INF 554: Using randomness in algorithms Autumn 2014
Lecture 1 — 15 September 2014

Lecturer: Frédéric Magniez Scribe: Gurvan L’Hostis

The goal of this course is to present a formal definition of randomized algorithms and some
easy applications.

1.1 An introducing example : Freival’s Algorithm

Decision problem:
e input: A, B and (', n X n matrices over an arbitrary ring
e output: decide if A x B=C

Remarks: since 2011 with an improvement from Virginia Williams, an explicit matrix mul-
tiplication has an asymptotic complexity of O(n*377).

Freivald’s test:
e Choose r € {0,1}" uniformly at random
e Evaluate u = Cr, v = Br and w = Av
e Return ACCEPT if u = w, else REJECT

This algorithm uses 3n? additions and multiplications on the coefficients.

Theorem 1.1. Freivald’s algorithm has a one-sided error:
o If AB = C, P(algorithm accepts) = 1

e If AB # C, P(algorithm rejects) > 1

Remarks: If AB # C, since this algorithm has an one-sided error, by running %k independent
executions we have P(algorithm accepts after k independent executions) < 1/2%. In prac-
tice k = 100 is acceptable. For comparison, cosmic rays induce errors on computer with
larger probability. In 1996, a studies by IBM revealed that they induced one error per 256
megabytes of RAM per month, which means a probability of 1.4 x 107! per byte per second,
which is greater than 27%°. Another comparison on large number, is that 21% is far greater
than the age of the universe in second, which is less than 2%° (for now...).

Proof:
o If AB = C then u=Cr = (AB)r = A(Br) = Av = w thus P(algorithm accepts) = 1.
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o If AB # (" particular case on Zs

Let FF = {r € {0,1}" : (A« B)r = Cr} C 0,1". F # {0,1}" and F is a subspace of
vector space {0,1}". Thus using Lagrange’s Theorem we have |F| < 1[{0,1}"]

Hence P(algorithm accepts) = P(r € F) < |0‘§L| <3

o If AB # (" general case

Assume there are two indices ¢ and j such that (AB);; # C;;. Let D = C' — AB. Then
Dij #0, D # 0. We want to prove P [Dr=0] < 4.

€{0,1}
(Dr)i =Y Digri = Dijr + f((ri)iss)
k

P[Dr =0] <P[(Dr); = 0]
Fix rqy,...,r, excepts r;. Then v = f((ry)rz;)-
—Ifv = —Dijl if?”j = 0 then (DT)Z % O, if r; = 1 then (DT’)z = Dij _Dz’j = 0.
Conditional probability of (Dr); =0 is 3.

— If v =0: if r; = 0 then (Dr); =0, if r; = 1 then (Dr); = D;; # 0. Conditional
probability of (Dr); =0 is 3.

— Otherwise: for r; = 0,1 (Dr); # 0.

P[(Dr); =0] <

DO | —

1.2 Formal basis

1.2.1 Deterministic algorithm

Input: £ — Algorithm —— Output A(z)

Goal:
e correctly solve the problem on all inputs

e cfficiency (wished): linear or polynomial time on input size in bytes
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1.2.2 Randomized algorithm

A randomized algorithm, compared to a deterministic algorithm, has an additional input:
the random variable ». We suppose that we have access to a source of uniform random bits
or integers (which is basically equivalent).

Remarks:
e Behaviour depends on both z and r.
e Once r is fixed, the algorithm is deterministic.

e We do not know yet how to generate random numbers with computers, we have only
access to pseudo-random generators.

Input:  — Algorithm —— Output A(z,r)

T

Random bits / integers: r

Definition 1.2. A solves a problem P with error § if for all inputs x it verifies
P[A(x,r) is correct] > 1 —§
A such problem is in the BPP class.

Let L be a language. A recognizes L with error 0 on one side if for all inputs x :
e ifx € L then A(x,r) accepts for all r ;
e ifx ¢ L then P[A(z,r) accepts| < .

A such problem is in the RP class®.

Remarks:

log
log d¢

e One-sided error algorithm : if dy < 1 we can get to d by iterating A [:22] times (in

practice dy < 3).
e Double-sided error algorithm : if §y < % we can get to § by iterating A [m log %1
2

times (in practice dy < %)

'BPP: Bounded-error Probabilistic Polynomial time
2RP: Randomized Polynomial time
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1.3 Primality Testing

Decision problem:
e input: an integer n > 2
e output: decide if n is prime

n is k = logy(n) long. The sieve of Eratosthenes gives a result in y/n steps which is too
long (O(2%/2) operations). The best deterministic algorithm is Agrawal-Kayal-Saxena in

O((logy(n))°) (2005).
1.3.1 Fermat’s little theorem approach

Fermat’s little theorem

Theorem 1.3. p > 2 prime number = Va € [1,p — 1],a?~! = 1[p]

Tentative algorithm

Primality test algorithm.:

e Input: N > 2

e Select a random a € [1, N — 1]
e If a AN # 1 then reject (in this case N is not prime, because (a A N)|N)
e Compute a”~! with rapid exponentiation: a®" = (a")?, a* ™! = a(a")?
o Accept if aV~! = 1[N], otherwise reject
Remarks:

e Running time is O(log N).

e [f N is prime then the algorithm accepts N with probability 1.

Algorithm’s proof

Lemma 1.4. Assume there is 1 < a < N such that a AN = 1 and a”~' # 1[N]. Then
P [a" ' =1[N]jaAnN=1]<1

1<a<N

Proof: Let G = {be {1,...,N—1}|GCD(b, N) = 1}. G is an abelian group for the operation
(X mod N). Let F = {be G|p" ! =1[N]}.
F # G and F is a subgroup hence |F| < 1/2|G| (Lagrange’s Theorem) O

Corollary 1.5. Assume there is 1 < a < N such that a AN =1 and oV~ # 1 [N]. Then
P(algorithm accepts N) < 1
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Proof: Take N non prime such that thereis 1 < a < N such that aAN = 1 and a” ! # 1[N]

P(algorithm accepts N) = P(a AN =1anda”™ "' =1[N])

a a

= P(@" ' =1[N]jaAN=1)xP(aAN =1)

/

4

v~

<1

IN
Nl

1

IN

Carmichael number

Definition 1.6. An non-prime integer N is a Carmichael number if all 1 < a < N such
that a A N = 1 satisfy a¥ ' # 1[N].

The smallest Carmichael number is 561 =3 x 11 x 17.

There are 255 Carmichael number < 102

1.3.2 Miller-Rabin test
Lemma 1.7. If p is prime then the only solution of z* = 1 [p| are +1 mod p.

Algorithm
e Input: N > 2
o If N =2 ACCEPT. Otherwise if 2| N, REJECT.
e Take a € [2, N — 1] uniformly at random.
o Ifa AN #1, REJECT

o Let N —1 =2 (t > 1 since N is odd). Compute b = a". Let i <t be the smallest
integer such that % = 1.

e If i does not exist, REJECT (since v*' # 1 [N], Fermat’s test fails)
o Ifi=0o0rb? ' =—1, ACCEPT
e Otherwise, REJECT

Remark: Running time is O(log N).
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1.4 Reminder on Probabilities

1.4.1 Definitions

e Discrete random variable X (finite) from  (finite)

Example: random bit B on Q = {0,1}
e Stochastic process: (X;)er with 7€ N

e Halting time 7 such as 7 =t depends only from Xj, ..., X;

Example: T: time to get a 0 from a random bit stream, E(7) = 2

- Plr=1]=1/2
- Pr=2/=1/4
— Plr =k =1/2F

— E(1) =), kP[r =k] =2

1.4.2 Bernoulli
Theorem 1.8. If P[B; = 0] = p, then E(7) = 1/p

Application

Let Q2 ={1,2,...,n}, X a discrete random value from w, Xi, ..., X; a stochastic process
Let 7 be the smallest ¢ such as {X3,..., X;} = Q

Then E(7) = nlog(n)

Proof

T =Y ., 7 with 7; time to get a new value knowing we already have i — 1 different values.
Then P(7;) = =21 and using the theorem we have E(7;) = T

Hence E(7) = 3 7, E(7:) = 2.1, =i ~ nlog(n)

1.4.3 Markov inequality
Theorem 1.9. X > 0 a discrete random variable, n = E(X). Then Va > 0,P(X > au) <

Q=

1.4.4 Chernoff bound

Theorem 1.10. X, ..., X, independent random variables from {0,1} such as Vi,P[X; =
1=p =E(X;). Let X =13 X; and p =15 pi; = E(X)
Then Y6 > 0,P[| X — p| > dp) < 2710°n/3
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