1.1 Exercises

1.1.1 Test of commutativity

Problem

Input

• Group G

• Function \circ gives the product of two elements.

• n elements of G $h_1, h_2, ..., h_n$ and H, the generated group.

Output ACCEPT iff H is a commutative group

Complexity Number of operations involving \circ.

Naive solution Checking all possible couples $(i, j) \in G^2$ requires $O(n^2)$ operations.

Algorithm

• Draw k, l with Sampling at random from H.

• Accept iff. $k \circ l = l \circ k$

Complexity One call to Sampling, two calls to \circ

Performance One sided error :

• H commutative group \Rightarrow ACCEPT always

• H non commutative group \Rightarrow ACCEPT with probability inferior to 3/4

Property H is commutative iff $\forall i, j; h_i \circ h_j = h_j \circ h_i$ (the generators commute)

Lemma 1.1. if H is not commutative then

• $\exists i, j$ for which $h_i \circ h_j \neq h_j \circ h_i$

• $\mathbb{P}_{k, l \in H} (k \circ l \neq l \circ k) \geq 1/4$
Proof: the center of H is defined as follow:
\[Z(H) = \{ k \in H | \forall l \in H, k \circ l = l \circ k \} \]
Moreover,
\[S(k) = \{ l \in H | k \circ l = l \circ k \} \]
So if \(S(k) = H \) then \(k \in Z(H) \).
\(Z(H) \) is a strict sub group of \(H \), so using the Lagrange theorem:
\[|Z(H)| \leq \frac{1}{2} |H| \]
Therefore,
\[\mathbb{P}_{k \in H} (k \in Z(H)) \leq \frac{1}{2} \]
Let \(k \in H \setminus Z(k) \)
Also, \(S(k) \) is a strict sub group of \(H \),
\[|S(k)| \leq \frac{1}{2} |H| \]
Therefore,
\[\mathbb{P}_{l \in H} (l \in S(k)) \leq \frac{1}{2} \]
Finally,
\[\mathbb{P}_{k, l \in H} (k \circ l \neq l \circ k) = \mathbb{P}_{k, l \in H} (k \circ l \neq l \circ k \cap k \notin Z(H)) \]
\[= \mathbb{P}_{k, l \in H} (k \notin Z(H) \cap k \notin S(k)) \]
\[\mathbb{P}_{k, l \in H} (k \circ l \neq l \circ k) = \mathbb{P}_{k, l \in H} (k \notin Z(H)) \cdot \mathbb{P}_{k, l \in H} (k \notin S(k) | k \notin Z(H)) \]
\[= \mathbb{P}_{k, l \in H} (k \circ l \neq l \circ k) \geq \frac{1}{2} \cdot \frac{1}{2} \]
\[\geq \frac{1}{4} \]
CQFD

Note We have demonstrated that the algorithm is a Monte-Carlo algorithm, with a one sided error of 1/4.
We still have to explain the Sampling process, which choose randomly \(k, l \in H \)

Weak Sampling
- Draw \(r \) uniformly from \(\{0, 1\}^n \)
- Calculate and return \(h_1^r \cdot \ldots \cdot h_n^r \)
Example

- \(n = 4 \)
- draw 0110
- return \(h_2 \cdot h_3 \)

Complexity \(n \) group operation \(\circ \)

Lemma 1.2. If \(K \) is a strict subgroup of \(G \), and \(h_1 \ldots h_n \) the generators of \(K \) then

\[
\mathbb{P}_{h \text{ with Weak Sampling}}(h \in K) \leq 1/2
\]

Proof: Since \(K \neq G \), \(\exists \ i \) such as \(h_i \notin G \)

Remember : we draw \(r \) uniformly from \(\{0, 1\}^n \).

\[h = h_1^{r_1} \cdot \ldots \cdot h_n^{r_n} \]

Fix \(r \) except \(r_i \)

Suppose \(i = 1 \)

\[\beta = h_2^{r_2} \cdot \ldots \cdot h_n^{r_n} \]

\[\mathbb{P}_{r_i \in \{0,1\}} (h \in K) = \mathbb{P}_{r_i \in \{0,1\}} (h_1^{r_1} \cdot \beta \in K) \]

- \(\beta \in K \)
 - \(r_1 = 1 \Rightarrow h_1 \cdot \beta \notin K \) (if \(h_1 \cdot \beta \in K \) then \(h_1 \in K \Rightarrow \) Contradiction)
 - \(r_1 = 0 \Rightarrow h = \beta \in K \)

\[\mathbb{P}_{r_i \in \{0,1\}} (h \in K | \beta \in K) = 1/2 \]

- \(\beta \notin K \)
 - \(r_1 = 1 \Rightarrow \) unknown
 - \(r_1 = 0 \Rightarrow h = \beta \notin K \)

\[\mathbb{P}_{r_i \in \{0,1\}} (h \in K | \beta \notin K) \leq 1/2 \]

Consequently

\[\mathbb{P}_{r_i \in \{0,1\}} (h \in K |) \leq 1/2 \]

To generalize to all \(i \), take

\[i = \min \{ j, h_j \notin K \} \]

Set \(\eta = h_1^{r_1} \cdot \ldots \cdot h(j-1)^{r_{j-1}} \) and adapt the proof.

Finally, using the conditional probability on \(r_1, \ldots, r_n \) except \(r_j \), we reach the conclusion :

\[\mathbb{P}_{r_i \in \{0,1\}^n} (h \in K) \leq 1/2 \]

CQFD
Complexity Finally the algorithm requires $O(n)$ against the $O(n^2)$ of the naive method.

1.1.2 Determinist Algorithm to Probabilistic Algorithm

Problem

Input

- Deterministic algorithm P which return the product of two matrix

$$P(A,B) \neq A \cdot B \leq 1/9$$

- δ

Output Probabilistic algorithm P_2 such as

$$\text{Err}(P) = \mathbb{P}_{A,B \text{ matrix modulo } N}(P_2(A,B) \neq A \cdot B) \leq \delta$$

Complexity The algorithm must require $O(n^2)$ additions/multiplications and $(O(\log \delta))$ call to P

Questions

1. Prove that $\forall R,S$ matrix modulo N

$$A \cdot B = (A - R) \cdot (B - S) + (A - S) \cdot S + R \cdot (B - S) + R \cdot S(*)$$

2. Deduce the probabilistic algorithm

3. Write an algorithm which requires $O(n^2)$ additions/multiplications and $(O(\log \delta))$ call to P such as

 - If $\text{Err}(P) = 0$ then $\mathbb{P}(\text{Algo accept}) = 1$
 - If $\text{Err}(P) \leq 1/11$ then $\mathbb{P}(\text{Algo accept}) \geq 1 - \delta$
 - If $\text{Err}(P) \geq 1/9$ then $\mathbb{P}(\text{Algo reject}) \geq 1 - \delta$
 - If $1/11 \leq \text{Err}(P) \leq 1/9$ then non specified

Answers

1. Develop

2. Choose uniformly at random two matrix R and S modulo N

 - Calculate and return $(*)$ with P
Proof:

\[\mathbb{P}(\mathcal{P}(\mathcal{*}) = A \cdot B) = \mathbb{P}(P(A - R, B - S) \neq (A - R) \cdot (B - S)) \]

or \((P(A - R, S) \neq (A - R) \cdot S) \)

or \((P(R, B - S) \neq R \cdot (B - S)) \)

or \((P(R, S) \neq R \cdot S)) \)

\[\mathbb{P}(\mathcal{P}(\mathcal{*}) = A \cdot B) \leq 4\text{Err}(P) \]

\[\mathbb{P}(\mathcal{P}(\mathcal{*}) = A \cdot B) \leq 4/9 \]

\[\square \]

Note Choosing randomly \(R \) and \(S \) is the same thing as choosing randomly \(A-R \) and \(B-S \) because we work modulo \(N \)

3. • Do \(k \) times:
 - Choose \(A, B \) randomly
 - Verify \(P(A, B) = A \cdot B \) with Friedvalds algorithm done multiple times
 - \(X_i = 0 \) if there is no mistake
 - \(X_i = 1 \) if any mistake

• if \(\sum X_i \leq \frac{k}{10} \) then ACCEPT
 else REJECT

Proof: Try using the Chernoff Bound