)
.

2-5

INF 554 Lecture 2 — September 30th, 2013 Autumn 2013

Algorithm As usual, all calculations are run modulo a large enough prime value q.
For each index i, we decide whether w [i : i+ k − 1] matches the pattern p by comparing
hi(a) to H̃(p)(a), for randomly sampled values of a.

• Pick a prime number q ∈ Jn3, 2n3K.

• Draw a randomly from J0, q − 1K.

• Compute hp = H̃(p)(a).

• Compute h = H̃(w [1 : k]).

• For i ∈ J1, n− k + 1K

– If h = hp, then append i to the list of accepted indices.
– If i 6= n− k + 1, then update h← wi+k + a

(
h− wiak−1

)
.

Time complexity O(n) modular additions/multiplications.

Error

• One-sided

• True-biased

Errors consist in returning extraneous indices. For each non-matching index i,

P (i ∈ returned-values) = P
(
hi(a) = H̃(p)(a) | hi 6= H̃(p)

)
≤ k

p
≤ k

n3 ≤
1
n2

Hence the union bound yields

P (incorrect output) = P (∃i ∈ returned-values | p 6= w [i : i+ k − 1]) ≤ n · 1
n3 ≤

1
n2

Note Instead of choosing large prime numbers, one can reduce the probability of error
by computing checksums for multiple different a.

2.2.4 Bipartite perfect matching
BIPARTITE-PERFECT-MATCHING (BPM)

Input Balanced bipartite graph G = (E,U t V), with |U | = |V | = n.

Output ACCEPT iff a perfect matching exists in E, i.e. E contains n disjoint edges.

Note A deterministic O(
√
|U |+ |V |·|E|) = O(n2,5) time solution yielding such a perfect

matching if it exists is known (Hopcroft-Craft). Probabilistic algorithms by Lovasz (1979)
achieve a time complexity for the decision problem equal to that of the calculation of a
single n×n determinant modulo p ∈ Jn, 2nK. A 1987 extension by Mulmuley, U. Vazirani,
and V. Vazirani gives a probabilistic estimate of the largest such matching in any general
graph, in O(1) matrix inversions time.

2-6

INF 554 Lecture 2 — September 30th, 2013 Autumn 2013

Note The calculation of a determinant can be reduced to a matrix multiplication prob-
lem.

Adjacency matrices Identify u and V with J1, nK, and define the bi-adjacency matrix
A as

Ai,j =

1 if (i, j) ∈ E
0 if (i, j) /∈ E

Expanding det(A) yields det(A) = ∑
σ∈Sn

(−1)sgn(σ)∏
iAi,σ(i), and

∏
iAi,σ(i) is non-zero iff

σ represents a perfect matching in G. Hence if det(A) 6= 0 then there exists at least one
perfect matching. The converse, unfortunately, does not hold due to the (−1)sgn(σ) term.

Note The permanent of A, defined as perm (A) = ∑
σ∈Sn

∏
iAi,σ(i), exactly equals the

number of BPM in G, but computing it is a #P-complete problem ; the fastest known
deterministic solution (Ryser’s formula) has O (2nn) time complexity. The fastest known
approximation (Jerrum, Sinclair and Vigoda) still requires O (n10) time.

Tutte matrix Since computing the determinant of A is not sufficient, we introduce the
Tutte matrix T of G as the n× n matrix

Ti,j =

Xi,j if (i, j) ∈ E
0 if (i, j) /∈ E

Theorem 2.6. det (T) is a |E|-variables polynomial of Zn
2 [X] whose degree d is ≤ n,

and det(T) 6= 0 ⇐⇒ G has a BPM.

Proof: If no BPM exists, then the determinant is null. Conversely, if a BPM exist,
then the determinant is non-null. Indeed, each non-zero ∏i δ(i,σ(i))∈EXi,σ(i) monomial in
the expansion of det(T) matches a single permutation, and is thus distinct of all other
monomials in the expanded det(T) polynomial. �

Since the elements of T are polynomials, expanding det(T) is extremely costly. On
the other hand, since ∀x, det(T)(x) = det(T (x)), evaluating det(T) in a single point is
relatively cheap.

Algorithm

• Pick a prime number p ∈ Jn2, 2n2K.

• Draw |E| random elements (ai) from J1, p− 1K.

• Accept iff det(T (a)) 6= 0 mod p, where T is the Tutte matrix of G.

Error

• One sided

• False-biased (If the algorithm accepts, then the existence of a BPM is guaranteed)

The probability of incorrectly rejecting is exactly P (det(T)(a) = 0 | det(T) 6= 0), which
by Schwartz-Zippel’s lemma is ≤ d

|S| ≤
n
n2 = 1

n
.

2-7

INF 554 Lecture 2 — September 30th, 2013 Autumn 2013

Time complexity Equal to that of computing an n×n determinant (O (n2.3727) using
Coppersmith-Winograd algorithms).

2.3 Exercises

2.3.1 Associativity testing
ASSOCIATIVE S = J1, nK

Input ◦ : S × S → S.

Output ACCEPT iff ◦ is associative.

Complexity Number of operations involving ◦.

Naive solution Checking all possible triples (i, j, k) ∈ S3 requires 2n3 comparisons,
and (assuming proper memoisation) n2 evaluations of ◦.

Notes The number of witnesses of the non-associativity of an arbitrary law ◦ may be
very small. As an example, consider defining i ◦ j = 3 for all i, j except 1 ◦ 2 = 1. Then
for all ∀(a, b, c) 6= (1, 2, 2), a ◦ (b ◦ c) = 3 = (a ◦ b) ◦ c, but (1 ◦ 2) ◦ 2 = 1 6= 3 = 1 ◦ (2 ◦ 2).
In this case there exists a single witness (1, 2, 2) of the non-associativity of ◦. The
following sections are hence dedicated to expanding the search space to increase the
relative frequency of witnesses.

Extension of the search space Let S(p) = (Zp)n, and let (e1, . . . , en) denote a basis
of S(p). Define the bilinear • operation over S(p) by taking ei • ej = ei◦j and extending
it to S(p). Finally, note that if (Ai)i denotes the coefficients of A in the (ei)i basis, then
A •B = ∑

i,j AiBjei◦j.

Lemma 2.7. • is associative iff. ◦ is.

Proof: Assume ◦ is associative. Then ∀(i, j, k), (ei • ej) • ek = e(i◦j)◦k = ei◦(j◦k) =
ei • (ej • ek).
Conversely, assume • is associative. Then ∀(i, j, k), e(i◦j)◦k = (ei • ej)• ek = ei • (ej • ek) =
ei◦(j◦k), and hence (i ◦ j) ◦ k = i ◦ (j ◦ k). �

Lemma 2.8. For all (A,B,C) ∈ S(p), (A • B) • C is a third-degree polynomial in the
coefficients of A,B,C.

Proof: Explicit expansion yields (A •B) • C = ∑
i,j,k AiBjCke(i◦j)◦k. �

Lemma 2.9. Assume that p = 7 and that ◦ is not associative.
Then P

A,B,C∈S
((A •B) • C = A • (B • C)) ≤ 3

7 .

Proof: Given that ◦ is not associative, there exists a 3-tuple (A,B,C) ∈ S(p)3 such
that (A • B) • C 6= A • (B • C). In other words, the third-degree polynomial (A •
B) • C − A • (B • C) in the Ai, Bj, Ck coefficients is not null. Hence (Schwartz-Zippel)

P
A,B,C∈S

((A •B) • C = A • (B • C)) ≤ d
#S(p) = 3

7 . �

2-8

INF 554 Lecture 2 — September 30th, 2013 Autumn 2013

Algorithm

• Draw A,B,C at random from S(7).

• Compute AB = A ◦B,
BC = B ◦ C,
AB_C = AB ◦ C,
A_BC = A ◦BC.

• Accept iff. AB_C = A_BC.

Complexity n2 calls are required to build the full multiplication table of ◦.

Time complexity Each of the four subsequent calculations require O(n2) modular
additions and multiplications, bringing the total time complexity to O(n2).

Error

• One-sided

• True-biased

If ◦ is not associative, then (by lemma 2.9) P (ACCEPT) ≤ 3
7 .

2.3.2 Notes on randomized algorithms as opposed to determin-
istic algorithms taking randomized input

Theorem 2.10. Given a finite input set I and a set of random choices R, let A(x, r), x ∈
I, r ∈ R(N) denote a randomized algorithm such that ∀x ∈ I,

• P
r

(A(x, r) wrong) ≤ ε

• A(x, r) returns in time ≤ T

then there exists a deterministic algorithm B whose time complexity is ≤ T on all inputs,
such that

P
x

(B(x) wrong) ≤ ε

Proof: Let ε(r) = P
x

(A(x, r) wrong). Then

E
r

(ε(r)) = P
x,r

(A(x, r) wrong)

= E
x

Pr (A(x, r) wrong)︸ ︷︷ ︸
≤ε


≤ ε

Hence there exists a sequence of random choices r such that ε(r) ≤ ε. �

2-9

INF 554 Lecture 2 — September 30th, 2013 Autumn 2013

Theorem 2.11 (Yao). The converse holds in the following sense:
Assume that for any probability distribution D over I there exists a deterministic algo-
rithm BD whose time complexity is ≤ T for all inputs x, such that

P
x∼D

(BD(x) wrong) ≤ ε

Then there exists a probabilistic algorithm A(x, r) whose time complexity is ≤ T for all
inputs x, r, such that

∀x,P
r

(A(x, r) wrong) ≤ ε

Note The proof is based on linear programming.

2-10

