INF554: Using randomness in algorithms Autumn 2014

Cours 4 — October 6th

Enseignant : Frédéric Magniez Rédacteur : Marc Sanselme

4.1 Exercises

4.1.1 Max-SAT
Problem

Input: A SAT formula ¢ with n variables Xy,..., X,, and m clauses p = C; A ... ANC),
Output: a € {0,1}" which maximizes the number of satisfied clauses in ¢

Strategy

1. Write the problem as a integer linear program

2. (a) Is it possible to find an optimal solution in polynomial time?

(b) How to link it with the initial problem?

3. Find a random algorithm to calculate a solution in a € 0,1" such that
Po(Cla) = 1) = Brze,
where C' has exactly k variables and 8, =1 — (1 — £)*
4. (a) Find an algorithm with approximation factor (1 — 1) in average

(b) Try to derandomize it

Solution

1.

w = maxg zZo

Cep
VO ep:0<z2c<1
such that Viel,....,n:0<x; <1

VCESO:Zi:XiEC’xi_I—Zi:EEC (1_'I1) Z zC
and VO eyp:zc €l
Vie{l,....n} 2, €Z

This integer program characterizes the problem:

4-1

INF554

Cours 4 — October 6th Autumn 2014

=

e

Let a € {0,1}" be any assigment. Set z = a, zc = C(a). Then) .. z¢ equals
the number of clauses that a satisfies in ¢.

Conversely, let z € {0,1}" and let z be some optimal solution to the integer
program with given x. Set a = x. Then

Cla)= > zi+ Y (1—x)>z.

. X;eC iX,eC

The last inequality is in fact here an equality since z is optimal for z, and therefore
a satisfies exactly 3 . Zc in ¢.

It is possible to compute the optimal solution of a linear program (if variables are
all reals and not integers) in time polynomial in the program size, that is here in
n and m.

Let (x*,z*) be any solution maximizing the linear program, and let w* be its
value. Then w* < Max-SAT(p) since the linear program has ben relaxed to real
variables.

3. Chose independently at random each bit a; such that P(a; = 1) = x;. Then it follows
that for any C having exactly k variables:

4.

where 3, = 1 — (1 — 1), and because t — 1 — (1 —

P(Cla)=0) = [[a-apx] @

X eC i:X;€C
k
< DD d=ap+) @)
X, eC iIYiEC
k

1 * *

< 1_E Z xi"‘Z(l_l’i)
X €C X, eC

Z*
< (1= 2k
< -
S 1_ﬁkzé’7

k %)’“ is an increasing and concave

function.

(a)

E,(#satisfied clauses) > Z Bre Zé
c

> (1-H) 7z
c
> (1- %)w*
> (1 - 1)Max-SAT(p).

INF554 Cours 4 — October 6th Autumn 2014

(b) Since we have

E.(#satisfied clauses) = E,(#satisfied clauses|X; = 0) x P(a; = 0)
+E, (#satisfied clauses|X; = 1) x P(a; = 1),

there must be a value of a; € {0,1} such that
E(#satisfied clauses| X7 = a;) > E(#satisfied clauses).

We can then proceed the other variables inductively, leading to the following
algorithm:

Algorithm:

Fori=1...n

Try a; =0

Compute E,(#satisfied clauses|X; = a1...X; = a;)
If < E,(#satisfied clauses) then set a; := 1
Return a

We conclude by observing that we can combine this algorithm with the one we have
seen in class. More precisely, given a random assignment a chosen uniformly at random in
{0,1}", we have seen that any clauses with exactly k variables is satisfied with the following
probability:

Punitorm o (C(a) = 1) > (1 = 27%) = ay.
Observe first that for any value Z; we have aj > «a;Z}. Moreover, one can prove that for

all £ > 1:
ar+ O 3
2 !

Thus, considering the sampling procedure, which first flip a random bit, and according
to this bit either sample a € {0,1, }" uniformly at random or according to the previous
distribution (each bit a; are sample independently such that P(a; = 1) = xf). Then any
clause becomes satisfiable with probability at least 3/4, leading to an randomized algorithm
for Max-SAT with approximation ratio %. This one can again be derandomized by returning

the best value from the two derandomized underlying algorithms.

4.1.2 Min cut
Problem

Input: G : (V, E) a connected graph with n vertices and m edges
Output: C C E a cut (i.e. removing C from G creates at least 2 disjoint connected
components) such that the size of C' is minimal.

Algorithm

Select a random edge e uniformly at random

Contract e

Repeat this process until only two vertices a,b remeain Return the set C' of
remaining edges between a and b

4-3

INF554 Cours 4 — October 6th Autumn 2014

Analysis

Let C' be any cut of minimal size k. coupe minimale quelconque de taille k. First we show
that if the algorithm never choses an edge in C|, then after (n — 2) iterations, it returns
C'. Indeed, let C, be the connected component of a in G\ C, and let similarly C}, be the
connected component of a in G\ C. Then all removed edges are within G|, or G|, since
C'is a cut.

We now bound the probability that the algorithm never choses an edge in C'. Let E; be
the event “the contracted edge at step ¢ is not in C”. Then define F; = ﬁé.:lEj. We will
lower bound by induction P(F,,_5), which is the probability we want to estimate.

First, when ¢ = 1, vertices in the original graph G have all degree at least k, otherwise
there would be a cut with smaller size. Therefore

P(Fy) = s < 2
m = n
, since the fact that all vertices have degree at least k implies m > %”

Then, for ¢ > 2 and assuming that F;_; occurs, the set C' is still a cut of minimal size
k in the reduced graph (that is G where selected edges has been contracted). But now the
graph has now only (n — i + 1) vertices remaining, each of degree at least k. Therefore, as

before, we get donc
2

n+1—14
We can now compute P(F,,_5) using F; = E; N F;_; and conditional probabilities as
follows:

P(E;|Fi—q) > 1—

P(an2) = P(En72|Fn73)P(Fn73)
P(En—Qan—?))P(En—fS'Fn—AL) . ']P)(E2|F1)P(F1)

(59 (-a) ()

Ix2x...x(n—3)x(n—2)

n(n—1)

This probability can be posted to any success probability (1 — d) by executing the algo-
rithm log(n/J) times, and taking the best cut. This number of execution is enough since we
are in a case similar to the one of one-sided error algorithms: the probability to get a better
cut, if the best current computed cut is not optimal, is at least ﬁ at each execution of
the algorithm.

4-4

