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Model

-
CONGEST model

o Round-based synchrony
o Network is a graph ¢ = (V(G),V(E)) of n nodes

o Each link transmits 0(logn) bits / round
Reliable

Coping with low bandwidth is a primary difficulty

o Many hardness results: MST, Diameter, Min-cut, etc.



Warm-up : MST

-
Classical GHS algorithm (= Distributed Boruvka)

o Growing the fragments of MST

Each fragment finds its minimum outgoing edge (MOE)
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Warm-up : MST

Finding MOEs is not necessarily fast

o Even if the diameter of graph G is D < n,
a fragment can have an Q(n) diameter

Naive in-fragment aggregation is slow !
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A Hard-Core Instance for MST

... and many other problems

syzed (uMo

0(y/n) nodes
Q(v/n + D)-round lower bound !



Partwise Aggregation(Minimum)

Definition :
o Each node has one value (0(logn) bits)
o Each link can transmit 0(logn) bits / round

o V(G) is partitioned into a number of connected subgraphs
Pl» PZ; "'rPN

o Forall P, (1 <i < N), find the minimum value in P;
" independently
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Motivation
X

Partwise aggregation plays an important role for designing
distributed algorithms in CONGEST model

(CONGEST model : Round-based synchrony + 0(logn)-bit bandwidth)

Meta-Theorem [Folklore + Ghaffari and Haeupler’ 16]

Efficient partwise aggregation

<
Efficient distributed algorithm for MST,
min-cut, weighted shortest path, and so on...




Naive Solution(1)

In-part aggregation
o BFS trees in parts might have a large diameter

The diameter even becomes 0(n), so 0(n) rounds
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Naive Solution(2)

Aggregation via a global BFS tree
o Pipelined scheduling achieves 0(D + N) rounds

N can become 0(n), so 0(n) rounds




The Optimal Solution

V(P,)| <+/mn : Naive in-part aggregation

[V(P)| > +/n :| Use a BFS tree of the whole network
+ pipelined scheduling
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Good Algorithms for Good Graphs
e

This is an existential lower bound

o There exists “an instance” exhibiting expensive cost

We can expect much faster aggregation for many “not-so-bad”
instances

o Universal Lower bound : Q(D) rounds

Problem

What graphs (classes) allow faster aggregation?




Shortcuts - An alternative view of P.A.

[V(P)| < +/n :| Naive in-part aggregation

[V(P;)| > «n :| Use a BFS tree of the whole network
+ pipelined scheduling

Augmenting the edges outside of
the part for faster aggregation

g But those edges are shared by
d&‘ many parts... causing congestion !
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(d,c)-shortcut
D

Given a connected partition P, P,,--,Py of G

(d,c)-shortcut is a subgraph Hy,H,, -, Hy S.t.
o For any i, P; + H; has diameter at most d (dilation)

o Each edge e € E(G) is used as a shortcut edge at most ¢ times

An algorithm constructing (d,c)-shortcut for any partition with
0(f) rounds induces 0(d + ¢ + f)-round algorithms for partwise
aggregation !

For measuring quality, max{d, c} is usually enough.
We state simply by k-shortcuts if kK = max{d, c}



Shortcuts - An alternative view of P.A.
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Shortcut and Graph Classes : Known Results

—
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m'sz‘gg'Free 0(D?) 0(D?) Q(D)(trivial)
|[\2L)éllg]g Time t O(TZ\/logn log log nD) O(TZJlogn loglog nD) Q(D)(trivial)
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Small Diameter
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1 1
O(nE_ZD—z)
for D = 3,4

~ 1 1
O(nZ_ZD—Z)
for D = 3,4

P
Q(nz 2D—2)
for any D
[DHKKPPW13]
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Proving the Quality
-

Taking a BFS tree, this construction achieves
o 0(D?) dilation

o O(D) congestion
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Proving the Quality

Taking a BFS tree, this construction achieves

o 0(D?) dilation > —

o O(D) congestion

w(D) crossing parts create
a forbidden minor !
= O0(D) congestion
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Distributed Construction
I

The construction requires a planar embedding

o It is possible (in distributed mannar)
[Ghaffari and Haeupler, PODC’16]

There also exists an algorithm without embedding
[Haeupler, I, Zuzic, ‘16]

o A versatile algorithm (not only for planar graphs)

o Find any spanning-tree based shortcuts (efficiently)
— Only existential proofs suffice!



1-hop Extension Approach
e

Take all the edges touching each part




1-hop Extension Approach
e

Take all the edges touching each part

o Congestion is obviously 0(1)

ey




Application :k-chordal graphs

k-chordal graphs = any induced cycle has length at most k

3-chordal 4-chordal 5-chordal
(chordal)



1-hop extension for k-chordal graphs
1

1-hop extension shrinks the diameter of any subgraph of k-
chordal graphs!




1-hop extension for k-chordal graphs
1

Take two nodes far apart in the part

o Shortest path in the part is long

| Assume their disjointness
for simplicity

They have a (shortest) path < diameter D

length < D
A
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long in-part shortest path
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1-hop extension for k-chordal graphs

What happens taking 1-hop extension edges

length < D

long in-part shortest path



1-hop extension for k-chordal graphs
1

Exploration from the left

o Can find one shortcut edge within distance 0(k) because of
k-chordality
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1-hop extension for k-chordal graphs

Go back to the part (by taking the best edge)




1-hop extension for k-chordal graphs

Do the same thing for the remaining cycle
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1-hop extension for k-chordal graphs

Do the same thing for the remaining cycle

/

O(k) O(k)




1-hop extension for k-chordal graphs

The shortest path length using 1-hop extension edges is 0(kD)

0 (k) 0 (k)



Open Problems
e

On graph classes

o Optimal shortcuts for minor-closed family (generalization of
bounded genus/treewidth graphs)

o Everywhere sparse graphs (further generalization ?)

o Highly-connected graphs

Versatile algorithms

o Automatic transformer from existential results to
constructability results



Open Problems

-
How about other problems?

Theorem [GH16]]
O0(f)-round PA — O(f)-round MST

Theorem[GH16]
O(f)-round PA — O(f)-round (1 + €)-approx. min-cut

Theorem|[HL18]
0(f)-round PA— For 8 = (logn)®W,

loglogn

O0(Bf)-round O(n leef ) -approx. SSSP

Known that it does not help the diameter or APSP



