
INF 554: Using randomness in algorithms Autumn 2014

Lecture 2 — September 22th, 2014
Lecturer: Frédéric Magniez Scribe: Carlos Coelho Lechner

2.1 Preliminaries: Finding primes
Note Although deterministic polynomial-time solutions to the PRIME problem are
known (AKS), probabilistic algorithms remain significantly faster (Miller-Rabin’s algo-
rithm runs in O (lg(n)2)).
Fast primality testing algorithms can be used to construct prime-finding algorithms (in-
deed, no easily computable formula to enumerate prime numbers is known).

FIND-PRIME

Input Integer N

Output Prime p ∈ JN, 2NK

Algorithm

• Draw p uniformly from JN, 2NK.

• Check if p is prime (e.g. using MILLER-RABIN):

– If MILLER-RABIN accepts p, return p.
– Otherwise, start over.

Theorem 2.1 (Chebyshev). Let π(x) be the number of primes ≤ x. Then π(x) ≥
x

2 ln(x) .

Theorem 2.2 (The Prime Number Theorem). π(x) ∼
x→∞

x
ln(x) .

Corollary 2.3. The number of primes in Jn, 2nK is Ω
(

n
ln(n)

)
.

Corollary 2.4. P
p∈Jn,2nK

(p prime) = Ω
(

1
ln(n)

)

Average time complexity We have O(ln(N)) iterations by the corollary above; each
iteration costs O(ln(N)) modular additions/multiplications. Hence, the final expected
cost is O(ln(N)2).

Error Same as that of MILLER-RABIN.

Notes Errors do not accumulate. Also, the number of iterations can be bounded (thus
turning this Las Vegas algorithm into a Monte-Carlo one) by failing after a set num-
ber of iterations (the probability of returning nothing after k iterations, or equivalently
Θ(k ln(n)) operations, would then be 1

2k).

2-1

INF 554 Lecture 2 — September 22th, 2014 Autumn 2014

2.2 Polynomial identity testing

2.2.1 Problem definition
POLYNOMIAL-IDENTITY-TESTING (PIT)

Input Q and R, two n-variables polynomials of degree ≤ d.

Output ACCEPT iff Q = R.

Notes Expanding P andQ and comparing individual coefficients takes exponential time
in the size of their representation – in other words, compact representations exist that
allow for fast evaluation of polynomials whose expanded form contains an exponential
number of coefficients.
In the black-box model nothing is known about P and Q, and the only available oper-
ation is x 7→ P (x), Q(x). This single operation is assumed to be fast.

Example 1: Determinant Let Q = ∏
1≤i<j≤n (Xi −Xj) and R = det

(
Xj
i

)
. Then

Q = R, evaluating Q and R takes linear time in n, and expanding Q and R takes
exponential time in n.

Example 2: Arithmetic circuits Arithmetic circuits are a tree-based representation
of polynomial factorizations.

x1 x2 x3 x4

+

×

×

Figure 2.1. x1x2x4(x1 + x2 + x3)

State of the art Deterministic solutions for the PIT problems are known for polyno-
mials represented as arithmetic circuits of depth ≤ 2. Partial results were also obtained
for multi-linear polynomials of depths 3, 4.
(Additional note: depth 4 is the most important one; deterministically solving PIT for
arithmetic circuits of depth 4 would represent a significant leap forward for complexity
theory.)

2-2

INF 554 Lecture 2 — September 22th, 2014 Autumn 2014

Lemma 2.5 (Schwartz-Zippel). Let F denote an arbitrary field, and S denote a finite
subset of F . Then for any non-zero polynomial T (X1, . . . , Xn) of degree d,

P
a1,...,an∈S

(T (a1, . . . , an) = 0) ≤ d

|S|

Proof (by induction): If n = 1, then T has at most d roots, and P
a∈S

(T (a) = 0) ≤ d
|S| .

If n > 1, expanding T by its first variable yields T = ∑
iX

i
1Ti(X2, . . . , Xn). Let j be the

degree of T relative to X1 – that is, the highest i such that Ti 6= 0. Then

P
a1,...,an∈S

(T (a1, . . . , an) = 0) = P
a1,...,an∈S

(T (a1, . . . , an) = 0 and Tj(a2, . . . , an) = 0)

+ P
a1,...,an∈S

(T (a1, . . . , an) = 0 and Tj(a2, . . . , an) 6= 0)

Noting that Tj is a n − 1 variables polynomial of degree d′ = d − j and applying the
induction hypothesis yields P

a1,...,an∈S
(Tj(a2, . . . , an) = 0) ≤ d−j

|S| , which implies that

P
a1,...,an∈S

(T (a1, . . . , an) = 0 and Tj(a2, . . . , an) = 0) ≤ d− j
|S|

To bound the second term, introduce a2, . . . , an such that Tj(a2, . . . , an) 6= 0. The strong
induction hypothesis applied to T (X1, a2, . . . , an) (a single-variable polynomial of degree
j) yields P

a1∈S
(T (a1, . . . , an) = 0) ≤ j

|S| . In other words,

P
a1,...,an∈S

T (a1, . . . , an) = 0︸ ︷︷ ︸
E

∣∣∣∣∣∣∣Tj(a2, . . . , an) = 0︸ ︷︷ ︸
F

 ≤ j

|S|

Finally, note that

P
a1,...,an∈S

(T (a1, . . . , an) = 0 and Tj(a2, . . . , an) 6= 0) = P (E ∪ F)

= P (E | F)P (F)

≤ P (E | F)

≤ j

|S|

Combining both results yields the stated inequality:

P
a1,...,an∈S

(T (a1, . . . , an) = 0) ≤ d

|S|

�

Algorithm

• Draw −→a = a1, . . . , an randomly from S = J1, 2d+ 1K

• Accept iff P (a1, . . . , an) = Q(a1, . . . , an)

2-3

INF 554 Lecture 2 — September 22th, 2014 Autumn 2014

Time complexity Two polynomial evaluations.

Error

• One sided

• True-biased
If P 6= Q, then by Schwartz-Zippel’s lemma P (ACCEPT) = P−→a ∈S

(P (−→a) = Q(−→a)) =

P−→a ∈S

P (−→a)−Q(−→a)︸ ︷︷ ︸
T (−→a)

= 0

 ≤ d
|S| = d

2d+1 <
1
2 .

Notes In practice, evaluating P and Q can yield extremely large values. To circumvent
this problem, all calculations are generally made modulo a large prime value p. Carefully
choosing this value is crucial to ensure that P = Q mod p is indeed equivalent to P = Q.
Denoting the largest coefficient of P and Q as M , p can obtained by choosing a prime
value larger than twice the maximum of d and M .

2.2.2 Application to Bipartite perfect matching
BIPARTITE-PERFECT-MATCHING (BPM)

Input Balanced bipartite graph G = (E,U t V), with |U | = |V | = n.

Output ACCEPT iff a perfect matching exists in E, i.e. E contains n disjoint edges.

Note A deterministic O(
√
|U |+ |V |·|E|) = O(n2,5) time solution yielding such a perfect

matching if it exists is known (Hopcroft-Craft). Probabilistic algorithms by Lovasz (1979)
achieve a time complexity for the decision problem equal to that of the calculation of a
single n×n determinant modulo p ∈ Jn, 2nK. A 1987 extension by Mulmuley, U. Vazirani,
and V. Vazirani gives a probabilistic estimate of the largest such matching in any general
graph, in O(1) matrix inversions time.

Note The calculation of a determinant can be reduced to a matrix multiplication prob-
lem.

Adjacency matrices Identify u and V with J1, nK, and define the bi-adjacency matrix
A as

Ai,j =

1 if (i, j) ∈ E
0 if (i, j) /∈ E

Expanding det(A) yields det(A) = ∑
σ∈Sn

(−1)sgn(σ)∏
iAi,σ(i), and

∏
iAi,σ(i) is non-zero iff

σ represents a perfect matching in G. Hence if det(A) 6= 0 then there exists at least one
perfect matching. The converse, unfortunately, does not hold due to the (−1)sgn(σ) term.

Note The permanent of A, defined as perm (A) = ∑
σ∈Sn

∏
iAi,σ(i), exactly equals the

number of BPM in G, but computing it is a #P-complete problem ; the fastest known
deterministic solution (Ryser’s formula) has O (2nn) time complexity. The fastest known
approximation (Jerrum, Sinclair and Vigoda) still requires O (n10) time.

2-4

INF 554 Lecture 2 — September 22th, 2014 Autumn 2014

Tutte matrix Since computing the determinant of A is not sufficient, we introduce the
Tutte matrix T of G as the n× n matrix

Ti,j =

Xi,j if (i, j) ∈ E
0 if (i, j) /∈ E

Theorem 2.6. det (T) is a |E|-variables polynomial of Zn
2 [X] whose degree d is ≤ n,

and det(T) 6= 0 ⇐⇒ G has a BPM.

Proof: If no BPM exists, then the determinant is null. Conversely, if a BPM exist,
then the determinant is non-null. Indeed, each non-zero ∏i δ(i,σ(i))∈EXi,σ(i) monomial in
the expansion of det(T) matches a single permutation, and is thus distinct of all other
monomials in the expanded det(T) polynomial. �

Since the elements of T are polynomials, expanding det(T) is extremely costly. On
the other hand, since ∀x, det(T)(x) = det(T (x)), evaluating det(T) in a single point is
relatively cheap.

Algorithm

• Pick a prime number p ∈ Jn2, 2n2K.

• Draw |E| random elements (ai) from J1, p− 1K.

• Accept iff det(T (a)) 6= 0 mod p, where T is the Tutte matrix of G.

Error

• One sided

• False-biased (If the algorithm accepts, then the existence of a BPM is guaranteed)

The probability of incorrectly rejecting is exactly P (det(T)(a) = 0 | det(T) 6= 0), which
by Schwartz-Zippel’s lemma is ≤ d

|S| ≤
n
n2 = 1

n
.

Time complexity Equal to that of computing an n×n determinant (O (n2.3727) using
Coppersmith-Winograd algorithms).

2.3 Exercises

2.3.1 Fingerprints
FINGERPRINT Let A and B denote two players.

First player’s input n-bits sequence u ∈ {0, 1}n.

Second player’s input n-bits sequence v ∈ {0, 1}n.

Output ACCEPT iff u = v.

Complexity Number of bits exchanged.

2-5

INF 554 Lecture 2 — September 22th, 2014 Autumn 2014

Naive solution

• A sends u to B.

• B accepts iif u = v.

Complexity n bits.

Hash functions Vectors of Zn
2 are mapped to elements of Z2[X1, . . . , Xn] through the

hash function H : (ai) 7→
∑

0≤i<n ai+1X
i (or H̃ : (ai) 7→

∑
0≤i<n an−iX

i). These functions
are such that H(u) = H(v) ⇐⇒ u = v.

Algorithm

• A picks a prime number p ∈ Jn2, 2n2K.

• A picks a random number a ∈ J1, n− 1K.

• A sends (p, a,H(u)(a) mod p) to B.

• B accepts iff H(v)(a) = H(u)(a) mod p.

Error

• One-sided

• True-biased

If u 6= v, then B accepts with probability ≤ 1
n
.

Complexity 6 lg(n) + o(1) bits.

Time complexity n modular additions and multiplications for both A and B.

Note This algorithm is insecure: it is vulnerable to collision-based attacks.

2.3.2 Pattern-matching
PATTERN-MATCHING

Input Word w ∈ Zn
2 , pattern p ∈ Zk

2. k ≤ n.

Output Positions where p occurs in w: {i | p = w [i : i+ k − 1]}.

Note A naive deterministic algorithm (for each index i ∈ J1, n − k + 1K in w, check
whether p = w [i : i+ k − 1]) runs in O(nk) time. Many efficient, deterministic, linear-
time solutions are known (Rabin–Karp, Knuth–Morris–Pratt, Boyer-Moore, etc.), but
all are tricky to implement. Probabilistic algorithms, on the other hand, achieve similar
performance and are very easy to implement.

2-6

INF 554 Lecture 2 — September 22th, 2014 Autumn 2014

Note The nature of our hash functions allows for easy calculation of checksums of
overlapping subwords. Recall that H̃ : (aj) 7→

∑
0≤j<n an−jX

j, and assume that hi(a) =
H̃(w [i : i+ k − 1])(a) = ∑

0≤j<k wi−1+(k−j)a
j is known. Then hi+1(a) can be derived in

O(1) from hi. Indeed,

hi+1 = H̃(w [i+ 1 : i+ k])
=

∑
0≤j<k

wi+(k−j)X
j

=
∑

1≤j<k
wi+(k−j)X

j + wi+k

= X
∑

0≤j<k−1
wi−1+(k−j)X

j + wi+k

= X(hi − wiXk−1) + wi+k

Evaluating in a yields hi+1(a) = wi+k + a
(
hi(a)− wiak−1

)
.

Algorithm As usual, all calculations are run modulo a large enough prime value q.
For each index i, we decide whether w [i : i+ k − 1] matches the pattern p by comparing
hi(a) to H̃(p)(a), for randomly sampled values of a.

• Pick a prime number q ∈ Jn3, 2n3K.

• Draw a randomly from J0, q − 1K.

• Compute hp = H̃(p)(a).

• Compute h = H̃(w [1 : k]).

• For i ∈ J1, n− k + 1K

– If h = hp, then append i to the list of accepted indices.
– If i 6= n− k + 1, then update h← wi+k + a

(
h− wiak−1

)
.

Time complexity O(n) modular additions/multiplications.

Error

• One-sided

• True-biased

Errors consist in returning extraneous indices. For each non-matching index i,

P (i ∈ returned-values) = P
(
hi(a) = H̃(p)(a) | hi 6= H̃(p)

)
≤ k

p
≤ k

n3 ≤
1
n2

Hence the union bound yields

P (incorrect output) = P (∃i ∈ returned-values | p 6= w [i : i+ k − 1]) ≤ n · 1
n3 ≤

1
n2

2-7

INF 554 Lecture 2 — September 22th, 2014 Autumn 2014

Note Instead of choosing large prime numbers, one can reduce the probability of error
by computing checksums for multiple different a.

2.3.3 Associativity testing
ASSOCIATIVE S = J1, nK

Input ◦ : S × S → S.

Output ACCEPT iff ◦ is associative.

Complexity Number of operations involving ◦.

Naive solution Checking all possible triples (i, j, k) ∈ S3 requires 2n3 comparisons,
and (assuming proper memoisation) n2 evaluations of ◦.

Notes The number of witnesses of the non-associativity of an arbitrary law ◦ may be
very small. As an example, consider defining i ◦ j = 3 for all i, j except 1 ◦ 2 = 1. Then
for all ∀(a, b, c) 6= (1, 2, 2), a ◦ (b ◦ c) = 3 = (a ◦ b) ◦ c, but (1 ◦ 2) ◦ 2 = 1 6= 3 = 1 ◦ (2 ◦ 2).
In this case there exists a single witness (1, 2, 2) of the non-associativity of ◦. The
following sections are hence dedicated to expanding the search space to increase the
relative frequency of witnesses.

Extension of the search space Let S(p) = (Zp)n, and let (e1, . . . , en) denote a basis
of S(p). Define the bilinear • operation over S(p) by taking ei • ej = ei◦j and extending
it to S(p). Finally, note that if (Ai)i denotes the coefficients of A in the (ei)i basis, then
A •B = ∑

i,j AiBjei◦j.

Lemma 2.7. • is associative iff. ◦ is.

Proof: Assume ◦ is associative. Then ∀(i, j, k), (ei • ej) • ek = e(i◦j)◦k = ei◦(j◦k) =
ei • (ej • ek).
Conversely, assume • is associative. Then ∀(i, j, k), e(i◦j)◦k = (ei • ej)• ek = ei • (ej • ek) =
ei◦(j◦k), and hence (i ◦ j) ◦ k = i ◦ (j ◦ k). �

Lemma 2.8. For all (A,B,C) ∈ S(p), (A • B) • C is a third-degree polynomial in the
coefficients of A,B,C.

Proof: Explicit expansion yields (A •B) • C = ∑
i,j,k AiBjCke(i◦j)◦k. �

Lemma 2.9. Assume that p = 7 and that ◦ is not associative.
Then P

A,B,C∈S
((A •B) • C = A • (B • C)) ≤ 3

7 .

Proof: Given that ◦ is not associative, there exists a 3-tuple (A,B,C) ∈ S(p)3 such
that (A • B) • C 6= A • (B • C). In other words, the third-degree polynomial (A •
B) • C − A • (B • C) in the Ai, Bj, Ck coefficients is not null. Hence (Schwartz-Zippel)

P
A,B,C∈S

((A •B) • C = A • (B • C)) ≤ d
#S(p) = 3

7 . �

2-8

INF 554 Lecture 2 — September 22th, 2014 Autumn 2014

Algorithm

• Draw A,B,C at random from S(7).

• Compute AB = A ◦B,
BC = B ◦ C,
AB_C = AB ◦ C,
A_BC = A ◦BC.

• Accept iff. AB_C = A_BC.

Complexity n2 calls are required to build the full multiplication table of ◦.

Time complexity Each of the four subsequent calculations require O(n2) modular
additions and multiplications, bringing the total time complexity to O(n2).

Error

• One-sided

• True-biased

If ◦ is not associative, then (by lemma 2.9) P (ACCEPT) ≤ 3
7 .

2-9

