INF 554: Using randomness in algorithms	Autumn 2014
Lecture $1 - 15$ September 201	14
Lecturer: Frédéric Magniez	Scribe: Gurvan L'Hostis

The goal of this course is to present a formal definition of randomized algorithms and some easy applications.

1.1 An introducing example : Freival's Algorithm

Decision problem:

- input: A, B and C, $n \times n$ matrices over an arbitrary ring
- output: decide if $A \times B = C$

Remarks: since 2011 with an improvement from Virginia Williams, an explicit matrix multiplication has an asymptotic complexity of $O(n^{2.3727})$.

Freivald's test:

- Choose $r \in \{0,1\}^n$ uniformly at random
- Evaluate u = Cr, v = Br and w = Av
- Return ACCEPT if u = w, else REJECT

This algorithm uses $3n^2$ additions and multiplications on the coefficients.

Theorem 1.1. Freivald's algorithm has a one-sided error:

- If AB = C, $\mathbb{P}(algorithm \ accepts) = 1$
- If $AB \neq C$, $\mathbb{P}(algorithm \ rejects) \geq \frac{1}{2}$

Remarks: If $AB \neq C$, since this algorithm has an one-sided error, by running k independent executions we have $\mathbb{P}(\text{algorithm accepts after k independent executions}) \leq 1/2^k$. In practice k = 100 is acceptable. For comparison, cosmic rays induce errors on computer with larger probability. In 1996, a studies by IBM revealed that they induced one error per 256 megabytes of RAM per month, which means a probability of 1.4×10^{-15} per byte per second, which is greater than 2^{-49} . Another comparison on large number, is that 2^{100} is far greater than the age of the universe in second, which is less than 2^{60} (for now...).

Proof:

• If AB = C then u = Cr = (AB)r = A(Br) = Av = w thus $\mathbb{P}(\text{algorithm accepts}) = 1$.

• If $AB \neq C$: particular case on \mathbb{Z}_2

Let $F = \{r \in \{0,1\}^n : (A * B)r = Cr\} \subseteq 0, 1^n$. $F \neq \{0,1\}^n$ and F is a subspace of vector space $\{0,1\}^n$. Thus using Lagrange's Theorem we have $|F| \leq \frac{1}{2} |\{0,1\}^n|$

Hence $\mathbb{P}(\text{algorithm accepts}) = \mathbb{P}(r \in F) \le \frac{|F|}{|0,1^n|} \le \frac{1}{2}$

• If $AB \neq C$: general case

Assume there are two indices *i* and *j* such that $(AB)_{ij} \neq C_{ij}$. Let D = C - AB. Then $D_{ij} \neq 0, D \neq 0$. We want to prove $\underset{r \in \{0,1\}^n}{\mathbb{P}} [Dr = 0] \leq \frac{1}{2}$.

$$(Dr)_i = \sum_k D_{ik}r_k = D_{ij}r_j + f((r_k)_{k\neq j})$$
$$\mathbb{P}\left[Dr = 0\right] \le \mathbb{P}\left[(Dr)_i = 0\right]$$

Fix r_1, \ldots, r_n excepts r_j . Then $v = f((r_k)_{k \neq j})$.

- If $v = -D_{ij}$: if $r_j = 0$ then $(Dr)_i \neq 0$, if $r_j = 1$ then $(Dr)_i = D_{ij} D_{ij} = 0$. Conditional probability of $(Dr)_i = 0$ is $\frac{1}{2}$.
- If v = 0: if $r_j = 0$ then $(Dr)_i = 0$, if $r_j = 1$ then $(Dr)_i = D_{ij} \neq 0$. Conditional probability of $(Dr)_i = 0$ is $\frac{1}{2}$.
- Otherwise: for $r_j = 0, 1 \ (Dr)_i \neq 0$.

$$\mathbb{P}\left[(Dr)_i=0\right] \le \frac{1}{2}$$

1.2 Formal basis

1.2.1 Deterministic algorithm

Input: $x \longrightarrow$ Algorithm \longrightarrow Output A(x)

Goal:

- correctly solve the problem on all inputs
- efficiency (wished): linear or polynomial time on input size in bytes

1.2.2 Randomized algorithm

A randomized algorithm, compared to a deterministic algorithm, has an additional input: the random variable r. We suppose that we have access to a source of uniform random bits or integers (which is basically equivalent).

Remarks:

- Behaviour depends on both x and r.
- Once r is fixed, the algorithm is deterministic.
- We do not know yet how to generate random numbers with computers, we have only access to pseudo-random generators.

Input: $x \longrightarrow$ Algorithm \longrightarrow Output A(x, r)Random bits / integers: r

Definition 1.2. A solves a problem P with error δ if for all inputs x it verifies

 $\mathbb{P}[A(x,r) \text{ is correct}] \geq 1 - \delta$

A such problem is in the BPP $class^1$.

Let L be a language. A recognizes L with error δ on one side if for all inputs x :

- if $x \in L$ then A(x, r) accepts for all r;
- if $x \notin L$ then $\mathbb{P}[A(x, r) | accepts] \leq \delta$.

A such problem is in the RP class².

Remarks:

- One-sided error algorithm : if $\delta_0 < 1$ we can get to δ by iterating A $\lceil \frac{\log \delta}{\log \delta_0} \rceil$ times (in practice $\delta_0 \leq \frac{1}{2}$).
- Double-sided error algorithm : if $\delta_0 < \frac{1}{2}$ we can get to δ by iterating A $\left\lceil \frac{1}{(\frac{1}{2} \delta_0)^2} \log \frac{1}{\delta} \right\rceil$ times (in practice $\delta_0 \leq \frac{1}{3}$).

 $^{^1\}mathrm{BPP}:$ Bounded-error Probabilistic Polynomial time

²RP: Randomized Polynomial time

1.3 Primality Testing

Decision problem:

- input: an integer $n \ge 2$
- output: decide if n is prime

n is $k = \log_2(n)$ long. The sieve of Eratosthenes gives a result in \sqrt{n} steps which is too long $(O(2^{k/2})$ operations). The best deterministic algorithm is Agrawal-Kayal-Saxena in $O((\log_2(n))^6)$ (2005).

1.3.1 Fermat's little theorem approach

Fermat's little theorem

Theorem 1.3. $p \ge 2$ prime number $\Rightarrow \forall a \in [1, p-1], a^{p-1} = 1[p]$

Tentative algorithm

Primality test algorithm:

- Input: $N \ge 2$
- Select a random $a \in [1, N-1]$
- If $a \wedge N \neq 1$ then reject (in this case N is not prime, because $(a \wedge N)|N$)
- Compute a^{N-1} with rapid exponentiation: $a^{2r} = (a^r)^2$, $a^{2r+1} = a(a^r)^2$
- Accept if $a^{N-1} = 1 [N]$, otherwise reject

Remarks:

- Running time is $O(\log N)$.
- If N is prime then the algorithm accepts N with probability 1.

Algorithm's proof

Lemma 1.4. Assume there is $1 \leq a < N$ such that $a \wedge N = 1$ and $a^{N-1} \neq 1[N]$. Then $\mathbb{P}_{1 \leq a < N}[a^{N-1} = 1[N] | a \wedge N = 1] \leq \frac{1}{2}$

Proof: Let $G = \{b \in \{1, ..., N-1\} | GCD(b, N) = 1\}$. *G* is an abelian group for the operation (X mod N). Let $F = \{b \in G | b^{N-1} = 1[N]\}$. $F \neq G$ and *F* is a subgroup hence $|F| \leq 1/2|G|$ (Lagrange's Theorem) \Box

Corollary 1.5. Assume there is $1 \le a < N$ such that $a \land N = 1$ and $a^{N-1} \ne 1[N]$. Then $\mathbb{P}(\text{algorithm accepts } N) \le \frac{1}{2}$

Proof: Take N non prime such that there is $1 \le a < N$ such that $a \land N = 1$ and $a^{N-1} \ne 1 [N]$

$$\mathbb{P}_{a}(algorithm \ accepts \ N) = \mathbb{P}_{a}(a \land N = 1 \ and \ a^{N-1} = 1 \ [N])$$

$$= \underbrace{\mathbb{P}_{a}(a^{N-1} = 1 \ [N] \ |a \land N = 1)}_{\leq \frac{1}{2}} \times \underbrace{\mathbb{P}_{a}(a \land N = 1)}_{\leq 1}$$

$$\leq \frac{1}{2}$$

Carmichael number

Definition 1.6. An non-prime integer N is a Carmichael number if all $1 \le a < N$ such that $a \land N = 1$ satisfy $a^{N-1} \ne 1[N]$.

The smallest Carmichael number is $561 = 3 \times 11 \times 17$. There are 255 Carmichael number $\leq 10^8$

1.3.2 Miller-Rabin test

Lemma 1.7. If p is prime then the only solution of $x^2 = 1 [p]$ are $\pm 1 \mod p$.

Algorithm

- Input: $N \ge 2$
- If N = 2, ACCEPT. Otherwise if 2|N, REJECT.
- Take $a \in [2, N-1]$ uniformly at random.
- If $a \wedge N \neq 1$, REJECT
- Let $N 1 = 2^t u$ $(t \ge 1$ since N is odd). Compute $b = a^u$. Let $i \le t$ be the smallest integer such that $b^{2^i} = 1$.
- If *i* does not exist, REJECT (since $b^{2^{i}} \neq 1 [N]$, Fermat's test fails)
- If i = 0 or $b^{2^{i-1}} = -1$, ACCEPT
- Otherwise, REJECT

Remark: Running time is $O(\log N)$.

1.4 Reminder on Probabilities

1.4.1 Definitions

- Discrete random variable X (finite) from Ω (finite)
 Example: random bit B on Ω = {0, 1}
- Stochastic process: $(X_t)_{t \in T}$ with $T \in \mathbb{N}$
- Halting time τ such as τ = t depends only from X₁,..., X_t
 Example: τ: time to get a 0 from a random bit stream, E(τ) = 2

= 2

$$- \mathbb{P}[\tau = 1] = 1/2$$
$$- \mathbb{P}[\tau = 2] = 1/4$$
$$- \mathbb{P}[\tau = k] = 1/2^k$$
$$- \mathbb{E}(\tau) = \sum_k k \mathbb{P}[\tau = k]$$

1.4.2 Bernoulli

Theorem 1.8. If $\mathbb{P}[B_t = 0] = p$, then $\mathbb{E}(\tau) = 1/p$

Application

Let $\Omega = \{1, 2, ..., n\}$, X a discrete random value from ω , $X_1, ..., X_t$ a stochastic process Let τ be the smallest t such as $\{X_1, ..., X_t\} = \Omega$

Then $\mathbb{E}(\tau) \approx n \log(n)$

Proof

 $\tau = \sum_{i=1}^{n} \tau_i$ with τ_i time to get a new value knowing we already have i - 1 different values. Then $\mathbb{P}(\tau_i) = \frac{n-i+1}{n}$ and using the theorem we have $\mathbb{E}(\tau_i) = \frac{n}{n-i+1}$ Hence $\mathbb{E}(\tau) = \sum_{i=1}^{n} \mathbb{E}(\tau_i) = \sum_{i=1}^{n} \frac{n}{n-i+1} \approx n \log(n)$

1.4.3 Markov inequality

Theorem 1.9. $X \ge 0$ a discrete random variable, $\mu = \mathbb{E}(X)$. Then $\forall a > 0, \mathbb{P}(X > a\mu) \le \frac{1}{a}$

1.4.4 Chernoff bound

Theorem 1.10. $X_1, ..., X_n$ independent random variables from $\{0, 1\}$ such as $\forall i, \mathbb{P}[X_i = 1] = \mu_i = \mathbb{E}(X_i)$. Let $X = \frac{1}{n} \sum X_i$ and $\mu = \frac{1}{n} \sum \mu_i = \mathbb{E}(X)$ Then $\forall \delta > 0, \mathbb{P}[|X - \mu| \ge \delta \mu] \le 2^{-\mu \delta^2 n/3}$