## Introduction to Quantum Computing

Frédéric Magniez

INF554 - Lectures 8 \& 9
Copenhagen School (Bohr, Heisenberg, ...)

- The state of a quantum particule is only fixed after a measurement
- Bennett, Brassard'84: perfectly secure quantum encryption... that can be used in practice!

Paradoxe of Einstein, Podolsky, Rosen'35


- Very distant particules remain linked!?
- Aspect, Grangier, Roger, Dalibard'82: yes!
- Quantum encryption of Ekert'91 can be certifiable



Problem

- Setting

No prior shared secret information between Alice and Bob Authenticated classical channel

- Goal: Get a private key between Alice and Bob
- Application: One-time pad (Miller'I882-Shanon'1945)

Classical results


- Impossible: all the information is in the canal
- Possible (using randomized techniques):

Amplify the privacy of an imperfect private key

Protocol: quantum part


Protocol: classical part

- Reconciliation:Alice and Bob publicly announce their coding choices
A\&B only keep key bits with same choices
- Security: Intercepting and opening a box $\rightarrow$ errors
A\&B check few key bits at random positions
- Privacy amplification: Perfect key using with few other more key bits


## Conclusion

- Secrete key generation using an authenticated classical channe
- Small initial private key $\rightarrow$ large private key, with no authenticated channel


## State

_ 2-dimensional unit vector

$$
|\psi\rangle=\cos \theta|0\rangle+\sin \theta|1\rangle
$$


general case (complex amplitudes):

$$
|\psi\rangle=\binom{\alpha}{\beta}=\alpha|0\rangle+\beta|1\rangle, \quad|\alpha|^{2}+|\beta|^{2}=1
$$

Measure

- Randomized orthogonal projection

Evolution

$$
\alpha|0\rangle+\beta|1\rangle \longrightarrow \text { Measure } \overbrace{|\beta|^{2}}^{|\alpha|^{2}}|1\rangle
$$

- Unitary transformation $G \in \mathcal{U}(2) \quad$ ( $\Rightarrow$ reversible)
Definition: $G \in \mathbb{C}^{2 \times 2}$ s.t. $G^{*} G=\mathrm{Id}$
$\left.|\psi\rangle \cdots-\cdots \psi^{\prime}\right\rangle=G|\psi\rangle$
$\left|\psi^{\prime}\right\rangle=G|\psi\rangle \ldots \ldots G^{*} \ldots \ldots|\psi\rangle$

State

- Polarization: 2-dimensional vector

$$
|\theta\rangle=\cos \theta|\rightarrow\rangle+\sin \theta|\uparrow\rangle
$$

Measure

- Calcite crysta

eparates horizontal and vertical polarizations
A measure modifies the system
$\sin ^{2} \theta$
- Definition: half-wave blade at $22,5^{\circ} \quad H=\frac{1}{\sqrt{2}}\left(\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right)$
$|b\rangle \cdots \quad H \quad \frac{1}{\sqrt{2}}\left(|0\rangle+(-1)^{b}|1\rangle\right)$

- Properties: quantum coin flipping

$$
\begin{aligned}
& |b\rangle \longrightarrow H \longrightarrow H \text { Measure } \longrightarrow|b\rangle
\end{aligned}
$$

## Exercice I: Quantum key distribution

Implementation

- Explain how to realize the boxes of slide 3
- Implement the protocol of slide 4 using random bits, Hadamard transformations, and measurements

Analysis of a specific attack

- Assume a third party Eves intercepts a photon with probability I/IO, observes it, and forwards the projected photon to Bob
- Assume furthermore that Alice \& Bob check each bit of their key with probability I/IO
- Compute
- The probability Eve learns a bit of the secret key
- The probability Eve is detected


## Game

- Alice and Bob share random bits but cannot communicate
- Alice receives a random bit $x$, Bob $y$
- Alice returns a bit $a$, Bob b

- Goal: maximize $\quad p=\operatorname{Pr}_{x, y}(a \oplus b=x \wedge y)$

| $\wedge$ | 0 | I |
| :--- | :--- | :--- |
| 0 | 0 | 0 |
| I | 0 | I |


| $\oplus$ | 0 | 1 |
| :---: | :---: | :---: |
| 0 | 0 | 1 |
| I | 1 | 0 |

CHSH inequality [1969]

- The best probabilistic strategy achieves $p=3 / 4$


## Entanglement

Principle: 2 distant boxes which remain entangled

- Outcomes are random
- but correlated if boxes are opened similarly
- and uncorrelated otherwise


## Bell'64 inequality

- Cooperative random game

Classical $\leq 75 \%$ of victory
Quantum > 85\% of victoiry

- Experimental verification at Orsay in 1982
- Application: quantum certification



## Exercice 2: CHSH inequality

## Deterministic strategy

- Provide a deterministic strategy achieving $p=3 / 4$
- Show that no deterministic strategy can achieve $p=1$
- Conclude that $p \leq 3 / 4$ for every deterministic strategies

Randomized strategy

- We assume that both players have access to a shared source of randomness, called $\lambda$
- Note: Physicists call $\lambda$ a hidden variable
- Justify why this is the most powerful model of random ressource
- Let $p \lambda$ be the winning probability when $\lambda$ is fixed
- Show that there must be some $\lambda$ such that $p_{\lambda} \geq p$
- Conclude that the best probabilistic strategy achieves $p=3 / 4$


## State

$-|\psi\rangle \in \mathbb{C}^{\{0,1\}^{n}}$ such that $\||\psi\rangle \|=1$

$$
|\psi\rangle=\sum_{x \in\{0,1\}^{n}} \alpha_{x}|x\rangle \quad \text { with } \sum_{x \in\{0,1\}^{n}}\left|\alpha_{x}\right|^{2}=1
$$

- Examples
- Separated 2-qubit: $|00\rangle+|01\rangle=|0\rangle(|0\rangle+|1\rangle)$
- Entangled 2-qubit: $|00\rangle+|11\rangle \neq\left|\psi_{1}\right\rangle\left|\psi_{2}\right\rangle \quad$ EPR state

Measure

- Randomized orthogonal projection

$$
\sum_{x \in\{0,1\}^{n}} \alpha_{x}|x\rangle \cdots \text { Measure }\left|\alpha_{x}\right|^{2},|x\rangle
$$

Evolution

- Unitary transformation $G \in \mathcal{U}\left(2^{n}\right) \quad\left(G \in \mathbb{C}^{2^{n} \times 2^{n}}\right.$ s.t. $\left.G^{*} G=\mathrm{Id}\right)$

$$
|\psi\rangle \cdots \boxed{G} \cdots \cdots\left|\psi^{\prime}\right\rangle=G|\psi\rangle
$$

Transformation c-NOT

## Definition

| c-NOT $\|0 b\rangle$ | $=\|0 b\rangle$ |
| ---: | :--- |
| c-NOT $\|1 b\rangle$ | $=\|1\rangle\|(1-b)\rangle \quad$ c-NOT $=\left(\begin{array}{l}1000 \\ 0100 \\ 0001 \\ 0010\end{array}\right)$ |
| c-NOT $\|a b\rangle=\|a\rangle\|a \oplus b\rangle$ |  |

$$
\mathrm{c}-\mathrm{NOT}|a b\rangle=|a\rangle|a \oplus b\rangle
$$

## Representation



Bell basis change

Vector spaces

- $V, W$ : vector spaces
- $V \otimes W$ is the free vector space $\operatorname{Span}(v \otimes w: v \in V, w \in W)$
with equivalence relations
$\left(v_{1}+v_{2}\right) \otimes w=v_{1} \otimes w+v_{2} \otimes w$
$v \otimes\left(w_{1}+w_{2}\right)=v \otimes w_{1}+v \otimes w_{2}$
$(c \cdot v) \otimes w=v \otimes(c \cdot w)=c \cdot(v \otimes w)$


## Linear maps

- $S: V \rightarrow X, T: W \rightarrow Y$ :linear maps
- $S \otimes T: V \otimes W \rightarrow X \otimes Y$ is the linear map satisfying
$S \otimes T(v \otimes w)=S(v) \otimes T(w)$
(and extended by linearity)


## Applications

- Joint probability distributions on spaces $V, W$
$\mathcal{D}(V \times W)=\mathcal{D}(V) \otimes \mathcal{D}(W) \neq \mathcal{D}(V) \times \mathcal{D}(W)$ (: product distributions)

Measure of first qubit

- Projectors $\quad P_{0}=|00\rangle\langle 00|+|01\rangle\langle 01|=|0\rangle\langle 0| \otimes \mathrm{I}_{2}$

$$
\begin{gathered}
P_{1}=|10\rangle\langle 10|+|11\rangle\langle 11|=|1\rangle\langle 1| \otimes \mathrm{I}_{2} \\
P_{0} \oplus P_{1}=I d
\end{gathered}
$$

- Measure of first qubit

$$
\| P_{0}|\psi\rangle \|
$$

## Generalization

- Partial measure project to a subspace compatible with the observation

Probability = square norm of the projection
Outcome $=$ renormalization of the projection

$$
\begin{aligned}
& |\psi\rangle=a|00\rangle+b|01\rangle+c|10\rangle+d|11\rangle . \\
& =a^{2}+b^{2} \frac{1}{\| P_{0}|\psi\rangle \mid \|} \boldsymbol{P}_{0}|\psi\rangle=|0\rangle \frac{a|0\rangle+b|1\rangle}{\sqrt{a^{2}+b^{2}}} \\
& \text { Measure } \\
& \| P_{1}|\psi\rangle \|^{2 \star} \frac{1}{\| P_{1}|\psi\rangle| |} P_{1}|\psi\rangle=|1\rangle \frac{c|0\rangle+d|1\rangle}{\sqrt{c^{2}+d^{2}}} \\
& =c^{2}+d^{2}
\end{aligned}
$$

Partial vs complete measurement

- Consider any two-qubit state, and measure its first qubit and then its second qubit
- Compute the probability distribution of the outcome
- Conclude that observing the two qubits is equivalent to measuring each qubit individually in any order
- Note:This can be generalized to any number of qubits


## Non-cloning

- Assume there is a unitary map $U$ such that, for every qubit $|\psi\rangle$ :
$U(|\psi\rangle|0\rangle)=|\psi\rangle|\psi\rangle$
- Compute $U(|\psi\rangle|0\rangle)$ for $|\psi\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$
- using the definition of $U$
- using the linearity of $U$ and then again the definition of $U$
- Get a contradiction and conclude

Entangles boxes

- Implement the entangled boxes of slide 10 using EPR states

Properties

- Show that applying a unitary $U$ on the first qubit of an EPR state is equivalent to applying the transposed matrix of $U$ on its second qubit
Quantum game
- Prove the theorem of previous slide

Reminder

- Goal: maximize $p=\underset{x, y}{\operatorname{Pr}}(a \oplus b=x \wedge y)$


## Quantumly

- Alain and Bob share an EPR state

- Bob performs a rotation of angle $\frac{\pi}{8}$
- If $x=1$, Alice performs a rotation of angle $\frac{\pi}{4}$
- If $y=1$, Bob performs a rotation of angle $-\frac{\pi}{4}$
- Alice et Bob observe their qubit and send their respective outcomes
- Theorem: $p=\cos ^{2}\left(\frac{\pi}{8}\right) \approx 0.85$

Realization: [Aspect-Grangier-Roger-Dalibard: Orsay'82]


## Problem

- Alice \& Bob share an EPR state: $\quad\left|\beta_{00}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle$
- Alice wants to send two bits $x y$ to Bob
- But Alice can only send one qubit to Bob


Bell basis change
$|x\rangle \ldots \quad H$
13) $\qquad$ $\left|\beta_{x y}\right\rangle$
| $\left.\left.\boldsymbol{H}^{\prime}\right)=\frac{1}{\sqrt{2}}(\mid 00)-|11\rangle\right)$
$\left|\beta_{10}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle-|1\rangle)$
$\left|\boldsymbol{\beta}_{11}\right\rangle=\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)$
$\left|\beta_{00}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$

Protocol

- Alice applies to its qubit NOT, if $y=1$; and FLIP, if $x=1 \quad$ FLIP $=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$
- Alice sends its qubit to Bob
- Bob performs the inverse of the Bell basis change, and observes $x y$

Problem

- Alice wants to transmit a qubit $|\psi\rangle$ to Bob
- Bob: far and unknown position to Alice


Realization


The quantum communication does not reveal anything on $|\psi\rangle$ !
Circuit
$|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$.


Analysis

- Final state $\frac{1}{2} \sum_{x, y}|x y\rangle\left|\psi_{x y}\right\rangle$ with $\quad\left|\psi_{x y}\right\rangle=(\text { NOT })^{y}(\text { FLIP })^{x}|\psi\rangle$
- By measuring $x, y$, third qubit is projected to $\left|\psi_{x y}\right\rangle$
- After learning $x, y$, Bob can correct $\left|\psi_{x y}\right\rangle$ to $|\psi\rangle$

Realizations

- I photon [Zeilinger et al : Innsbruck'97]
- I photon, 6 km [Gisin et al :Genève‘02]
- I atom [Blatt et al : Innsbruck'04]
- Today: over 100 km



## Main idea

- Assume Alice \& Bob share an EPR state

- Alice \& Bob observe their qubit and get bit $a, b$ Fact
- $a=b$ with probability I
- $a$ (resp. $b$ ) is a uniform random bit


## Problems

- Who create the EPR state?
- If Alice does, Bob needs to check that is an EPR state:

And for instance not $|00\rangle \rightarrow a=b=0$ with probability I

- In ordert o check the EPR state, Bob needs the 2 qubits

Then Alice needs to check that Bob gives back the correct qubit

## EPR based coin flipping

Protocol

- Initialization


## 510

$\left|0_{0}^{10} 0\right\rangle / \sqrt{2}$


Alice prepares 2 EPR states
Alice send the corresponding first qubits to Bob

- Selection

Bob select the EPR state that will be use for flipping
The other EPR state will be use for checking the honesty of Alice
Alice and Bob observe their respective qubit of the flipping EPR state

- Checking

Alice sends to Bob her qubit of the checking EPR state Bob measures the checking EPR state

If the measure outcomes is correct, Bob accepts coin
Theorem

- If both participant are honest, the outcome is a perfect random bit
- If one of the participants is dishonest, the maximal bias is $1 / 4$

Attacks Goal: increase the probability to get 0

- Bob's attack: measure its 2 qubits, and select the EPR pair giving 0 (if any)
- Alice's attack: $\frac{|00\rangle \mid \text { EPR state }\rangle}{\sqrt{3}}+\frac{\mid \text { EPR state }\rangle|00\rangle}{\sqrt{3}}$


NSA seeks to build quantum computer that could crack most types of encryption
By Steven Rich and Barton Gellman, Published: January 2 E-mail the writers
In room-size metal boxes secure against electromagnetic leaks, the National Security Agency is racing to build a computer that could break nearly every kind of encryption used to protect banking, medical, business and government records around the world.

According to documents provided by former NSA contractor Edward Snowden, the effort to build "a cryptologically useful quantum computer" - a machine exponentially faster than classical computers - is part of a $\$ 79.7$ million research program titled "Penetrating Hard Targets." Much of the work is hosted under classified contracts at a laboratory in College Park, Md.

## Google and NASA snap up quantum computer

D-Wave machine to work on artificial-intelligence problems.
Nicola Jones
16 May 2013
D-Wave, the small company that sells the world's only commercial quantum computer, has just bagged an impressive new customer: a collaboration between Google, NASA and the non-profit Universities Space Research Association.

The three organizations have joined forces to install a D-Wave Two, the computer company's latest model, in a facility launched by the collaboration - the Quantum Artificial Intelligence Lab at NASA's Ames Research Center in Moffett Field, California. The lab will explore areas such as machine learning - making computers sort and analyse data on the basis of previous experience. This is useful for functions such as language translation, image searches and voice-command recognition. "We actually think quantum machine earning may provide the most creative problem-solving process under the known laws of physics," says a blog post from Google
describing the deal.


## Supercomputer

## Feynman'8I

- "Can quantum systems be probabilistically simulated by a classical computer? [...] the answer is certainly, No!"

Deutsch'85

- Quantum Turing Machine
- Existence of a universal Turing Machine


Simon, Shor'94

- Quantum algorithms with exponential speedup
- Quantum attack of public-key crypto-systems

n-qubit
- Superposition of all possible values
- $2^{n}$ possible values

Parallel computation

- In one step, $2^{n}$ computations

- But only one outcome can be (randomly) observed!

Strategy

- Combine cleverly those values before measuring them..


## Quantum gates and circuits

Gates $U \in \mathcal{U}\left(2^{k}\right), \quad k=1,2,3$

- A quantum gate is a unitary map that acts upon at most 3 qubits

Tensor product of gates
$\left|\psi_{1}\right\rangle\left|\psi_{2}\right\rangle^{2}$
$G_{1}$
$\left(G_{1} \otimes G_{2}\right)\left|\psi_{1}\right\rangle\left|\psi_{2}\right\rangle=\left(G_{1}\left|\psi_{1}\right\rangle\right)\left(G_{2}\left|\psi_{2}\right\rangle\right)$

Circuit

- A quantum circuit is a sequence of gates (extended by $\otimes \mathrm{ld}$ )


Theorem

- Any unitary can be realized exactly by a circuit
and approximated using only gates $\mathrm{c}-\mathrm{NOT}$ and $\sqrt{ } \mathrm{H}$


## Gates

- A gate $C$ is a function on at most 3 qubits Example: AND, OR, NOT, ...
Circuit
- A circuit is a sequence of gates $C=C_{L} \ldots C_{2} C_{1}$
- The size of $C$ is its number $L$ of gates
- C computes a function $f$ if for all input $x: C\left(x, 0^{k}\right)=(f(x), z)$


Theorem

- Any function can be computed by a circuit using only NOT, OR,AND gates


## Reversible circuit

- A logical circuit is reversible if each gate is reversible
- A reversible circuit is also a quantum circuit
(since it permutes logical states)
Embedding
$f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$
$f_{\oplus}:\{0,1\}^{n+m} \rightarrow\{0,1\}^{n+m} \quad f_{\oplus}(x, y)=(x, y \oplus f(x))$
where: $\quad 0 \oplus \mathrm{I}=\mathrm{I} \oplus 0=\mathrm{I} \quad 0 \oplus 0=\mathrm{I} \oplus \mathrm{I}=0$
$\mathrm{u} \oplus \mathrm{V}=\left(\mathrm{u} \mid \oplus \mathrm{V},, \mathrm{u}_{2} \oplus \mathrm{~V} 2, \ldots\right)$

Theorem

- If a function $f$ can be computed by a logical circuit of size $L$, then $f \oplus$ can also be computed by a reversible circuit of size $O(L)$


## Universality

- The Toffoli gate (c-c-NOT) is universal for reversible computating

$$
T(a, b, c)=(a, b, c \oplus(a \wedge b))
$$

## Normal form

- Function: $f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$
- Circuit: $U_{f}:|x\rangle|0\rangle \mapsto|x\rangle|f(x)\rangle$
$|x\rangle|y\rangle \mapsto|x\rangle|y \oplus f(x)\rangle$
Alternative form $S_{f}$
- Boolean function: $f:\{0,1\}^{n} \rightarrow\{0,1\}$
- Circuit:
$|x\rangle$
$\psi\rangle=\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)$

- Conclusion:

$$
=\frac{(-1)^{f(x)}}{\sqrt{2}}(|0\rangle-|1\rangle)
$$

$$
U_{f}(|x\rangle \otimes|\psi\rangle)=S_{f}(|x\rangle) \otimes|\psi\rangle
$$

(500) $x \mapsto f(x)$ can be nonreversible!

Reversible implementation of $f$

$$
\left.\alpha|0\rangle+\beta|b\rangle \ldots S_{f} \cdots(-1)^{f(b)}|b\rangle 0\right\rangle+(-1)^{f(1)} \beta|1\rangle
$$

Hadamard gate: half-wave blade at $22,5^{\circ}$

$$
|b\rangle \cdots \cdots, H \quad \frac{1}{\sqrt{2}}\left(|0\rangle+(-1)^{b}|1\rangle\right)
$$



Quantum circuit

## A first quantum algorithm [1992]

Deutsch-Jozsa problem

- Oracle input: $f:\{0, I\}^{n} \rightarrow\{0, I\}$ a black-box function

such that $f$ is either constant or balanced
- Output: 0 iff $f$ is constant

Query complexity

- Deterministic: $2^{n-1}+1$
- Quantum: I

Special case $n=1$

- No restriction on $f$
- Deterministic vs quantum: 2 queries vs I query

Initialization:
$|0\rangle$
Parallelization: $\quad \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$
Query to $f: \quad \frac{1}{\sqrt{2}}\left((-1)^{f(0)}|0\rangle+(-1)^{f(1)}|1\rangle\right)$
Interferences: $\quad \frac{1}{2}\left((-1)^{f(0)}(|0\rangle+|1\rangle)+(-1)^{f(1)}(|0\rangle-|1\rangle)\right)$
Final state: $\quad \frac{1}{2}\left(\left((-1)^{f(0)}+(-1)^{f(1)}\right)|0\rangle+\left((-1)^{f(0)}-(-1)^{f(1)}\right)|1\rangle\right)$

Reversible implementation of $f$

$$
\sum_{x \in\{0,1\}^{n}} \alpha_{x}|x\rangle \cdots \quad S_{f} \cdots \sum_{x \in\{0,1\}^{n}}^{f(x)\langle x)^{f} f(x)} \alpha_{x}|x\rangle
$$

Quantum Fourier transform

$$
\begin{aligned}
& Q F T_{n} \equiv \cdots \cdots \\
& \left.\ldots \quad|b\rangle \ldots \quad H \quad \frac{1}{\sqrt{2}}(0\rangle+(-1)^{b}|1\rangle\right) \\
& Q F T_{n}|x\rangle=\frac{1}{2^{n / 2}} \sum_{y}(-1)^{x \cdot y}|y\rangle \\
& \text { where } x \cdot y=\sum_{i} x_{i} y_{i} \bmod 2 \\
& \text { Quantum circuit }
\end{aligned}
$$

## Problem

- Oracle input: $f:\{0,1\}^{n} \rightarrow\{0,1\}$ a black-box function
such that $f(x)=a \cdot x$
for some fixed $a \in\{0,1\}^{n}$
- Output: a

Query complexity

- Randomized: n

Query $f\left(0^{i-1} \mid O^{n-1}\right)=a$; for $i=1,2, \ldots, n$

- Quantum: I

Quantum circuit

$$
|0\rangle \cdots-Q^{Q F T}-S_{f}-\text { MFT } \cdots|a\rangle
$$



Initialization $|00 \ldots 0\rangle$

Parallelization: $\left.\quad \frac{1}{2^{n / 2}} \sum_{x \in\{0,1\}^{n}} \right\rvert\, x$
Query to f:

$$
\frac{1}{2^{n / 2}} \sum_{x \in\{0,1\}^{n}}(-1)^{f(x)}|x\rangle
$$

Interferences:
$\frac{1}{2^{n}} \sum_{x, y \in\{0,1\}^{n}}(-1)^{f(x)+x \cdot y}|y\rangle$
Final state:

$$
\left(\frac{1}{2^{n}} \sum_{x \in\{0,1\}^{n}}(-1)^{f(x)}\right)|00 \ldots 0\rangle+\sum_{y \neq 00 \ldots 0} \alpha_{y}|y\rangle
$$

$|0\rangle \cdots-Q_{f}-Q F T-$ Measure $-\cdots|a\rangle$
Initialization:
Parallelization:

Query to f:

Interferences:

Final state:

## RSA Challenges

- http://www.rsasecurity.com/rsalabs

|  | $\left\lvert\, \begin{aligned} & \text { Prize } \\ & \text { Rsus } \end{aligned}\right.$ | status | Submission Date | Submiteris) |
| :---: | :---: | :---: | :---: | :---: |
| RSA-576 | \$10.0a0 | Eactored |  | J. Franke et al |
| RSA-640 | \$20,000 | Eactored | Nowermber 2. 2005 <br> 2005 | F. Eahretal. |
| RSA.704 | \$30,000 | $\begin{aligned} & \text { Not } \\ & \text { Factored } \end{aligned}$ |  |  |
| RSA.768 | \$50,000 | Not Factored |  |  |
| ESA-896 | \$75,000 | $\begin{aligned} & \text { Not } \\ & \text { Factored } \end{aligned}$ |  |  |
| ESA-1024 | \$100,000 | Not Factored |  |  |
| ESA-1536 | \$ 150,000 | Not |  |  |
| RSA-2048 | \$200,000 | Whot |  |  |

- RSA-640 (193 digits) :



- RSA Algorithm (allows private communication) security based on the difficulty of factorizing


## Asymmetric encryption

## One-way functions

- Example: multiplication / factorization
- Bases of modern encryption (Rivest, Shamir, Adleman'77)

RSA challenges (|99|-2007)

- RSA-100, \$1,000, 1991

$$
17 \times 19=?
$$

$$
667=? \times ?
$$

- RSA-640, \$20,000, 2005

310741824049004372135075003588856 793003734602284272754572016194882 320644051808150455634682967172328 678243791627283803341547107310850 191954852900733772482278352574238 $=$ ? x ?

Quantum algorithm for factorization

## Classical reduction

- Factorization can be reduced to period finding

Quantum tool: Fourier Transform

- FT reveals the period of a signal
- FT is (very) fast on a quantum superposition

$\overline{1634733645809253848443133883865090859841783670033092312181110852389333100104508151212118167511579}$ ${ }_{1}{ }^{\mathbf{x}} 19087128166482211312685157393541397547189678996851549366663853908802710380210449895719126146557$

Theorem [Simon-Shor'94]

- Finding the period of any function on an abelian group can be done in quantum time poly $(\log |G|)$
Order finding
- Input:integers $n$ and $a$ such that $\operatorname{gcd}(a, n)=$
- Output: the smallest integer $q \neq 0$ such that $a^{q}=1 \bmod n$
- Reduction to period finding: the period of $x \rightarrow a^{x} \bmod n$ is $q$

Factorization

- Input: integer $n$
- Output: a nontrivial divisor of $n$

Reduction: Factorization $\leq_{R}$ Order finding

- Check that $\operatorname{gcd}(a, n)=1$
- Compute the order $q$ of $a \bmod n$
- Restart if $q$ is odd or $a^{q / 2} \neq-1 \bmod n$
- Otherwise $\left(a^{9 / 2}-1\right)\left(a^{9 / 2}+1\right)=0 \bmod n$
- Return $\operatorname{gcd}\left(a^{9 / 2} \pm 1, n\right)$

Problem

- Oracle input: $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ a black-box function

- Output: the periods

Complexity

- Randomly: $2^{\Omega(n)}$ queries
- Quantumly: $O(n)$ queries and time $O\left(n^{3}\right)$

Idea

- Use a Fourier transformation: $Q F T_{n}|x\rangle=\frac{1}{2^{n / 2}} \sum_{y}(-1)^{x \cdot y}|y\rangle$

$$
\text { where } x \cdot y=\sum_{i} x_{i} y_{i} \bmod 2
$$

- Realization of $Q F T_{n}$ using Hadamard gates:
$|b\rangle \cdots-H^{-\cdots-\frac{1}{\sqrt{2}}\left(|0\rangle+(-1)^{b}|1\rangle\right)}$
$Q F T_{n} \equiv$



## Quantum solution



Initialization: $\quad\left|0^{n}\right\rangle\left|0^{n}\right\rangle$
Parallelization: $\quad \frac{1}{2^{1 / 2}} \sum_{x}|x\rangle\left|0^{n}\right\rangle$
Query to $f$ :
$\frac{1}{2^{2 / 2}} \sum_{x}|x\rangle|f(x)\rangle$
Filter: $\quad \frac{1}{\sqrt{2}}(|x\rangle+|x \oplus s\rangle)|f(x)\rangle$

Probability = squăre notyn of the projection


$$
\frac{1}{2^{(n-1) / 2}} \sum_{y: s \cdot y=0}^{y}|y\rangle|f(x)\rangle
$$

Period Finding(G)

- Oracle input: function $f$ on $G$ such that
$f$ is strictly periodic for some unknown $H \leq G$ :

$$
f(x)=f(y) \Longleftrightarrow y \in x H
$$

- Output: generator set for H

Examples

- Simon Problem: $\quad G=\left(\mathbb{Z}_{2}\right)^{n}, H=\{0, s\}$
- Factorization: $\quad G=\mathbb{Z}, H=r \mathbb{Z}$
- Discrete logarithm: $\quad G=\mathbb{Z}^{2}, H=\{(r x, x): x \in \mathbb{Z}\}$
- Pell's equations: $\quad G=\mathbb{R}$
- Graph Isomorphism: $G=\mathcal{S}_{n}$

Quantum polynomial time algorithms (in $\log |G|$ )

- Abelian groups G: QFT-based algorithm [1995]
- Normal period groups H: QFT-based algorithm [2000]
- Solvable groups $G$ of constant exponent and constant length [2003]
- ...

Shift problem

- Dihedral group $\mathbb{Z}_{N} \rtimes \mathbb{Z}_{2}$ : sub-exponential time $2^{O(\sqrt{\log N})}$ [2003]

> | $2(\cdot, 0)$ | 5 | 12 | 3 | 9 | 7 | 6 | 10 | 15 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$f(\cdot, 1)$ $\qquad$ | 3 | 9 |
| :--- | :--- |



- Instance of Period Finding on the symmetric group where we just know how to implement QFT... [1997]
General case
- Polynomial number of queries to $f$, but exponential post-processing time [1999]


## Preliminary remarks

## Implementation of $f$

$$
\sum_{x} \alpha_{x}|x\rangle \cdots S_{x}(-1)^{f(x)} \alpha_{x}|x\rangle=\sum_{x} \alpha_{x}|x\rangle-2 \alpha_{x_{0}}\left|x_{0}\right\rangle
$$

Double Hadamard gate

$$
\begin{array}{ccc}
\left|x_{1}\right\rangle & \cdots & H \\
\left|x_{2}\right\rangle & \cdots & \cdots \\
|x| & \cdots & \frac{1}{\sqrt{2}}\left(|0\rangle+(-1)^{x_{1}}|1\rangle\right) \\
|x\rangle=\left|x_{1} x_{2}\right\rangle & \cdots & H \\
& & \cdots \frac{1}{\sqrt{2}}\left(|0\rangle+(-1)^{x_{2}}|1\rangle\right) \\
& \text { with } x \cdot y=x_{1} y_{1}+x_{2} y_{2} \bmod 2
\end{array}
$$

Grover problem

- Oracle input: $f:\{0,1\}^{n} \rightarrow\{0,1\}$ such that $\exists!x_{0}: f\left(x_{0}\right)=1$

Output : $x_{0}$
Constraint: $f$ is a black-box


Query complexity

- Randomized: $\Theta\left(2^{n}\right)$
- Quantum: $\Theta\left(\sqrt{2^{n}}\right)$

$$
n=2 \Longrightarrow 1 \text { query }
$$



Initialization:
$|00\rangle$
Parallelization: $\quad \frac{1}{2}(|00\rangle+|01\rangle+|10\rangle+|11\rangle)$
Query to $f: \quad \frac{1}{2} \sum_{x}|x\rangle-\left|x_{0}\right\rangle$
Interferences: $\quad|00\rangle-\frac{1}{2} \sum_{y}(-1)^{x_{0} \cdot y}|y\rangle$
Query to $\delta_{0}: \quad-|00\rangle-\frac{1}{2}\left(\sum_{y}(-1)^{x_{0} \cdot y}|y\rangle-2|00\rangle\right)=-H \otimes H\left|x_{0}\right\rangle$
Final state: $\quad-\left|x_{0}\right\rangle$

$\operatorname{Vect}_{\mathrm{R}}\left(\left|x_{0}\right\rangle, \mid\right.$ unif $\left.\rangle\right)$
$S_{f}=-S_{\left|x_{0}\right\rangle}=S_{\left|x_{0}\right\rangle}$
$-S_{\delta_{0}}=S_{|00\rangle}$
$H^{\otimes 2} S_{|00\rangle} H^{\otimes 2}=S_{\mid \text {unif }\rangle}$
$G=S_{\mid \text {unif }\rangle} S_{\left|x_{0}\right\rangle^{\perp}}=R_{2 \theta}$
with $\sin \theta=\left\langle\right.$ unif $\left.\mid x_{0}\right\rangle=\frac{1}{2}$
After I iteration

$\mid$ unif $\rangle \mapsto-G \mid$ unif $\rangle=-\left|x_{0}\right\rangle$

Unstructured problems

- Grover algorithm [1996]

Algebraic problems

- Simon-Shor algorithm [1994]

Well structured problems

- Classical algorithms are optimal!

Problems with few structures

- Quantum walk based algorithms [2003]
quantum analogy of random walks
- Examples

Element Distinctness, Commutativity: $N^{2 / 3} \quad$ [2004] Triangle Finding: $N^{9 / 7} \quad$ (lower bound $N$ ) [2013] Square Finding: $N^{1.25} \quad$ (lower bound $N$ ) [2010] Matrix Multiplication: $N^{5 / 3}$ (lower bound $N^{3 / 2}$ ) [2006] AND-OR Tree evaluation: $\sqrt{ } \mathrm{N}$ [2007]

$\operatorname{Vect}_{\mathbb{R}}\left(\left|x_{0}\right\rangle, \mid\right.$ unif $\left.\rangle\right)$
$S_{f}=-S_{\left|x_{0}\right\rangle}=S_{\left|x_{0}\right\rangle^{\perp}}$
$-S_{\delta_{0}}=S_{\mid 00}$
$H^{\otimes 2} S_{|00\rangle} H^{\otimes 2}=S_{\mid \text {unif }\rangle}$
$G=S_{\mid \text {unif }\rangle} S_{\left|x_{0}\right\rangle^{\perp}}=R_{2 \theta}$
with $\sin \theta=\left\langle\right.$ unif $\left.\mid x_{0}\right\rangle=\frac{1}{\sqrt{2}}$

After $T=2 / \pi \cdot \sqrt{ }\left(2^{n}\right)$ iterations


$$
\left.\mid \text { unif }\rangle \mapsto-G^{T} \mid \text { unif }\right\rangle \approx-\left|x_{0}\right\rangle
$$

An Introduction to Quantum Computing

- Authors: Phillip Kaye, Raymond Laflamme, Michele Mosca
- Editor: Oxford University Press

Quantum Computation and Quantum Informatio

- Authors: Michael A. Nielsen, Isaac L. Chuang
- Editor: Cambridge University Press

Classical and Quantum Computation


- Authors:A.Yu. Kitaev,A. H. Shen, M. N.Vyalyi
- Editor:American Mathematical Society
- Collection: Graduate Studies in Mathematics

Lecture Notes for Quantum Computation

- Author: John Preskill
- Website: http://www.theory.caltech.edu/~preskill/ph2291

Quantum proofs for classical theorems

- Author:Andrew Drucker, Ronald de Wolf
- Website: http://arxiv.org/abs/0910.3376

Entanglement?
_ "Classical entanglement" exists: shared randomness

- But quantum entanglement is "stronger"


Bell-CHSH inequality and applications
$\neq$
$\left|0_{1}^{1} 0\right\rangle / \sqrt{2}$
${ }^{4}$
Complex amplitudes?

- No: they can be simulated using only real amplitude

Negative amplitudes?

- Yes: they can induce destructive interferences

Hardness of amplitudes?

- No: amplitudes must be easily computable for being physically realizable

Applications

- Unfalsifable money, artificial intelligence, ...


## Quantum computing

- For a better understanding of quantum phenomenon
- New mathematical tool for proving results in classical computing!

Technology

- Computer, intermediate models: boson sampling
- Certification : encryption, random generator, computation


