INF 554: Using randomness in algorithms Autumn 2014

Lecture 1 — September 15th, 2014
Lecturer: Frédéric Magniez Scribe: Thibault GROUEIX

1.1 Exercises

1.1.1 Test of commutativity

Problem
Input

e Group G
e Function o gives the product of two elements.

e n elements of G hy ... h, and H, the generated group.
Output ACCEPT iff H is a commutative group

Complexity Number of operations involving o.
Naive solution Checking all possible couples (i, j) € G? requires (O (n?) operations.

Algorithm
e Draw k,[with Sampling at random from H.

e Acceptiff. kol=10k
Complexity One call to Sampling, two calls to o

Performance One sided error :
e H commutative group -> ACCEPT always

e H non commutative group -> ACCEPT with probability inferior to 3/4

Property H is commutative iff Vi, j; h; o hj = hj o h; (the generators commute)

Lemma 1.1. if H is not commutative then
e Ji, j for which h;oh; # hjoh;
o P (kol#lok)>1/4

k,leH

1-1

INF 554 Lecture 1 — September 15th, 2014 Autumn 2014

Proof: the center of H is defined as follow :
Z(H)={ke HVl € Hikol =10k}

Moreover,
S(k)={le Hlkol=1o0k}
So if S(k) = H then k € Z(H).
Z(H) is a strict sub group of H, so using the Lagrange theorem :
Z(H)| < 1/2|H]

Therefore,

P (ke Z(H)) < 1/2

keH

Let k € H\Z(k)
Also, S(k) is a strict sub group of H,

[S(k)| < 1/2|H|
Therefore,
léP’H(l € S(k)) <1/2
Finally,
k’lIPG’H(kOZ#ZOk:) :k}PE’H(k:OZ#ZOk:ﬂkgé Z(H))
kEH(/ﬂol#lok) :k?e’H(k ¢ Z(H)Nk ¢ S(k))
B (kol#lok)= P (k¢ Z(H)- P (k¢ SEk¢ 2(H)
k]lIzH(kol#lok) >1/2-1/2
kgH(kol#lok) >1/4

CQFD

4

Note We have demonstrated that the algorithm is a Monte-Carlo algorithm, with a
one sided error of 1/4.
We still have to explain the Sampling process, which choose randomly k,l € H

Weak Sampling
e Draw r uniformly from {0, 1}"

e Calculate and return h}' - ... - hl"

1-2

INF 554 Lecture 1 — September 15th, 2014 Autumn 2014

Example
oen=4
e draw 0110

e return hy - hs

Complexity n group operation o

Lemma 1.2. if K is a strict subgroup of G, and h;...h, the generators of K then

(he K)<1/2

h with Weak Sampling

Proof: Since K # G, Jisuch as h; ¢ G
Remember : we draw r uniformly from {0, 1}".
h =hi*-...-hl"

Fix r except r;

Suppose ¢ = 1
B=h3 ... hn

P (heK)= P (b BeK)

T’iE{O,l} 7’1'6{071}
e fe K

—r=1=hy-p¢ K (if hy - p € K then hy € K = Contradiction)
—T1:O:>h:5€K
@ P (heK|peK)=1/2

7”1‘6{0,1}

e f¢ K
— r1 = 1 = unknown
-mn=0=h=0¢K
@ P (heK|f¢gK)<1/2

r;€{0,1}
Consequently
P (heK|)<1/2

r;€{0,1}

To generalize to all i, take

i = min{j. by ¢ K}

Set n = hy' - ...- by — 1)"~* and adapt the proof
Finally, using the conditional probability on ry, ..., 7, except r;, we reach the conclusion :
P (heK)<1/2

re{0,1}"

CQFD

1-3

INF 554 Lecture 1 — September 15th, 2014 Autumn 2014

Complexity Finally the algorithm requires O (n) against the O (n?) of the naive method.

1.1.2 Determinist Algorithm to Probabilistic Algorithm

Problem
Input

e Deterministic algorithm P which return the product of two matrix

(P(A,B) £ A-B) < 1/9

A,B matriz modulo N

L3N]

Output Probabilistic algorithm P, such as

Err(P)= P (PyAB)#A-B)<$

A,B matriz

Complexity The algorithm must require O (n?) additions/multiplications and (O (logd))
call to P

Questions

1. Prove that V R,S matrix modulo N
A-B=(A-R)- (B-S)+(A-=S)-S+R-(B—S)+ R-5(x)
2. Deduce the probabilistic algorithm

3. Write an algorithm which requires O (n?) additions/multiplications and (O (logd))
call to P such as

o If Err(P) = 0] then P (Algo accept) =1

o If Err(P) <1/11 then P (Algo accept) > 1—§
o If Err(P) > 1/9 then P (Algo reject) >1—46
e If 1/11 < Err(P) < 1/9 then non specified

Answers
1. Develop

2. e Choose uniformingly at random two matrix R and S modulo N

e Calculate and return (*) with P

1-4

INF 554 Lecture 1 — September 15th, 2014 Autumn 2014

Proof:

P((+) £ A-B)=B(P(A— R, B~ 5) £ (A~ R)-(B - 5))
or (P(A—R,S)# (A—R)-95)
or (P(R,B—S)#R-(B-0Y9))
or (P(R,S)# R-0S))
P((x) # A-B) < 4Err(P)
P((x) # A~ B) < 4)9

g

Note Choosing randomly R and S is the same thing as choosing randomly A-R
and B-S because we work modulo N

3. e Do k times :

— Choose A B randomly
— Verify P(A, B) = A- B with Friedvalds algorithm done multiple times

— X; = 0 if there is no mistake
X; = 1 if any mistake
o if ¥ X; < & then ACCEPT
else REJECT

Proof: Try using the Chernoff Bound U

1-5

