
INF554: Randomized algorithms 1st semester, 2014

Lecture 3 — 6th of October
Lecturer: Frederic Magniez Scribe: Lucas Smaira

3.1 Las Vegas search algorithms

Definition 3.1. Las Vegas An algorithm A solve a problem taking an average time T , ∀
input x and choice of probability r. A(x, r) is a solution for the problem and also ∀ input x,
we have :

Er (run time of A(x, r)) ≤ T

Example : Quick Sort randomness is used to select the recursive pivots

Epivots choices (QS(vector of size n)) = O (n log n)

Theorem 3.2. If there exists an algorithm Las Vegas A which solves the problem P taking
an average time T , then there exists an algorithm Monte Carlo B which solves the same
problem and takes a time 3T and error at most 1/3

Remark : The algorithm B is never wrong, but sometimes it doesn’t answer.

Proof: B : execute A and stop it after time 3T . Give the answer if it was possible to find
it and doesn’t answer otherwise.

We fix x and we want to calculate Pr (A(x, r)takes a time at most3T).
We define τ(r) = execution time ofA(x, r).
We know that Er (τ(r)) ≤ T .
Using the Markov’s inequality, we conclude :

Pr (τ(r) ≥ 3T) ≤ 1

3T
Er (τ(r)) ≤ 1

3

�

3.2 st-connectivity

Undirected st-connectivity (USTCON) is the decision problem asking whether two ver-
tices (s, t) ∈ V 2 in an undirected graph G = (V,E) are connected by a path. Let |V | = n and
|E| = m. Note that if we assume the graph is connected we have n− 1 ≤ m ≤ n(n− 1)/2.

The deterministic depth-first search (DFS) and breadth-search first (BFS) algorithms can
solve this problem in linear time complexity O (m+ n) = O (m) because in the worst case
scenario they will visit every edge and vertex. Their space complexity is O (n) as the algo-
rithms need to store their past and future search paths in the graph. The space complexity of
these algorithms can be problematic for very large graphs (for example, the Internet graph).
Therefore, we wish to find an algorithm with a smaller space complexity.

In summary :

3-1

INF554 Lecture 3 — 6th of October 1st semester, 2014

USTCON

Input G(V,E) undirected graph with |V | = n vertices and |E| = m edges. s, v ∈ V
Output Accept if s and v are connected. Reject otherwise.

Definition 3.3. L (logarithmic-space, also known as LSPACE) is the complexity class
containing decision problems which can be solved by a deterministic Turing machine using
a logarithmic amount of memory space.

Definition 3.4. NL (non-deterministic logarithmic-space, also known as NSPACE) is the
complexity class containing decision problems which can be solved by a non-deterministic
Turing machine using a logarithmic amount of memory space.

Definition 3.5. RL (randomized logarithmic-space), sometimes called RLP (randomized
logarithmic-space polynomial-time), is the complexity class of computational complexity
theory problems solvable in logarithmic space and polynomial time with probabilistic Turing
machines with one-sided error.

Note that L ⊆ RL ⊆ NL. Considering the space complexity of the DFS and BFS algo-
rithms we know that USTCON ∈ NL. In fact, it has been shown in 2005 by Reingold that
USTCON ∈ L. However, here we will only prove the following theorem :

Theorem 3.6. USTCON ∈ RL.

Remark : More precisely, there is an probabilistic algorithm which takes time O (mn)
and space O (log n) with error at most 1/3

To do so we consider a randomized algorithm.

Algorithm 1 USTCON Las Vegas Algorithm

Require: s, t ∈ V
Ensure: boolean indicating whether there exists a path from s to t
u← s
while u 6= t do

v ← random element from {v | (u, v) ∈ E}
u← v

end while
return true

The space complexity of this algorithm is O (log n) because it suffices to keep the current
vertex in memory, which requires a maximum of log2 n bits. If s and t are not connected
then the algorithm never terminates. If there exists a path from s to t in G then the average
number of steps the algorithm requires is inferior to the cover time C(G, u), which is defined
as the average number of steps it takes to visit every vertex in the graph, starting at u.

Theorem 3.7. Supposing G is connected, we define C(G) as maxu∈V C(G, u). We have
C(G) ≤ 4|V ||E| = 4nm

3-2

INF554 Lecture 3 — 6th of October 1st semester, 2014

Remark : Let τ be the number of iterations of the algorithm (aleatory variable). We have
E (τ) ≤ C(G).

This theorem gives us a Monte-Carlo algorithm by terminating the Las Vegas procedure
after 8knm steps. An iterator has to be kept in memory but the space complexity is still
O (log n). Markov’s inequality insures that this algorithm has a one-sided error of 2−k.

Proof: To prove this we shall consider the random walk on a graph as a Markov chain with
a state space V and a transition matrix P where

Pij =

1

deg(i)
(i, j) ∈ E

0 otherwise

deg(i) represents the degree of vertex i, i.e. the number of edges of i.
This generalization can represent random walks, reversible Markov chains, electrical grids,

etc.
Let Xt ∈ V be the position of the random walk at step t ∈ N.
For u, v ∈ G we define the hitting time as the expected time it takes for a random walk

on G starting at u to reach v :

hu,v = E (min {t ∈ N | Xt = v,X0 = u})

hi = E (min {t ∈ N∗ | Xt = i,X0 = i})

Lemma 3.8.
∀(i, j) ∈ E, hi,j ≤ 2m

where m is the total number of edges.

Proof: In order to prove this lemma, we need to consider the stationary distribution of our
Markovian process.

We will show that since all states v ∈ V are positive recurrent (every vertex will be
visited an infinite number of times, and the expected time to do so is finite) there exists a
unique stationary distribution, described by a probability vector π = (π1, . . . , πn) such that
πi =

∑
(i,j)∈E πjPji i.e. πP = π.

We can easily check that πi = deg(i)
2m

is a solution.
The return time of u, defined as hu, is actually related to the stationary distribution πu

and satisfies

Lemma 3.9. G connected. ∀i, j ∈ V, hij is finite.

Proof: ∃t, P t
ij > 0⇒ hij ≤

t

P t
ij

�

Lemma 3.10. πihi = 1 (and so π is unique)

3-3

INF554 Lecture 3 — 6th of October 1st semester, 2014

Proof: We define hii = 0
For i 6= j, we have hij = 1 +

∑
k Pikhkj ⇒ hj = 1 +

∑
k Pjkhkj

Furthermore, ∀i, j, we have

hij + δijhj = 1 +
∑
k

Pikhkj

⇒
∑
i

πihij + πjhj =
∑
i

πi︸ ︷︷ ︸
=1

+
∑
k

(∑
i

Pikπi

)
︸ ︷︷ ︸

πk

hkj

⇒
∑
i

πihij + πjhj = 1 +
∑
k

πkhkj

⇒ πjhj = 1

�

Thus :

hu =
1

πu
=

2m

deg(u)

The intuition behind this lies in the probability of Xt = u being constant, and hence
resembling a series of Bernoulli trials (biased coin tosses). The expected number of steps
needed to get one success is then given by the expected value of the geometric distribution,
which is 1/p.

We can establish an upper bound on the hitting time huv where (u, v) ∈ E.

hv = 1 +
1

deg(v)

∑
k∈neighbors(v)

hkv

≥ 1 +
1

deg(v)
huv

huv ≤
(

2m

deg(v)
− 1

)
deg(v)

≤ 2m

�

Coming back to the theorem proof...
Now fix u ∈ V . By performing a depth-first search of graph G starting a u we obtain a

spanning tree of G which has n vertices and n− 1 edges. We can construct a tour T = (u1 =
u, u2, . . . , uN = u) of the tree such that (ui, ui+1) ∈ E and so that it covers all the vertices
of G. This tour passes each edge of the spanning tree twice, therefore N ≤ 2(n− 1).

Note that C(G) is less than or equal to the average time it takes to travel from u1 to u2,
then from u2 to u3, etc. So C(G) ≤ hu1,u2 + · · · + huN−1,uN . For all i we have hui,ui+1

≤ 2m,
and thus

C(G) ≤ (N − 1)(2m) < 4nm

�

3-4

INF554 Lecture 3 — 6th of October 1st semester, 2014

The upper-bound on the expected time to go from a node to another can actually be
divided by two, since there exists a path of length at most n between two connected nodes.

Generalization : we have proved the theorem for a simple graph (with no multiple-edges
and no edges from a vertex to itself). We can model graphs with loops in a node by adding
some edges like (i, i) ∈ E. We can also model graphs with weight integer of each edge by
adding many edges between the same two vertices. Thus, the theorem is easily generalized
to these cases.

We can use this upper bound of the expected run time of algorithm 1 to convert it into
a Monte Carlo algorithm.

Algorithm 2 USTCON Monte Carlo Algorithm

Require: s, t ∈ V , Tmax ∈ Z+

Ensure: boolean indicating whether there exists a path from s to t
u← s
while u 6= t and number of iterations ≤ Tmax do

v ← random element from {v | (u, v) ∈ E}
u← v

end while
if u = t then

return true
else

return false
end if

If there is no path between s and t, the algorithm will always return false. As a corollary
to theorem 3.7 we have

Corollary 3.11. If T ≥ 8knm, then algorithm 2 has a one-sided error less than or equal to
2−k

Proof: Using Markov’s inequality and

C(G) = E

(
max
u∈V

min
t∈T

{
t ∈ T |

t⋃
s=0

Xs = V,X0 = u

})

we can see that the probability of the algorithm returning false because it has not found t
yet, even though there is a path between s and t at step T ≥ 8nm is

P

(
max
u∈V

min
t∈T

{
t ∈ T |

t⋃
s=0

Xs = V,X0 = u

}
≥ 8nm

)
≤ C (G)

8nm
<

1

2

3-5

INF554 Lecture 3 — 6th of October 1st semester, 2014

We can run our algorithm for a longer time T ≥ 8knm, giving us a one-sided error of
2−k, since

P (t not reached at run k) = P (t not reached at run k | t not reached at run k − 1) · . . .
P (t not reached at run 2 | t not reached at run 1) ·
P (t not reached at run 1)

≤
(

1

2

)k
�

3.2.1 Examples

Linear Graph

Let V = {1, . . . , n} and E = {(i, i+ 1) | i ∈ {1, . . . , n− 1}}. By theorem 3.7 we have
C(G) ≤ 4(n− 1)n = O (n2).

Complete Graph

In a complete graph, we have C(G) ≤ 4n · n(n − 1)/2 = O (()n3). But in fact, we can
prove a tighter bound of C(G) ∼ n log n.

Proof: In a complete graph the cover time is closely related to the coupon collector’s pro-
blem. Let τi denote the first step at which i vertices have been visited. The number of steps
it takes to reach a new vertex is

τi+1 − τi =
n− i
n− 1

Since these events are independent we have

E (τi+1 − τi) =
n− 1

n− i

and we can use the approximation of the harmonic series by the natural logarithm to show
that

E (τn) = E (τ1) +
n−1∑
i=1

E (τi+1 − τi) = 1 +
n−1∑
i=1

n− 1

n− i
= 1 + (n− 1)

n−1∑
i=1

1

i
≈ n log n as n→∞

�

Lollipop Graph

Lollipop graph is a graph as the conjunction of a linear graph (with n/2 vertices) and
a complete graph (also with n/2 vertices). We deduce from the last section that : C(G) ≤
O (n3).

The following graph is examples of Lollipop graphs.

3-6

INF554 Lecture 3 — 6th of October 1st semester, 2014

Let s and t be left-most and right-most vertices of the linear graph. We can show that
h(s, t) = O (n3) and h(t, s) = O (n2), which shows an interesting property of asymmetry in
this graph.

3.3 Randomized algorithm for satisfiability : SAT

Definition 3.12. Let X1, X2, . . . , Xn be n ≥ 1 logic variables. A literal l is of the form Xi

or Xi i.e. a literal is either a variable or the negation of a variable. A clause C is a disjunction
of literals, for example C = X1 ∨X2 ∨X3. A clause C containing at most k variables is also
called a k-clause. A SAT formula φ is of the form φ = C1 ∧ C2 ∧ · · · ∧ Cm where Ci are
clauses. A SAT formula φ is called a k-SAT formula if φ contains only k-clauses.

The k-SAT is a decision problem to decide if for a given k-SAT formula there exist values
of the boolean variables for which the formula is true.

K-SAT

3-7

INF554 Lecture 3 — 6th of October 1st semester, 2014

Input formula φ k-sat

Output a ∈ {0, 1}n : φ(a) = 1. Reject if there is no solution.

We will pose the following theorems without proving them.

Theorem 3.13. 2-SAT ∈ P and k-SAT is NP-complete for all k ≥ 3

Theorem 3.14. 2-SAT can be solved by a deterministic algorithm with complexityO (n+m)
where n is the number of variables and m is the number of clauses.

The algorithm of the above theorem is first to construct a graph with literals of all
variables, and then to check whether a variable xi and xi are contained in the same strongly
connected component. Note that the second step can be completed within linear time using
Tarjan’s algorithm.

We are interested in designing a probabilistic algorithm to solve k-SAT which works for
all k.

Algorithm 3 Random k-SAT algorithm

Require: a k-SAT formula φ, clauses C1, . . . , Cm, and literals (¬)X1, . . . , (¬)Xn . n = km
Ensure: a boolean indicating whether there exists an interpretation that satisfies φ
a← any value in {0, 1}n . a = (X1, . . . , Xn)
while φ(a) = 0 do

j ← any integer such that Cj(a) = 0
i← random integer from {k | Xk is a variable of Cj}
Xk ← 1−Xk . Flip the bit of this variable in a

end while
return true

This algorithm will never terminate if there is no interpretation that satisfies φ i.e. φ(a) =
0 for all a. If there is an interpretation satisfying φ, the algorithm will always find it, but
there is no upper bound to its running time. Note that each iteration of the while-loop has
a complexity of O(mk) since it requires the evaluation of the entire formula, which has km
literals.

Theorem 3.15. If φ is 2-SAT and there exists an interpretation a such that φ(a) = 1, then
the average number of iterations needed to find a is ≤ 4n2.

Corollary 3.16. There exists an algorithm for 2-SAT with one-sided error 2−k and running
time 8kn2.

Proof: For a 2-SAT problem let s ∈ {0, 1}n such that φ(s) = 1.
We define d(a, s) = |{ai 6= si | 1 ≤ i ≤ n}|. If a = s then d(a, s) = 0 and in general

d(a, s) ∈ {0, 1, ..., n}. Let Xi = d(a, s) after i iterations.
If the algorithm has not stopped, we have

P (Xi+1 = n− 1 | Xi = n) = 1

P (Xi+1 = j − 1 | Xi = j) ≥ 1

2
for 1 ≤ j < n

3-8

INF554 Lecture 3 — 6th of October 1st semester, 2014

The first statement is obvious because if all literals have the wrong value, changing one
will always decrease the distance. For the case where 1 ≤ j < n we can consider two cases :

– If C is a single literal, e.g. C = X5 ∨X5, the distance decreases with probability 1.
– If C has two literals, e.g. C = X2 ∨X7, the distance decreases with probability ≥ 1/2,

because at least 1 of the 2 bits is wrong, and there is a probability of 1/2 that we flip
the right one.

�

Note that the algorithm we have constructed is similar to a random walk on a line, where
the upper bound of probability 1/2 is the case where either direction is equally likely. We
know that hn,0 is upper bounded by C(G) ≤ 4n2.

As we did with the USTCON algorithms, we can bound the run time of the 2-SAT
algorithm by a time 8kn2 to construct an algorithm with a one-sided error of 2−k.

Unfortunately, for 3-SAT, the distance does not necessarily decrease at each step and
the same algorithm is not enough. We can easily see that the average time to the algorithm
terminate is not always polynomial by making again the comparison with a random walk on
a line where the probability to go right is twice the probability to go left :

The number of edges in the graph (concentrated in its right) is exponential, and then,
its cover time is also exponential.

Thereby, the state space is finite and if there is a solution it is found almost surely in a
finite time. Still the algorithm can be modified to have a better convergence speed. The idea
is to do the same algorithm, but only for 3n steps, and then to restart. It is called Walk &
Restart.

Let us study the speed of this algorithm. Let p be the odd that the walk terminates in
less than 3n steps. The expected number of restarts is obviously 1/p.

For a 3-SAT problem let s ∈ {0, 1}n such that φ(s) = 1.
We define d(a, s) = |{ai 6= si | 1 ≤ i ≤ n}|. If a = s then d(a, s) = 0 and in general

d(a, s) ∈ {0, 1, ..., n}. Let Xi = d(a, s) after i iterations.
Let pi be the probability that a 3n-walk terminates knowing that X0 = i.

p =
n∑
i=1

pi P(X0 = i) =
n∑
i=1

pi

(
n
i

)
2n

When a clause a selected, one literal is different from that of s since φ(s) = 1, therefore
P (Xi+1 = Xi − 1) ≥ 1/3

pj = P (min {i, Xi = 0} ≤ 3n | X0 = j) ≥ P (min {i, Xi = 0} ≤ 3j | X0 = j) ≥

3-9

INF554 Lecture 3 — 6th of October 1st semester, 2014

Algorithm 4 Random k-SAT algorithm : Walk & Restart

Require: a k-SAT formula φ, clauses C1, . . . , Cm, and literals (¬)X1, . . . , (¬)Xn . n = km
Ensure: a boolean indicating that there exists an interpretation that satisfies φ, if there

isn’t, the algorithm does not terminate.
t← 0, a← any value in {0, 1}n . a = (X1, . . . , Xn)
while φ(a) = 0 do

while t ≤ 3n and φ(a) = 0 do
j ← any integer such that Cj(a) = 0
i← random integer from {k | Xk is a variable of Cj}
Xk ← 1−Xk . Flip the bit of this variable in a

end while
t← 0 . Restart

end while
return true

qj = P (# {i ≤ 3j, Xi+1 = Xi − 1} = 2j, # {i ≤ 3j, Xi+1 = Xi + 1} = j | X0 = j)

qj =

(
3j

j

)(
1

3

)2j(
2

3

)j

qj ∼
√

3

4π

1√
j

(
1

2

)j
n∑
i=1

pi

(
n
i

)
2n
≥

n∑
i=1

qi

(
n
i

)
2n
∼ O(1)

√
n

(
3

4

)n
Therefore, the time complexity is nO(1)

(
4
3

)n
As of year 2011, there is a deterministic algorithm with the same time complexity, and

another randomized algorithm with time complexity O∗(1.308n)
There is a version of this algorithm for k-SAT with k ≥ 4 with time complexityO∗

((
1 + k−2

k

)n)

3-10

