Recent Progress on
Distributed CONGEST Algorithms

for Specific Graph Classes

- Taisuke Izumi(NITECH, Japan)

Model

-
CONGEST model

o Round-based synchrony
o Network is a graph ¢ = (V(G),V(E)) of n nodes

o Each link transmits 0(logn) bits / round
Reliable

Coping with low bandwidth is a primary difficulty

o Many hardness results: MST, Diameter, Min-cut, etc.

Warm-up : MST

-
Classical GHS algorithm (= Distributed Boruvka)

o Growing the fragments of MST

Each fragment finds its minimum outgoing edge (MOE)

Warm-up : MST

Classical GHS algorithm (= Distributed Boruvka)
o Growing the fragments of MST

Each fragment finds its minimum outgoing edge (MOE)

Qe
o

Warm-up : MST

Classical GHS algorithm (= Distributed Boruvka)
o Growing the fragments of MST

Each fragment finds its minimum outgoing edge (MOE)

RN

Warm-up : MST

Classical GHS algorithm (= Distributed Boruvka)
o Growing the fragments of MST

Each fragment finds its minimum outgoing edge (MOE)

Warm-up : MST

Finding MOEs is not necessarily fast

o Even if the diameter of graph G is D < n,
a fragment can have an Q(n) diameter

Naive in-fragment aggregation is slow !

-

Warm-up : MST

Finding MOEs is not necessarily fast

o Even if the diameter of graph G is D < n,
a fragment can have an Q(n) diameter

Naive in-fragment aggregation is slow !

A Hard-Core Instance for MST

... and many other problems

syzed (uMo

0(y/n) nodes
Q(v/n + D)-round lower bound !

Partwise Aggregation(Minimum)

Definition :
o Each node has one value (0(logn) bits)
o Each link can transmit 0(logn) bits / round

o V(G) is partitioned into a number of connected subgraphs
Pl» PZ; "'rPN

o Forall P, (1 <i < N), find the minimum value in P;
" independently

Partwise Aggregation(Minimum)

Definition :
o Each node has one value (0(logn) bits)
o Each link can transmit 0(logn) bits / round

o V(G) is partitioned into a number of connected subgraphs
Pl» PZ; "'rPN

o Forall P, (1 <i < N), find the minimum value in P;
" independently

Motivation
X

Partwise aggregation plays an important role for designing
distributed algorithms in CONGEST model

(CONGEST model : Round-based synchrony + 0(logn)-bit bandwidth)

Meta-Theorem [Folklore + Ghaffari and Haeupler’ 16]

Efficient partwise aggregation

<
Efficient distributed algorithm for MST,
min-cut, weighted shortest path, and so on...

Naive Solution(1)

In-part aggregation
o BFS trees in parts might have a large diameter

The diameter even becomes 0(n), so 0(n) rounds

Naive Solution(1)

In-part aggregation
o BFS trees in parts might have a large diameter

The diameter even becomes 0(n), so 0(n) rounds

Naive Solution(2)

Aggregation via a global BFS tree
o Pipelined scheduling achieves 0(D + N) rounds

N can become 0(n), so 0(n) rounds

The Optimal Solution

V(P,)| <+/mn : Naive in-part aggregation

[V(P)| > +/n :| Use a BFS tree of the whole network
+ pipelined scheduling

=

The Optimal Solution

V(P,)| <+/mn : Naive in-part aggregation

[V(P)| > +/n :| Use a BFS tree of the whole network
+ pipelined scheduling

e

The Optimal Solution

V(P,)| <+/mn : Naive in-part aggregation

[V(P)| > +/n :| Use a BFS tree of the whole network
+ pipelined scheduling

Good Algorithms for Good Graphs
e

This is an existential lower bound

o There exists “an instance” exhibiting expensive cost

We can expect much faster aggregation for many “not-so-bad”
instances

o Universal Lower bound : Q(D) rounds

Problem

What graphs (classes) allow faster aggregation?

Shortcuts - An alternative view of P.A.

[V(P)| < +/n :| Naive in-part aggregation

[V(P;)| > «n :| Use a BFS tree of the whole network
+ pipelined scheduling

Augmenting the edges outside of
the part for faster aggregation

g But those edges are shared by
d&‘ many parts... causing congestion !

S TSN
BT

/
!
A

(d,c)-shortcut
D

Given a connected partition P, P,,--,Py of G

(d,c)-shortcut is a subgraph Hy,H,, -, Hy S.t.
o For any i, P; + H; has diameter at most d (dilation)

o Each edge e € E(G) is used as a shortcut edge at most ¢ times

An algorithm constructing (d,c)-shortcut for any partition with
0(f) rounds induces 0(d + ¢ + f)-round algorithms for partwise
aggregation !

For measuring quality, max{d, c} is usually enough.
We state simply by k-shortcuts if kK = max{d, c}

Shortcuts - An alternative view of P.A.

[V(P)| < +/n :| Naive in-part aggregation

IV(P)| >/ :| Use a BFS tree of the whole network
+ pipelined scheduling

Shortcut and Graph Classes : Known Results

—
Lower

Genus-

[GH16, HIZgl6] 0(vgDlogD) 0(vgDlogD) <log g)
Treewidth-k 0(kD log) 0 (kD logn) Q(kD)
[HIZ16]

m'sz‘gg'Free 0(D?) 0(D?) Q(D)(trivial)
|[\2L)éllg]g Time t O(TZ\/logn log log nD) O(TZJlogn loglog nD) Q(D)(trivial)
k-chordal

[KKIO19, in prep.] O(kD) 0(1) 'Q(kD)
Douling

Dimesion-a 0(D%) 0(1) Q(D%)
[KKIO19, in prep.]

Cliquewidth-c Qn)
[KKIO19, in prep.] 0(Wn) 0(n) forc = 0(1)

Small Diameter
[KKI19, in prep.]

1 1
O(nE_ZD—z)
for D = 3,4

~ 1 1
O(nZ_ZD—Z)
for D = 3,4

P
Q(nz 2D—2)
for any D
[DHKKPPW13]

Shortcut and Graph Classes : Known Results

—
Lower

Small Diameter
[KKI19, in prep.]

1 1
O(nE_ZD—z)
for D = 3,4

~ 1 1
O(nZ_ZD—Z)
for D = 3,4

)}
O Genus -g
% [GH16, HIZ16] 0(vgDlogD) 0(gDlog D) <10gg)
- :
=4 Treewidth-k
La (HIZ16] O(kD logn) O(kD logn) Q(kD)
— i - ~ ~
= M'sz‘gg Free 0(D?) 0(D?) Q(D)(trivial)
™ L
1 5 g c
g Pg:()éllg]g Time O(Tz\/lognlog lognD) O(TZJlognlog lognD) Q(D)(trivial)
n
(@
k-chordal
S [KKIO19, in prep.] O(kD) 0(1) 'Q(kD)
S Douling
g Dimesion-a 0(D%) 0(1) Q(D%)
(a)) [KKIO19, in prep.]
0
> Cliquewidth-c Qn)
[KKIO19, in prep.] 0(Wn) 0(n) forc = 0(1)

P
Q(nz 2D—2)
for any D
[DHKKPPW13]

Shortcut and Graph Classes : Known Results

—
Lower

70
Q Genus-g
8_ [GH16, HIZ16] 0(vgDlogD) 0(WgD logD) <1)
0 089
3 L@%Wdth% 0(kD logn) 0(kD logn) Q(kD)
= .
g;: mtrzwlcgl]’-Free 0(D?) 0(D?) Q(D)(trivial)
% ! |[\2L)éllg]g Time t O(TZ\/lognlog lognD) O(TZJlognlog lognD) Q(D)(trivial)
Q
k-chordal
8 [KKIO19, in prep.]) 2)
O Douling
§ Dimesion-a 0(D%) 0(1) (DY)
9_ [KKIO19, in prep.]
Cliquewidth-c Qn)
[KKIO19, in prep.] 0(Wn) 0(n) forc = 0(1)

Small Diameter
[KKI19, in prep.]

1 1
O(nE_ZD—z)
for D = 3,4

~ 1 1
O(nZ_ZD—Z)
for D = 3,4

P
Q(nz 2D—2)
for any D
[DHKKPPW13]

Shortcut and Graph Classes : Known Results

—
Lower

Genus-g

[GH16, HIZ16] 0(vgDlogD) 0(yvgD log D) <logg)

Treewidth-k 0 (kD logn) 0(kD logn) Q(kD)

[HIZ16]

Minor-Free SN2 A(N2 .
— [HLZ18] 0(D?) 0(D*) Q(D)(trivial)
AN . :
9 [“2';;'12]9 Time T 5 (;p/lognloglognpy o(72V/108n 108087 D) O(D)(trivial)
® [k-chordal
(XrBI' [KKIO19, in prep.] O(kD) 0(1) ‘Q(kD)
5 1 Douling
o | Dimesion-a 0(D%) 0(1) Q(D%)
- [KKIO19, in prep.]
& Cliquewidth-c 0m) 0 () O(/m)
Q [KKIO19, in prep.] forc = 0(1)
O 1 1

1 1 1 1 ~ ——

% Small Diameter é(na‘m) é(ni‘m) (U(nz 2p-2)
= [KKI19, in prep.] for any D

for D = 3,4

for D = 3,4

[DHKKPPW13]

Shortcut and Graph Classes : Known Results

punog Jomo

—
Lower

!

Genus-g
[GH16, HIZ16]

Treewidth-k
[HIZ16]

Minor-Free
[HLZ18]

Mixing Time 1
[GKS17]

k-chordal
[KKIO19, in prep.]
Douling
Dimesion-«
[KKIO19, in prep.]

Cliguewidth-c
[KKIO19, in prep.]

Small Diameter
[KKI19, in prep.]

0(/gDlogD)
O(kD logn)

0(D?)

0 (Tz\/log nloglog D) 0 (Tz\/log nloglog nD)

0(kD)
0(D%)

0(n)

1 1
O(nE_ZD—z)
for D = 3,4

0(G/gD logD)

O(kD logn)

0(D?)

o)
o)

0(Wn)

~ 1 1
O(nZ_ZD—Z)
for D = 3,4

(55

Q(kD)
Q(D)(trivial)
Q(D)(trivial)

Q(kD)

Q(D%)

QH/n)
forc = 0(1)
ﬁ(n%_Tl—z)

for any D
[DHKKPPW13]

Shortcut and Graph Classes : Known Results

—
Lower

» + UOISuUIXa doy-T

Genus-

[GH16, HIZgl6] 0(vgDlogD) 0(vgDlogD) <log g)
Treewidth-k 0(kD log) 0 (kD logn) Q(kD)
[HIZ16]

m'sz‘gg'Free 0(D?) 0(D?) Q(D)(trivial)
PgL)éllg]g Time t O(TZ\/logn log log nD) O(TZJlogn loglog nD) Q(D)(trivial)
k-chordal

[KKIO19, in prep.] O(kD) 0(1) 'Q(kD)
Douling

Dimesion-a 0(D%) 0(1) Q(D%)
[KKIO19, in prep.]

Cliquewidth-c Qn)
[KKIO19, in prep.] 0(Wn) 0(n) forc = 0(1)

—, Small Diameter

[KKI19, in prep.]

1 1
O(nE_ZD—z)
for D = 3,4

~ 1 1
O(nZ_ZD—Z)
for D = 3,4

P
Q(nz 2D—2)
for any D
[DHKKPPW13]

ST-approach : 0(D?) quality for Planar Graphs

Construct a spanning tree

Planar Graph : 0(D?) quality construction

Construct a spanning tree

ST-approach : 0(D?) quality for Planar Graphs

Construct a spanning tree

Each part takes upward path of the tree,
except for the leftmost and rightmost paths
root (arbitrarily chosen)

ST-approach : 0(D?) quality for Planar Graphs

Construct a spanning tree

Each part takes upward path of the tree,
except for the leftmost and rightmost paths
root (arbitrarily chosen)

Planar Graph : 0(D?) quality construction

Construct a spanning tree

Each part takes upward path of the tree,
except for the leftmost and rightmost paths
root (arbitrarily chosen)

C:\JKQ//\/
\71\‘;//

Proving the Quality
-

Taking a BFS tree, this construction achieves
o 0(D?) dilation

o O(D) congestion

(@)o ybisH

Part

Proving the Quality
-

Taking a BFS tree, this construction achieves
o 0(D?) dilation

o O(D) congestion

(@)o ybisH

K Part)

Proving the Quality
-

Taking a BFS tree, this construction achieves
o 0(D?) dilation

o O(D) congestion

0(D) fragments of
Height-0(D) tree

~

T
AL 0(D*) dilation

(a@)o 1ybioH

K Part)

Proving the Quality
-

Taking a BFS tree, this construction achieves
o 0(D?) dilation

o O(D) congestion

(@)o ybisH

Proving the Quality
-

Taking a BFS tree, this construction achieves
o 0(D?) dilation

o O(D) congestion

(@)o ybisH

Part

does not use e

Proving the Quality

Taking a BFS tree, this construction achieves

o 0(D?) dilation -

o O(D) congestion

(@0 ybioH

(Part)

Proving the Quality

Taking a BFS tree, this construction achieves

o 0(D?) dilation > —

o O(D) congestion

w(D) crossing parts create
a forbidden minor !
= O0(D) congestion

(@)0 1ybisH
M

"’

Part

\\'
/i

Distributed Construction
I

The construction requires a planar embedding

o It is possible (in distributed mannar)
[Ghaffari and Haeupler, PODC’16]

There also exists an algorithm without embedding
[Haeupler, I, Zuzic, ‘16]

o A versatile algorithm (not only for planar graphs)

o Find any spanning-tree based shortcuts (efficiently)
— Only existential proofs suffice!

1-hop Extension Approach
e

Take all the edges touching each part

1-hop Extension Approach
e

Take all the edges touching each part

o Congestion is obviously 0(1)

ey

Application :k-chordal graphs

k-chordal graphs = any induced cycle has length at most k

3-chordal 4-chordal 5-chordal
(chordal)

1-hop extension for k-chordal graphs
1

1-hop extension shrinks the diameter of any subgraph of k-
chordal graphs!

1-hop extension for k-chordal graphs
1

Take two nodes far apart in the part

o Shortest path in the part is long

| Assume their disjointness
for simplicity

They have a (shortest) path < diameter D

length < D
A
[\
-O0—0O-

-
-
—’
~ o -
— —-—
o oom wm W
il e

long in-part shortest path

1-hop extension for k-chordal graphs
1

Take two nodes far apart in the part

o Shortest path in the part is long

| Assume their disjointness
for simplicity

They have a (shortest) path < diameter D

length < D
A
[\
-O0—0O-

-
-
—’
~ o -
— —-—
o oom wm W
il e

long in-part shortest path

1-hop extension for k-chordal graphs

What happens taking 1-hop extension edges

length < D

long in-part shortest path

1-hop extension for k-chordal graphs
1

Exploration from the left

o Can find one shortcut edge within distance 0(k) because of
k-chordality

1-hop extension for k-chordal graphs
1

Exploration from the left

o Can find one shortcut edge within distance 0(k) because of
k-chordality

1-hop extension for k-chordal graphs

Go back to the part (by taking the best edge)

1-hop extension for k-chordal graphs

Do the same thing for the remaining cycle

1-hop extension for k-chordal graphs

Do the same thing for the remaining cycle

1-hop extension for k-chordal graphs

Do the same thing for the remaining cycle

1-hop extension for k-chordal graphs

Do the same thing for the remaining cycle

1-hop extension for k-chordal graphs

Do the same thing for the remaining cycle

/

O(k) O(k)

1-hop extension for k-chordal graphs

The shortest path length using 1-hop extension edges is 0(kD)

0 (k) 0 (k)

Open Problems
e

On graph classes

o Optimal shortcuts for minor-closed family (generalization of
bounded genus/treewidth graphs)

o Everywhere sparse graphs (further generalization ?)

o Highly-connected graphs

Versatile algorithms

o Automatic transformer from existential results to
constructability results

Open Problems

-
How about other problems?

Theorem [GH16]]
O0(f)-round PA — O(f)-round MST

Theorem[GH16]
O(f)-round PA — O(f)-round (1 + €)-approx. min-cut

Theorem|[HL18]
0(f)-round PA— For 8 = (logn)®W,

loglogn

O0(Bf)-round O(n leef) -approx. SSSP

Known that it does not help the diameter or APSP

