INF554: Using randomness in algorithms

Autumn 2014

Cours 4 — October 6th

Enseignant : Frédéric Magniez

Rédacteur : Marc Sanselme

4.1 Exercises

Max-SAT 4.1.1

Problem

Input: A SAT formula φ with *n* variables X_1, \ldots, X_n and *m* clauses $\varphi = C_1 \land \ldots \land C_m$ **Output:** $a \in \{0,1\}^n$ which maximizes the number of satisfied clauses in φ

Strategy

- 1. Write the problem as a integer linear program
- 2. (a) Is it possible to find an optimal solution in polynomial time?
 - (b) How to link it with the initial problem?
- 3. Find a random algorithm to calculate a solution in $a \in 0, 1^n$ such that

$$\mathbb{P}_a(C(a)=1) \ge \beta_k z_C^*,$$

where C has exactly k variables and $\beta_k = 1 - (1 - \frac{1}{k})^k$

(a) Find an algorithm with approximation factor $(1 - \frac{1}{e})$ in average 4. (b) Try to derandomize it

Solution

1.

$$w = \max \sum_{C \in \varphi} z_C$$

such that
and
$$\begin{cases} \forall C \in \varphi : 0 \le z_C \le 1 \\ \forall i \in 1, \dots, n : 0 \le x_i \le 1 \\ \forall C \in \varphi : \sum_{i:X_i \in C} x_i + \sum_{i:\overline{X_i} \in C} (1 - x_i) \ge z_C \\ \forall C \in \varphi : z_C \in \mathbb{Z} \\ \forall i \in \{1, \dots, n\} : x_i \in \mathbb{Z} \end{cases}$$

This integer program characterizes the problem:

- ⇒ Let $a \in \{0,1\}^n$ be any assignment. Set x = a, $z_C = C(a)$. Then $\sum_{C \in C} z_C$ equals the number of clauses that a satisfies in φ .
- \Leftarrow Conversely, let $x \in \{0,1\}^n$ and let z be some optimal solution to the integer program with given x. Set a = x. Then

$$C(a) = \sum_{i:X_i \in C} x_i + \sum_{i:\overline{X_i} \in C} (1 - x_i) \ge z_C.$$

The last inequality is in fact here an equality since z is optimal for x, and therefore a satisfies exactly $\sum_{C \in \varphi} Z_C$ in φ .

- (a) It is possible to compute the optimal solution of a linear program (if variables are all reals and not integers) in time polynomial in the program size, that is here in n and m.
 - (b) Let (x^*, z^*) be any solution maximizing the linear program, and let w^* be its value. Then $w^* \leq \text{Max-SAT}(\varphi)$ since the linear program has ben relaxed to real variables.
- 3. Chose independently at random each bit a_i such that $P(a_i = 1) = x_i$. Then it follows that for any C having exactly k variables:

$$\begin{aligned} \mathbb{P}_{a}(C(a) = 0) &= \prod_{i:X_{i} \in C} (1 - x_{i}^{*}) \times \prod_{i:\overline{X_{i}} \in C} (x_{i}^{*}) \\ &\leq \left(\sum_{i:X_{i} \in C} (1 - x_{i}^{*}) + \sum_{i:\overline{X_{i}} \in C} (x_{i}^{*}) \right)^{k} \\ &\leq \left(1 - \frac{1}{k} \left(\sum_{i:X_{i} \in C} x_{i}^{*} + \sum_{i:\overline{X_{i}} \in C} (1 - x_{i}^{*}) \right) \right)^{k} \\ &\leq (1 - \frac{1}{k} \sum_{k \in C} x_{i}^{*} + \sum_{i:\overline{X_{i}} \in C} (1 - x_{i}^{*}) \\ &\leq (1 - \frac{z_{C}^{*}}{k})^{k} \\ &\leq 1 - \beta_{k} z_{C}^{*}, \end{aligned}$$

where $\beta_k = 1 - (1 - \frac{1}{k})^k$, and because $t \mapsto 1 - (1 - \frac{t}{k})^k$ is an increasing and concave function.

4. (a)

$$\mathbb{E}_{a}(\#\text{satisfied clauses}) \geq \sum_{C} \beta_{k_{C}} Z_{C}^{*}$$
$$\geq (1 - \frac{1}{e}) \sum_{C} Z_{C}^{*}$$
$$\geq (1 - \frac{1}{e}) w^{*}$$
$$\geq (1 - \frac{1}{e}) \text{Max-SAT}(\varphi).$$

(b) Since we have

$$\mathbb{E}_{a}(\# \text{satisfied clauses}) = \mathbb{E}_{a}(\# \text{satisfied clauses} | X_{1} = 0) \times P(a_{1} = 0) \\ + \mathbb{E}_{a}(\# \text{satisfied clauses} | X_{1} = 1) \times P(a_{1} = 1),$$

there must be a value of $a_1 \in \{0, 1\}$ such that

 $\mathbb{E}(\# \text{satisfied clauses} | X_1 = a_1) \ge \mathbb{E}(\# \text{satisfied clauses}).$

We can then proceed the other variables inductively, leading to the following algorithm:

Algorithm: For $i = 1 \dots n$ Try $a_i = 0$ Compute $\mathbb{E}_a(\#$ satisfied clauses $|X_1 = a_1 \dots X_i = a_i)$ If $\leq \mathbb{E}_a(\#$ satisfied clauses) then set $a_i := 1$ Return a

We conclude by observing that we can combine this algorithm with the one we have seen in class. More precisely, given a random assignment a chosen uniformly at random in $\{0, 1\}^n$, we have seen that any clauses with exactly k variables is satisfied with the following probability:

$$\mathbb{P}_{\text{uniform }a}(C(a)=1) \ge (1-2^{-k}) = \alpha_k.$$

Observe first that for any value Z_k^* we have $\alpha_k \ge \alpha_k Z_k^*$. Moreover, one can prove that for all $k \ge 1$:

$$\frac{\alpha_k + \beta_k}{2} \ge \frac{3}{4}$$

Thus, considering the sampling procedure, which first flip a random bit, and according to this bit either sample $a \in \{0, 1, \}^n$ uniformly at random or according to the previous distribution (each bit a_i are sample independently such that $P(a_i = 1) = x_i^*$). Then any clause becomes satisfiable with probability at least 3/4, leading to an randomized algorithm for Max-SAT with approximation ratio $\frac{4}{3}$. This one can again be derandomized by returning the best value from the two derandomized underlying algorithms.

4.1.2 Min cut

Problem

Input: G: (V, E) a connected graph with *n* vertices and *m* edges **Output:** $C \subset E$ a cut (i.e. removing *C* from *G* creates at least 2 disjoint connected components) such that the size of *C* is minimal.

Algorithm

Select a random edge e uniformly at random Contract eRepeat this process until only two vertices a, b remeain Return the set C of remaining edges between a and b

Analysis

Let C be any cut of minimal size k. coupe minimale quelconque de taille k. First we show that if the algorithm never choses an edge in C, then after (n-2) iterations, it returns C. Indeed, let C_a be the connected component of a in $G \setminus C$, and let similarly C_b be the connected component of a in $G \setminus C$. Then all removed edges are within $G_{|C_a}$ or $G_{|C_b}$ since C is a cut.

We now bound the probability that the algorithm never choses an edge in C. Let E_i be the event "the contracted edge at step i is not in C". Then define $F_i = \bigcap_{j=1}^i E_j$. We will lower bound by induction $\mathbb{P}(F_{n-2})$, which is the probability we want to estimate.

First, when i = 1, vertices in the original graph G have all degree at least k, otherwise there would be a cut with smaller size. Therefore

$$\mathbb{P}(F_1) = \frac{k}{m} \le \frac{2}{n}$$

, since the fact that all vertices have degree at least k implies $m \geq \frac{kn}{2}$.

Then, for $i \ge 2$ and assuming that F_{i-1} occurs, the set C is still a cut of minimal size k in the reduced graph (that is G where selected edges has been contracted). But now the graph has now only (n - i + 1) vertices remaining, each of degree at least k. Therefore, as before, we get donc

$$\mathbb{P}(E_i|F_{i-1}) \ge 1 - \frac{2}{n+1-i}.$$

We can now compute $\mathbb{P}(F_{n-2})$ using $F_i = E_i \cap F_{i-1}$ and conditional probabilities as follows:

$$\mathbb{P}(F_{n-2}) = \mathbb{P}(E_{n-2}|F_{n-3})\mathbb{P}(F_{n-3}) \\
= \mathbb{P}(E_{n-2}|F_{n-3})\mathbb{P}(E_{n-3}|F_{n-4})\dots\mathbb{P}(E_2|F_1)\mathbb{P}(F_1) \\
\geq \left(1-\frac{2}{3}\right)\left(1-\frac{2}{4}\right)\dots\left(1-\frac{2}{n-1}\right)\left(1-\frac{2}{n}\right) \\
= \frac{1\times 2\times \dots\times (n-3)\times (n-2)}{3\times 4\dots\times (n-1)\times n} \\
= \frac{2}{n(n-1)}.$$

This probability can be posted to any success probability $(1 - \delta)$ by executing the algorithm $\log(n/\delta)$ times, and taking the best cut. This number of execution is enough since we are in a case similar to the one of one-sided error algorithms: the probability to get a better cut, if the best current computed cut is not optimal, is at least $\frac{2}{n(n-1)}$ at each execution of the algorithm.