INF554: Using randomness in algorithms Autumn 2014

Cours 4 — October 6th

Enseignant : Frédéric Magniez Rédacteur : Marc Sanselme

4.1 Exercises

4.1.1 Max-SAT
Problem

Input: A SAT formula ¢ with n variables Xy,..., X,, and m clauses p = C; A ... ANC),
Output: a € {0,1}" which maximizes the number of satisfied clauses in ¢

Strategy

1. Write the problem as a integer linear program

2. (a) Is it possible to find an optimal solution in polynomial time?

(b) How to link it with the initial problem?

3. Find a random algorithm to calculate a solution in a € 0,1" such that
Po(Cla) = 1) = Brze,
where C' has exactly k variables and 8, =1 — (1 — £)*
4. (a) Find an algorithm with approximation factor (1 — 1) in average

(b) Try to derandomize it

Solution

1.

w = maxg zZo

Cep
VO ep:0<z2c<1
such that Viel,....,n:0<x; <1

VCESO:Zi:XiEC’xi_I—Zi:EEC (1_'I1) Z zC
and VO eyp:zc €l
Vie{l,....n} 2, €Z

This integer program characterizes the problem:
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Let a € {0,1}" be any assigment. Set z = a, zc = C(a). Then ) .. z¢ equals
the number of clauses that a satisfies in ¢.

Conversely, let z € {0,1}" and let z be some optimal solution to the integer
program with given x. Set a = x. Then

Cla)= > zi+ Y (1—x)>z.

. X;eC iX,eC

The last inequality is in fact here an equality since z is optimal for z, and therefore
a satisfies exactly 3 . Zc in ¢.

It is possible to compute the optimal solution of a linear program (if variables are
all reals and not integers) in time polynomial in the program size, that is here in
n and m.

Let (x*,z*) be any solution maximizing the linear program, and let w* be its
value. Then w* < Max-SAT(p) since the linear program has ben relaxed to real
variables.

3. Chose independently at random each bit a; such that P(a; = 1) = x;. Then it follows
that for any C having exactly k variables:

4.

where 3, = 1 — (1 — 1), and because t — 1 — (1 —

P(Cla)=0) = [[ a-apx ] @

X eC i:X;€C
k
< DD d=ap+ ) @)
X, eC iIYiEC
k

1 * *

< 1_E Z xi"‘Z(l_l’i)
X €C X, eC

Z*
< (1= 2k
< -
S 1_ﬁkzé’7

k %)’“ is an increasing and concave

function.

(a)

E,(#satisfied clauses) > Z Bre Zé
c

> (1-H) 7z
c
> (1- %)w*
> (1 - 1)Max-SAT(p).
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(b) Since we have

E.(#satisfied clauses) = E,(#satisfied clauses|X; = 0) x P(a; = 0)
+E, (#satisfied clauses|X; = 1) x P(a; = 1),

there must be a value of a; € {0,1} such that
E(#satisfied clauses| X7 = a;) > E(#satisfied clauses).

We can then proceed the other variables inductively, leading to the following
algorithm:

Algorithm:

Fori=1...n

Try a; =0

Compute E,(#satisfied clauses|X; = a1...X; = a;)
If < E,(#satisfied clauses) then set a; := 1
Return a

We conclude by observing that we can combine this algorithm with the one we have
seen in class. More precisely, given a random assignment a chosen uniformly at random in
{0,1}", we have seen that any clauses with exactly k variables is satisfied with the following
probability:

Punitorm o (C(a) = 1) > (1 = 27%) = ay.
Observe first that for any value Z; we have aj > «a;Z}. Moreover, one can prove that for

all £ > 1:
ar+ O 3
2 !

Thus, considering the sampling procedure, which first flip a random bit, and according
to this bit either sample a € {0,1, }" uniformly at random or according to the previous
distribution (each bit a; are sample independently such that P(a; = 1) = xf). Then any
clause becomes satisfiable with probability at least 3/4, leading to an randomized algorithm
for Max-SAT with approximation ratio %. This one can again be derandomized by returning

the best value from the two derandomized underlying algorithms.

4.1.2 Min cut
Problem

Input: G : (V, E) a connected graph with n vertices and m edges
Output: C C E a cut (i.e. removing C from G creates at least 2 disjoint connected
components) such that the size of C' is minimal.

Algorithm

Select a random edge e uniformly at random

Contract e

Repeat this process until only two vertices a,b remeain Return the set C' of
remaining edges between a and b
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Analysis

Let C' be any cut of minimal size k. coupe minimale quelconque de taille k. First we show
that if the algorithm never choses an edge in C|, then after (n — 2) iterations, it returns
C'. Indeed, let C, be the connected component of a in G\ C, and let similarly C}, be the
connected component of a in G\ C. Then all removed edges are within G|, or G|, since
C'is a cut.

We now bound the probability that the algorithm never choses an edge in C'. Let E; be
the event “the contracted edge at step ¢ is not in C”. Then define F; = ﬁé.:lEj. We will
lower bound by induction P(F,,_5), which is the probability we want to estimate.

First, when ¢ = 1, vertices in the original graph G have all degree at least k, otherwise
there would be a cut with smaller size. Therefore

P(Fy) = s < 2
m = n
, since the fact that all vertices have degree at least k implies m > %”

Then, for ¢ > 2 and assuming that F;_; occurs, the set C' is still a cut of minimal size
k in the reduced graph (that is G where selected edges has been contracted). But now the
graph has now only (n — i + 1) vertices remaining, each of degree at least k. Therefore, as

before, we get donc
2

n+1—14
We can now compute P(F,,_5) using F; = E; N F;_; and conditional probabilities as
follows:

P(E;|Fi—q) > 1—

P(an2) = P(En72|Fn73)P(Fn73)
P(En—Qan—?))P(En—fS'Fn—AL) . ']P)(E2|F1)P(F1)

(59 (-a) ()

Ix2x...x(n—3)x(n—2)

n(n—1)

This probability can be posted to any success probability (1 — d) by executing the algo-
rithm log(n/J) times, and taking the best cut. This number of execution is enough since we
are in a case similar to the one of one-sided error algorithms: the probability to get a better
cut, if the best current computed cut is not optimal, is at least ﬁ at each execution of
the algorithm.
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