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Quantum interferences around 2020...

= Current approach: avoid them

= Quantum computing: get benefit of them!

t
Feynman’81:“Can quantum systems be probabistically simulated by a
clasical computer? [...] the answer is certainly, No!”

Deutsch’85: Universal quantum Turing machine




The superiority of Quantum Computing 3

Cryptography
= Secrete Key Distribution Protocol [Bennett, Brassard’84]

Implementation: ~100 km

Information Theory
= EPR Paradox [Einstein, Podolsky, Rosen’35]
Realization: 1982 [Orsay]

Realization: 1997 [Innsbruck]

Algorithms
= Polynomial algorithm for Period Finding [Simon, Shor’94]
= Factorization, Discrete Logarithm
= Quadratic speedup for Database Search [Grover’96]

= Quantum computer?
1995: 2-qubit [ENS], 2000: 5-qubit [IBM], 2006: 12-qubit [VWaterloo] h
Cg3

Quantum proofs for classical theorems

- httpi//arxiv.org/abs/0910.3376 [Drucker, de Wolf'09] M i
Computing? 4

Formal concepts
= Model of computation
What is a machine, a program?
Mathematical model of a computer?
- Hardness of a problem
Calculable / Non-calculable
Easy / Hard ]

g e
1T,

Any reasonable model of computation can be simulated on a Turing machine

= [Turing 1936]:Turing machine, calculability, universality

Church-Turing theses

= Weak version

reasonable: physically realizable
Turing machine = today computer
- Strong version

Any reasonable model of computation can be efficiently simulated on a
probabilistic Turing machine

efficiently: using same amount of ressources (time and space)




Computers!? 5

Classical computing

- Turing machine, calculability, universality [Turing 1936]

- PrOPOSition: EDVAC (Electronic Discrete VAriable Computer) [Von Neumann 19
- First computer: Mark | [Robinson-Tootill-Williams 1949]

Quantum computing

- Idea: simulation of quantum systems [Feynman |982]

= Turing machine, calculability, universality [Deutsch 1985, I989][Bernsteln-VaZ|ran|
1993], circuits [Yao 1993], cellular automata, finite automata..

- Technology: 2-qubit [1995], 5-qubit [2000], 12-qubit [2006]

Validity of Church-Turing theses

= Weak version is still valid

Calculability: quantum and classical computation have same power
- Strong version could be violated

Complexity: evidences that quantum computers can be exponentially faster
than classical computers

In this talk 6

| qubit
= Definition
= Quantum key distribution
2 qubit
= Definition
- EPR Paradox and applications

Algorithms
- Toward factorization
Quantum Fourier transform
Applications
- Generalization

Conclusion




Qubit state

Logical bit
- Deterministic element: b € {0, 1}

Probabilistic bit

- Probabilistic distribution: d = (p) p,q € [0,1]
q _
r+q=1
p@E® _
“%:

Quantum bit (qubit)
- State: 2-dimensional unit vector
|1)) = cos 0]0) + sin0|1)
general case (complex amplitudes):

0= () = aloy+ 81, ol + 187 =1

= Measure: randomized orthogonal projection
laf”_, 10)

al0) + g1ty —fFezmurel—
187> (1)

>

Qubit evolution

Logical bit
- Function: f:{0,1} — {0,1}, b+ f(b)
Probabilistic bit

= Stochastic matrix:

/
P:(p p,), d+— d = Pd
q q

Quantum bit

- Evolution: unitary transformation G € U(2) (= reversible)

Definition: G € C**? st. G*G = 1d

) --[@ ] ) = Gl
Wy =Glg) - [&] )




Polarization of photons 9

State
= Polarization: 2-dimensional vector A

|0) = cos B8|—) + sin 0|T)

Measure

- Calcite crystal RE) s "& \l\_’>

separates horizontal and vertical polarizations

@ A measure modifies the system

Transformation

= Well known transformation: half-wave blade

orthogonal symmetry around its axis

- Any rotations (possibly with complex angles)

Examples of transformations 10

Reversible classical transformation
- ldentity

by - - - 1b)

= Negation P
|b) ~----- NOT|-----» 11— b) )

Hadamard transformation

., . . ° = 1 1 1
- Definition: half-wave blade at 22,5° H = 73 (1 _1>

By - [H ] 530) + 'l

= Properties: quantum coin flipping
1
2 ~[0)

0y —[H}—>5(10) + 1)) —Measure_

(1)
2

) 0)

@ Measure does not commute!




Quantum key distribution

Problem
- Setting

No prior shared secret information between Alice and Bob
Authenticated classical channel
= Goal: Get a private key between Alice and Bob

Classical results
- Impossible, since all the information is in the canal

- However, one can (using randomized techniques):
Amplify the privacy of an imperfect private key by shortening it

Incertitude in the measure

[0 J e > [0)

Y SR L -> [1)
Measure |,

2(10) £ 1)) ofom o - >10)

50 %>|1)

Impossibility of cloning
= Impossibility of duplicating an unknown state

= Proof based on the linearity of quantum transformations

Main idea of quantum key distribution

Primitive

|-
|

'

Alice choses 2 random bits a,c

Alice creates and sends to Bob qubit H¢|a)
< Bob gets qubit from |1)) Alice

Bob choses | random bit d

Bob measures H%|v) and gets bit b H?*=Id
Facts 1) Y e s |0)
- c=d — b=a with probability | [ S L5 |1)
- C* =a wi ili Measure M
c+d — b=a with probability 1/2 310 £ 1)) ‘s:o_/_)|0>
50 %3]1)

Reconciliation

= Alice & Bob exchange their value c,d

Remarks

- If c=d, Alice & Bob know a=b without revealing a,b
- “without revealing” can be formalized...




The PI"OtOCOl BB84 [Bennett-Brassard 84]

Protocol: quantum part

. Key: o1 1 0 0 I 0 I
% Encoding: H H H
Quobit: <—>\ I «—> <—>\

o Decoding: H H
e Qubit: NN
I

Key: I I 0 O

Protocol: classical part
= Reconciliation:Alice and Bob publicly announce their coding choices
A&B only keep key bits with same choices (prob. 1/2)
If no third party observes communication, then A&B get same key
- Security:A&B check few key bits at random positions
- Secret amplification using with few other more key bits

Conclusion

- Key generation without any prior shared secret information but using an
authenticated classical channel

= Small initial private key — large (and authentified) private key

Preliminaries: Tensor product 14

Vector spaces

= V,W:vector spaces
- V®W is the free vector space Span (v@w :veV,weW)
with equivalence relations
(Vitv2)®w = vi®w + v2®w
v® (Witwz) = vew| + vew,
(c-v)®w = v®(c-w) = c-(v®w)
Linear maps
= S:V=X, T:W=Y :linear maps
= S®T: VOW—X®Y s the linear map satisfying
S®T (vew) = S(v)®T(w)
(and extended by linearity)
Applications
- Joint probability distributions on spaces VW
@(VXW) = D(V)@D(W) += D(V)xD(W) (:product distributions)




n-qubit I5

Definition
- ) € COM sych that |[9) || = 1

)= ) ala) ,
ze{0,1} with > lee[* =1
xze{0,1}n

@ ctory’ — clol} g ot} £ cl{o.1} s cfo.1}

Examples: |00)+]01) _ [0)4]1)
vl A v, o

OOEL £ |4p1) @ |4h2)

i i G 2" -
Unltary transformations e u(2") G e st @ C — 1d

)« G| [’y = G|)
Measure
2
Z og|T) - Measure 7J9[3‘l| > )
xze{0,1}n
Transformation c¢c-NOT 6
Definition
NOT|0b) = |0b) 1000
C— 0 =10
c-NOT|1b) = |1)|(1 — b)) 0001
0010

c-NOT|ab) = |a)|a P b)

Representation

control bit oo I 77777777

target bit - NOT| - - »

Bell basis change )
|Boo) = 75(]00) + [11))

R Bor) = 25(101) + |10))
Bzy) B0} = 25(100) — |11))
B11) = 25(/01) — [10))




Partial measure: 2-qubit case 17

Measure of first qubit
- Projectors P, = |00)(00| + [01)01| = |0)(0| ® I,
Py = [10)10] 4 [11)(11] = [1X1]| ® I

L
Py,® P, =1d
= Measure of first qubit
||P0|2"P>||z 0) 4 bl
=a“+b 1 al0) + b|1
mEmnelY) =10)———5-
- 1Pl Vaz + b2
|4) = a|00) + b|01) + ¢[10) + d|11) - ---Measure I} -- <"~ |0§l:-+dl|512)
T — e T et
1P ) e PP = V- g

:C2+d2

Interpretation
- Partial measure project to a subspace compatible with the observation
Probability = square norm of the projection

Outcome = renormalization of the projection

EPR paradox 8

Protocol
= Assume Alice & Bob shares an EPR state: %(|00) + |11))
Alice has the first qubit, and Bob the second one
|OEO>/\/§
° A °
|L1)/vz

= Alice & Bob observe their qubit and respectively get bit a,b

Fact
= a=b with probability |
= a (resp.b) is a uniform random bit

Classical analogue!? -
= Shared randomness model: &

Alice and Bob has access to shared random bits

— Non product distribution: "fﬂ .
00 with prob. 1/2 and | | with prob. 1/2 \0;0/

= Can we simulate quantum physic using shared randomness?




Bell-CHSH inequality as a classical game 19

Game
= Alain and Bob share some initial information but cannot communicate
= Alain receives a random bit x, Bob y

= Alain returns a bit a, Bob b

- Goal: maximize p=Pr(a®b=xzAvy)
.y

0 I ® 0 I
0 0 0 0 0 I
I 0 I I | 0

Classically: CHSH inequality [1969]

- Best deterministic strategy: a =b=0 — p =7

- Theorem: the best probabilistic strategy is not better than the best
deterministic strategy

Bell-CHSH inequality as a quantum game 20
Reminder
- Goal: maximize p = E’;‘(a Bb=xAy)
Quantumly

Alain and Bob share an EPR state
w 1
\a |0:0)/+2 n/ Y
| @ o e 'Y #dy
o |L1)/vz y

- Bob performs a rotation of angle ¢

- If & = 1, Alain performs a rotation of angle

INERE

- If y = 1,Bob performs a rotation of angle —

= Alain et Bob observe their qubit and send their respective outcomes
- Theorem: p = cos®(%) ~ 0.85

Realization: [Aspect-Grangier-Roger-Dalibard: Orsay‘82]




Superdense coding [1992] 21

Problem
- Alice & Bob share an EPR state: |Bo) = %(|00) +]11))

= Alice wants to send two bits xy to Bob

- ButAlice can only send one qubit to Bob

= |0:0)/v=
LT SRR °
% bit |1 —:‘l-_ -------------------- g
I | -qubit |1:1>/ﬁ

Xy
Bell basis change |Boo) = 5(100) + [11))
R T ,,,,,,,, |Bo1) = %(IOD + [10))
Bey)  |Bro) = Z5(|00) — [11))
ly) ~ NoT| -~~~ |
1B11) = 7(]01) — [10))
Protocol
- Alice applies to its qubit NOT, if y=1;and FLIP, if x=1 FLIP = (é _01>

= Alice sends its qubit to Bob

- Bob performs the inverse of the Bell basis change, and observes xy

Quantum teleportation 22

Problem

- Alice wants to transmet a qubit |%’) to Bob
= Bob: far and unknown position to Alice

Realization
Alice ) —| Interaction _’ Alice
10 1 Interaction |~ 7 ™™ | Interaction | __ . _
|0) — quantique » classique |[—|y)
Bob Bob

The quantum communication does not reveal anything on |¢) !




Realization of teleportation 23

Circuit
) = alo) £ pi1) -y I - fa)
E Measure
O T S T - Iy)
|0> Lo NOTWE ”””””””””””” |¢my>
Exercise

- Compute the state of the system before the measure
- Write the qubit state |1/, as a function of observed values x,y

= Explain the end of the protocol

Realizations

| photon [Zeilinger et al : Innsbruck’97]
| photon, 6 km [Gisin et al : Geneve‘02]
| atome [Blatt et al : Innsbruck04]

Today: over 100km

Logical computing 24

Gates
- A gate Cis a function on at most 3 qubits
Example: AND, OR, NOT, ...

Circuit
- Accircuit is a sequence of gates C' = Cr,...C,C,
= The size of Cis its number L of gates
- C computes a function f if for all input x: C(x,0%) = (f(z), 2)

¢ NOT| >

* 1
. > &> f(x)

OR
0 e—— 1 | v
AND
0 e oT >
Theorem

= Any function can be computed by a circuit using only NOT, OR,AND gates




Quantum gates and circuits 25

Gates Uecu2*), k=1,2,3

= A quantum gate is a unitary map that acts upon at most 3 qubits

Tensor product of gates

-emmee Gy |-~
|91)[v2) « 3 (G ® Go) 1) |9h2) = (Gal|91)) (G2|vp2))
N Gy | - -
Circuit
- A quantum circuit is a sequence of gates (extended by ® Id)
— A H
G «—>
E— — —INOT—|[NOT——
| L Rr .
4
Theorem
= Any unitary can be realized exactly by a circuit
and approximated using only gates c-NOT and +/H
On the query operator Sy 26

Normal form
- Function: f:{0,1}" — {0,1}™
- Circuit: Uy : |2)|0) — |x)|f(x))
|} |y) — |=)|y @ f(=x))
Circuit for S¢
- Boolean function: f:{0,1}" — {0,1}
- Ancilla ) = 2(10) — 1))

= Circuit:
|) { } |)

) = 75 (10) — 1)) — 7 (f(@) — 1@ f(x)))
_ (—1)f @ 0) — 1
= Conclusion: V2 (1 )
Us(lz) ® |¥)) = S¢(|z)) ® |)




A first quantum algorithm [1992]

27

Deutsch-Jozsa problem
- Oracle input: :{0, I}" — {0, I} a black-box function

such that f is either constant or balanced

= Output: 0 iff f is constant

Query complexity
= Deterministic: 2m'+1
= Quantum: |

Special case n=|
= No restriction on f

= Deterministic vs quantum: 2 queries vs | query

Quantum solution (n=1)

28

@ x — f(x) can be nonreversible!

Reversible implementation of f

a|0) + BIb) ~----[ Sy |- 0/ ®[b) 0) + -V |1)

Hadamard gate: half-wave blade at 22,5°

[b) - H| 70) + 1°11))

Quantum circuit

|0) « - H | -|Sf| {H | {Measure|----~




Analysis ( n=1) 29

f constant | 0)

0y ------ H--{S;|--{H |-- -l
f balanced™ |1>

Initialization: |0)

Parallelization: Z5(10) + 1))

Query to f: (7 ©)0) + 2/ D[1))

Interferences: L= O(loy + (1)) + —nf P (o) — |1)))

Final state: LT + M0y + (7@ — 1 D)1))
General solution for Deutsh-Jozsa 30

Reversible implementation of f

> ooulwy o [Si] O Tl @ ae )

z€{0,1}» z€{0,1}n

Quantum Fourier transform

e mo-

QFT,= --[@ -
|b>,,,,,,ﬂ, 25(10) + -1°|1))

r””f,

QFT,|z) = 51z > (-1""|y)
Y where = -y = Z:clyl mod 2
Quantum circuit i

|0) =~ QFT--|Sr |- QFT| - {Measure |-~~~ ?




Analysis 31

f constanf/y 00.. ,O)
|0) ~----- QFTl--{Sf |--1QFT]--
f balanced™ y), y#00...0
Initialization: 100...0)
Parallelization: s Y. )
xze{0,1}™
Query to f: wr >, @)
ze{0,1}
Interferences: LY /@ty
z,ye{0,1}"
Final state: (2% > (—1)f(""))|00...0> + ) oyly)
z€{0,1}™ y7#00...0
Bernstein-Vazirani 32
Problem

= Oracle input: f:{0, I}" — {0, I} a black-box function
such that f(z) =a-x
for some fixed a € {0,1}"
= Output: a

Query complexity
= Randomized: n
Query f(07'10™)=a;, for i=1,2,..,n
= Quantum: |

Quatum circuit

|0) «----- QFT}--|Sy |- QFT| - {Measure |-~~~ la)




Analysis

33

Initialization:

Parallelization:
Query to f:

Interferences:

Final state:

QF1}f-- Sf

--lQFT|

-{Measure | - -

D

ze{0,1}™

QFT?|a)

|a)

(-)**|x) = QFT|a)

On the difficulty of fatorizing

34

RSA Challenges

= http://www.rsasecurity.com/rsalabs

5:1::)9;9&9 ::;rgg) Status Submission Date || Submitter(s)
RSA-576 $10.000 Factored December 3, J. Franke et al.
2003
RSA-640 $20.000 Factored November 2, F. Bahr etal.
2005
- Not
RSA-704
= . $30.000 Factored
- Not
RSA-768 50.000
= $ Factored
_ Not
RSA-89
= = $75.000 Factored
- Not
A-1024 .
RSA 2 $100.000 Factored
- Not
RSA-1536 150.000
= » Factored
RSA-2048 szoo.000 ||MN!
Factored

- RSA-640 (193 digits) :

31074182404900437213507500358885679300373460228427275457201619488232064405 1808 150455634682967 1723286782437916272838

033415471073108501919548529007337724822783525742386454014691736602477652346609

1634733645809253848443133883865090859841783670033092312181110852389333100104508151212118167511579

X

19008712816648221131268515739354139754718967899685 1 549366663853908802710380210449895719126146557

- RSA Algorithm (allows private communication)

security based on the difficulty of factorizing




From period finding to factorization 35

Theorem [Simon-Shor'94]

- Finding the period of any function on an abelian group can be done in
quantum time poly (log |G|)

Order finding

= Input:integers nand a such that gcd(a,n)=I
= Output: the smallest integer g # 0 such that a9 =1 mod n
= Reduction to period finding: the period of x — @ mod n is g

Factorization
- Input:integer n
= Output: a nontrivial divisor of n

Reduction : Factorization <g Order finding
= Check that gcd(a,n)=1
- Compute the order ¢ of a modn
- Restartifq isodd or a?? # -1 modn
- Otherwise (a?2-1) (a?2+ 1) =0 modn

- Return gcd(a?? £ 1, n)

Simon’s problem 36
Problem
- Oracleinput: f : {0,1}" — {0,1}" a black-box function
Iw>k———U - |x) |w>~———U )
0y - | @) e | we £

suchthat  3s € {0,1}":Vz # y, f(z) = f(y) <= y=2Ds
= Output: the period s

Complexity
- Randomized: 2("™) queries
- Quantum: O(n) queries and time O(n?)

Idea

- Use a Fourier transformation: QF T, |x) = ﬁ Z -1)*Y|y)
where x -y = Zwlyz mod 2 y

1

- Realization of QFT, using Hadamard gates: T 7

F77777>
Fiiiii)

B[]+ 55(10) + -*[1)) QFT,




Quantum solution

37

oy —-f@rr,}--[ |- QFT
Uy

[ S —— L --1£())

Initialization: |0™)|0™)

Parallelization: sz Y _|T)[0™)

Query to f: wm ) _|2)|f (@)
Filter: Z(z) + |z ® 8))|f(2))

(n+1)/2

A —ly) ry €87

Partl | measure: project to a;su (z:c comBatlbIe m%g)]%ﬂysﬁ?? 39

Interter e
ro

lity = sqfaren oft e pro;ectlon

Outcome = renormali n of rojecti
W‘l‘lﬁfﬁ—m‘bffﬂ( 1) |y £ (@)

s Y 1If(@)

y:s.y=0

Finding the period 38
Construction of a linear system
- After n + k iterations: yl,y?, ... ,y"+k € st
= s is solution of the linear system in t:
yt-t=0 t1+y%t2+ tylt, =0
y?-t=0 yiti +ysta + ...+ yit, =0
yntk .t =0 Yyt yi o, Ly TR, =0

- If s=0" the y are of rank n with proba > [-1/2¢
= If s#0" the y' are of rank n-1 with proba > |-1/2*!
- System solutions: 0" and s

Complexity

= Constructing the system: O(n) queries, time O(n)

- Solving the system: no query, time O(n?)




More difficult... 39

Period Finding(G) G !
= Oracle input: function f on G such that H—t
fis strictly periodic for some unknown H=<G: arH
f(x) =f(y) < yeczH |
= Output: generator set for H —
a:H |
Examples
- Simon Problem: G = (Z»)", H = {0, s}
- Factorization : G=7Z,H=rZ
- Discrete logarithm: G = 7%, H = {(rx,z) : * € Z}
= Pell’s equations: G =R

- Graph Isomorphism: G = S,

Quantum polynomial time algorithms (in log|G])
= Abelian groups G: QFT-based algorithm [1995]
= Normal period groups H: QFT-based algorithm [2000]

- Solvable groups G of constant exponent and constant length [2003]

To continue... 40

An Introduction to Quantum Computing
= Authors: Phillip Kaye, Raymond Laflamme, Michele Mosca

- Editor: Oxford University Press

Quantum Computation and Quantum Information
= Authors: Michael A. Nielsen, Isaac L. Chuang
- Editor: Cambridge University Press

Classical and Quantum Computation P
= Authors:A.Yu. Kitaev,A. H. Shen, M. N.Vyalyi
- Editor:American Mathematical Society

= Collection: Graduate Studies in Mathematics I e

Lecture Notes for Quantum Computation
= Author:John Preskill
= Website: http://www.theory.caltech.edu/~preskill/ph229/

Quantum proofs for classical theorems
= Author:Andrew Drucker, Ronald de Wolf
= Website: http://arxiv.org/abs/0910.3376




