### 1.1 Exercises

### 1.1.1 Test of commutativity

## Problem

Input

- Group G
- Function $\circ$ gives the product of two elements.
- n elements of G $h_{1} \ldots h_{n}$ and H , the generated group.

Output ACCEPT iff H is a commutative group
Complexity Number of operations involving $\circ$.
Naive solution Checking all possible couples $(i, j) \in G^{2}$ requires $\left(O\left(n^{2}\right)\right.$ operations.

## Algorithm

- Draw $k, l$ with Sampling at random from H.
- Accept iff. $k \circ \mathrm{l}=\mathrm{l} \circ \mathrm{k}$

Complexity One call to Sampling, two calls to o
Performance One sided error :

- H commutative group -> ACCEPT always
- H non commutative group -> ACCEPT with probability inferior to $3 / 4$

Property H is commutative iff $\forall i, j ; h_{i} \circ h_{j}=h_{j} \circ h_{i}$ (the generators commute)
Lemma 1.1. if $H$ is not commutative then

- $\exists i, j$ for which $h_{i} \circ h_{j} \neq h_{j} \circ h_{i}$
- $\underset{k, l \in H}{\mathbb{P}}(k \circ l \neq l \circ k) \geq 1 / 4$

Proof: the center of H is defined as follow :

$$
Z(H)=\{k \in H \mid \forall l \in H, k \circ l=l \circ k\}
$$

Moreover,

$$
S(k)=\{l \in H \mid k \circ l=l \circ k\}
$$

So if $S(k)=H$ then $k \in Z(H)$.
$\mathrm{Z}(\mathrm{H})$ is a strict sub group of H , so using the Lagrange theorem :

$$
|Z(H)| \leq 1 / 2|H|
$$

Therefore,

$$
\underset{k \in H}{\mathbb{P}}(k \in Z(H)) \leq 1 / 2
$$

Let $k \in H \backslash Z(k)$
Also, $S(k)$ is a strict sub group of H ,

$$
|S(k)| \leq 1 / 2|H|
$$

Therefore,

$$
\underset{l \in H}{\mathbb{P}_{H}}(l \in S(k)) \leq 1 / 2
$$

Finally,

$$
\begin{gathered}
\underset{k, l \in H}{\mathbb{P}}(k \circ l \neq l \circ k)=\underset{k, l \in H}{\mathbb{P}}(k \circ l \neq l \circ k \cap k \notin Z(H)) \\
\underset{k, l \in H}{\mathbb{P}}(k \circ l \neq l \circ k)=\underset{k, l \in H}{\mathbb{P}}(k \notin Z(H) \cap k \notin S(k)) \\
\underset{k, l \in H}{\mathbb{P}}(k \circ l \neq l \circ k)=\underset{k, l \in H}{\mathbb{P}}(k \notin Z(H)) \cdot \mathbb{P}_{k, l \in H}^{\mathbb{P}}(k \notin S(k) \mid k \notin Z(H)) \\
\underset{k, l \in H}{\mathbb{P}}(k \circ l \neq l \circ k) \geq 1 / 2 \cdot 1 / 2 \\
\underset{k, l \in H}{\mathbb{P}}(k \circ l \neq l \circ k) \geq 1 / 4
\end{gathered}
$$

CQFD

Note We have demonstrated that the algorithm is a Monte-Carlo algorithm, with a one sided error of $1 / 4$.
We still have to explain the Sampling process, which choose randomly $k, l \in H$

## Weak Sampling

- Draw $r$ uniformly from $\{0,1\}^{n}$
- Calculate and return $h_{1}^{r_{1}} \cdot \ldots \cdot h_{n}^{r_{n}}$


## Example

- $n=4$
- draw 0110
- return $h_{2} \cdot h_{3}$

Complexity n group operation $\circ$
Lemma 1.2. if $K$ is a strict subgroup of $G$, and $h_{1} \ldots h_{n}$ the generators of $K$ then

$$
\underset{h \text { with Weak Sampling }}{\mathbb{P}}(h \in K) \leq 1 / 2
$$

Proof: Since $K \neq G, \exists i$ such as $h_{i} \notin G$
Remember : we draw r uniformly from $\{0,1\}^{n}$.
$h=h_{1}^{r_{1}} \cdot \ldots \cdot h_{n}^{r_{n}}$
Fix r except $r_{i}$
Suppose $i=1$
$\beta=h_{2}^{r_{2}} \cdot \ldots \cdot h_{n}^{r_{n}}$
$\underset{r_{i} \in\{0,1\}}{\mathbb{P}}(h \in K)=\underset{r_{i} \in\{0,1\}}{\mathbb{P}}\left(h_{1}^{r_{1}} \cdot \beta \in K\right)$

- $\beta \in K$

$$
\begin{aligned}
& -r_{1}=1 \Rightarrow h_{1} \cdot \beta \notin K\left(\text { if } h_{1} \cdot \beta \in K \text { then } h_{1} \in K \Rightarrow\right. \text { Contradiction) } \\
& -r_{1}=0 \Rightarrow h=\beta \in K \\
& @ \underset{r_{i} \in\{0,1\}}{\mathbb{P}}(h \in K \mid \beta \in K)=1 / 2
\end{aligned}
$$

- $\beta \notin K$

$$
\begin{aligned}
& -r_{1}=1 \Rightarrow \text { unknown } \\
& -r_{1}=0 \Rightarrow h=\beta \notin K \\
& @ \underset{r_{i} \in\{0,1\}}{\mathbb{P}}(h \in K \mid \beta \notin K) \leq 1 / 2
\end{aligned}
$$

Consequently

$$
\underset{r_{i} \in\{0,1\}}{\mathbb{P}}(h \in K \mid) \leq 1 / 2
$$

To generalize to all i, take

$$
i=\min \left\{j, h_{j} \notin K\right\}
$$

Set $\eta=h_{1}^{r_{1}} \cdot \ldots \cdot h_{(j-1)^{r_{j-1}}}$ and adapt the proof
Finally, using the conditional probability on $r_{1}, \ldots, r_{n}$ except $r_{j}$, we reach the conclusion :

$$
\underset{r \in\{0,1\}^{n}}{\mathbb{P}}(h \in K) \leq 1 / 2
$$

CQFD

Complexity Finally the algorithm requires $O(n)$ against the $O\left(n^{2}\right)$ of the naive method.

### 1.1.2 Determinist Algorithm to Probabilistic Algorithm Problem

## Input

- Deterministic algorithm P which return the product of two matrix
- $\delta$

Output Probabilistic algorithm $P_{2}$ such as

$$
\operatorname{Err}(P)=\underset{A, B}{\mathbb{P}} \underset{m a t r i x}{ }\left(P_{2}(A, B) \neq A \cdot B\right) \leq \delta
$$

Complexity The algorithm must require $O\left(n^{2}\right)$ additions/multiplications and $(O(\log \delta))$ call to P

## Questions

1. Prove that $\forall R, S$ matrix modulo $N$

$$
A \cdot B=(A-R) \cdot(B-S)+(A-S) \cdot S+R \cdot(B-S)+R \cdot S(*)
$$

2. Deduce the probabilistic algorithm
3. Write an algorithm which requires $O\left(n^{2}\right)$ additions/multiplications and $(O(\log \delta))$ call to P such as

- If $\operatorname{Err}(P)=0]$ then $\mathbb{P}($ Algo accept $)=1$
- If $\operatorname{Err}(P) \leq 1 / 11$ then $\mathbb{P}($ Algo accept $) \geq 1-\delta$
- If $\operatorname{Err}(P) \geq 1 / 9$ then $\mathbb{P}($ Algo reject $) \geq 1-\delta$
- If $1 / 11 \leq \operatorname{Err}(P) \leq 1 / 9$ then non specified


## Answers

1. Develop
2.     - Choose uniformingly at random two matrix R and S modulo N

- Calculate and return $\left({ }^{*}\right)$ with P


## Proof:

$$
\begin{aligned}
& \mathbb{P}((*) \neq A \cdot B)=\mathbb{P}( P(A-R, B-S) \neq(A-R) \cdot(B-S)) \\
& \text { or }(P(A-R, S) \neq(A-R) \cdot S) \\
& \text { or }(P(R, B-S) \neq R \cdot(B-S)) \\
&\text { or }(P(R, S) \neq R \cdot S)) \\
& \mathbb{P}((*) \neq A \cdot B) \leq 4 E r r(P) \\
& \mathbb{P}((*) \neq A \cdot B) \leq 4 / 9
\end{aligned}
$$

Note Choosing randomly $R$ and $S$ is the same thing as choosing randomly A-R and B-S because we work modulo N
3. - Do k times :

- Choose A,B randomly
- Verify $P(A, B)=A \cdot B$ with Friedvalds algorithm done multiple times
- $X_{i}=0$ if there is no mistake
$X_{i}=1$ if any mistake
- if $\sum X_{i} \leq \frac{k}{10}$ then ACCEPT else REJECT

Proof: Try using the Chernoff Bound

