
INF554: Using randomness in algorithms Autumn 2014

Cours 4 — October 6th
Enseignant : Frédéric Magniez Rédacteur : Marc Sanselme

4.1 Exercises

4.1.1 Max-SAT

Problem

Input: A SAT formula ϕ with n variables X1, . . . , Xn and m clauses ϕ = C1 ∧ . . . ∧ Cm

Output: a ∈ {0, 1}n which maximizes the number of satisfied clauses in ϕ

Strategy

1. Write the problem as a integer linear program

2. (a) Is it possible to find an optimal solution in polynomial time?

(b) How to link it with the initial problem?

3. Find a random algorithm to calculate a solution in a ∈ 0, 1n such that

Pa(C(a) = 1) ≥ βkz
∗
C ,

where C has exactly k variables and βk = 1− (1− 1
k
)k

4. (a) Find an algorithm with approximation factor (1− 1
e
) in average

(b) Try to derandomize it

Solution

1.

w = max
∑
C∈ϕ

zC

such that


∀C ∈ ϕ : 0 ≤ zC ≤ 1
∀i ∈ 1, . . . , n : 0 ≤ xi ≤ 1
∀C ∈ ϕ :

∑
i:Xi∈C xi +

∑
i:Xi∈C (1− xi) ≥ zC

and ∀C ∈ ϕ : zC ∈ Z
∀i ∈ {1, . . . , n} : xi ∈ Z

This integer program characterizes the problem:

4-1

INF554 Cours 4 — October 6th Autumn 2014

⇒ Let a ∈ {0, 1}n be any assigment. Set x = a, zC = C(a). Then
∑

C∈C zC equals
the number of clauses that a satisfies in ϕ.

⇐ Conversely, let x ∈ {0, 1}n and let z be some optimal solution to the integer
program with given x. Set a = x. Then

C(a) =
∑

i:Xi∈C

xi +
∑

i:Xi∈C

(1− xi) ≥ zC .

The last inequality is in fact here an equality since z is optimal for x, and therefore
a satisfies exactly

∑
C∈ϕ ZC in ϕ.

2. (a) It is possible to compute the optimal solution of a linear program (if variables are
all reals and not integers) in time polynomial in the program size, that is here in
n and m.

(b) Let (x∗, z∗) be any solution maximizing the linear program, and let w∗ be its
value. Then w∗ ≤ Max-SAT(ϕ) since the linear program has ben relaxed to real
variables.

3. Chose independently at random each bit ai such that P (ai = 1) = xi. Then it follows
that for any C having exactly k variables:

Pa(C(a) = 0) =
∏

i:Xi∈C

(1− x∗i)×
∏

i:Xi∈C

(x∗i)

≤

 ∑
i:Xi∈C

(1− x∗i) +
∑

i:Xi∈C

(x∗i)

k

≤

1− 1

k

 ∑
i:Xi∈C

x∗i +
∑

i:Xi∈C

(1− x∗i)

k

≤ (1− z∗C
k

)k

≤ 1− βkz∗C ,

where βk = 1 − (1 − 1
k
)k, and because t 7→ 1 − (1 − t

k
)k is an increasing and concave

function.

4. (a)

Ea(#satisfied clauses) ≥
∑
C

βkCZ
∗
C

≥ (1− 1
e
)
∑
C

Z∗C

≥ (1− 1
e
)w∗

≥ (1− 1
e
)Max-SAT(ϕ).

4-2

INF554 Cours 4 — October 6th Autumn 2014

(b) Since we have

Ea(#satisfied clauses) = Ea(#satisfied clauses|X1 = 0)× P (a1 = 0)

+Ea(#satisfied clauses|X1 = 1)× P (a1 = 1),

there must be a value of a1 ∈ {0, 1} such that

E(#satisfied clauses|X1 = a1) ≥ E(#satisfied clauses).

We can then proceed the other variables inductively, leading to the following
algorithm:

Algorithm:
For i = 1 . . . n
Try ai = 0
Compute Ea(#satisfied clauses|X1 = a1...Xi = ai)
If ≤ Ea(#satisfied clauses) then set ai := 1
Return a

We conclude by observing that we can combine this algorithm with the one we have
seen in class. More precisely, given a random assignment a chosen uniformly at random in
{0, 1}n, we have seen that any clauses with exactly k variables is satisfied with the following
probability:

Puniform a(C(a) = 1) ≥ (1− 2−k) = αk.

Observe first that for any value Z∗k we have αk ≥ αkZ
∗
k . Moreover, one can prove that for

all k ≥ 1:
αk + βk

2
≥ 3

4
Thus, considering the sampling procedure, which first flip a random bit, and according

to this bit either sample a ∈ {0, 1, }n uniformly at random or according to the previous
distribution (each bit ai are sample independently such that P (ai = 1) = x∗i). Then any
clause becomes satisfiable with probability at least 3/4, leading to an randomized algorithm
for Max-SAT with approximation ratio 4

3
. This one can again be derandomized by returning

the best value from the two derandomized underlying algorithms.

4.1.2 Min cut

Problem

Input: G : (V,E) a connected graph with n vertices and m edges
Output: C ⊂ E a cut (i.e. removing C from G creates at least 2 disjoint connected
components) such that the size of C is minimal.

Algorithm

Select a random edge e uniformly at random
Contract e
Repeat this process until only two vertices a, b remeain Return the set C of
remaining edges between a and b

4-3

INF554 Cours 4 — October 6th Autumn 2014

Analysis

Let C be any cut of minimal size k. coupe minimale quelconque de taille k. First we show
that if the algorithm never choses an edge in C, then after (n − 2) iterations, it returns
C. Indeed, let Ca be the connected component of a in G \ C, and let similarly Cb be the
connected component of a in G \ C. Then all removed edges are within G|Ca or G|Cb

since
C is a cut.

We now bound the probability that the algorithm never choses an edge in C. Let Ei be
the event “the contracted edge at step i is not in C”. Then define Fi = ∩i

j=1Ej. We will
lower bound by induction P(Fn−2), which is the probability we want to estimate.

First, when i = 1, vertices in the original graph G have all degree at least k, otherwise
there would be a cut with smaller size. Therefore

P(F1) =
k

m
≤ 2

n

, since the fact that all vertices have degree at least k implies m ≥ kn
2

.
Then, for i ≥ 2 and assuming that Fi−1 occurs, the set C is still a cut of minimal size

k in the reduced graph (that is G where selected edges has been contracted). But now the
graph has now only (n − i + 1) vertices remaining, each of degree at least k. Therefore, as
before, we get donc

P(Ei|Fi−1) ≥ 1− 2

n+ 1− i
.

We can now compute P(Fn−2) using Fi = Ei ∩ Fi−1 and conditional probabilities as
follows:

P(Fn−2) = P(En−2|Fn−3)P(Fn−3)

= P(En−2|Fn−3)P(En−3|Fn−4) . . .P(E2|F1)P(F1)

≥
(

1− 2

3

)(
1− 2

4

)
. . .

(
1− 2

n− 1

)(
1− 2

n

)
=

1× 2× . . .× (n− 3)× (n− 2)

3× 4 . . .× (n− 1)× n

=
2

n(n− 1)
.

This probability can be posted to any success probability (1− δ) by executing the algo-
rithm log(n/δ) times, and taking the best cut. This number of execution is enough since we
are in a case similar to the one of one-sided error algorithms: the probability to get a better
cut, if the best current computed cut is not optimal, is at least 2

n(n−1) at each execution of
the algorithm.

4-4

