
INF554: randomized algorithms 1st semester, 2013

Lecture 3 — 7th of October
Lecturer: Frederic Magniez Scribe: Marie-Sklaerder Vie and Axel de Perthuis

3.1 st-connectivity

Undirected st-onnectivity (USTCON) is the decision problem asking whether two vertices
(s, t) ∈ V 2 in an undirected graph G = (V,E) are connected by a path. Let |V | = n and

|E| = m. Note that if we assume the graph is connected we have n− 1 ≤ m ≤ n(n−1)
2

.
The deterministic depth-first search (DFS) and breadth-search first (BFS) algorithms can

solve this problem in linear time complexity O (m+ n) = O (m) because in the worst case
scenario they will visit every edge and vertex. Their space complexity is O (n) as the algo-
rithms need to store their past and future search paths in the graph. The space complexity of
these algorithms can be problematic for very large graphs (for example, the Internet graph).
Therefore, we wish to find an algorithm with a smaller space complexity.

Definition 3.1. L (logarithmic-space, also known as LSPACE) is the complexity class
containing decision problems which can be solved by a deterministic Turing machine using
a logarithmic amount of memory space.

Definition 3.2. NL (non-deterministic logarithmic-space, also known as NSPACE) is the
complexity class containing decision problems which can be solved by a non-deterministic
Turing machine using a logarithmic amount of memory space.

Definition 3.3. RL (randomized logarithmic-space), sometimes called RLP (randomized
logarithmic-space polynomial-time), is the complexity class of computational complexity
theory problems solvable in logarithmic space and polynomial time with probabilistic Turing
machines with one-sided error.

Note that L ⊆ RL ⊆ NL. Considering the space complexity of the DFS and BFS algo-
rithms we know that USTCON ∈ NL. In fact, it has been shown in 2005 by Reingold that
USTCON ∈ L. However, here we will only prove the following theorem :

Theorem 3.4. USTCON ∈ RL.

To do so we consider a randomised algorithm.

3-1

INF554 Lecture 3 — 7th of October 1st semester, 2013

Algorithm 1 USTCON Las Vegas Algorithm

Require: s, t ∈ V
Ensure: boolean indicating whether there exists a path from s to t
u← s
while u 6= t do

v ← random element from {v | (u, v) ∈ E}
u← v

end while
return true

The space complexity of this algorithm is O (log n) because it suffices to keep the current
vertex in memory, which requires a maximum of log2 (n) bits. If s and t are not connected
then the algorithm never terminates. If there exists a path from s to t in G then the average
number of steps the algorithm requires is inferior to the cover time C (G, u), which is defined
as the average number of steps it takes to visit every vertex in the graph, starting at u.

Theorem 3.5. Define C (G) as maxu∈V C (G, u). We have C (G) ≤ 4 |V | |E| = 4nm

This theorem gives us a Monte-Carlo algorithm by terminating the Las Vegas procedure
after 8knm steps. An iterator has to be kept in memory but the space complexity is still
O (log n). Markov’s inequality insures that this algorithm has a one-sided error of 2−k.

Proof: To prove this we shall consider the random walk on a graph as a Markov chain with
a state space V and a transition matrix P where

Pij =

{
ωij

w(i)
(i, j) ∈ E where w(i) =

∑
k∈neighbors(i) ωik

0 otherwise

ωij represents the weight of vertex (i, j) ∈ E, i.e. the tendency to go from i to j and
conversaly. ωij is normalized to be greater than one. In the simplified problem we were
considering, ωij = 1 for all edges.

This generalization can represent random walks, reversible Markov chains, electrical grids,
etc.

Let Xt ∈ V be the position of the random walk at step t ∈ N.
For u, v ∈ G we define the hitting time as the expected time it takes for a random walk

on G starting at u to reach v :

hu,v = E (min {t ∈ N | Xt = v,X0 = u})

Lemma 3.6.
∀ (i, j) ∈ E, hi,j ≤ 2W

where 2W is the sum total of the masses of all edges :

W =
1

2

∑
(i,j)∈E

ωij (where (i, j) 6= (j, i))

3-2

INF554 Lecture 3 — 7th of October 1st semester, 2013

In order to prove this lemma, we need to consider the stationary distribution of our
Markovian process.

Since all states v ∈ V are positive recurrent (every vertex will be visited an infinite
number of times, and the expected time to do so is finite) there exists a unique stationary
distribution, described by a probability vector π = (π1, . . . , πn) such that πi =

∑
(i,j)∈E πjPji

i.e. πP = π.
We can easily check that πi = w(i)

2W
is a solution.

The return time of u, defined as hu,u, is actually related to the stationary distribution πu
and satisfies

hu,u =
1

πu
=

2W

w(u)

The intuition behind this lies in the probability of Xt = u being constant, and hence resem-
bling a series of Bernoulli trials (biased coin tosses). The expected number of steps needed
to get one success is then given by the expected value of the geometric distribution, which
is 1

p
.

We can establish an upper bound on the hitting time hu,v where (u, v) ∈ E.

hv,v = 1 +
1

w(v)

∑
k∈neighbors(v)

hk,vωvk

≥ 1 +
1

w(v)
hu,v

hu,v ≤
(

2W

w(v)
− 1

)
w(v)

≤ 2W

Now fix u ∈ V . By performing a depth-first search of graph G starting a u we obtain a
spanning tree of G which has n vertices and n− 1 edges. We can construct a tour T = (u1 =
u, u2, . . . , uN = u) of the tree such that (ui, ui+1) ∈ E and so that it covers all the vertices
of G. This tour passes each edge of the spanning tree twice, therefore N ≤ 2 (n− 1).

Note that C(G) is less than or equal to the average time it takes to travel from u1 to u2,
then from u2 to u3, etc. So C (G) ≤ hu1,u2 + . . .+ huN−1,uN

. For all i we have hui,ui+1
≤ 2W ,

and thus
C(G) ≤ (N − 1) · (2W) < 4nW

�

Thus the theorem is proved, considering that W = m. The upper-bound on the expected
time to go from a node to another can actually be divided by two, since there exists a path
of length at most n between two connected nodes.

3.1.1 Examples

Page rank

The internet is a directed graph (V,E) , with each page pointing to other pages through
hyperlinks. Internet navigation can therefore be represented as a random walk on a directed

3-3

INF554 Lecture 3 — 7th of October 1st semester, 2013

graph. If there are no links on a page, the next page is chosen uniformly from the whole
internet. To represent the transition matrix, the following quantities are introduced :

∀ (i, j) ∈ V × V , ωij = 1 if (i, j) ∈ E , 0 otherwise

dout(i) =
∑

j∈V ωij

din(i) =
∑

j∈V ωji

D =
∑

i∈V dout(i) =
∑

i∈V dint(i) = 1
2

∑
(i,j)∈E ωij

The transition matrix is as follows :

Pij =

{
1
|V | if dout(i) = 0
ωij

dout(i)
otherwise

This Markov chain doesn’t actually necessarily have a stationnary distribution, for example
if the graph is a cycle. Otherwise the stationnary distribution is πi = din(i)

2D
. Once calculated,

the stationnary distribution gives a good index of the importance of each page. Given the
size of internet, the only way to calculate this is to use an ergodic theorem, which states that
any random walk converges in distribution to the stationnary distribution. This process can
be slow, but can be quickened by replacing P by P ′ = pP + (1− p)J where Jij = 1

|V | . This
modification does not affect the stationnary distribution, but can quicken the convergence
process (typical values : p = 0.85, 200 iterations).

Linear Graph

Let V = {1, . . . , n} and E = {(i, i+ 1) | i ∈ {1, . . . , n− 1}}. By theorem 3.5 we have
C(G) ≤ 4 (n− 1)n = O (n2).

Complete Graph

In a complete graph, we have C(G) ≤ 4n · n(n−1)
2

= O (n3). But in fact, we can prove a
tighter bound of C(G) ∼ n log n.

Proof: In a complete graph the cover time is closely related to the coupon collector’s pro-
blem. Let τi denote the first step at which i vertices have been visited. The number of steps
it takes to reach a new vertex is

τi+1 − τi =
n− i
n− 1

Since these events are independent we have

E (τi+1 − τi) =
n− 1

n− i
and we can use the approximation of the harmonic series by the natural logarithm to show
that

E (τn) = E (τ1) +
n−1∑
i=1

E (τi+1 − τi) = 1 +
n−1∑
i=1

n− 1

n− i
= 1 + (n− 1)

n−1∑
i=1

1

i
≈ n log n as n→∞

�

3-4

INF554 Lecture 3 — 7th of October 1st semester, 2013

Lollipop Graph

Lollipop graph is a graph as the conjunction of a linear graph (with n
2

vertices) and a
complete graph (also with n

2
vertices). We deduce from the last section that : C(G) ≤ O(n3).

The following graph is examples of Lollipop graphs.

Let s and t be left-most and right-most vertices of the linear graph. We can show that
h(s, t) = O(n3) and h(t, s) = O(n2), which shows an interesting property of asymmetry in
this graph.

3.2 Randomized algorithm for satisfiability : SAT

Definition 3.7. Let X1, X2, ..., Xn be n ≥ 1 logic variables. A literal l is of the form Xi or
Xi i.e. a literal is either a variable or the negation of a variable. A clause C is a disjunction
of literals, for example C = X1 ∨X2 ∨X3. A clause C containing at most k variables is also
called a k-clause. A SAT formula φ is of the form φ = C1∧C2∧ ...∧Cm where Ci are clauses.
A SAT formula φ is called a k-SAT formula if φ contains only k-clauses.

3-5

INF554 Lecture 3 — 7th of October 1st semester, 2013

The k-SAT is a decision problem to decide if for a given k-SAT formula there exist values
of the boolean variables for which the formula is true.

We will pose the following theorems without proving them.

Theorem 3.8. 2-SAT ∈ P and k-SAT is NP-complete for all k ≥ 3

Theorem 3.9. 2-SAT can be solved by a deterministic algorithm with complexity O(n+m)
where n is the number of variables and m is the number of clauses.

The algorithm of the above theorem is first to construct a graph with literals of all
variables, and then to check whether a variable xi and xi are contained in the same strongly
connected component. Note that the second step can be completed within linear time using
Tarjan’s algorithm.

We are interested in designing a probabilistic algorithm to solve k-SAT which works for
all k.

Algorithm 2 Random k-SAT algorithm

Require: a k-SAT formula φ, clauses C1, . . . , Cm, and literals (¬)X1, . . . , (¬)Xn . n = km
Ensure: a boolean indicating whether there exists an interpretation that satisfies φ
a← any value in {0, 1}n . a = (X1, . . . , Xn)
while φ (a) = 0 do

j ← any integer such that Cj(a) = 0
i← random integer from {k | Xk is a variable of Cj}
Xk ← 1−Xk . Flip the bit of this variable in a

end while
return true

This algorithm will never terminate if there is no interpretation that satisfies φ i.e. φ(a) =
0 for all a. If there is an interpretation satisfying φ, the algorithm will always find it, but
there is no upper bound to its running time. Note that each iteration of the while-loop has
a complexity of O(mk) since it requires the evaluation of the entire formula, which has km
literals.

Theorem 3.10. If φ is 2-SAT and there exists an interpretation a such that φ(a) = 1, then
the average number of iterations needed to find a is ≤ 4n2.

Corollary 3.11. There exists an algorithm for 2-SAT with one-sided error 2−k and running
time 8kn2.

Proof: For a 2-SAT problem let s ∈ {0, 1}n such that φ(s) = 1. Define d(a, s) = |{ai 6= si | 1 ≤ i ≤ n}|.
If a = s then d(a, s) = 0 and in general d(a, s) ∈ {0, 1, ..., n}. Let Xi = d(a, s) after i itera-
tions.

If the algorithm has not stopped, we have

P (Xi+1 = n− 1 | Xi = n) = 1

P (Xi+1 = j − 1 | Xi = j) ≥ 1

2
for 1 ≤ j < n

3-6

INF554 Lecture 3 — 7th of October 1st semester, 2013

The first statement is obvious because if all literals have the wrong value, changing one
will always decrease the distance. For the case where 1 ≤ j < n we can consider two cases :

– If C is a single literal, e.g. C = X5 ∨X5, the distance decreases with probability 1.
– If C has two literals, e.g. C = X2 ∨X7, the distance decreases with probability ≥ 1

2
,

because at least 1 of the 2 bits is wrong, and there is a probability of 1
2

that we flip
the right one.

�

Note that the algorithm we have constructed is similar to a random walk on a line, where
the upper bound of probability 1

2
is the case where either direction is equally likely. We know

that hn,0 is upper bounded by C(G) ≤ 4n2.
As we did with the USTCON algorithms, we can bound the runtime of the 2-SAT algo-

rithm by a time 8kn2 to construct an algorithm with a one-sided error of 2−k.
Unfortunately, for 3-SAT, the distance does not necessarily decrease at each step. The

state space is finite and if there is a solution it is found almost surely in a finite time. Still
the algorithm can be modified to have a better convergence speed. The idea is to do the
same algorithm, but only for 3n steps, and then to restart. It is called Walk & Restart.

Algorithm 3 Random k-SAT algorithm : Walk & Restart

Require: a k-SAT formula φ, clauses C1, . . . , Cm, and literals (¬)X1, . . . , (¬)Xn . n = km
Ensure: a boolean indicating that there exists an interpretation that satisfies φ, if there

isn’t, the algorithm does not terminate.
t← 0, a← any value in {0, 1}n . a = (X1, . . . , Xn)
while φ (a) = 0 do

while t ≤ 3n and φ (a) = 0 do
j ← any integer such that Cj(a) = 0
i← random integer from {k | Xk is a variable of Cj}
Xk ← 1−Xk . Flip the bit of this variable in a

end while
t← 0 . Restart

end while
return true

Let us study the speed of this algorithm. Let p be the odd that the walk terminates in
less than 3n steps. The expected number of restarts is obviously 1

p
.

For a 3-SAT problem let s ∈ {0, 1}n such that φ(s) = 1. Define d(a, s) = |{ai 6= si | 1 ≤ i ≤ n}|.
If a = s then d(a, s) = 0 and in general d(a, s) ∈ {0, 1, ..., n}. Let Xi = d(a, s) after i itera-
tions.

Let pi be the probability that a 3n-walk terminates knowing that X0 = i.

p =
n∑

i=1

pi P(X0 = i) =
n∑

i=1

pi

(
n
i

)
2n

When a clause a selected, one literal is different from that of s since φ(s) = 1, therefore
P (Xi+1 = Xi − 1) ≥ 1

3

3-7

INF554 Lecture 3 — 7th of October 1st semester, 2013

pj = P (min {i, Xi = 0} ≤ 3n | X0 = j) ≥ P (min {i, Xi = 0} ≤ 3j | X0 = j) ≥

qj = P (# {i ≤ 3j, Xi+1 = Xi − 1} = 2j, # {i ≤ 3j, Xi+1 = Xi + 1} = j | X0 = j)

qj =

(
3j

j

)(
1

3

)2j(
2

3

)j

qj ∼
√

3

4π

1√
j

(
1

2

)j

n∑
i=1

pi

(
n
i

)
2n
≥

n∑
i=1

qi

(
n
i

)
2n
∼ O(1)

√
n

(
3

4

)n

Therefore, the time complexity is nO(1)
(
4
3

)n
As of year 2011, there is a deterministic algorithm with the same time complexity, and

another randomized algorithm with time complexity O∗(1.308n)
There is a version of this algorithm for k-SAT with k ≥ 4 with time complexityO∗

((
1 + k−2

k

)n)
3.2.1 Graph coloring

Consider a graph G = (V,E) with n nodes, which is 3-colorable. i.e. there exists C ∈
{0, 1, 2}n such that ∀ (i, j) ∈ E, Ci 6= Cj

The problem is to color this graph using two colors. To do this, the rule is that in any
triangle, not all vertices are the same color. This is obviously possible since you only need
to consider a 3-coloring and fuse two colors.

Consider the following algorithm

Algorithm 4 2-coloring of 3-colorable graphs

Require: a 3-colorable graph G . Let T be the set of triangles of G, n the number of nodes
Ensure: a 2-coloring of G in a finite time almost surely.
t← any monochromatic triangle t ∈ T , C ← any 2-coloring ∈ {0, 1}n
while there is a monochromatic triangle t ∈ T do

t← any monochromatic triangle t ∈ T
i← random vertex from t
Ci ← 1− Ci . Flip the color of the vertex in C

end while
return true

We stated that the algorithm almost surely terminated in finite time. We now state that
the expected run-time is finite.

3-8

INF554 Lecture 3 — 7th of October 1st semester, 2013

Proof: Let Ct be the coloring after t steps of the algorithm.
Let s ∈ {0, 1, 2}n. Many 2-coloring are naturally associated to this 3-coloring. For each

vertex colored by color 2, we replace the color by 0 or 1. All such colorings are correct
2-colorings.

Let Xt = # {i ∈ V, si 6= 2 and si 6= Ct
i}. When a vertex i is selected at random in triangle

t, there is a 1
3

chance that si = 2, a 2
3

chance that si 6= 2 and in that case after switching the
color, there is a 1

2
chance that the color was already right, and the same chance that it gets

switched to the right value. Basically
P (Xt+1 = Xt) = 1

3

P (Xt+1 = Xt + 1) = 1
3

or 2
3

if Xt = 0

P (Xt+1 = Xt − 1) = 1
3

or 2
3

if Xt = n

At worst, the algorithm ends with Xt = 0. process {Xt} is a random walk on a line.
Let Ek bet the expected time to go from k to k − 1. En = 2

3
+ 1

3
En and ∀k < n, Ek =

1
3

+ 1
3
Ek + 1

3
(Ek + Ek+1) Therefore, Ek = (n+ 1− k) , ∀k. So the expected time to go from

n to 0 is n(n+1)
2

and therefore the expected time for completion is smaller than that.
�

3-9

