INF554: Using randomness in algorithms	Autumn 2014
Cours $4-$ October 6th	
Enseignant : Frédéric Magniez	Rédacteur : Marc Sanselme

4.1 Exercises

4.1.1 Max-SAT

Problem

Input: A SAT formula φ with n variables X_{1}, \ldots, X_{n} and m clauses $\varphi=C_{1} \wedge \ldots \wedge C_{m}$ Output: $a \in\{0,1\}^{n}$ which maximizes the number of satisfied clauses in φ

Strategy

1. Write the problem as a integer linear program
2. (a) Is it possible to find an optimal solution in polynomial time?
(b) How to link it with the initial problem?
3. Find a random algorithm to calculate a solution in $a \in 0,1^{n}$ such that

$$
\mathbb{P}_{a}(C(a)=1) \geq \beta_{k} z_{C}^{*}
$$

where C has exactly k variables and $\beta_{k}=1-\left(1-\frac{1}{k}\right)^{k}$
4. (a) Find an algorithm with approximation factor $\left(1-\frac{1}{e}\right)$ in average
(b) Try to derandomize it

Solution

1.

$$
\begin{aligned}
& w= \max \sum_{C \in \varphi} z_{C} \\
& \text { such that }\left\{\begin{array}{l}
\forall C \in \varphi: 0 \leq z_{C} \leq 1 \\
\forall i \in 1, \ldots, n: 0 \leq x_{i} \leq 1 \\
\forall C \in \varphi: \sum_{i: X_{i} \in C} x_{i}+\sum_{i: \overline{X_{i}} \in C}\left(1-x_{i}\right) \geq z_{C} \\
\text { and } \quad \\
\\
\\
\\
\\
\forall C \in \varphi: z_{C} \in \mathbb{Z}
\end{array}\right. \\
& \forall i \in\{1, \ldots, n\}: x_{i} \in \mathbb{Z}
\end{aligned}
$$

This integer program characterizes the problem:
\Rightarrow Let $a \in\{0,1\}^{n}$ be any assigment. Set $x=a, z_{C}=C(a)$. Then $\sum_{C \in C} z_{C}$ equals the number of clauses that a satisfies in φ.
\Leftarrow Conversely, let $x \in\{0,1\}^{n}$ and let z be some optimal solution to the integer program with given x. Set $a=x$. Then

$$
C(a)=\sum_{i: X_{i} \in C} x_{i}+\sum_{i: \overline{X_{i}} \in C}\left(1-x_{i}\right) \geq z_{C}
$$

The last inequality is in fact here an equality since z is optimal for x, and therefore a satisfies exactly $\sum_{C \in \varphi} Z_{C}$ in φ.
2. (a) It is possible to compute the optimal solution of a linear program (if variables are all reals and not integers) in time polynomial in the program size, that is here in n and m.
(b) Let $\left(x^{*}, z^{*}\right)$ be any solution maximizing the linear program, and let w^{*} be its value. Then $w^{*} \leq \operatorname{Max}-\operatorname{SAT}(\varphi)$ since the linear program has ben relaxed to real variables.
3. Chose independently at random each bit a_{i} such that $P\left(a_{i}=1\right)=x_{i}$. Then it follows that for any C having exactly k variables:

$$
\begin{aligned}
\mathbb{P}_{a}(C(a)=0) & =\prod_{i: X_{i} \in C}\left(1-x_{i}^{*}\right) \times \prod_{i: \overline{X_{i}} \in C}\left(x_{i}^{*}\right) \\
& \leq\left(\sum_{i: X_{i} \in C}\left(1-x_{i}^{*}\right)+\sum_{i: \overline{X_{i}} \in C}\left(x_{i}^{*}\right)\right)^{k} \\
& \leq\left(1-\frac{1}{k}\left(\sum_{i: X_{i} \in C} x_{i}^{*}+\sum_{i: \overline{X_{i}} \in C}\left(1-x_{i}^{*}\right)\right)\right)^{k} \\
& \leq\left(1-\frac{z_{C}^{*}}{k}\right)^{k} \\
& \leq 1-\beta_{k} z_{C}^{*}
\end{aligned}
$$

where $\beta_{k}=1-\left(1-\frac{1}{k}\right)^{k}$, and because $t \mapsto 1-\left(1-\frac{t}{k}\right)^{k}$ is an increasing and concave function.
4. (a)

$$
\begin{aligned}
\mathbb{E}_{a}(\# \text { satisfied clauses }) & \geq \sum_{C} \beta_{k_{C}} Z_{C}^{*} \\
& \geq\left(1-\frac{1}{e}\right) \sum_{C} Z_{C}^{*} \\
& \geq\left(1-\frac{1}{e}\right) w^{*} \\
& \geq\left(1-\frac{1}{e}\right) \operatorname{Max}-\operatorname{SAT}(\varphi) .
\end{aligned}
$$

(b) Since we have

$$
\begin{aligned}
\mathbb{E}_{a}(\# \text { satisfied clauses })= & \mathbb{E}_{a}\left(\# \text { satisfied clauses } \mid X_{1}=0\right) \times P\left(a_{1}=0\right) \\
& +\mathbb{E}_{a}\left(\# \text { satisfied clauses } \mid X_{1}=1\right) \times P\left(a_{1}=1\right)
\end{aligned}
$$

there must be a value of $a_{1} \in\{0,1\}$ such that

$$
\mathbb{E}\left(\# \text { satisfied clauses } \mid X_{1}=a_{1}\right) \geq \mathbb{E}(\# \text { satisfied clauses }) .
$$

We can then proceed the other variables inductively, leading to the following algorithm:

Algorithm:

For $i=1 \ldots n$
Try $a_{i}=0$
Compute $\mathbb{E}_{a}\left(\#\right.$ satisfied clauses $\left.\mid X_{1}=a_{1} \ldots X_{i}=a_{i}\right)$
If $\leq \mathbb{E}_{a}(\#$ satisfied clauses $)$ then set $a_{i}:=1$
Return a
We conclude by observing that we can combine this algorithm with the one we have seen in class. More precisely, given a random assignment a chosen uniformly at random in $\{0,1\}^{n}$, we have seen that any clauses with exactly k variables is satisfied with the following probability:

$$
\mathbb{P}_{\text {uniform } a}(C(a)=1) \geq\left(1-2^{-k}\right)=\alpha_{k}
$$

Observe first that for any value Z_{k}^{*} we have $\alpha_{k} \geq \alpha_{k} Z_{k}^{*}$. Moreover, one can prove that for all $k \geq 1$:

$$
\frac{\alpha_{k}+\beta_{k}}{2} \geq \frac{3}{4}
$$

Thus, considering the sampling procedure, which first flip a random bit, and according to this bit either sample $a \in\{0,1,\}^{n}$ uniformly at random or according to the previous distribution (each bit a_{i} are sample independently such that $\left.P\left(a_{i}=1\right)=x_{i}^{*}\right)$. Then any clause becomes satisfiable with probability at least $3 / 4$, leading to an randomized algorithm for Max-SAT with approximation ratio $\frac{4}{3}$. This one can again be derandomized by returning the best value from the two derandomized underlying algorithms.

4.1.2 Min cut

Problem

Input: $G:(V, E)$ a connected graph with n vertices and m edges
Output: $C \subset E$ a cut (i.e. removing C from G creates at least 2 disjoint connected components) such that the size of C is minimal.

Algorithm

Select a random edge e uniformly at random
Contract e
Repeat this process until only two vertices a, b remeain Return the set C of remaining edges between a and b

Analysis

Let C be any cut of minimal size k. coupe minimale quelconque de taille k. First we show that if the algorithm never choses an edge in C, then after $(n-2)$ iterations, it returns C. Indeed, let C_{a} be the connected component of a in $G \backslash C$, and let similarly C_{b} be the connected component of a in $G \backslash C$. Then all removed edges are within $G_{\mid C_{a}}$ or $G_{\mid C_{b}}$ since C is a cut.

We now bound the probability that the algorithm never choses an edge in C. Let E_{i} be the event "the contracted edge at step i is not in C ". Then define $F_{i}=\cap_{j=1}^{i} E_{j}$. We will lower bound by induction $\mathbb{P}\left(F_{n-2}\right)$, which is the probability we want to estimate.

First, when $i=1$, vertices in the original graph G have all degree at least k, otherwise there would be a cut with smaller size. Therefore

$$
\mathbb{P}\left(F_{1}\right)=\frac{k}{m} \leq \frac{2}{n}
$$

, since the fact that all vertices have degree at least k implies $m \geq \frac{k n}{2}$.
Then, for $i \geq 2$ and assuming that F_{i-1} occurs, the set C is still a cut of minimal size k in the reduced graph (that is G where selected edges has been contracted). But now the graph has now only $(n-i+1)$ vertices remaining, each of degree at least k. Therefore, as before, we get donc

$$
\mathbb{P}\left(E_{i} \mid F_{i-1}\right) \geq 1-\frac{2}{n+1-i}
$$

We can now compute $\mathbb{P}\left(F_{n-2}\right)$ using $F_{i}=E_{i} \cap F_{i-1}$ and conditional probabilities as follows:

$$
\begin{aligned}
\mathbb{P}\left(F_{n-2}\right) & =\mathbb{P}\left(E_{n-2} \mid F_{n-3}\right) \mathbb{P}\left(F_{n-3}\right) \\
& =\mathbb{P}\left(E_{n-2} \mid F_{n-3}\right) \mathbb{P}\left(E_{n-3} \mid F_{n-4}\right) \ldots \mathbb{P}\left(E_{2} \mid F_{1}\right) \mathbb{P}\left(F_{1}\right) \\
& \geq\left(1-\frac{2}{3}\right)\left(1-\frac{2}{4}\right) \ldots\left(1-\frac{2}{n-1}\right)\left(1-\frac{2}{n}\right) \\
& =\frac{1 \times 2 \times \ldots \times(n-3) \times(n-2)}{3 \times 4 \ldots \times(n-1) \times n} \\
& =\frac{2}{n(n-1)} .
\end{aligned}
$$

This probability can be posted to any success probability $(1-\delta)$ by executing the algorithm $\log (n / \delta)$ times, and taking the best cut. This number of execution is enough since we are in a case similar to the one of one-sided error algorithms: the probability to get a better cut, if the best current computed cut is not optimal, is at least $\frac{2}{n(n-1)}$ at each execution of the algorithm.

