Lecturer: Frédéric Magniez

Scribe: Thibault GROUEIX

1.1 Exercises

1.1.1 Test of commutativity

Problem

Input

- Group G
- Function \circ gives the product of two elements.
- n elements of G $h_1 \dots h_n$ and H, the generated group.

 ${\bf Output} \ {\rm ACCEPT} \ {\rm iff} \ {\rm H} \ {\rm is \ a \ commutative \ group}$

Complexity Number of operations involving \circ .

Naive solution Checking all possible couples $(i, j) \in G^2$ requires $(O(n^2))$ operations.

Algorithm

- Draw k, l with Sampling at random from H.
- Accept iff. $k \circ l = l \circ k$

Performance One sided error :

- H commutative group -> ACCEPT always
- H non commutative group -> ACCEPT with probability inferior to 3/4

Property H is commutative iff $\forall i, j; h_i \circ h_j = h_j \circ h_i$ (the generators commute)

Lemma 1.1. if H is not commutative then

- $\exists i, j$ for which $h_i \circ h_j \neq h_j \circ h_i$
- $\mathbb{P}_{k, l \in H} \left(k \circ l \neq l \circ k \right) \ge 1/4$

Proof: the center of H is defined as follow :

$$Z(H) = \{k \in H | \forall l \in H, k \circ l = l \circ k\}$$

Moreover,

$$S(k) = \{l \in H | k \circ l = l \circ k\}$$

So if S(k) = H then $k \in Z(H)$. Z(H) is a strict sub group of H, so using the Lagrange theorem :

$$|Z(H)| \le 1/2|H|$$

Therefore,

$$\mathbb{P}_{k \in H} \left(k \in Z(H) \right) \le 1/2$$

Let $k \in H \setminus Z(k)$ Also, S(k) is a strict sub group of H,

$$|S(k)| \le 1/2|H|$$

Therefore,

$$\mathbb{P}_{l \in H} \left(l \in S(k) \right) \le 1/2$$

Finally,

$$\begin{split} & \underset{k,l \in H}{\mathbb{P}} \left(k \circ l \neq l \circ k \right) = \underset{k,l \in H}{\mathbb{P}} \left(k \circ l \neq l \circ k \cap k \notin Z(H) \right) \\ & \underset{k,l \in H}{\mathbb{P}} \left(k \circ l \neq l \circ k \right) = \underset{k,l \in H}{\mathbb{P}} \left(k \notin Z(H) \cap k \notin S(k) \right) \\ & \underset{k,l \in H}{\mathbb{P}} \left(k \circ l \neq l \circ k \right) = \underset{k,l \in H}{\mathbb{P}} \left(k \notin Z(H) \right) \cdot \underset{k,l \in H}{\mathbb{P}} \left(k \notin S(k) | k \notin Z(H) \right) \\ & \underset{k,l \in H}{\mathbb{P}} \left(k \circ l \neq l \circ k \right) \geq 1/2 \cdot 1/2 \\ & \underset{k,l \in H}{\mathbb{P}} \left(k \circ l \neq l \circ k \right) \geq 1/4 \end{split}$$

CQFD

Note We have demonstrated that the algorithm is a Monte-Carlo algorithm, with a one sided error of 1/4.

We still have to explain the Sampling process, which choose randomly $k, l \in H$

Weak Sampling

- Draw r uniformly from $\{0,1\}^n$
- Calculate and return $h_1^{r_1} \cdot \ldots \cdot h_n^{r_n}$

Example

- *n* = 4
- draw 0110
- return $h_2 \cdot h_3$

Complexity n group operation \circ

Lemma 1.2. if K is a strict subgroup of G, and $h_1...h_n$ the generators of K then

$$\mathbb{P}_{h \text{ with Weak Sampling}} (h \in K) \le 1/2$$

Proof: Since $K \neq G$, $\exists i$ such as $h_i \notin G$ Remember : we draw r uniformly from $\{0, 1\}^n$. $h = h_1^{r_1} \cdot \ldots \cdot h_n^{r_n}$ Fix r except r_i Suppose i = 1 $\beta = h_2^{r_2} \cdot \ldots \cdot h_n^{r_n}$ $\mathbb{P}_{r_i \in \{0,1\}} (h \in K) = \mathbb{P}_{r_i \in \{0,1\}} (h_1^{r_1} \cdot \beta \in K)$

• $\beta \in K$

 $-r_{1} = 1 \Rightarrow h_{1} \cdot \beta \notin K \text{ (if } h_{1} \cdot \beta \in K \text{ then } h_{1} \in K \Rightarrow \text{Contradiction)}$ $-r_{1} = 0 \Rightarrow h = \beta \in K$ $@ \quad \mathbb{P}_{r_{i} \in \{0,1\}} (h \in K | \beta \in K) = 1/2$

• $\beta \notin K$

$$-r_{1} = 1 \Rightarrow \text{unknown}$$
$$-r_{1} = 0 \Rightarrow h = \beta \notin K$$
$$@ \mathbb{P}_{r_{i} \in \{0,1\}} (h \in K | \beta \notin K) \leq 1/2$$

Consequently

$$\mathbb{P}_{r_i \in \{0,1\}} \left(h \in K \right| \right) \le 1/2$$

To generalize to all i, take

$$i = \min\{j, h_j \notin K\}$$

Set $\eta = h_1^{r_1} \cdot \ldots \cdot h_j(j-1)^{r_{j-1}}$ and adapt the proof Finally, using the conditional probability on r_1, \ldots, r_n except r_j , we reach the conclusion :

$$\mathop{\mathbb{P}}_{r\in\{0,1\}^n}\left(h\in K\right)\leq 1/2$$

CQFD

Complexity Finally the algorithm requires O(n) against the $O(n^2)$ of the naive method.

1.1.2 Determinist Algorithm to Probabilistic Algorithm Problem

Input

• Deterministic algorithm P which return the product of two matrix

$$\underset{A,B \text{ matrix modulo } N}{\mathbb{P}} \left(P(A,B) \neq A \cdot B \right) \leq 1/9$$

• δ

Output Probabilistic algorithm P_2 such as

$$Err(P) = \underset{A,B \ matrix}{\mathbb{P}} (P_2(A, B) \neq A \cdot B) \le \delta$$

Complexity The algorithm must require $O(n^2)$ additions/multiplications and $(O(log\delta))$ call to P

Questions

1. Prove that \forall R,S matrix modulo N

$$A \cdot B = (A - R) \cdot (B - S) + (A - S) \cdot S + R \cdot (B - S) + R \cdot S(*)$$

- 2. Deduce the probabilistic algorithm
- 3. Write an algorithm which requires $O\left(n^2\right)$ additions/multiplications and $\left(O\left(log\delta\right)\right)$ call to P such as
 - If Err(P) = 0] then $\mathbb{P}(Algo \ accept) = 1$
 - If $Err(P) \leq 1/11$ then $\mathbb{P}(Algo \ accept) \geq 1 \delta$
 - If $Err(P) \ge 1/9$ then $\mathbb{P}(Algo \ reject) \ge 1 \delta$
 - If $1/11 \le Err(P) \le 1/9$ then non specified

Answers

- 1. Develop
- 2. Choose uniformingly at random two matrix R and S modulo N
 - Calculate and return (*) with P

Proof:

$$\mathbb{P}\left((*) \neq A \cdot B\right) = \mathbb{P}(P(A - R, B - S) \neq (A - R) \cdot (B - S))$$

or $(P(A - R, S) \neq (A - R) \cdot S)$
or $(P(R, B - S) \neq R \cdot (B - S))$
or $(P(R, S) \neq R \cdot S))$
 $\mathbb{P}\left((*) \neq A \cdot B\right) \leq 4Err(P)$
 $\mathbb{P}\left((*) \neq A \cdot B\right) \leq 4/9$

Note Choosing randomly R and S is the same thing as choosing randomly A-R and B-S because we work modulo N

- 3. Do k times :
 - Choose A,B randomly
 - Verify $P(A, B) = A \cdot B$ with Friedvalds algorithm done multiple times
 - $-X_i = 0$ if there is no mistake
 - $X_i = 1$ if any mistake
 - if $\sum X_i \leq \frac{k}{10}$ then ACCEPT else REJECT

Proof: Try using the Chernoff Bound