
INF 554: Using randomness in algorithms Autumn 2014

Lecture 1 — 15 September 2014
Lecturer: Frédéric Magniez Scribe: Gurvan L’Hostis

The goal of this course is to present a formal definition of randomized algorithms and some
easy applications.

1.1 An introducing example : Freival’s Algorithm
Decision problem:

• input: A, B and C, n× n matrices over an arbitrary ring

• output: decide if A×B = C

Remarks: since 2011 with an improvement from Virginia Williams, an explicit matrix mul-
tiplication has an asymptotic complexity of O(n2.3727).

Freivald’s test:

• Choose r ∈ {0, 1}n uniformly at random

• Evaluate u = Cr, v = Br and w = Av

• Return ACCEPT if u = w, else REJECT

This algorithm uses 3n2 additions and multiplications on the coefficients.

Theorem 1.1. Freivald’s algorithm has a one-sided error:

• If AB = C, P(algorithm accepts) = 1

• If AB 6= C, P(algorithm rejects) ≥ 1
2

Remarks: If AB 6= C, since this algorithm has an one-sided error, by running k independent
executions we have P(algorithm accepts after k independent executions) ≤ 1/2k. In prac-
tice k = 100 is acceptable. For comparison, cosmic rays induce errors on computer with
larger probability. In 1996, a studies by IBM revealed that they induced one error per 256
megabytes of RAM per month, which means a probability of 1.4×10−15 per byte per second,
which is greater than 2−49. Another comparison on large number, is that 2100 is far greater
than the age of the universe in second, which is less than 260 (for now...).

Proof:

• If AB = C then u = Cr = (AB)r = A(Br) = Av = w thus P(algorithm accepts) = 1.
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• If AB 6= C: particular case on Z2

Let F = {r ∈ {0, 1}n : (A ∗ B)r = Cr} ⊆ 0, 1n. F 6= {0, 1}n and F is a subspace of
vector space {0, 1}n. Thus using Lagrange’s Theorem we have |F | ≤ 1

2
|{0, 1}n|

Hence P(algorithm accepts) = P(r ∈ F ) ≤ |F |
|0,1n| ≤

1
2

• If AB 6= C: general case

Assume there are two indices i and j such that (AB)ij 6= Cij. Let D = C −AB. Then
Dij 6= 0, D 6= 0. We want to prove P

r∈{0,1}n
[Dr = 0] ≤ 1

2
.

(Dr)i =
∑
k

Dikrk = Dijrj + f((rk)k 6=j)

P [Dr = 0] ≤ P [(Dr)i = 0]

Fix r1, . . . , rn excepts rj. Then v = f((rk)k 6=j).

– If v = −Dij: if rj = 0 then (Dr)i 6= 0, if rj = 1 then (Dr)i = Dij − Dij = 0.
Conditional probability of (Dr)i = 0 is 1

2
.

– If v = 0: if rj = 0 then (Dr)i = 0, if rj = 1 then (Dr)i = Dij 6= 0. Conditional
probability of (Dr)i = 0 is 1

2
.

– Otherwise: for rj = 0, 1 (Dr)i 6= 0.

P [(Dr)i = 0] ≤ 1

2

�

1.2 Formal basis

1.2.1 Deterministic algorithm

Input: x - Algorithm - Output A(x)

Goal:

• correctly solve the problem on all inputs

• efficiency (wished): linear or polynomial time on input size in bytes
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1.2.2 Randomized algorithm

A randomized algorithm, compared to a deterministic algorithm, has an additional input:
the random variable r. We suppose that we have access to a source of uniform random bits
or integers (which is basically equivalent).

Remarks:

• Behaviour depends on both x and r.

• Once r is fixed, the algorithm is deterministic.

• We do not know yet how to generate random numbers with computers, we have only
access to pseudo-random generators.

Input: x - Algorithm - Output A(x, r)

6

Random bits / integers: r

Definition 1.2. A solves a problem P with error δ if for all inputs x it verifies

P[A(x, r) is correct] ≥ 1− δ

A such problem is in the BPP class1.

Let L be a language. A recognizes L with error δ on one side if for all inputs x :

• if x ∈ L then A(x, r) accepts for all r ;

• if x /∈ L then P[A(x, r) accepts] ≤ δ.

A such problem is in the RP class2.

Remarks:

• One-sided error algorithm : if δ0 < 1 we can get to δ by iterating A d log δ
log δ0
e times (in

practice δ0 ≤ 1
2
).

• Double-sided error algorithm : if δ0 < 1
2
we can get to δ by iterating A d 1

( 1
2
−δ0)2

log 1
δ
e

times (in practice δ0 ≤ 1
3
).

1BPP: Bounded-error Probabilistic Polynomial time
2RP: Randomized Polynomial time
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1.3 Primality Testing
Decision problem:

• input: an integer n ≥ 2

• output: decide if n is prime

n is k = log2(n) long. The sieve of Eratosthenes gives a result in
√
n steps which is too

long (O(2k/2) operations). The best deterministic algorithm is Agrawal-Kayal-Saxena in
O((log2(n))6) (2005).

1.3.1 Fermat’s little theorem approach

Fermat’s little theorem

Theorem 1.3. p ≥ 2 prime number ⇒ ∀a ∈ [1, p− 1], ap−1 = 1[p]

Tentative algorithm

Primality test algorithm:

• Input: N ≥ 2

• Select a random a ∈ [1, N − 1]

• If a ∧N 6= 1 then reject (in this case N is not prime, because (a ∧N)|N)

• Compute aN−1 with rapid exponentiation: a2r = (ar)2, a2r+1 = a(ar)2

• Accept if aN−1 = 1 [N ], otherwise reject

Remarks:

• Running time is O(logN).

• If N is prime then the algorithm accepts N with probability 1.

Algorithm’s proof

Lemma 1.4. Assume there is 1 ≤ a < N such that a ∧ N = 1 and aN−1 6= 1 [N ]. Then
P

1≤a<N
[aN−1 = 1 [N ] |a ∧N = 1] ≤ 1

2

Proof: LetG = {b ∈ {1, ..., N−1}|GCD(b,N) = 1}. G is an abelian group for the operation
(X mod N). Let F = {b ∈ G|bN−1 = 1[N ]}.
F 6= G and F is a subgroup hence |F | ≤ 1/2|G| (Lagrange’s Theorem) �

Corollary 1.5. Assume there is 1 ≤ a < N such that a ∧ N = 1 and aN−1 6= 1 [N ]. Then
P
a
(algorithm accepts N) ≤ 1

2
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Proof: TakeN non prime such that there is 1 ≤ a < N such that a∧N = 1 and aN−1 6= 1 [N ]

P
a
(algorithm accepts N) = P

a
(a ∧N = 1 and aN−1 = 1 [N ])

= P
a
(aN−1 = 1 [N ] |a ∧N = 1)︸ ︷︷ ︸

≤ 1
2

×P
a
(a ∧N = 1)︸ ︷︷ ︸

≤1

≤ 1

2

�

Carmichael number

Definition 1.6. An non-prime integer N is a Carmichael number if all 1 ≤ a < N such
that a ∧N = 1 satisfy aN−1 6= 1 [N ].

The smallest Carmichael number is 561 = 3× 11× 17.
There are 255 Carmichael number ≤ 108

1.3.2 Miller-Rabin test

Lemma 1.7. If p is prime then the only solution of x2 = 1 [p] are ±1 mod p.

Algorithm

• Input: N ≥ 2

• If N = 2, ACCEPT. Otherwise if 2|N , REJECT.

• Take a ∈ [2, N − 1] uniformly at random.

• If a ∧N 6= 1, REJECT

• Let N − 1 = 2tu (t ≥ 1 since N is odd). Compute b = au. Let i ≤ t be the smallest
integer such that b2i = 1.

• If i does not exist, REJECT (since b2t 6= 1 [N ], Fermat’s test fails)

• If i = 0 or b2i−1
= −1, ACCEPT

• Otherwise, REJECT

Remark: Running time is O(logN).
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1.4 Reminder on Probabilities

1.4.1 Definitions

• Discrete random variable X (finite) from Ω (finite)

Example: random bit B on Ω = {0, 1}

• Stochastic process: (Xt)t∈T with T ∈ N

• Halting time τ such as τ = t depends only from X1, ..., Xt

Example: τ : time to get a 0 from a random bit stream, E(τ) = 2

– P[τ = 1] = 1/2

– P[τ = 2] = 1/4

– P[τ = k] = 1/2k

– E(τ) =
∑

k kP[τ = k] = 2

1.4.2 Bernoulli

Theorem 1.8. If P[Bt = 0] = p, then E(τ) = 1/p

Application

Let Ω = {1, 2, ..., n}, X a discrete random value from ω, X1, ..., Xt a stochastic process
Let τ be the smallest t such as {X1, ..., Xt} = Ω

Then E(τ) ≈ n log(n)

Proof

τ =
∑n

i=1 τi with τi time to get a new value knowing we already have i− 1 different values.
Then P(τi) = n−i+1

n
and using the theorem we have E(τi) = n

n−i+1

Hence E(τ) =
∑n

i=1 E(τi) =
∑n

i=1
n

n−i+1
≈ n log(n)

1.4.3 Markov inequality

Theorem 1.9. X ≥ 0 a discrete random variable, µ = E(X). Then ∀a > 0,P(X > aµ) ≤ 1
a

1.4.4 Chernoff bound

Theorem 1.10. X1, ..., Xn independent random variables from {0, 1} such as ∀i,P[Xi =
1] = µi = E(Xi). Let X = 1

n

∑
Xi and µ = 1

n

∑
µi = E(X)

Then ∀δ > 0,P[|X − µ| ≥ δµ] ≤ 2−µδ
2n/3
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