Introduction to Quantum Computing

Frédéric Magniez

INF554 - lectures 8 \& 9

Quantum interferences around 2020...

- Current approach: avoid them
- Quantum computing: get benefit of them!

Feynman'81:"Can quantum systems be probabilistically simulated by a classical computer? [...] the answer is certainly, No!" Deutsch'85: Universal quantum Turing machine

Cryptography

- Secrete Key Distribution Protocol [Bennett, Brassard'84] Implementation: $\sim 100 \mathrm{~km}$

Information Theory

- EPR Paradox [Einstein, Podolsky, Rosen'35]

Realization: 1982 [Orsay]

- Teleportation [Bennett, Brassard, Crépeau, Jozsa, Peres, Wootters'93]

Realization: 1997 [Innsbruck]

Algorithms

- Polynomial algorithm for Period Finding [Simon, Shor'94]
\Rightarrow Factorization, Discrete Logarithm
- Quadratic speedup for Database Search [Grover'96]
- Quantum computer?

1995: 2-qubit [ENS], 2000: 5-qubit [IBM], 2006: 12-qubit [Waterloo

Quantum proofs for classical theorems

- http://arxiv.org/abs/0910.3376 [Drucker, de Wolf'09]

Computing?

Formal concepts

- Model of computation

What is a machine, a program?
Mathematical model of a computer?

- Hardness of a problem

Calculable / Non-calculable
Easy / Hard

- [Turing 1936]:Turing machine, calculability, universality

Church-Turing theses

- Weak version

Any reasonable model of computation can be simulated on a Turing machine reasonable: physically realizable
Turing machine \approx today computer

- Strong version

Any reasonable model of computation can be efficiently simulated on a probabilistic Turing machine
efficiently: using same amount of resources (time and space)

Classical computing

- Turing machine, calculability, universality [Turing 1936]
- Proposition: EDVAC (Electronic DiscreeteVAriable Computer) [von Neumann 19
- First computer: Mark I [Robinson-Tootill-Williams 1949]

Quantum computing

- Idea: simulation of quantum systems [Feynman 1982]
- Turing machine, calculability, universality [Deutsch 1985,I989][BernsteinVazirani 1993], circuits [Yao 1993], cellular automata, finite automata...
- Technology: 2-qubit [1995], 5-qubit [2000], I2-qubit [2006]

Validity of Church-Turing theses

- Weak version is still valid

Calculability: quantum and classical computation have same power

- Strong version could be violated

Complexity: evidences that quantum computers can be exponentially faster than classical computers

I qubit

- Definition
- Quantum key distribution

2 qubits

- Definition
- EPR Paradox and applications

Algorithms

- Toward factorization

Quantum Fourier transform
Applications

- Generalization
- Grover algorithm

Conclusion

Logical bit

- Deterministic element: $b \in\{0,1\}$

Probabilistic bit

- Probabilistic distribution: $d=\binom{p}{q}$

$$
\begin{aligned}
& p, q \in[0,1] \\
& p+q=1
\end{aligned}
$$

Quantum bit (qubit)

- State: 2-dimensional unit vector

$$
|\psi\rangle=\cos \theta|0\rangle+\sin \theta|1\rangle
$$

general case (complex amplitudes):

$$
|\psi\rangle=\binom{\alpha}{\beta}=\alpha|0\rangle+\beta|1\rangle, \quad|\alpha|^{2}+|\beta|^{2}=1
$$

- Measure: randomized orthogonal projection

Qubit evolution

Logical bit

- Function: $f:\{0,1\} \rightarrow\{0,1\}, \quad b \mapsto f(b)$

Probabilistic bit

- Stochastic matrix:

$$
P=\left(\begin{array}{cc}
p & p^{\prime} \\
q & q^{\prime}
\end{array}\right), \quad d \mapsto d^{\prime}=P d
$$

Quantum bit

- Evolution: unitary transformation $G \in \mathcal{U}(2)$ (\Rightarrow reversible)

Definition: $G \in \mathbb{C}^{2 \times 2}$ s.t. $G^{*} G=\mathrm{Id}$

$$
\begin{aligned}
& \left.|\psi\rangle \ldots, G \quad \psi^{\prime}\right\rangle=G|\psi\rangle \\
& \left|\psi^{\prime}\right\rangle=G|\psi\rangle \ldots G^{*} \ldots \cdots|\psi\rangle
\end{aligned}
$$

State

- Polarization: 2-dimensional vector

$$
|\theta\rangle=\cos \theta|\rightarrow\rangle+\sin \theta|\uparrow\rangle
$$

Measure

- Calcite crystal
separates horizontal and vertical polarizations
(siop A measure modifies the system

Transformation

- Well known transformation: half-wave blade orthogonal symmetry around its axis
- Any rotations (possibly with complex angles)

Reversible classical transformation

- Identity
$|b\rangle$
Id
$|b\rangle$
- Negation
$|b\rangle$
NOT
$|1-b\rangle$

Hadamard transformation

- Definition: half-wave blade at $22,5^{\circ} \quad H=\frac{1}{\sqrt{2}}\left(\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right)$

$$
|b\rangle \ldots \boldsymbol{H} \ldots \frac{1}{\sqrt{2}}\left(|0\rangle+(-1)^{b}|1\rangle\right)
$$

- Properties: quantum coin flipping

$|b\rangle \longrightarrow H \longrightarrow H$ Measure $\longrightarrow|b\rangle$

Problem

- Setting

No prior shared secret information between Alice and Bob
Authenticated classical channel

- Goal: Get a private key between Alice and Bob

Classical results

- Impossible, since all the information is in the canal
- However, one can (using randomized techniques):

Amplify the privacy of an imperfect private key by shortening it

Incertitude in the measure

Impossibility of cloning

- Impossibility of duplicating an unknown state
- Proof based on the linearity of quantum transformations

Main idea of quantum key distribution

Primitive

- Alice choses 2 random bits a, c
- Alice creates and sends to Bob qubit $H^{c}|a\rangle$
- Bob gets qubit from $|\psi\rangle$ Alice
- Bob choses I random bit d
- Bob measures $H^{d}|\psi\rangle$ and gets bit b
$H^{2}=$ Id

Facts

- $c=d \rightarrow b=a$ with probability I
- $c \neq d \rightarrow b=a$ with probability $1 / 2$

Reconciliation

- Alice \& Bob exchange their value c, d

Remarks

- If $c=d$, Alice \& Bob know $a=b$ without revealing a, b
- "without revealing" can be formalized...

Protocol: quantum part

Key: $\quad 0 \quad$ I \quad I 0
Encoding: $\mathrm{H} \quad \mathrm{H} \quad \mathrm{H}$ H
Qubit:

Decoding:
Qubit:
H

Key:

Protocol: classical part

- Reconciliation:Alice and Bob publicly announce their coding choices

A\&B only keep key bits with same choices (prob. I/2)
If no third party observes communication, then A\&B get same key

- Security:A\&B check few key bits at random positions
- Secret amplification using with few other more key bits

Conclusion

- Key generation without any prior shared secret information but using an authenticated classical channel
- Small initial private key \rightarrow large private key

Preliminaries:Tensor product

Vector spaces

- V, W : vector spaces
- $V \otimes W$ is the free vector space $\operatorname{Span}(v \otimes w: v \in V, w \in W)$
with equivalence relations

$$
\begin{aligned}
& \left(v_{1}+v_{2}\right) \otimes w=v_{1} \otimes w+v_{2} \otimes w \\
& v \otimes\left(w_{1}+w_{2}\right)=v \otimes w_{1}+v \otimes w_{2} \\
& (c \cdot v) \otimes w=v \otimes(c \cdot w)=c \cdot(v \otimes w)
\end{aligned}
$$

Linear maps

- $S: V \rightarrow X, T: W \rightarrow Y$: linear maps
- $S \otimes T: V \otimes W \rightarrow X \otimes Y$ is the linear map satisfying

$$
S \otimes T(v \otimes w)=S(v) \otimes T(w)
$$

(and extended by linearity)
Applications

- Joint probability distributions on spaces V, W

$$
\mathcal{D}(V \times W)=\mathcal{D}(V) \otimes \mathcal{D}(W) \neq \mathcal{D}(V) \times \mathcal{D}(W) \quad(: \text { product distributions })
$$

Definition

- $|\psi\rangle \in \mathbb{C}^{\{0,1\}^{n}}$ such that $\||\psi\rangle \|=1$

$$
|\psi\rangle=\sum_{x \in\{0,1\}^{n}} \alpha_{x}|x\rangle \quad \text { with } \sum_{x \in\{0,1\}^{n}}\left|\alpha_{x}\right|^{2}=1
$$

(100) $\mathbb{C}^{\{0,1\}^{2}}=\mathbb{C}^{\{0,1\}} \otimes \mathbb{C}^{\{0,1\}} \neq \mathbb{C}^{\{0,1\}} \times \mathbb{C}^{\{0,1\}}$

Examples: $\frac{|00\rangle+|01\rangle}{\sqrt{2}}=|0\rangle \otimes \frac{|0\rangle+|1\rangle}{\sqrt{2}}$

$$
\frac{|00\rangle+|11\rangle}{\sqrt{2}} \neq\left|\psi_{1}\right\rangle \otimes\left|\psi_{2}\right\rangle
$$

Unitary transformations: $G \in \mathcal{U}\left(2^{n}\right)$ $G \in \mathbb{C}^{2^{n} \times 2^{n}}$ s.t. $G^{*} G=\mathrm{Id}$ $|\psi\rangle \ldots, G \quad\left|\psi^{\prime}\right\rangle=G|\psi\rangle$

Measure

$$
\sum_{x \in\{0,1\}^{n}} \alpha_{x}|x\rangle \cdots \text { Measure }\left|\alpha_{x}\right|^{2}>|x\rangle
$$

Definition

$\begin{array}{ll}\mathrm{c}-\mathrm{NOT}|0 b\rangle & =|0 b\rangle \\ \mathrm{c}-\mathrm{NOT}|1 b\rangle & =|1\rangle|(1-b)\rangle \\ \mathrm{c}-\mathrm{NOT}|a b\rangle & =|a\rangle|a \oplus b\rangle\end{array} \quad$ c-NOT $=\left(\begin{array}{l}1000 \\ 0100 \\ 0001 \\ 0010\end{array}\right)$

Representation

Bell basis change

Measure of first qubit

- Projectors

$$
\begin{gathered}
P_{0}=|00\rangle\langle 00|+|01\rangle\langle 01|=|0\rangle\langle 0| \otimes \mathrm{I}_{2} \\
P_{1}=|10\rangle\langle 10|+|11\rangle\langle 11|=|1\rangle\langle 1| \otimes \mathrm{I}_{2} \\
\quad P_{0} \oplus P_{1}=I d
\end{gathered}
$$

- Measure of first qubit

$$
\begin{aligned}
& \begin{array}{l}
\| P_{0}|\psi\rangle \|^{2} \\
\\
\\
\\
a^{2}+b^{2} \\
|\psi\rangle=a|00\rangle+b|01\rangle+c|10\rangle+d|11\rangle \\
\ldots P_{0}|\psi\rangle \| \\
M
\end{array} P_{0}|\psi\rangle=|0\rangle \frac{a|0\rangle+b|1\rangle}{\sqrt{a^{2}+b^{2}}} \\
& \| P_{1}|\psi\rangle \|^{2 \star} \frac{1}{\| P_{1}|\psi\rangle \|} P_{1}|\psi\rangle=|1\rangle \frac{c|0\rangle+d|1\rangle}{\sqrt{c^{2}+d^{2}}} \\
& =c^{2}+d^{2}
\end{aligned}
$$

Interpretation

- Partial measure project to a subspace compatible with the observation

Probability $=$ square norm of the projection
Outcome $=$ renormalization of the projection

Protocol

- Assume Alice \& Bob shares an EPR state: $\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$

Alice has the first qubit, and Bob the second one

- Alice \& Bob observe their qubit and respectively get bit a, b

Fact

- $a=b$ with probability I
- a (resp. b) is a uniform random bit

Classical analogue?

- Shared randomness model:

Alice and Bob has access to shared random bits
\rightarrow Non product distribution:
00 with prob. I/2 and II with prob. I/2

- Can we simulate quantum physic using shared randomness?

Game

- Alain and Bob share some initial information but cannot communicate
- Alain receives a random bit x, Bob y
- Alain returns a bit a, Bob b

- Goal: maximize $p=\underset{x, y}{\operatorname{Pr}}(a \oplus b=x \wedge y)$

\wedge	0	1
0	0	0
1	0	1

\oplus	0	I
0	0	I
I	I	0

Classically: CHSH inequality [1969]

- Best deterministic strategy: $a=b=0 \Longrightarrow p=\frac{3}{4}$
- Theorem: the best probabilistic strategy is not better than the best deterministic strategy

Reminder

- Goal: maximize $p=\underset{x, y}{\operatorname{Pr}}(a \oplus b=x \wedge y)$

Quantumly

- Alain and Bob share an EPR state

- Bob performs a rotation of angle $\frac{\pi}{8}$
- If $x=1$, Alain performs a rotation of angle $\frac{\pi}{4}$
- If $y=1$, Bob performs a rotation of angle $-\frac{\pi}{4}$
- Alain et Bob observe their qubit and send their respective outcomes
- Theorem: $\quad p=\cos ^{2}\left(\frac{\pi}{8}\right) \approx 0.85$

Realization: [Aspect-Grangier-Roger-Dalibard: Orsay"82]

Problem

- Alice \& Bob share an EPR state: $\quad\left|\beta_{00}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$
- Alice wants to send two bits $x y$ to Bob
- But Alice can only send one qubit to Bob

Bell basis change

$$
\left|\boldsymbol{\beta}_{x y}\right\rangle
$$

$$
\begin{aligned}
& \left|\boldsymbol{\beta}_{00}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle) \\
& \left|\boldsymbol{\beta}_{01}\right\rangle=\frac{1}{\sqrt{2}}(|01\rangle+|10\rangle) \\
& \left|\boldsymbol{\beta}_{10}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle-|11\rangle) \\
& \left|\boldsymbol{\beta}_{11}\right\rangle=\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)
\end{aligned}
$$

Protocol

- Alice applies to its qubit NOT, if $y=1$; and FLIP, if $x=1 \quad$ FLIP $=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$
- Alice sends its qubit to Bob
- Bob performs the inverse of the Bell basis change, and observes $x y$

Quantum teleportation

Problem

- Alice wants to transmit a qubit $|\psi\rangle$ to Bob
- Bob: far and unknown position to Alice

Realization

The quantum communication does not reveal anything on $|\psi\rangle$!

Circuit

Exercise

- Compute the state of the system before the measure
- Write the qubit state $\left|\psi_{x y}\right\rangle$ as a function of observed values x, y
- Explain the end of the protocol

Realizations

- I photon [Zeilinger et al : Innsbruck'97]
- I photon, 6 km [Gisin et al : Genève'02]
- I atom [Blatt et al : Innsbruck'04]
- Today: over 100 km

Coin flipping

Problem

- Alice and Bob are fare away

- They want to flip a coin in a fair way
but they don't trust each other

Classically

- Solutions based on harness assumptions of combinatorial problems
- No unconditionally secure solution

Quantumly

- There exists a protocol with maximal bias 0,25 [200I]
- There is no protocol with bias better than 0,207 [2002]
- There exists a protocol with maximal bias 0,207 [2009]

Weak version: election

- Alice wants head
- Bob wants tail

- There exists a protocol with arbitrarily small bias [2007]

Main idea

- Assume Alice \& Bob share an EPR state

- Alice \& Bob observe their qubit and get bit a, b

Fact

- $a=b$ with probability I
- a (resp. b) is a uniform random bit

Problems

- Who create the EPR state?
- If Alice does, Bob needs to check that is an EPR state:

And for instance not $|00\rangle \rightarrow a=b=0$ with probability I

- In ordert o check the EPR state, Bob needs the 2 qubits

Then Alice needs to check that Bob gives back the correct qubit

EPR based coin flipping

Protocol

- Initialization

Alice prepares 2 EPR states
Alice send the corresponding first qubits to Bob

- Selection

Bob select the EPR state that will be use for flipping
The other EPR state will be use for checking the honesty of Alice
Alice and Bob observe their respective qubit of the flipping EPR state

- Checking

Alice sends to Bob her qubit of the checking EPR state
Bob measures the checking EPR state
If the measure outcomes is correct, Bob accepts coin
Otherwise, Bob declares that Alice has cheated

Theorem

- If both participant are honest, the outcome is a perfect random bit
- If one of the participants is dishonest, the maximal bias is I/4

Attacks Goal: increase the probability to get 0

- Bob's attack: measure its 2 qubits, and select the EPR pair giving 0 (if any)
- Alice's attack: $\frac{|00\rangle \mid \text { EPR state }\rangle}{\sqrt{3}}+\frac{\mid \text { EPR state }\rangle|00\rangle}{\sqrt{3}}$

Gates

- A gate C is a function on at most 3 qubits

Example: AND, OR, NOT, ...

Circuit

- A circuit is a sequence of gates $C=C_{L} \ldots C_{2} C_{1}$
- The size of C is its number L of gates
- C computes a function f if for all input $x: C\left(x, 0^{k}\right)=(f(x), z)$

Theorem

- Any function can be computed by a circuit using only NOT, OR,AND gates

Quantum gates and circuits

Gates $U \in \mathcal{U}\left(2^{k}\right), \quad k=1,2,3$

- A quantum gate is a unitary map that acts upon at most 3 qubits

Tensor product of gates

$\left|\psi_{1}\right\rangle\left|\psi_{2}\right\rangle, \cdots-G_{1}$
G_{2}

$$
\left(G_{1} \otimes G_{2}\right)\left|\psi_{1}\right\rangle\left|\psi_{2}\right\rangle=\left(G_{1}\left|\psi_{1}\right\rangle\right)\left(G_{2}\left|\psi_{2}\right\rangle\right)
$$

Circuit

- A quantum circuit is a sequence of gates (extended by $\otimes I d$)

-Theorem

- Any unitary can be realized exactly by a circuit and approximated using only gates c-NOT and $\sqrt{ } \mathrm{H}$

Normal form

- Function: $f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$
- Circuit: $U_{f}:|x\rangle|0\rangle \mapsto|x\rangle|f(x)\rangle$

$$
|x\rangle|y\rangle \mapsto|x\rangle|y \oplus f(x)\rangle
$$

Circuit for S_{f}

- Boolean function: $f:\{0,1\}^{n} \rightarrow\{0,1\}$
- Ancilla: $\quad|\psi\rangle=\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)$
- Circuit:

$$
\begin{aligned}
|\psi\rangle=\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle) \square \square & \frac{1}{\sqrt{2}}(|f(x)\rangle-|1 \oplus f(x)\rangle) \\
= & \frac{(-1)^{f(x)}}{\sqrt{2}}(|0\rangle-|1\rangle)
\end{aligned}
$$

- Conclusion:

$$
U_{f}(|x\rangle \otimes|\psi\rangle)=S_{f}(|x\rangle) \otimes|\psi\rangle
$$

A first quantum algorithm [1992]

Deutsch-Jozsa problem

- Oracle input: $f:\{0, I\}^{n} \rightarrow\{0, I\}$ a black-box function

such that f is either constant or balanced
- Output: 0 iff f is constant

Query complexity

- Deterministic: $2^{n-1}+1$
- Quantum: |

Special case $n=1$

- No restriction on f
- Deterministic vs quantum: 2 queries vs I query

ST0P) $x \mapsto f(x)$ can be nonreversible!

Reversible implementation of f

$$
\alpha|0\rangle+\beta|1\rangle \ldots S_{f} \ldots(-\cdots)^{f(0)} \alpha|0\rangle+(-1)^{f(1)} \beta|1\rangle
$$

Hadamard gate: half-wave blade at $22,5^{\circ}$

Quantum circuit

$$
|0\rangle \cdots H \text { Me } H \text { M }
$$

Analysis ($n=1$)
$|0\rangle$

f constant $\quad|0\rangle$
f balanced $|1\rangle$

Initialization:
$|0\rangle$

Parallelization: $\quad \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$
Query to $f: \quad \quad \frac{1}{\sqrt{2}}\left((-1)^{f(0)}|0\rangle+(-1)^{f(1)}|1\rangle\right)$
Interferences: $\quad \frac{1}{2}\left((-1)^{f(0)}(|0\rangle+|1\rangle)+(-1)^{f(1)}(|0\rangle-|1\rangle)\right)$
Final state:
$\frac{1}{2}\left(\left((-1)^{f(0)}+(-1)^{f(1)}\right)|0\rangle+\left((-1)^{f(0)}-(-1)^{f(1)}\right)|1\rangle\right)$

Reversible implementation of f

$$
\sum_{x \in\{0,1\}^{n}} \alpha_{x}|x\rangle \ldots \sum_{x \in\{0,1\}^{n}}(-1)^{f(x)} \alpha_{x}|x\rangle
$$

Quantum Fourier transform

$$
\boldsymbol{Q F} \boldsymbol{T}_{n}|x\rangle=\frac{1}{2^{n / 2}} \sum_{y}(-1)^{x \cdot y}|y\rangle
$$

where $x \cdot y=\sum_{i} x_{i} y_{i} \bmod 2$
Quantum circuit

$$
|0\rangle \cdots Q \quad Q \quad S_{f}-Q F T-\text { Measure } \rightarrow \cdots ?
$$

Analysis

$|0\rangle \cdots$ QFT QFT Qeasure
f constant $|00 \ldots 0\rangle$
f balanced $|\boldsymbol{y}\rangle, \quad y \neq 00 \ldots 0$

Initialization: $\quad|00 \ldots 0\rangle$
Parallelization: $\quad \frac{1}{2^{n / 2}} \sum_{x \in\{0,1\}^{n}}|x\rangle$
Query to f: $\quad \frac{1}{2^{n / 2}} \sum_{x \in\{0,1\}^{n}}(-1)^{f(x)}|x\rangle$
Interferences: $\quad \frac{1}{2^{n}} \sum_{x, y \in\{0,1\}^{n}}(-1)^{f(x)+x \cdot y}|y\rangle$
Final state:

$$
\left(\frac{1}{2^{n}} \sum_{x \in\{0,1\}^{n}}(-1)^{f(x)}\right)|00 \ldots 0\rangle+\sum_{y \neq 00 \ldots 0} \alpha_{y}|y\rangle
$$

$$
\begin{aligned}
& |b\rangle \cdots H-\cdots \frac{1}{\sqrt{2}}\left(|0\rangle+(-1)^{b}|1\rangle\right)
\end{aligned}
$$

Problem

- Oracle input: $f:\{0, I\}^{n} \rightarrow\{0, I\}$ a black-box function
such that $f(x)=a \cdot x$ for some fixed $a \in\{0,1\}^{n}$
- Output: a

Query complexity

- Randomized: n

Query $f\left(0^{i-1} \mid 0^{n-1}\right)=a_{i}$, for $i=1,2, \ldots, n$

- Quantum:
-Quantum circuit

$$
|0\rangle \cdots-Q Q \quad S_{f}-Q F T-\text { Measure } \cdots \rightarrow|a\rangle
$$

Analysis
$|0\rangle \ldots-Q_{f}-S_{f}-Q^{-\cdots}|a\rangle$

Initialization: $\quad|00 \ldots 0\rangle$
Parallelization: $\quad \frac{1}{2^{n / 2}} \sum_{x \in\{0,1\}^{n}}|x\rangle$
Query to $f: \quad \frac{1}{2^{n / 2}} \sum_{x \in\{0,1\}^{n}}(-1)^{a \cdot x}|x\rangle=Q F T|a\rangle$
Interferences: $\quad Q F T^{2}|a\rangle$

Final state:
$|a\rangle$

RSA Challenges

- http://www.rsasecurity.com/rsalabs

Challenge Number	$\begin{aligned} & \text { Prize } \\ & \text { (\$US) } \end{aligned}$	Status	Submission Date	Submitter(s)
RSA-576	\$10,000	Factored	$\begin{aligned} & \text { December } 3, \\ & 2003 \end{aligned}$	J. Franke et al.
RSA-640	\$20,000	Factored	November 2 . 2005	F. Bahr etal.
RSA-704	\$30,000	Not Factored		
RSA-768	\$50,000	Not Factored		
RSA-896	\$75,000	Not Factored		
RSA-1024	\$100,000	Not Factored		
RSA-1536	\$150,000	Not Factored		
RSA-2048	\$200,000	Not Factored		

- RSA-640 (193 digits) :
$310741824049004372 \mid 350750035888567930037346022842727545720161948823206440518081504556346829671723286782437916272838$ 033415471073108501919548529007337724822783525742386454014691736602477652346609
$=$
$1634733645809253848443|3388386509085984| 7836700330923|2| 8|110852389333100104508| 5|2| 2|18| 675 \mid 1579$ \times
|90087|28|664822||3|2685|5739354|397547|8967899685|5493666638539088027103802|04498957|9|26|46557|
- RSA Algorithm (allows private communication) security based on the difficulty of factorizing

From period finding to factorization

-Theorem [Simon-Shor'94]

- Finding the period of any function on an abelian group can be done in quantum time poly $(\log |G|)$

Order finding

- Input: integers n and a such that $\operatorname{gcd}(a, n)=1$
- Output: the smallest integer $q \neq 0$ such that $a^{q}=1 \bmod n$
- Reduction to period finding: the period of $x \rightarrow a^{x} \bmod n$ is q

Factorization

- Input: integer n
- Output: a nontrivial divisor of n

Reduction : Factorization \leq_{R} Order finding

- Check that $\operatorname{gcd}(a, n)=1$
- Compute the order q of $a \bmod n$
- Restart if q is odd or $a^{9 / 2} \neq-1 \bmod n$
- Otherwise $\left(a^{q / 2}-1\right)\left(a^{a / 2}+1\right)=0 \bmod n$
- Return $\operatorname{gcd}\left(a^{q / 2} \pm I, n\right)$

Problem

- Oracle input: $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ a black-box function

such that $\exists s \in\{0,1\}^{n}: \forall x \neq y, f(x)=f(y) \Longleftrightarrow y=x \oplus s$
- Output: the period s

Complexity

- Randomized: $2^{\Omega(n)}$ queries
- Quantum: $O(n)$ queries and time $O\left(n^{3}\right)$

Idea

- Use a Fourier transformation: $\boldsymbol{Q F T} T_{n}|x\rangle=\frac{1}{2^{n / 2}} \sum_{y}(-1)^{x \cdot y}|y\rangle$
where $x \cdot y=\sum_{i} x_{i} y_{i} \bmod 2$
- Realization of $Q F T_{n}$ using Hadamard gates:

$$
|b\rangle \cdots-H-\cdots \frac{1}{\sqrt{2}}\left(|0\rangle+(-1)^{b}|1\rangle\right) \quad Q F T_{n} \equiv
$$

Initialization: $\quad\left|0^{n}\right\rangle\left|0^{n}\right\rangle$
Parallelization: $\quad \frac{1}{2^{n+2}} \sum_{x}|x\rangle\left|0^{n}\right\rangle$
Query to $f: \quad \frac{1}{2^{n / 2}} \sum_{x}|x\rangle|f(x)\rangle$
Filter:

$$
\frac{1}{\sqrt{2}}(|x\rangle+|x \oplus s\rangle)|f(x)\rangle
$$

Interferences:

$$
\begin{aligned}
& \frac{1}{2^{(n+1) / 2}} \sum_{y}\left((-1)^{x \cdot y}+(-1)^{(x \oplus s) \cdot y}\right)|y\rangle|f(x)\rangle \\
& \frac{1}{2^{(n+1) / 2}} \sum_{y}(-1)^{x \cdot y}\left(1+(-1)^{s \cdot y}\right)|y\rangle|f(x)\rangle \\
& \frac{1}{2^{(n-1) / 2}} \sum_{y: s \cdot y=0}|y\rangle|f(x)\rangle
\end{aligned}
$$

Construction of a linear system

- After $n+k$ iterations: $y^{1}, y^{2}, \ldots, y^{n+k} \in s^{\perp}$
- s is solution of the linear system in t :

$$
\left\{\begin{array} { c }
{ y ^ { 1 } \cdot t = 0 } \\
{ y ^ { 2 } \cdot t = 0 } \\
{ \vdots } \\
{ y ^ { n + k } \cdot t = 0 }
\end{array} \leftrightarrow \left\{\begin{array}{r}
y_{1}^{1} t_{1}+y_{2}^{1} t_{2}+\ldots+y_{n}^{1} t_{n}=0 \\
y_{1}^{2} t_{1}+y_{2}^{2} t_{2}+\ldots+y_{n}^{2} t_{n}=0 \\
\vdots \\
y_{1}^{n+k} t_{1}+y_{2}^{n+k} t_{2}+\ldots+y_{n}^{n+k} t_{n}=0
\end{array}\right.\right.
$$

- If $s=0^{n}$ the y^{i} are of rank n with proba $\geq|-| / 2^{k}$
- If $s \neq 0^{n}$ the y^{i} are of rank n-I with proba $\geq 1-I / 2^{k+1}$
- System solutions: 0^{n} and s

Complexity

- Constructing the system: $O(n)$ queries, time $O(n)$
- Solving the system: no query, time $O\left(n^{3}\right)$

Period Finding(G)

- Oracle input: function f on G such that
f is strictly periodic for some unknown $H \leq G$:

$$
f(x)=f(y) \Longleftrightarrow y \in x H
$$

- Output: generator set for H
- Examples

- Simon Problem: $\quad G=\left(\mathbb{Z}_{2}\right)^{n}, \boldsymbol{H}=\{0, s\}$
- Factorization: $\quad G=\mathbb{Z}, H=r \mathbb{Z}$
- Discrete logarithm: $\quad G=\mathbb{Z}^{2}, H=\{(r x, x): x \in \mathbb{Z}\}$
- Pell's equations: $\quad G=\mathbb{R}$
- Graph Isomorphism: $G=\mathcal{S}_{n}$

Quantum polynomial time algorithms (in $\log |G|)$

- Abelian groups G: QFT-based algorithm [1995]
- Normal period groups H: QFT-based algorithm [2000]
- Solvable groups G of constant exponent and constant length [2003]

Shift problem

- Dihedral group $\mathbb{Z}_{N} \rtimes \mathbb{Z}_{2}$: sub-exponential time $2^{O(\sqrt{\log N})}$ [2003]

$f(\cdot, 0)$	2	5	123		39	7	6	10 15		4
Shift $=-3$										
$f(\cdot, 1)$	3	9	7	6	10	15	4	2	5	12

Hard instances 2

Graph Isomorphism

A :

A	B
a	l
b	6
c	8
d	3
e	5
f	2
g	4
h	7

- Instance of Period Finding on the symmetric group $f: \pi \in \mathcal{S}_{2 n} \mapsto \pi(A \cup B)$
- Symmetric group: we just know how to implement QFT... [1997]

- General case

- Polynomial number of queries to f, but exponential post-processing time [1999]

Grover problem

- Oracle input: $f:\{0,1\}^{n} \rightarrow\{0,1\}$ such that $\exists!x_{0}: f\left(x_{0}\right)=1$
- Output: x_{0}
- Constraint: f is a black-box

Query complexity

- Randomized: $\Theta\left(2^{n}\right)$
- Quantum: $\Theta\left(\sqrt{2^{n}}\right)$

$$
n=2 \Longrightarrow 1 \text { query }
$$

Preliminary remarks

Implementation of f
$\sum_{x} \alpha_{x}|x\rangle \cdots \quad S_{f} \cdots \sum_{x}(-1)^{f(t)} \alpha_{x}|x\rangle=\sum_{x} \alpha_{x}|x\rangle-2 \alpha_{x_{0}}\left|x_{0}\right\rangle$

Double Hadamard gate

$$
\begin{aligned}
& \left|x_{1}\right\rangle \ldots-H \\
& \left|x_{2}\right\rangle
\end{aligned} \cdots \cdots \frac{1}{\sqrt{2}}\left(|0\rangle+(-1)^{x_{1}}|1\rangle\right) .
$$

$$
|x\rangle=\left|x_{1} x_{2}\right\rangle
$$

$$
\text { with } x \cdot y=x_{1} y_{1}+x_{2} y_{2} \bmod 2
$$

$|0\rangle \cdots-H$
$|0\rangle$
H

Initialization:
$|00\rangle$
Parallelization: $\quad \frac{1}{2}(|00\rangle+|01\rangle+|10\rangle+|11\rangle)$
Query to f :
$\frac{1}{2} \sum_{x}|x\rangle-\left|x_{0}\right\rangle$
Interferences:
$|00\rangle-\frac{1}{2} \sum_{y}(-1)^{x_{0} \cdot y}|y\rangle$
Query to δ_{0} :
$|00\rangle-\frac{1}{2}\left(\sum_{y}(-1)^{x_{0} \cdot y}|y\rangle-2|00\rangle\right)=-H \otimes H\left|x_{0}\right\rangle$
Final state: $-\left|x_{0}\right\rangle$

Geometrical analysis

Grover operator

$\operatorname{Vect}_{\mathbb{R}}\left(\left|x_{0}\right\rangle, \mid\right.$ unif $\left.\rangle\right)$
$S_{f}=-S_{\left|x_{0}\right\rangle}=S_{\left|x_{0}\right\rangle}$
$-S_{\delta_{0}}=S_{|00\rangle}$
$H^{\otimes 2} S_{|00\rangle} H^{\otimes 2}=S_{\mid \text {unif }\rangle}$
$G=S_{\mid \text {unif }\rangle} S_{\left|x_{0}\right\rangle^{\perp}}=R_{2 \theta}$
with $\sin \theta=\left\langle\right.$ unif $\left.\mid x_{0}\right\rangle=\frac{1}{2}$
After I iteration

\mid unif $\rangle \mapsto-G \mid$ unif $\rangle=-\left|x_{0}\right\rangle$

Grover operator

$\operatorname{Vect}_{\mathbb{R}}\left(\left|x_{0}\right\rangle, \mid\right.$ unif $\left.\rangle\right)$
$S_{f}=-S_{\left|x_{0}\right\rangle}=S_{\left|x_{0}\right\rangle^{\perp}}$
$-S_{\delta_{0}}=S_{|00\rangle}$
$H^{\otimes 2} S_{|00\rangle} H^{\otimes 2}=S_{\mid \text {unif }\rangle}$
$G=S_{\mid \text {unif }\rangle} S_{\left|x_{0}\right\rangle^{\perp}}=R_{2 \theta}$
with $\sin \theta=\left\langle\right.$ unif $\left.\mid x_{0}\right\rangle=\frac{1}{\sqrt{2^{n}}}$
After $\mathrm{T}=2 / \pi$
$\sqrt{ }\left(2^{n}\right)$ iterations
\mid unif $\rangle \mapsto-G^{T} \mid$ unif $\rangle \approx-\left|x_{0}\right\rangle$

Unstructured problems

- Grover algorithm [1996]

Algebraic problems

- Simon-Shor algorithm [1994]

Well structured problems

- Classical algorithms are optimal!

Problems with few structures

- Quantum walk based algorithms [2003]
quantum analogy of random walks
- Examples

Element Distinctness, Commutativity: $n^{2 / 3} \quad$ [2004]
Triangle Finding: $n^{9 / 7} \quad$ (lower bound n) [2013]
Square Finding: $n^{1.25} \quad$ (lower bound n) [2010]
Matrix Multiplication: $n^{5 / 3}$ (lower bound $n^{3 / 2}$) [2006]
AND-OR Tree evaluation: $\sqrt{ } n$

Entanglement?

- "Classical entanglement" exists: shared randomness

Flip a coin 00 or II
Share each bit between Alice and Bob

Alice/Bob uses its bit when he/she wants, their result are correlated

- But quantum entanglement is "stronger"

Bell-CHSH inequality and applications
Complex amplitudes?

- No: they can be simulated using only real amplitude
$\alpha|0\rangle+\beta|1\rangle \simeq \alpha_{r}|00\rangle+\alpha_{i}|01\rangle+\beta_{r}|10\rangle+\beta_{i}|11\rangle \quad \mathcal{U}\left(2^{n}\right) \simeq \mathcal{O}\left(2^{n+1}\right)$
Negative amplitudes?
- Yes: they can induce destructive interferences

Hardness of amplitudes?

- No: amplitudes must be easily computable for being physically realizable

An Introduction to Quantum Computing
 - Authors: Phillip Kaye, Raymond Laflamme, Michele Mosca
 - Editor: Oxford University Press

Quantum Computation and Quantum Information

- Authors: Michael A. Nielsen, Isaac L. Chuang
- Editor: Cambridge University Press

Classical and Quantum Computation

- Authors:A.Yu. Kitaev,A.H.Shen, M. N.Vyalyi
- Editor:American Mathematical Society
- Collection: Graduate Studies in Mathematics

Lecture Notes for Quantum Computation

- Author:John Preskill
- Website: http://www.theory.caltech.edu/~preskill/ph229/

Quantum proofs for classical theorems

- Author:Andrew Drucker, Ronald de Wolf
- Website: http://arxiv.org/abs/0910.3376

