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Introduction to
Quantum Computing

Frédéric Magniez

INF554 - Lectures 8 & 9

The genesis 2

Copenhagen School (Bohr, Heisenberg, ..

- The state of a quantum particule is only fixed
after a measurement

- Bennett, Brassard’84: perfectly secure quantum
encryption... that can be used in practice!

Paradoxe of Einstein, Podolsky, Rosen’35 §

- Very distant particules remain linked!?
- Aspect, Grangier, Roger, Dalibard’82: yes!

- Quantum encryption of Ekert'91 can be

Quantum boxes

Classical information is encoded using bit (0/1)
- The measure describes the state of the system '

- Arandom bit is a ‘hidden’ bit
- ®
i o

- Several possible measures

- Outcome is determined during the measurement

-l

S

certifiable
Quantum key distribution 4
==
P
7,
Problem
- Setting

No prior shared secret information between Alice and Bob
Authenticated classical channel

= Goal: Get a private key between Alice and Bob

- Application: One-time pad (Miller’1882-Shanon’945)

Classical results Washington-Moscow hotline (1963)
- Impossible: all the information is in the canal
- Possible (using randomized techniques):
Amplify the privacy of an imperfect private key




The protocol BB84 [Bennett-Brassard 84]

Protocol: quantum part
ﬁKey: 0000 O0OOOGCEOOOOC

Protocol: classical part
= Reconciliation: Alice and Bob publicly announce their coding choices
A&B only keep key bits with same choices
= Security: Intercepting and opening a box — errors
A&B check few key bits at random positions
= Privacy amplification: Perfect key using with few other more key bits

Conclusion
- Secrete key generation using an authenticated classical channel
- Small initial private key — large private key, with no authenticated channel

Qubit

State
- 2-dimensional unit vector
|¥) = cos 0]0) + sin 61)
general case (complex amplitudes):
0y = () = alo) + B0, o+ 188 =1

Measure

- Randomized orthogonal projection
la®_, |0)

alo) +ﬂ|1>—><
. [BIF>11)
Evolution

- Unitary transformation G € U(2) (= reversible)
Definition: G € C*** st. G*G =1d

)y - [e] ) = Gl)
') = Gl) = |G |- )

Examples of transformations

Reversible classical transformation

= Identity
Ib) - - |b)

2
|b> """" NOT|----->» |1 — b)
L/

Hadamard transformation
- Definition: half-wave blade at 22,5° H = 1

1 —1
by - [H] - f(|0> + (1)) ‘VA
- Properties: quantum coin flipping
0
|0)—>[H}— J5(10) + \1>>—»m<::1i
16) [} [} easure— 1)

= Negation

@ Measure does not commute!

Polarization of photons

State

= Polarization: 2-dimensional vector
|6) = cos B8|—) + sin 0|T)

Measure

= Calcite crystal L
separates horizontal and vertical polarizations

@ A measure modifies the system

Transformation
= Well known transformation: half-wave blade
orthogonal symmetry around its axis

- Any rotations (possibly with complex angles)




Exercice |: Quantum key distribution

Implementation
- Explain how to realize the boxes of slide 3

= Implement the protocol of slide 4 using random bits, Hadamard
transformations, and measurements

Analysis of a specific attack

Assume a third party Eves intercepts a photon with probability 1/10,
observes it, and forwards the projected photon to Bob

Assume furthermore that Alice & Bob check each bit of their key with
probability 1/10

- Compute

= The probability Eve learns a bit of the secret key
= The probability Eve is detected

Entanglement

Principle: 2 distant boxes which remain entangled

- Outcomes are random

S

QO
- but correlated if boxes are opened similarly

- and uncorrelated otherwise .

Bell’64 inequality

- Cooperative random game

ifgé.
Classical = 75% of victory -

Quantum > 85% of victoiry %‘
- Experimental verification at Orsay in 1982 %‘
- Application: quantum certification :

Bell-CHSH inequality as a classical game

Game

= Alice and Bob share random bits but cannot communicate
- Alice receives a random bit x, Bob y
= Alice returns a bit a, Bob b

:c\ p—
E -@ 3
a”

shared random bits \b

- Goal: maximize p=Pr(a®b=xzAvy)
zy
0 | ® 0 |
0 0 0 0 0 I
| 0 | | | 0

CHSH inequality [1969]

= The best probabilistic strategy achieves p=3/4

Exercice 2: CHSH inequality

Deterministic strategy
- Provide a deterministic strategy achieving p=3/4
= Show that no deterministic strategy can achieve p=|

= Conclude that p=<3/4 for every deterministic strategies

Randomized strategy

= We assume that both players have access to a shared source of
randomness, called A

- Note: Physicists call \ a hidden variable

= Justify why this is the most powerful model of random ressource
- Let p) be the winning probability when A is fixed

- Show that there must be some A such that px = p

= Conclude that the best probabilistic strategy achieves p=3/4




Mathematical background:Tensor product 14

Vector spaces
= V,W:vector spaces
= V®W: is the free vector space Span (v®w :veV,weW)
with equivalence relations
(Vitv2)®w = vi®w + V20w
v® (Witwz) = vew| + vew,
(c-v)®w = v®(c-w) = c-(v®w)
Linear maps
= SV=X, T:W=Y :linear maps
= S®T: VOW—X®Y is the linear map satisfying
S®T (vew) = S(v)®T(w)
(and extended by linearity)
Applications
- Joint probability distributions on spaces VW
D(VxW) = DV)@D(W) # D(V)xD(W) (:product distributions)

n-qubit 13
State
- [y € TN quch thae [[|9) ]| = 1
W= Y ) i
ze{0,1}" with Z la|® =1
ze{0,1}
- Examples
- Separated 2-qubit: |00) + |01) = |0)(|0) + |1))
- Entangled 2-qubit: |00) + |11) # |tb1)|1p2)  EPR state
Measure
- Randomized orthogonal projection
2
S oo ] 1
ze{0,1}"
Evolution
- Unitary transformation G € U (2") (G € C¥"*?"st. G*G = 1d)
%) - - 19) = Gl)
15

Transformation c¢c-NOT

Definition
NOT|0b) = |0b) s
Cc— = 0100
c-NOT|1b) = [1)|(1 — b)) ¢-NOT = | 4001
0010

c-NOT|ab) = |a)|a & b)

Representation
control bit  ~------ >
target bit e INOT| - - - -~

Bell basis change §
1Bo0) = 5(100) + |11))

|z - , |Bo1) = %001) +[10))
|/@W> |B10) = \/ii(|00> —[11))
Bu) = L5(101) — [10))

Partial measure: 2-qubit case 16
Measure of first qubit
- Projectors Py = |00)(00| + [01)(01]| = |0)(0] ® I
Py = [10)X10] + [11)(11] = |1}1]| ® >
L
P[) @ P1 == Id
= Measure of first qubit
1 Pof)P? -
=a’+b 1 al0) + b|1
- TR PRl =10 e

[4) = a|00) + b|O1) + c|10) + d|11) » o0} + 1)

D | T A el
HHJ#;)QZ b ilY) =1 VE T &
=

Generalization
= Partial measure project to a subspace compatible with the observation
Probability = square norm of the projection

Outcome = renormalization of the projection




Exercice 3

Partial vs complete measurement

- Consider any two-qubit state, and measure its first qubit and then its
second qubit

- Compute the probability distribution of the outcome

- Conclude that observing the two qubits is equivalent to measuring each
qubit individually in any order

= Note:This can be generalized to any number of qubits

Non-cloning
- Assume there is a unitary map U such that, for every qubit [1)):
U(|4)10)) = [&)[4)
- Compute U([%)|0)) for |¥) = ﬁ(lﬂ) + (1))
- using the definition of U
= using the linearity of U and then again the definition of U
- Get a contradiction and conclude

Bell-CHSH inequality as a quantum game 8
Reminder
- Goal: maximize p = 11311;((1 db=xAy)
Quantumly

= Alain and Bob share an EPR state
x |
N 602
gt
ar” [L1)/vz

- Bob performs a rotation of angle g

= If £ = 1, Alice performs a rotation of angle

ISERE

= If y = 1,Bob performs a rotation of angle —
= Alice et Bob observe their qubit and send their respective outcomes
= Theorem: p = COS2(%) =~ 0.85 |

Realization: [Aspect-Grangier-Roger-Dalibard: Orsay‘82]

Exercice 4: EPR state

Entangles boxes

= Implement the entangled boxes of slide 10 using EPR states

Properties
= Show that applying a unitary U on the first qubit of an EPR state is
equivalent to applying the transposed matrix of U on its second qubit

Quantum game

- Prove the theorem of previous slide

Superdense coding [1992] 20

Problem

- Alice & Bob share an EPR state:  |Ba0) = 5(|00) + [11))
= Alice wants to send two bits xy to Bob
= ButAlice can only send one qubit to Bob

S N
L4
| -qubit

Xy xy?
Bell basis change |Boo) = J5(100) + [11))
|z) - - |Bo1) = %(|01> +[10))
) - L Bad 1) = 33(100) = [11))
[B11) = ﬁ(lt)l) —[10))

Protocol
= Alice applies to its qubit NOT, if y=1; and FLIP, if x=1 FLIP = <(1] 01>
= Alice sends its qubit to Bob

= Bob performs the inverse of the Bell basis change, and observes xy




Quantum teleportation 21

Problem
- Alice wants to transmit a qubit %) to Bob
- Bob: far and unknown position to Alice

1) o i |8 .

Realization
Alice [ —* Interaction 4’ Alice
10 ] nteraction | " ™™ || Interaction | __ . _ ..
|0) —* quantique classique [y)
Bob Bob

The quantum communication does not reveal anything on [1)!

Realization of teleportation 2
Circuit
W)=y + By -y [H ] - )
; Measure
|0) : )
0)

i > |"r/)w/>

Analysis
- Final state % Zz T [Pay) with  |epy,) = (NOT)Y(FLIP)®|4))
- By measuring xy, third qubit is projected to |t)xy)
- After learning x,y, Bob can correct |)zy) to 1))

Realizations
= | photon [Zeilinger et al : Innsbruck’97]
= | photon, 6 km [Gisin et al : Geneve'02]
= | atom [Blatt et al : Innsbruck'04]

= Today: over 100km

Coin flipping 23

Problem E @b
@

- Alice and Bob are fare away
-~ They want to flip a coin in a fair way
but they don’t trust each other

Classically
- Solutions based on harness assumptions of combinatorial problems
= No unconditionally secure solution

Quantumly
- There exists a protocol with maximal bias 0,25 [2001]
- There is no protocol with bias better than 0,207 [2002]

= There exists a protocol with maximal bias 0,207 [2009]

Weak version: election @

= Alice wants head ﬂ
- Bob wants tail
= There exists a protocol with arbitrarily small bias [2007]

EPR based coin flipping 24

Main idea
= Assume Alice & Bob share an EPR state

— G0y v
H 2

= Alice & Bob observe their qubit and get bit a,b

Fact
= a=b with probability |
= a(resp.b) is a uniform random bit

Problems
= Who create the EPR state?
= If Alice does, Bob needs to check that is an EPR state:
And for instance not |00) — a=b=0 with probability |
= In ordert o check the EPR state, Bob needs the 2 qubits
Then Alice needs to check that Bob gives back the correct qubit




EPR based coin flipping 25

|0j0)/v2

+
Protocol 1)/ v=
. |0j0)/v2

= Initialization :
Alice prepares 2 EPR states [11)v=

Alice send the corresponding first qubits to Bob
- Selection

Bob select the EPR state that will be use for flipping
The other EPR state will be use for checking the honesty of Alice
Alice and Bob observe their respective qubit of the flipping EPR state

= Checking

Alice sends to Bob her qubit of the checking EPR state

Bob measures the checking EPR state
If the measure outcomes is correct, Bob accepts coin
Otherwise, Bob declares that Alice has cheated

Theorem
- If both participant are honest, the outcome is a perfect random bit
= If one of the participants is dishonest, the maximal bias is /4
Attacks Goal:increase the probability to get 0

- Bob’s attack: measure its 2 qubits, and select the EPR pair giving 0 (if any)
- Alice’s attack: |00)|EPR state) 4 [EPR state)|00)

NATURE | NEWS

26

Google and NASA snap up quantum computer

D-Wave machine to work on artificial-intelligence problems.
Nicola Jones
16 May 2013

D-Wave, the small company that sells the world’s only commercial
quantum computer, has just bagged an impressive new customer: a
collaboration between Google, NASA and the non-profit Universities
Space Research Association.

The three organizations have joined forces to install a D-Wave Two,
the computer company's latest model, in a facility launched by the IR L L
collaboration — the Quantum Atrtificial Intelligence Lab at NASA's ‘
Ames Research Center in Moffett Field, California. The lab will

explore areas such as machine learning — making computers sort
The D-Wave Two quantum computer has a 512-

qubit processor (pictured) that can do some

calculations thousands of times faster than
voice-command recognition. “We actually think quantum machine conventional computers.

and analyse data on the basis of previous experience. This is useful
for functions such as language translation, image searches and

learning may provide the most creative problem-solving process D-WAVE
under the known laws of physics,” says a blog post from Google
describing the deal.

27

= " s
= ~ g
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NSA seeks to build quantum computer that
could crack most types of encryption

By Steven Rich and Barton Gellman, E-mail the writers

In room-size metal boxes secure against electromagnetic leaks, the National Security
Agency is racing to build a computer that could break nearly every kind of encryption used
to protect banking, medical, business and government records around the world.

According to documents provided by former NSA contractor Edward Snowden, the effort to
build “a cryptologically useful quantum computer” — a machine exponentially faster than
classical computers — is part of a $79.7 million research program titled “Penetrating Hard
Targets.” Much of the work is hosted under classified contracts at a laboratory in College
Park, Md.

Supercomputer 28

Feynman’8|

- “Can quantum systems be probabilistically simulated by
a classical computer? [...] the answer is certainly, No!”

Deutsch’85

= Quantum Turing Machine
- Existence of a universal Turing Machine

Simon, Shor’'94

- Quantum algorithms with exponential speedup
- Quantum attack of public-key crypto-systems




Quantum parallelism 29

n-qubit 4 pits can take

- ) 24=16 values
- Superposition of all possible values 0000

- 27 possible values 0010

Parallel computation P o paricues ¥ 0110

. in the Universe « 2300
- In one step, 27 computations L—J 1000

- But only one outcome can be (randomly) observed! 1010

Strategy 1110

- Combine cleverly those values before measuring them...

Logical computing 30

Gates
- A gate Cis a function on at most 3 qubits
Example: AND, OR, NOT, ...

Circuit
= Adcircuit is a sequence of gates C' = Cp,...CyC,
= The size of Cis its number L of gates
- C computes a function f if for all input x: C(z, 0%) = (f(x), z)

Kol
|

i

{ ] (@)
OR
0 e— |
0 ND|
Theorem

= Any function can be computed by a circuit using only NOT, OR,AND gates

Quantum gates and circuits 31

Gates U cu(2¥), k=1,2,3
- A quantum gate is a unitary map that acts upon at most 3 qubits

Tensor product of gates

el (G @ GY)[) = (Gilth))(Galw)

Circuit

- A quantum circuit is a sequence of gates (extended by ® Id)

Theorem
= Any unitary can be realized exactly by a circuit
and approximated using only gates c-NOT and /H

Reversible computing 32

Reversible circuit
= Alogical circuit is reversible if each gate is reversible
= Areversible circuit is also a quantum circuit

(since it permutes logical states)

Embedding f:{0,1}" — {0,1}™

fo :{0,1}"F™ — {0,1}"*t"  fg(z,y) = (z,y @ f(=))
where: 0ol =l@0=1 0@0=1®l =0
UOV=(u1®Vv|,u2®vy,...)
Theorem

= If a function f can be computed by a logical circuit of size L, then fo can
also be computed by a reversible circuit of size O(L)

Universality
= TheToffoli gate (c-c-NOT) is universal for reversible computating
T(a,b,c) = (a,b,c @ (a A b))




Quantum implementation of classical functions 3

A first quantum algorithm [1992] 34

Normal form
- Function: f:{0,1}" — {0,1}™
= Circuit: Uy : |x)|0) — |z)|f(x))
[z)ly) — |z)y & f(=))

Alternative form S¢
- Boolean function: f : {0,1}" — {0,1}

= Circuit:
|) { } |)

%) = J5(10) = 1)) — L(If@) — 1 & f(2)))
- Conclusion: = %(Im —11))
Us(lz) ®@ |9)) = Sy (lz)) @ [4)

Ur

Deutsch-Jozsa problem
- Oracle input: {:{0, I}"— {0, I} a black-box function

such that f is either constant or balanced

= Output: 0 iff f is constant

Query complexity
- Deterministic: 2"'+1
= Quantum: |

Special case n=|
= No restriction on
= Deterministic vs quantum: 2 queries vs | query

Quantum solution ( n=1) 35

Analysis (n=1) 36

@ x — f(x) can be nonreversible!

Reversible implementation of f

al0) +BIb) - [ Sy |- ! ®[b) 0) + -1/ DI1)

Hadamard gate: half-wave blade at 22,5°

b ~---- [ H |- 75(10) + (=1°[1)) ‘

Quantum circuit

o -

I constant | 0>

R 171 I 71 71 =

f balanced ™ |1)

Initialization: |0)

Parallelization: 55(10) + 1))

Query to f: L @0) + -1/ V1))

Interferences: H=nO(0) +11)) + /M (j0) — [1)))

Final state: (0@ 4 cf D)0y + (/@ — I D)[1))




General solution for Deutsh-Jozsa 37

Reversible implementation of f

> aalw)e S| 37 ) @ o)

z€{0,1}n ze{0.1}n

Quantum Fourier transform

.7”,”,
QFT,= -
by« [H] + Z000)+ vy

QFT, |z) = 555 Y (-1"Y|y)
v where x -y = szyz mod 2
Quantum circuit i

R 2 M A N T e B

Analysis 38

f constant |OO ...0)

0 e[ ar- F] -

f balanced |y), y#00...0

Bernstein-Vazirani 39

Problem
= Oracle input: :{0, 1}" — {0, I} a black-box function
such that f(z) = a -2
for some fixed a € {0,1}"
= Output: a

Query complexity
- Randomized: n

Query f(0-'10™)=q;, fori=12,..,n
= Quantum: |

Quantum circuit

R T A 77 R

Initialization: |00...0)
Parallelization: Y. )
z€{0,1}"
Query to f: oz Y. ) ®)
z€{0,1}n
Interferences: = Y nf@tey)y,)
x,yc{0,1}™
Final state: (2% > (—1)f(””))|00...0)+ S ayly)
z€{0,1}™ y#00...0
Exercice: Analysis 40

R 1 72 1 8 = R

Initialization:

Parallelization:
Query to f:

Interferences:

Final state:




On the difficulty of factorization 41

RSA Challenges

= http://www.rsasecurity.com/rsalabs

ﬁz:fe"rge ::5;) Status Submission Date || Submitter(s) ‘

RSA-576 $10.000 Eactored ?ue;:mbe' 3. J. Franke etal.
$20.000 Eactored lz\lgggmberz_ F.Bahretal.
$30.000 Factored l
|
$75,000 Fattorea ‘
s1so.000 |0 g
sz00.000 ||F00 l

- RSA-640 (193 digits) :
02284272754572016 1948823 5 17 2838

1074 21 346(
033415471073108501919548529007337724822783525742386454014691736602477652346609

1634733645809253848443 1 33883865090859841 7836700330923 12181 1 108523893331001045081512121 18167511579
x

190087 12816648221 1312685157393541397547 189678996851 5493666638539088027 103802 104498957191261465571
= RSA Algorithm (allows private communication)

security based on the difficulty of factorizing

Asymmetric encryption 2

One-way functions
- Example: multiplication / factorization

- Bases of modern encryption (Rivest, Shamir, Adleman’77)

RSA challenges (1991-2007)
17x19="7

667 =?x7?

\ 310741824049004372135075003588856

793003734602284272754572016194882
320644051808150455634682967172328
678243791627283803341547107310850
191954852900733772482278352574238
6454014691736602477652346609
=?x7?

- RSA-100, $1,000, 1991

- RSA-640, $20,000, 2005

Quantum algorithm for factorization 43

Classical reduction

- Factorization can be reduced to period finding
(of some arithmetic function)

Quantum tool: Fourier Transform
- FT reveals the period of a signal
- FTis (very) fast on a quantum superposition

3107418240490043721350750035888567930037346022842727545720161948823206440518081504556346829671723
286782437916272838033415471073108501919548529007337724822783525742386454014691736602477652346609
1634733645809253848443133883865090859841783670033092312181110852389333100104508151212118167511579
X
1900871281664822113126851573935413975471896789968515493666638539088027103802104498957191261465571

From period finding to factorization 44

Theorem [Simon-Shor'94]

= Finding the period of any function on an abelian group can be done in
quantum time poly (log |G|)

Order finding
= Input:integers nand a such that gcd(a,n)=1
= Output: the smallest integer q # 0 such that a?=1 modn
= Reduction to period finding: the period of x — @ modn is ¢

Factorization
= Input:integer n
= Output: a nontrivial divisor of n

Reduction: Factorization < Order finding
= Check that gcd(a,n)=1
- Compute the order g of a modn
- Restartifq isodd or @92 # -1 modn
- Otherwise (a?92-1) (a?2+1)=0 modn

- Return gcd(a?? £ |, n)




Simon’s problem 45

Problem
- Oracle input: f : {0,1}" — {0, 1}" a black-box function

) - ) - |z - )

[0) - -1 f (@) |w)- - |w @ f(z))

such that IEs;éO":Vm:,éy, f(x) = fly) = yzmaaﬂ
- Output: the period s

Complexity

- Randomly: 2%(™ queries

= Quantumly: O(n) queries and time O(n’)
Idea
- Use a Fourier transformation:[QFTn|w> = # Z (71)m-y|y>]
where -y = Ziﬂﬂh mod 2 v

- Realization of QFT, using Hadamard gates:

[b) - - TH]--- -~ 5(10) + (-1°[1)) QFT, =

Quantum solution 46
07) - {QFT,}--- m
0™ e
Initialization: [0")|0™)

Parallelization: 3% |z)lo")

Query to f: 77 > _lT)| ()
Filter: Z(lz) + |z @ 8))|f(2))

Partial measure: project to a;sub compatijble withsthe, obseryati
Inter eren e§, Je f el e
robability = sqdare n T of the projection

QOut = lizgth f.tl jecti
uecome = renormalS oD SO PR ) £ (@)

i S w)F @)

Finding the period 47

Construction of a linear system
- After n + k iterations: ', y%,...,y"TF € st

= s#0" is solution of the linear system in t:

yl-t=0 Yit1 +ypta ...+ yptn =0

yz.t:() y%t1+y§t2+~~~+yitn:0
o .

y et =0 it Ay e Lyt =0

- The y' are of rank n-l with proba > I-1/2¢*!
- System solutions: 0" and s
Complexity

- Constructing the system: O(n) queries, time O(n?)

- Solving the system: no query, time O(n®)

y:sy=0
More difficult... 48
Period Finding(G) G L

= Oracle input: function f on G such that Hj

fis strictly periodic for some unknown H<G: aH |

f(@)=fy) <= yeazH 5
= Output: generator set for H —
a.H ]

Examples
- Simon Problem: G = (Z2)", H = {0, s}
- Factorization : G=1%Z,H =rZ
- Discrete logarithm: G = 7%, H = {(rz,x) : « € Z}
= Pell’s equations: G=R

= Graph Isomorphism: G = S,,

Quantum polynomial time algorithms (i log|G))
= Abelian groups G: QFT-based algorithm [1995]
= Normal period groups H: QFT-based algorithm [2000]

= Solvable groups G of constant exponent and constant length [2003]




Hard instances 49

Shift problem
- Dihedral group Zx x Zs : sub-exponential time 20(VIeg N) [2003]
feo [2]s 2397 e ]io]is] 4]
shift = -3
fe0 [3]9]7]eio]is[4]2]5]12]
Graph Isomorphlsm

sla |=w|o|a]|o|oc|s |>
N|la|v]|v|lw|o|o| ==

= Instance of Period Finding on the symmetric group
where we just know how to implement QFT...[1997]

General case

= Polynomial number of queries to f, but exponential post-processing time [1999]

Preliminary remarks 51

Implementation of f

Zo"”'w) R =T B, Z (~1)@ag|T) = Zaw|w> — 20| zo)
xr xr x

oy - [H] 25(10) + -v™|1))
|zs) - - 25(10) + -v™[1))

=] -
L~»72< H"Y|y)

|z) = |z1z2) =~

L,,, :

with = -y = x1y; + X2y> mod 2

Grover search algorithm 50
Grover problem
= Oracleinput: f : {0,1}" — {0,1} suchthat Jlzg: f(x) =1
= Output : g
- Constraint: f is a black-box
Mo N : \' .
Query complexity
- Randomized: ©(2")
= Quantum: o(v2n)
n =2 —> 1 query
Quantum solution (n = 2) 52
g »———-
- |zo)
0y ---{H]
Initialization: |00)
Parallelization: 1(j00) + [01) + [10) + [11))
Query to f: 23 2) — |zo)
Interferences: [00) — 3" —1®¥|y)
Y
Query to §y: —100) — 1( 3" (—1)®¥|y) — 2|00)) = —H ® H|zo)
Y
Final state: — o)




Geometrical analysis

53

Grover operator

@ F @ E @
Vectg(|zo), |unif))
| o)
Sp = =Sz = Sjay-
—8s, = Soo)
H®28,00y H®? = S|yniry

|unif)

G = Sjunif)Sjayy: = Roo

with sin @ = (unif|ze) = % (20) -

After | iteration

|unif) — —G|unif) = —|zo)

Geometrical analysis, general case 54

Grover operator

Vectg(|zo), |unif))
o)

Sf = —Sja)) = Sjag)-

=S5, = Sjoo)
H®28,00y H®? = S| niry

|unif)
G = Sjunif)Sjzg)+ = Rae o)
with sin § = (unif|zo) = \/%

After T =2 /1 - +/(2") iteration

|unif) — —GT|unif) ~ —|zo)

How many quantum algorithms exist?
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Unstructured problems
- Grover algorithm [1996]

Algebraic problems
= Simon-Shor algorithm [1994]

Well structured problems

- Classical algorithms are optimal!

Problems with few structures
= Quantum walk based algorithms [2003]
quantum analogy of random walks
- Examples
Element Distinctness, Commutativity: N3 [2004]
Triangle Finding: N%7 (lower bound N) [2013]
Square Finding: N'-25 (lower bound N) [2010]
Matrix Multiplication: N> (lower bound N*?2) [2006]
AND-OR Tree evaluation: (N [2007]

To continue... 56

An Introduction to Quantum Computing
= Authors: Phillip Kaye, Raymond Laflamme, Michele Mosca
- Editor: Oxford University Press

Quantum Computation and Quantum Informatio
= Authors: Michael A. Nielsen, Isaac L. Chuang
- Editor: Cambridge University Press

Classical and Quantum Computation
= Authors:A.Yu. Kitaev,A. H. Shen, M. N.Vyalyi
- Editor:American Mathematical Society

Lecture Notes for Quantum Computation
= Author: John Preskill
= Website: http://www.theory.caltech.edu/~preskill/ph229/
Quantum proofs for classical theorems

= Author:Andrew Drucker, Ronald de Wolf

= Website: http://arxiv.org/abs/0910.3376

- Collection: Graduate Studies in Mathematics
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Entanglement?
= “Classical entanglement” exists: shared randomness

- But quantum entanglement is “‘stronger”
Bell-CHSH inequality and applications

%
i+
[L1)/v2

Complex amplitudes?
= No:they can be simulated using only real amplitude

Negative amplitudes?

= Yes:they can induce destructive interferences

Hardness of amplitudes?

= No:amplitudes must be easily computable for being physically
realizable

Some quantum centers in the world 59

S
=

~ uniTED sv,ﬁ:s"f

Future 58

Applications

- Unfalsifiable money, artificial intelligence, ...

Quantum computing
= For a better understanding of quantum phenomenon

= New mathematical tool for proving results in classical computing!

Technology
- Computer, intermediate models: boson sampling

= Certification : encryption, random generator, computation
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Welcome

The Paris Centre for Quantum Computing (PCQC) in Paris, France,
brings together computer scientists, theoretical & experimental
physicists and mathematicians that work in and around Paris. Our goal
is to develop novel quantum information and communication
technologies and lead the way from a Personal Computer (PC) to a

Quantum Computer (QC).

Learn more about PCQC

Highlights

PCQC is official!

PCQC was inaugurated in January st,
2014 as a Federation de Recherche
FR3640 between CNRS, Univ Paris
Diderot and Telecom ParisTech. The
centre has 17 permanent members
from the above institutions, as well as
from INRIA Paris, Univ Pierre & Marie
Curie, CEA, Univ Paris-Sud and Institut
d'Optique.

QCRYPT 2014 in Paris
The 4th international Quantum
Cryptography QCRYPT conference will
be organised in Paris in September
2014.

More news

Openings

PCQC is welcoming applications for a
number of PhD and postdoc positions.

In addition, every year, the different
French institutions (eg. CNRS, INRIA,
Universities) have permanent job
openings in Computer Science and in
Physics, including quantum information.
The application deadline is usually in
early January. We recommend interested
parties to contact a PCQC member at
least two months before the deadline in
order to discuss the possibilties and the
different application processes.

Learn more about Openings

Events

The PCQC members are organising
regularly seminars, workshops,
schools or conferences.

You can find more information about
upcoming and past events here

You can also join our mailing list

Join our Mailing List
Name *

First Last

Email *

Submit




