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"2Toward nanotechnology

"No exponential is forever. Your job is to delay 
forever.", Andrew Gordon Moore Feb. 2003. 

End of Moore’s Law?!
!

!

!

!

!

!

!

Quantum interferences around 2020...!
- Current approach: avoid them!

- Quantum computing: get benefit of them!!

 Feynman’81: “Can quantum systems be probabilistically simulated by a 
classical computer? [...] the answer is certainly, No!”!

 Deutsch’85: Universal quantum Turing machine



Cryptography!
- Secrete Key Distribution Protocol [Bennett, Brassard’84]!

  Implementation: ~100 km!

Information Theory!
- EPR Paradox [Einstein, Podolsky, Rosen’35]!

 Realization: 1982 [Orsay]!

- Teleportation [Bennett, Brassard, Crépeau, Jozsa, Peres, Wootters’93]!

 Realization: 1997 [Innsbruck]!

Algorithms!
- Polynomial algorithm for Period Finding [Simon, Shor’94]  !

 ⇒   Factorization, Discrete Logarithm!

- Quadratic speedup for Database Search [Grover’96]!

- Quantum computer?!

 1995: 2-qubit [ENS], 2000: 5-qubit [IBM], 2006: 12-qubit [Waterloo]

"3The superiority of Quantum Computing

Quantum proofs for classical theorems!
- http://arxiv.org/abs/0910.3376 [Drucker, de Wolf’09]

Computing?

Formal concepts!
- Model of computation!

 What is a machine, a program? !

 Mathematical model of a computer?!

- Hardness of a problem!

 Calculable / Non-calculable!

 Easy / Hard!

- [Turing 1936]: Turing machine, calculability, universality !

Church-Turing theses!
- Weak version!

 Any reasonable model of computation can be simulated on a Turing machine!

  reasonable: physically realizable!

  Turing machine ≈ today computer!

- Strong version!

 Any reasonable model of computation can be efficiently simulated on a 
probabilistic Turing machine!

  efficiently: using same amount of resources (time and space)
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Computers? "5

Classical computing!
- Turing machine, calculability, universality [Turing 1936]!

- Proposition: EDVAC (Electronic Discrete VAriable Computer) [von Neumann 1945]  

- First computer: Mark I [Robinson-Tootill-Williams 1949]!

Quantum computing!
- Idea: simulation of quantum systems [Feynman 1982]!

- Turing machine, calculability, universality [Deutsch 1985,1989][Bernstein-
Vazirani 1993], circuits [Yao 1993], cellular automata, finite automata...!

- Technology: 2-qubit [1995], 5-qubit [2000], 12-qubit [2006]!

Validity of Church-Turing theses!
- Weak version is still valid!

 Calculability: quantum and classical computation have same power!

- Strong version could be violated!

 Complexity: evidences that quantum computers can be exponentially faster 
than classical computers

In this talk

1 qubit!
- Definition!

- Quantum key distribution!

2 qubits!
- Definition!

- EPR Paradox and applications !

Algorithms!
- Toward factorization!

 Quantum Fourier transform!

 Applications!

- Generalization!

- Grover algorithm!

Conclusion!
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Logical bit!
- Deterministic element: !

Probabilistic bit!
- Probabilistic distribution:!

!

!

Quantum bit (qubit)!
- State: 2-dimensional unit vector!

 general case (complex amplitudes):!

- Measure: randomized orthogonal projection

"7Qubit state

| i =

✓
↵
�

◆
= ↵|0i + �|1i, |↵|2 + |�|2 = 1

|�|2
↵|0i + �|1i Measure

|0i

|1i

|↵|2

b 2 {0, 1}

d =

✓
p
q

◆

p + q = 1
p, q 2 [0, 1]

p
q

✓

| i = cos ✓|0i + sin ✓|1i |0i

|1i

Logical bit!
- Function: !

Probabilistic bit!
- Stochastic matrix:!

!

!

Quantum bit!
- Evolution: unitary transformation                     (⇒ reversible)!

  Definition:                     s.t.!

"8Qubit evolution

G 2 U(2)

G 2 C2⇥2 G⇤G = Id

| i | 0i = G| iG

| i| 0i = G| i G⇤

f : {0, 1} ! {0, 1}, b 7! f(b)

P =
✓

p p0

q q0

◆
, d 7! d0 = Pd



"9Polarization of photons

State!
- Polarization: 2-dimensional vector!

!

!

Measure!
- Calcite crystal!

 separates horizontal and vertical polarizations!

!

!

Transformation!
- Well known transformation: half-wave blade!

 orthogonal symmetry around its axis!

- Any rotations  (possibly with complex angles)

A measure modifies the system

|✓i = cos ✓|!i + sin ✓|"i
✓

cos2 �

sin2 �

|�� |�⇥

|�⇥

"10Examples of transformations

Reversible classical transformation!
- Identity   !

!

- Negation!

!

!

Hadamard transformation!
- Definition: half-wave blade at 22,5°!

!

!

- Properties: quantum coin flipping

|bi 1p
2
(|0i + (�1)

b|1i)H

Id|bi |bi

NOT|bi |1 � bi

H =
1

p
2

✓
1 1
1 �1

◆

|0i H 1p
2
(|0i + |1i)

|0i
Measure

|1i

1
2

1
2

H MeasureH|bi |bi
Measure does not commute!



Problem!
- Setting!

 No prior shared secret information between Alice and Bob!

 Authenticated classical channel!

- Goal: Get a private key between Alice and Bob!

Classical results!
- Impossible, since all the information is in the canal!

- However, one can (using randomized techniques):!

 Amplify the privacy of an imperfect private key by shortening it!

Incertitude in the measure!
!

!

!
Impossibility of cloning!
- Impossibility of duplicating an unknown state!

- Proof based on the linearity of quantum transformations

"11Quantum key distribution

Measure 50 %

50 %

|0i
|1i

1p
2
(|0i ± |1i)

|0i
|1i

|1i
|0i

Primitive!
- Alice choses 2 random bits a,c!

- Alice creates and sends to Bob qubit !

- Bob gets qubit from        Alice!

- Bob choses 1 random bit d!

- Bob measures               and gets bit b  !

Facts!
- c=d  → b=a with probability 1!

- c≠d → b=a with probability 1/2!

Reconciliation!
- Alice & Bob exchange their value c,d!

Remarks!
- If c=d,  Alice & Bob know a=b without revealing a,b!

- “without revealing” can be formalized...!

"12Main idea of quantum key distribution

| i

Hd| i

Measure 50 %

50 %

|0i
|1i

1p
2
(|0i ± |1i)

|0i
|1i

|1i
|0i

H2=Id

Hc|ai



!

!

!

!

!

!

Protocol: classical part!
- Reconciliation: Alice and Bob publicly announce their coding choices!

 A&B only keep key bits with same choices (prob. 1/2)!

 If no third party observes communication, then A&B get same key!

- Security: A&B check few key bits at random positions!

- Secret amplification using with few other more key bits!

Conclusion!
- Key generation without any prior shared secret information but using an 

authenticated classical channel!

- Small initial private key → large private key 

"13The protocol BB84 [Bennett-Brassard 84]

Key:            0    1    1    0    0    1    0    1    1    1    0!
Encoding:         H                H              H    H         H!
Qubit:

Protocol: quantum part

Decoding:   H         H               H         H               H!
Qubit:!
Key:            1    1    0    0    1    1    0    1    0    1    0

Preliminaries: Tensor product

Vector spaces!
- V, W: vector spaces!

- V⊗W is the free vector space Span ( v⊗w : v∈V, w∈W )!

 with equivalence relations!

  (v1+v2)⊗w = v1⊗w + v2⊗w!

  v⊗ (w1+w2) = v⊗w1 + v⊗w2!

  (c∙v)⊗w = v⊗(c∙w) = c∙(v⊗w)!

Linear maps!
- S: V→X,   T: W→Y    : linear maps!

- S⊗T :  V⊗W→X⊗Y    is the linear map satisfying!

 S⊗T (v⊗w) =  S(v)⊗T(w)!

  (and extended by linearity)!

Applications!
- Joint probability distributions on spaces V, W!

 D( VxW) = D(V)⊗D(W) ≠ D(V)xD(W)  (: product distributions) 
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"15n-qubit

Definition!
-                       such that!

!

!

!

!

!

!

Unitary transformations:!

!

Measure

k| ik = 1

with

Examples:

C{0,1}2

= C{0,1} ⌦ C{0,1} 6= C{0,1} ⇥ C{0,1}

| i | 0i = G| iG

Measure |xi|↵
x

|2X

x2{0,1}n

↵

x

|xi

| i 2 C{0,1}n

| i =
X

x2{0,1}n

↵

x

|xi X

x2{0,1}n

|↵
x

|2 = 1

G 2 U(2n)
G⇤G = Ids.t.G 2 C2n⇥2n

|00i+|11ip
2

6= | 1i ⌦ | 2i

|00i+|01ip
2

= |0i ⌦ |0i+|1ip
2

"16Transformation 

Definition!

Representation!

Bell basis change

c�NOT

c�NOT|0bi = |0bi
c�NOT =

0

BB@

1000
0100
0001
0010

1

CCA

NOT

control bit

target bit

c�NOT|1bi = |1i|(1 � b)i

c�NOT|abi = |ai|a � bi

NOT

H|xi

|yi
|�

xy

i

|�00i = 1p
2
(|00i + |11i)

|�01i = 1p
2
(|01i + |10i)

|�10i = 1p
2
(|00i � |11i)

|�11i = 1p
2
(|01i � |10i)



Measure of first qubit!
- Projectors!

!

!

!

- Measure of first qubit !

!

!

!

!

Interpretation !
- Partial measure project to a subspace compatible with the observation!

 Probability = square norm of the projection!

 Outcome = renormalization of the projection

"17Partial measure: 2-qubit case

P0

?
� P1 = Id

P0 = |00⇤⇥00| + |01⇤⇥01| = |0⇤⇥0| � I2
P1 = |10⇤⇥10| + |11⇤⇥11| = |1⇤⇥1| � I2

Measure 1

||P1| i||2

||P0| i||2
1

||P0| i||P0| i

1
||P1| i||P1| i

|�� = a|00� + b|01� + c|10� + d|11�

= c2 + d2

= a2 + b2

= |0�
a|0� + b|1�
⇤

a2 + b2

= |1�
c|0� + d|1�
⇤

c2 + d2

EPR paradox

Protocol!
- Assume Alice & Bob shares an EPR state:!

 Alice has the first qubit, and Bob the second one!

- Alice & Bob observe their qubit and respectively get bit a,b!

Fact!
- a=b with probability 1!

- a (resp. b) is a uniform random bit!

Classical analogue?!
- Shared randomness model:!

 Alice and Bob has access to shared random bits!

 → Non product distribution: !

  00 with prob. 1/2 and 11 with prob. 1/2!

- Can we simulate quantum physic using shared randomness?

"18
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"19Bell-CHSH inequality as a classical game

Game!
- Alain and Bob share some initial information but cannot communicate!

- Alain receives a random bit x,  Bob y    !

- Alain returns a bit a,  Bob b  !

- Goal:       maximize!

Classically: CHSH inequality [1969]!
- Best deterministic strategy: !

- Theorem: the best probabilistic strategy is not better than the best 
deterministic strategy

p = Pr
x,y

(a � b = x ^ y)

a = b = 0 =) p = 3
4

⊕ 0 1
0 0 1
1 1 0

⋀ 0 1
0 0 0
1 0 1

x y

a b

"20Bell-CHSH inequality as a quantum game

Reminder!
- Goal:      maximize!

Quantumly!
- Alain and Bob share an EPR state!

- Bob performs a rotation of angle!

- If            ,  Alain performs a rotation of angle!

- If            , Bob performs a rotation of angle!

- Alain et Bob observe their qubit and send their respective outcomes!

- Theorem:!

Realization: [Aspect-Grangier-Roger-Dalibard: Orsay‘82]

p = Pr
x,y

(a � b = x ^ y)

x = 1

y = 1

⇡
4

�⇡
4

⇡
8

p = cos2(�
8
) � 0.85

x y

a b

|0 0�
+

|1 1�

/
�

2

/
�

2



Problem!
- Alice & Bob share an EPR state:!

- Alice wants to send two bits xy to Bob!

- But Alice can only send one qubit to Bob !

Bell basis change!

Protocol !
- Alice applies to its qubit NOT, if y=1; and FLIP, if x=1!

- Alice sends its qubit to Bob!

- Bob performs the inverse of the Bell basis change, and observes xy

"21Superdense coding [1992]

xy xy ?
1-qubit

|�00i = 1p
2
(|00i + |11i)

NOT

H|xi

|yi
|�

xy

i

|�00i = 1p
2
(|00i + |11i)

|�01i = 1p
2
(|01i + |10i)

|�10i = 1p
2
(|00i � |11i)

|�11i = 1p
2
(|01i � |10i)

|0 0�
+

|1 1�

/
�

2

/
�

2

FLIP =
�
1 0
0 �1

⇥

Problem!
- Alice wants to transmit a qubit         to Bob!

- Bob: far and unknown position to Alice!

Realization!
!

!

!

!
The quantum communication does not reveal anything on       ! 

"22Quantum teleportation

0
0

ψ

Interaction
quantique

Interaction
interne Interaction

classique ψ

Alice

Bob

Alice

Bob

| i

| i | i

| i



"23Realization of teleportation

Circuit!
!

!

!

!

Exercise!
- Compute the state of the system before the measure!

- Write the qubit state          as a function of observed values x,y!

- Explain the end of the protocol!

Realizations!
- 1 photon [Zeilinger et al : Innsbruck’97]!

- 1 photon, 6 km [Gisin et al : Genève‘02]!

- 1 atom [Blatt et al : Innsbruck‘04]!

- Today: over 100km

NOT

H NOT

H

|0i

|0i

Measure
|xi

|yi

| 
xy

i

| i = ↵|0i + �|1i

| 
xy

i

"24Coin flipping

Problem!
- Alice and Bob are fare away!

- They want to flip a coin in a fair way!

 but they don’t trust each other!

Classically!
- Solutions based on harness assumptions of combinatorial problems!

- No unconditionally secure solution!

Quantumly!
- There exists a protocol with maximal bias 0,25 [2001]!

- There is no protocol with bias better than 0,207 [2002]!

- There exists a protocol with maximal bias 0,207 [2009]!

Weak version: election!
- Alice wants head!

- Bob wants tail!

- There exists a protocol with arbitrarily small bias [2007]



EPR based coin flipping

Main idea!
- Assume Alice & Bob share an EPR state!

- Alice & Bob observe their qubit and get bit a,b!

Fact!
- a=b with probability 1!

- a (resp. b) is a uniform random bit!

Problems!
- Who create the EPR state?!

- If Alice does, Bob needs to check that is an EPR state:!

 And for instance not         → a=b=0 with probability 1!

- In ordert o check the EPR state, Bob needs the 2 qubits!

 Then Alice needs to check that Bob gives back the correct qubit

"25

|0 0�
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|00i

EPR based coin flipping

Protocol!
- Initialization!

 Alice prepares 2 EPR states !

 Alice send the corresponding first qubits to Bob!

- Selection!

 Bob select the EPR state that will be use for flipping!

 The other EPR state will be use for checking the honesty of Alice!

 Alice and Bob observe their respective qubit of the flipping EPR state!

- Checking!

 Alice sends to Bob her qubit of the checking EPR state!

 Bob measures the checking EPR state!
  If the measure outcomes is correct, Bob accepts coin!

  Otherwise, Bob declares that Alice has cheated!

Theorem!
- If both participant are honest, the outcome is a perfect random bit!

- If one of the participants is dishonest, the maximal bias is 1/4!

Attacks   Goal: increase the probability to get 0!
- Bob’s attack:  measure its 2 qubits, and select the EPR pair giving 0 (if any)!

- Alice’s attack: 

"26
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Gates!
- A gate C is a function on at most 3 qubits!

 Example:  AND, OR, NOT, ...!

Circuit!
- A circuit is a sequence of gates!

- The size of C is its number L of gates!

- C computes a function f  if for all input x:!

Theorem!
- Any function can be computed by a circuit using only NOT, OR, AND gates!

"27Logical computing

C = CL . . . C2C1

NOT{x

0
}

0 NOT
AND

OR
f(x)

C(x, 0k) = (f(x), z)

Gates!
- A quantum gate is a unitary map that acts upon at most 3 qubits!

Tensor product of gates !

!

Circuit!
- A quantum circuit is a sequence of gates (extended by ⊗ Id)!

•Theorem!
- Any unitary can be realized exactly by a circuit !

 and approximated using only gates c-NOT and √H

"28Quantum gates and circuits

G

H

R⇡
4

NOT NOT

U 2 U(2k), k = 1, 2, 3

G1

G2

| 1i| 2i (G1 ⌦ G2)| 1i| 2i = (G1| 1i)(G2| 2i)



On the query operator Sf

Normal form!
- Function: !

- Circuit:!

!

Circuit for Sf!

- Boolean function:    !

- Ancilla: !

- Circuit:!

- Conclusion:

"29

f : {0, 1}n ! {0, 1}m

Uf : |xi|0i 7! |xi|f(x)i
|xi|yi 7! |xi|y � f(x)i

|xi
Uf

8
<

:

1p
2
(|f(x)i � |1 � f(x)i)

= (�1)f(x)

p
2

(|0i � |1i)

8
<

:
|xi

f : {0, 1}n ! {0, 1}

Uf(|xi ⌦ | i) = Sf(|xi) ⌦ | i

| i = 1p
2
(|0i � |1i)

| i = 1p
2
(|0i � |1i)

Deutsch-Jozsa problem!
- Oracle input:  f : {0, 1}n → {0, 1}  a black-box function!

 such that  f  is either constant or balanced!

- Output:  0  iff  f  is constant

Query complexity!
- Deterministic:  2n-1+1          !

- Quantum:        1 

Special case n=1!
- No restriction on f!

- Deterministic vs quantum: 2 queries vs 1 query

"30A first quantum algorithm [1992]

f(3) = ?!
f(3) = 1!



Quantum solution   ( n=1 ) "31

!

!

Reversible implementation of f!

x 7! f(x) can be nonreversible!

↵|0i + �|1i (�1)
f(0)↵|0i + (�1)

f(1)�|1i

Quantum circuit

|0i H HSf Measure ?

Sf

|bi

Hadamard gate: half-wave blade at 22,5°

1p
2
(|0i + (�1)

b|1i)H

?

"32Analysis ( n=1 )

|0i H HSf Measure

|0iInitialization:

Parallelization: 1p
2
(|0i + |1i)

Query to f: 1p
2
((�1)

f(0)|0i + (�1)
f(1)|1i)

Interferences: 1
2

�
(�1)

f(0)(|0i + |1i) + (�1)
f(1)(|0i � |1i)

�

1
2

�
((�1)

f(0) + (�1)
f(1))|0i + ((�1)

f(0) � (�1)
f(1))|1i

�Final state:

|0i

|1i

f constant

balancedf



General solution for Deutsh-Jozsa "33

Reversible implementation of f

Sf

X

x2{0,1}n

(�1)
f(x)

↵

x

|xi
X

x2{0,1}n

↵

x

|xi

Quantum Fourier transform

H

H

H

QFTn �
|bi 1p

2
(|0i + (�1)

b|1i)H

QFT
n

|xi = 1
2n/2

X

y

(�1)
x·y|yi

x · y =

X

i

x

i

y

i

mod 2where

Quantum circuit

|0i Measure ?QFT QFTSf

?

"34Analysis

|0i Sf Measure

|00 . . . 0iInitialization:

1
2n/2

X

x2{0,1}n

(�1)
f(x)|xiQuery to f:

QFT QFT

Parallelization: 1
2n/2

X

x2{0,1}n

|xi

|yi, y 6=00...0

f constant

balancedf

|00 . . . 0i

1
2n

X

x,y2{0,1}n

(�1)
f(x)+x·y|yiInterferences:

⇣
1
2n

X

x2{0,1}n

(�1)
f(x)

⌘
|00 . . . 0i +

X

y 6=00...0

↵
y

|yiFinal state:



Problem!
- Oracle input:  f : {0, 1}n → {0, 1}  a black-box function!

 such that !

  for some fixed !

- Output:  a!

!

Query complexity!
- Randomized:  n    !

 Query   f(0i-110n-i)=ai,   for i=1,2,...,n     !

- Quantum:      1 !

!

•Quantum circuit

"35Bernstein-Vazirani

f(x) = a · x

a 2 {0, 1}n

|ai|0i MeasureQFT QFTSf

|ai

"36Analysis

|0i Sf Measure

|00 . . . 0iInitialization:

1
2n/2

X

x2{0,1}n

(�1)
a·x|xi = QFT |aiQuery to f:

QFT QFT

Parallelization: 1
2n/2

X

x2{0,1}n

|xi

QFT2|aiInterferences:

Final state: |ai



"37On the difficulty of fatorizing

RSA Challenges!
- http://www.rsasecurity.com/rsalabs!

!

!

!

!

!

!

!

- RSA-640 (193 digits) : !
 3107418240490043721350750035888567930037346022842727545720161948823206440518081504556346829671723286782437916272838

033415471073108501919548529007337724822783525742386454014691736602477652346609!

 =!

 1634733645809253848443133883865090859841783670033092312181110852389333100104508151212118167511579!

 x!

 1900871281664822113126851573935413975471896789968515493666638539088027103802104498957191261465571!

- RSA Algorithm (allows private communication)!

 security based on the difficulty of factorizing

"38From period finding to factorization

•Theorem [Simon-Shor’94]!

- Finding the period of any function on an abelian group can be done in 
quantum time  poly (log |G|)!

Order finding!
- Input: integers  n and a  such that  gcd(a,n)=1!

- Output: the smallest integer  q ≠ 0  such that  aq = 1  mod n!

- Reduction to period finding: the period of  x → ax  mod n  is  q!

Factorization!
- Input: integer n!

- Output: a nontrivial divisor of  n!

Reduction : Factorization  ≤R Order finding!

- Check that  gcd(a,n)=1!

- Compute the order  q  of   a  mod n!

- Restart if q  is odd  or   aq/2 ≠ -1  mod n!

- Otherwise  (aq/2 - 1) (aq/2 + 1) = 0  mod n!

- Return    gcd(aq/2 ± 1, n)



"39Simon’s problem

Problem!
- Oracle input:                                        a black-box function !

 such that!

- Output: the period s!

Complexity!
- Randomized:            queries!

- Quantum: O(n) queries and time O(n3)!

Idea!
- Use a Fourier transformation:!

- Realization of QFTn using Hadamard gates:

f : {0, 1}n ! {0, 1}n

9s 2 {0, 1}n : 8x 6= y, f(x) = f(y) () y = x � s

QFT
n

|xi = 1
2n/2

X

y

(�1)
x·y|yi

x · y =

X

i

x

i

y

i

mod 2where

H

H

H

|bi 1p
2
(|0i + (�1)

b|1i)H QFTn �

2�(n)

Uf

|xi
|wi |w � f(x)i

|xi
|0⟩ |f(x)⟩

Uf

|xi |xi

"40Quantum solution

1
2(n+1)/2

X

y

(�1)
x·y(1 + (�1)

s·y)|yi|f(x)i

Uf

QFTn QFTn|0ni

|0ni Measure

Initialization: |0ni|0ni

Parallelization: 1
2n/2

X

x

|xi|0ni

1
2(n+1)/2

X

y

((�1)
x·y + (�1)

(x�s)·y)|yi|f(x)iInterferences:

Measure

1
2(n�1)/2

X

y:s·y=0

|yi|f(x)i

Query to  :f 1
2n/2

X

x

|xi|f(x)i

Filter: 1p
2
(|xi + |x � si)|f(x)i

|f(x)i

|yi : y 2 s?



"41Finding the period

Construction of a linear system!
- After              iterations:!

- s is solution of the linear system in t: !

- If  s=0n  the  yi  are of rank  n  with proba  ≥ 1-1/2k!

- If  s≠0n  the  yi   are of rank  n-1  with proba  ≥ 1-1/2k+1!

- System solutions: 0n and s!

Complexity!
- Constructing the system: O(n) queries, time O(n)!

- Solving the system: no query, time O(n3)!

n + k y1, y2, . . . , yn+k � s�

�
⌅⌅⌅⇤

⌅⌅⌅⇥

y1 · t = 0
y2 · t = 0

...
yn+k · t = 0

�
⌅⌅⌅⇤

⌅⌅⌅⇥

y1
1t1 + y1

2t2 + . . . + y1
ntn = 0

y2
1t1 + y2

2t2 + . . . + y2
ntn = 0

...
yn+k
1 t1 + yn+k

2 t2 + . . . + yn+k
n tn = 0

�

Period Finding(G)!
- Oracle input: function f on G such that!

 f is strictly periodic for some unknown H≤G:!

- Output: generator set for H!

•Examples!
- Simon Problem:!

- Factorization :!

- Discrete logarithm: !

- Pell’s equations:!

- Graph Isomorphism:!

Quantum polynomial time algorithms (in log|G|)!
- Abelian groups G: QFT-based algorithm [1995]!

- Normal period groups H: QFT-based algorithm [2000]!

- Solvable groups G of constant exponent and constant length [2003]!

- ...

More difficult... "42

H

a1H

atH

G f

G = (Z2)
n, H = {0, s}

G = Z, H = rZ
G = Z2, H = {(rx, x) : x 2 Z}
G = R
G = Sn

f(x) = f(y) () y 2 xH



ZN o Z2 2
O(

√

log N)

2 5 12 3 9 7 6 10 15 4

3 9 7 6 10 15 4 2 5 12
shift = -3

f(·, 0)

f(·, 1)

Shift problem!
- Dihedral group                  : sub-exponential time                     [2003]!

Hard instances 1 "43

Graph Isomorphism!

- Instance of Period Finding on the symmetric group!

- Symmetric group: we just know how to implement QFT... [1997]!

!

•General case!
- Polynomial number of queries to f, but exponential post-processing time [1999]

Hard instances 2 "44

A B

a 1

b 6

c 8

d 3

e 5

f 2

g 4

h 7

A : B :

f : � ⇥ S2n ⇤� �(A ⇧ B)



"45Grover search algorithm

Grover problem!
- Oracle input :                                        such that!

- Output :!

- Constraint :       is a black-box!

!

!

!

!
!

Query complexity!
- Randomized:!

- Quantum:                    

9!x0 : f(x0) = 1

x0

f

query

f : {0, 1}n ! {0, 1}

⇥(2n)

⇥(
p

2n)
n = 2 =) 1

"46Preliminary remarks

Implementation of!
!

!

!

Double Hadamard gate

f

|x1i

|x2i

1p
2
(|0i + (�1)

x1|1i)
1p
2
(|0i + (�1)

x2|1i)
H

H

1
2

X

y

(�1)
x·y|yi|xi = |x1x2i

H

H

x · y = x

1

y

1

+ x

2

y

2

mod 2with

Sf

X

x

↵

x

|xi
X

x

(�1)f(x)
↵

x

|xi =
X

x

↵

x

|xi � 2↵

x0|x0i



n = 2 "47Quantum solution (          )

|0i
Sf Measure

|0i H

H

H

H

H

H

S�0
|x0i

Initialization: |00i

Parallelization: 1
2
(|00i + |01i + |10i + |11i)

|00i � 1
2

X

y

(�1)
x0·y|yiInterferences:

Final state: �|x0i

Query to   :f 1
2

X

x

|xi � |x0i

|00i � 1
2

� X

y

(�1)
x0·y|yi � 2|00i

�
= �H ⌦ H|x0i�0Query to    :

"48Geometrical analysis

VectR(|x0i, |unifi)

Sf S�0H HG
def
= �

S

f

= �S|x0i = S|x0i?

G = S|unifiS|x0i? = R2✓

with

Grover operator

�S�0 = S|00i

H⌦2S|00iH
⌦2 = S|unifi

sin ✓ = hunif |x0i = 1
2

After 1 iteration
|unifi 7! �G|unifi = �|x0i

|x0i

|x0i?

✓
|unifi



"49Geometrical analysis, general case

VectR(|x0i, |unifi)

Sf S�0H HG
def
= �

S

f

= �S|x0i = S|x0i?

G = S|unifiS|x0i? = R2✓

with

Grover operator

�S�0 = S|00i

H⌦2S|00iH
⌦2 = S|unifi

|x0i

|x0i?
✓ |unifi

After  T = 2 /π ⋅ √(2n) iterations
|unifi 7! �G

T |unifi ⇡ �|x0i

sin ✓ = hunif |x0i = 1p
2n

"50How many quantum algorithms exist?

Unstructured problems!
- Grover algorithm [1996]!

Algebraic problems!
- Simon-Shor algorithm [1994]!

Well structured problems!
- Classical algorithms are optimal!!

Problems with few structures!
- Quantum walk based algorithms [2003]!

 quantum analogy of random walks!

- Examples !

 Element Distinctness, Commutativity: n2/3            [2004]!

 Triangle Finding: n9/7              (lower bound n)       [2013] !

 Square Finding: n1.25              (lower bound n)       [2010]!

 Matrix Multiplication: n5/3   (lower bound n3/2)  [2006]!

 AND-OR Tree evaluation: √n                           [2007]



"51Where does the quantum superiority come from?

Entanglement?!
- “Classical entanglement” exists: shared randomness!

 Flip a coin 00 or 11!

 Share each bit between Alice and Bob!

 Alice/Bob uses its bit when he/she wants, their result are correlated!

- But quantum entanglement is “stronger”!

 Bell-CHSH inequality and applications!

Complex amplitudes?!
- No: they can be simulated using only real amplitude!

!

Negative amplitudes? !
- Yes: they can induce destructive interferences!

Hardness of amplitudes?!
- No: amplitudes must be easily computable for being physically realizable!

↵|0i + �|1i ' ↵r|00i + ↵i|01i + �r|10i + �i|11i U(2n) � O(2n+1)

00
11

An Introduction to Quantum Computing!
- Authors: Phillip Kaye, Raymond Laflamme, Michele Mosca!

- Editor: Oxford University Press!

Quantum Computation and Quantum Information!
- Authors: Michael A. Nielsen, Isaac L. Chuang!

- Editor: Cambridge University Press!

Classical and Quantum Computation!
- Authors: A. Yu. Kitaev, A. H. Shen, M. N. Vyalyi!

- Editor: American Mathematical Society!

- Collection: Graduate Studies in Mathematics!

Lecture Notes for Quantum Computation!
- Author: John Preskill!

- Website: http://www.theory.caltech.edu/~preskill/ph229/!

Quantum proofs for classical theorems!
- Author: Andrew Drucker, Ronald de Wolf!

- Website: http://arxiv.org/abs/0910.3376

To continue... "52


