Quantum Distributed Computing

LG and Magniez. Sublinear-Time Quantum Computation of the Diameter in Distributed Networks. PODC 2018.

LG, Nishimura and Rosmanis. Quantum Advantage for the LOCAL model in Distributed Computing. STACS 2019.

François Le Gall

Kyoto University

Paris, 20 February 2018

Quantum Computing

 Computation paradigm based on the laws of quantum mechanics

quantum mechanics:

a wave function The position of a photon is described by a probability distribution

[°]photon

1

Double-slit experiment:

Quantum Mechanics: Discrete Case

1 bit of information

or

1 quantum bit (qubit) of information

one 2-dimensional complex vector of norm 1

 $\binom{\alpha}{\beta}$ with $\alpha, \beta \in \mathbb{C}$ and $|\alpha|^2 + |\beta|^2 = 1$

 $|\alpha|^2$ is the probability to observe the particle at state 0 $|\beta|^2$ is the probability to observe the particle at state 1

example:
$$\binom{-1/\sqrt{2}}{1/\sqrt{2}}$$
 observing the qubit gives 0 with probability $\frac{1}{\sqrt{2}}$ probability $\frac{1}{2}$ and 1 with probability $\frac{1}{2}$

Quantum Mechanics: Discrete Case

n bits of information

n quantum bits of information

one binary string of length n

 $|\alpha_i|^2$ is the probability to observe the i-th binary string

- Quantum information is attractive since it can store and manipulate an exponentially large amount of information (as a quantum superposition)
- Observing the quantum particles, however, does not give more than a random string (with probabilities depending of the coefficients in the superposition) the art of quantum programming
- But since the coefficients can be negative we can exploit interferences to amplify the probabilities of observing a good outcome and reducing the probability to observing a bad outcome

Quantum Algorithms

What can we do with a quantum computer?

quantum algorithm for integer factoring [Shor 1994]

quantum algorithm for search [Grover 1996]

Quantum Algorithm

What can we do with a quantum d

quantum algorithm for integer factorin breaks RSA cryptosystem

quantum algorithm for search [Grover 1 fast for generic search prol

quantum algorithms with amplitude amplification [Bras 0

- quantum algorithms for adiabatic evolution [Fahri et al 0
- quantum algorithms for element disjointness [Ambainis 0
- quantum algorithms for Gauss sums [van Dam et al. 2 0
- quantum algorithms for solving Pell's equation [Hallgre 0
- quantum algorithms for quantum simulations [Childs 2 0
- quantum algorithms for hidden subgroups [Kuperberg] 0
- quantum algorithms for finding an unit group [Hallgren 0
- quantum algorithms for triangle finding [Magniez et al. 0
- quantum algorithms for computing knot invariants [Aha 0
- quantum algorithms for data streams [LG 2006] 0
- quantum algorithms for hidden nonlinear structures [Childs et al. 2007] 0
- quantum algorithms for evaluating NAND formulas [Fahri et al. 2007] 0
- quantum algorithms using span programs [Belovs 2011] 0
- quantum algorithms for matrix multiplication [LG 2012] 0
- quantum algorithms for matrix inversion [Ta-Shma 2013] 0
- quantum algorithms for the edit distance [Boroujeni et al. 2017] 0
- quantum algorithms for dynamic programming [Ambainis+ 2018]

This is a comprehensive catalog of quantum algorithms. If you notice any errors or omissions, please email me at stephen.jordan@nist.gov. Your help is appreciated and will be acknowledged.

Algebraic and Number Theoretic Algorithms

Algorithm: Factoring

Speedup: Superpolynomial

Description: Given an n-bit integer, find the prime factorization. The quantum algorithm of Peter Shor solves this in $\widetilde{O}(n^3)$ time [82,125]. The fastest known classical algorithm for integer factorization is the general number field sieve, which is believed to run in time $2^{\widetilde{O}(n^{1/3})}$. The best rigorously proven upper bound on the classical complexity of factoring is $O(2^{n/3+o(1)})$ [252]. Shor's factoring algorithm breaks RSA public-key encryption and the closely related quantum algorithms for discrete logarithms break the DSA and ECDSA digital signature schemes and the Diffie-Hellman key-exchange protocol. A quantum algorithm even faster than Shor's for the special case of factoring "semiprimes", which are widely used in croptography is given in [271]. There are proposed classical public-key cryptosystems not believed to be broken by quantum algorithms, cf. [248]. At the core of Shor's factoring algorithm is order finding, which can be reduced to the Abelian hidden subgroup problem, which is solved using the quantum Fourier transform. A number of other problems are known to reduce to integer factorization including the membership problem for matrix groups over fields of odd order [253], and certain diophantine problems relevant to the synthesis of quantum circuits [254].

Algorithm: Discrete-log

Speedup: Superpolynomial

Description: We are given three *n*-bit numbers *a*, *b*, and *N*, with the promise that $b = a^s \mod N$ for some s. The task is to find s. As shown by Shor [82], this can be achieved on a quantum computer in poly(n) time. The fastest known classical algorithm requires time superpolynomial in n. By similar techniques to those in [82], quantum computers can solve the discrete logarithm problem on elliptic curves, thereby breaking elliptic curve cryptography [109]. The superpolynomial quantum speedup has also been extended to the discrete logarithm problem on semigroups [203, 204]. See also Abelian Hidden Subgroup.

Algorithm: Pell's Equation

Speedup: Superpolynomial **Description:** Given a positive nonsquare integer *d*, Pell's equation is $x^2 - dy^2 = 1$. For any such *d*

there are infinitely many pairs of integers (x, y) solving this equation. Let (x_1, y_1) be the pair that minimizes $x + y\sqrt{d}$. If d is an n-bit integer (*i.e.* $0 \le d < 2^n$), (x_1, y_1) may in general require

278 entries (2019/2/11)

Quantum Distributed Computing

- ✓ Mostly been studied in the framework of 2-party communication complexity
- ✓ Relatively few results focusing on more than two parties:
 - exact quantum protocols for leader election on anonymous networks [Tani, Kobayashi, Matsumoto PODC'09]
 - study of quantum distributed algorithms on non-anonymous networks

[Gavoille, Kosowski, Markiewicz DISC'09]
LOCAL model
no significant advantage reported

[Elkin, Klauck, Nanongkai, Pandurangan PODC'14] - CONGEST model

<u>negative results</u>: shows impossibility of quantum distributed computing faster than classical distributed computing for many important problems (shortest paths, MST,...)

Question: can quantum distributed computing be useful?

Yes, in the CONGEST model [LG and Magniez PODC 2018]

sublinear-time quantum distributed algorithm for computing the diameter

 Maybe also in the LOCAL model [LG, Rosmanis and Nishimura STACS 2019] evidences that quantum can be superior to classical

Quantum CONGEST model

Quantum CONGEST model

CONGEST model where quantum bits can be sent instead of usual bits

one quantum bit (qubit) = one quantum particle (e.g., one photon)

- $\checkmark\,$ can be created using a laser and sent using optical fibers
- ✓ generalizes the concept of bit (hence quantum distributed computing can trivially simulate classical distributed computing)

More formally:

- ✓ network G=(V,E) of n nodes (all nodes have distinct identifiers)
- ✓ each node knows the identifiers of all its neighbors
- ✓ synchronous communication between adjacent nodes: one message of O(log n) qubits per round
- ✓ each node is a quantum processor (i.e., a quantum computer)

Complexity: the number of rounds needed for the computation

Diameter and Eccentricity

Consider an undirected and unweighted network G = (V,E) with n nodes

The diameter of the graph is the maximum distance between two nodes

$$D = \max_{u,v \in V} \{ d(u,v) \}$$

Diameter and Eccentricity

Consider an undirected and unweighted network G = (V,E) with n nodes

The diameter of the graph is the maximum distance between two nodes

$$D = \max_{u,v \in V} \{ d(u,v) \}$$

=
$$\max_{u \in V} \{ ecc(u) \}$$

$$d(u,v) = distance between u and v$$

The eccentricity of a node u is defined as

Diameter and Eccentricity

Consider an undirected and unweighted network G = (V,E) with n nodes

The diameter of the graph is the maximum distance between two nodes

$$D = \max_{u,v \in V} \{d(u,v)\}$$

= max {ecc (u)}
$$= \max_{u \in V} \{ecc (u)\}$$

The <u>eccentricity</u> of a node u is defined as

ecc (u) =
$$\max_{v \in V} \{d(u,v)\}$$

In the classical (i.e., non-quantum) CONGEST model:

- ✓ ecc(u) can be computed in O(D) rounds by constructing a Breadth-First Search tree rooted at u
- computing the diameter (i.e., the maximum eccentricity) requires
 Θ(n) rounds even for constant D
 [Frischknecht+12, Holzer+12, Peleg+12, Abboud+16]

Computation of the Diameter in the CONGEST model

main result: sublinear-round quantum computation of the diameter whenever D=o(n) (our algorithm uses O((log n)²) qubits of quantum memory per node)

> first gap between classical and quantum in the CONGEST model for a major problem of interest to the distributed computing community

	Classical	Quantum (our results)
Exact computation (upper bounds)	O(n) [Holzer+12, Peleg+12]	$O(\sqrt{nD})$
Exact computation (lower bounds)	$\widetilde{\Omega}(n)$ [Frischknecht+12]	$\widetilde{\Omega}(\sqrt{nD})$ [conditional]
number of rounds needed to compute the diameter (n: number of nodes, D: diameter) condition: holds for quantum distributed algorithms using only polylog(n) qubits of memory per node		
3/2-approximation (upper bounds)	$O(\sqrt{n} + D)$ [Lenzen+13, Holzer+14]	$O(\sqrt[3]{nD} + D)$
(3/2-ε)-approximation (lower bounds)	$\widetilde{\Omega}(n)$ [Holzer+12, Abboud+16]	$\widetilde{\Omega}(\sqrt{n}+D)$ [unconditional]

Our Upper Bound

main result: sublinear-round quantum computation of the diameter whenever D=o(n) (our algorithm uses O((log n)²) qubits of quantum memory per node)

> first gap between classical and quantum in the CONGEST model for a major problem of interest to the distributed computing community

	Classical	Quantum (our results)	
Exact computation (upper bounds)	O(n) [Holzer+12, Peleg+12]	$O(\sqrt{nD})$	

number of rounds needed to compute the diameter (n: number of nodes, D: diameter)

Computation of the diameter (decision version)

Given an integer d, decide if diameter \geq d

there is a vertex u such that ecc $(u) \ge d$

This is a search problem Idea: use the technique called "quantum search"

Centralized Quantum Search: Grover's algorithm

Let f: $X \rightarrow \{0,1\}$ be a Boolean function given as a black box

Goal: find an element $x \in X$ such that f(x) = 1

Classically this can be done using O(|X|) calls to the black box ("brute force search: try all the elements x")

There is a quantum centralized algorithm solving this problem with $O(\sqrt{|X|})$ calls to the black box

Quantum search [Grover 96]

Example of application: quantum algorithm for Boolean satisfiability (SAT)

SAT: given a Boolean formula f of poly size on M variables, find a satisfying assignment (if such an assignment exists)

Centralized Quantum Search: Grover's algorithm

Let f: $X \rightarrow \{0,1\}$ be a Boolean function given as a black box

Goal: find an element $x \in X$ such that f(x) = 1

Classically this can be done using O(|X|) calls to the black box ("brute force search: try all the elements x")

There is a quantum centralized algorithm solving this problem with $O(\sqrt{|X|})$ calls to the black box

Quantum search [Grover 96]

Example of application: quantum algorithm for Boolean satisfiability (SAT)

SAT: given a Boolean formula f of poly size on M variables, find a satisfying assignment (if such an assignment exists)

X = set of all possible assignments $|X| = 2^M$ Black box: computes f(x) from xpoly(M) time

Centralized Quantum Search: Grover's algorithm

Let f: $X \rightarrow \{0,1\}$ be a Boolean function given as a black box

Goal: find an element $x \in X$ such that f(x) = 1

Classically this can be done using O(|X|) calls to the black box ("brute force search: try all the elements x")

There is a quantum centralized algorithm solving this problem with $O(\sqrt{|X|})$ calls to the black box

Quantum search [Grover 96]

Example of application: quantum algorithm for Boolean satisfiability (SAT)

SAT: given a Boolean formula f of poly size on M variables, find a satisfying assignment (if such an assignment exists)

X = set of all possible assignments $---- |X| = 2^M$ Black box: computes f(x) from x ----- poly(M) time \rightarrow Quantum search solves SAT in $O(2^{M/2} \times poly(M))$ time

Define the function f: V \rightarrow {0,1} such that f(u) = $\begin{cases} 1 \text{ if ecc } (u) \ge d \\ 0 \text{ otherwise} \end{cases}$

Goal: find u such that f(u) = 1 (or report that no such vertex exist)

There is a quantum <u>centralized</u> algorithm for this search problem using $O(\sqrt{n})$ calls to a black box evaluating f

Quantum search [Grover 96]

Computation of the diameter (decision version)

```
Given an integer d, decide if diameter \geq d
there is a vertex u such that ecc (u) \geq d
```

This is a search problem Idea: use the technique called "quantum search"

Define the function f: V \rightarrow {0,1} such that f(u) = $\begin{cases} 1 & \text{if ecc } (u) \ge d \\ 0 & \text{otherwise} \end{cases}$

Goal: find u such that f(u) = 1 (or report that no such vertex exist)

There is a quantum <u>centralized</u> algorithm for this search problem using $O(\sqrt{n})$ calls to a black box evaluating f

Quantum search [Grover 96]

Quantum distributed algorithm computing the diameter

- \checkmark The network elects a leader
- The leader locally runs this centralized quantum algorithm for search, in which each call to the black box is implemented by executing the standard O(D)-round classical algorithm computing the eccentricity

Classically in O(D) rounds it is possible to simultaneously compute the eccentricities of D vertices [Peleg+12]

Thus we can instead do a Grover search over groups of D vertices (there are n/D groups) in

 $O(\sqrt{n/D} \times D) = O(\sqrt{nD})$ rounds

Quantum distributed algorithm computing the diameter

✓ The network elects a leader

The leader locally runs this centralized quantum algorithm for search, in which each call to the black box is implemented by executing the standard O(D)-round classical algorithm computing the eccentricity

Complexity: $O(\sqrt{n} \times D)$ rounds

With further work, the complexity can be reduced to $O(\sqrt{nD})$ rounds

Subtlety: Quantum Access to the Black Box

Define the function f: V \rightarrow {0,1} such that f(u) = $\begin{cases} 1 \text{ if ecc } (u) \ge d \\ 0 \text{ otherwise} \end{cases}$

Goal: find u such that f(u) = 1 (or report that no such vertex exist)

There is a quantum <u>centralized</u> algorithm for this search problem using $O(\sqrt{n})$ calls to a black box evaluating f

Quantum search [Grover 96]

Subtlety: quantum search requires accessing the black box "in superposition"

Why does this not introduce congestions?

Implementation of the Oracle in O(D) rounds

$$\sum_{u \in V} \alpha_u |u\rangle_a |0\rangle_a \left\{ \boxed{=} \text{oracle} \\ \boxed{=} \right\} \sum_{u \in V} \alpha_u |u\rangle_a |ecc(u)\rangle_a$$

V={a,b,c,d,e,f,g}

Initially node a owns $\sum_{u \in V} \alpha_u |u\rangle_a$

1. "Broadcast" this state, which gives $[ecc(a) \le D rounds]$

$$\sum_{u \in V} \alpha_u |u\rangle_a |u\rangle_b |u\rangle_c |u\rangle_d |u\rangle_e |u\rangle_f |u\rangle_g$$

 The nodes implement the classical protocol [O(D) rounds] for computing the eccentricity of u, which gives

 $\sum_{u \in V} \alpha_u |u\rangle_{a} |u\rangle_{b} |u\rangle_{c} |u\rangle_{d} |u\rangle_{e} |u\rangle_{f} |u\rangle_{g} |ecc(u)\rangle_{a}$

3. The nodes revert Step 1

 $[ecc(a) \le D rounds]$

The Upper Bound

- ✓ We have just described a O(\sqrt{n} x D)-round quantum distributed algorithm for computing (with high probability) the diameter
- \checkmark With further work, the complexity can be reduced to $O(\sqrt{nD})$ rounds

The Lower Bounds

conditional quantum lower bound

- Claim: if the quantum distributed algorithm for diameter <u>uses few quantum memory</u> per node, then the reduction can be adjusted to give a two-party protocol for DISJ using few messages (idea: send communication in batches)
- ✓ the (two-party) r-message quantum communication complexity of DISJ_n is $\Omega(n/r + r)$ qubits [Braverman+15]

Summary of the first part

main result: sublinear-round quantum computation of the diameter in the CONGEST model (when D is small enough)

	Classical	Quantum (our results)
Exact computation (upper bounds)	O(n) [Holzer+12, Peleg+12]	$O(\sqrt{nD})$
Exact computation (lower bounds)	$\widetilde{\Omega}(n)$ [Frischknecht+12]	$\widetilde{\Omega}(\sqrt{n}+D)$ [unconditional] $\widetilde{\Omega}(\sqrt{nD})$ [conditional]

number of rounds needed to compute the diameter (n: number of nodes, D: diameter)

3/2-approximation (upper bounds)	$O(\sqrt{n} + D)$ [Lenzen+13, Holzer+14]	$O(\sqrt[3]{nD} + D)$
(3/2-ε)-approximation (lower bounds)	$\widetilde{\Omega}(n)$ [Holzer+12, Abboud+16]	$\widetilde{\Omega}(\sqrt{n}+D)$ [unconditional]

Summary of the first part

Useful for problems in distributed computing where the bottleneck is a search problem

"Recipe" to build a quantum distributed algorithm (even without knowing anything about quantum computation):

If you need to find a good element among *N* candidates and have a *r*-round procedure to check if an element is good, there is a $O(r\sqrt{N})$ -round quantum algorithm for this search problem.

- Our upper bounds are obtained by showing how to implement quantum search in a distributed setting
- Interesting research direction: apply this technique to other problems in distributed computing

Quantum Distributed Computing

- ✓ Mostly been studied in the framework of 2-party communication complexity
- ✓ Relatively few results focusing on more than two parties:
 - exact quantum protocols for leader election on anonymous networks [Tani, Kobayashi, Matsumoto PODC'09]
 - study of quantum distributed algorithms on non-anonymous networks

[Gavoille, Kosowski, Markiewicz DISC'09]
LOCAL model
no significant advantage reported

[Elkin, Klauck, Nanongkai, Pandurangan PODC'14] - CONGEST model

<u>negative results</u>: shows impossibility of quantum distributed computing faster than classical distributed computing for many important problems (shortest paths, MST,...)

Question: can quantum distributed computing be useful?

✓ Yes, in the CONGEST model [LG and Magniez PODC 2018]

sublinear-time quantum distributed algorithm for computing the diameter

 Maybe also in the LOCAL model [LG, Rosmanis and Nishimura STACS 2019] evidences that quantum can be superior to classical

Quantum Distributed Computing

- ✓ Mostly been studied in the framework of 2-party communication complexity
- ✓ Relatively few results focusing on more than two parties:
 - exact quantum protocols for leader election on anonymous networks [Tani, Kobayashi, Matsumoto PODC'09]
 - study of quantum distributed algorithms on non-anonymous networks

[Gavoille, Kosowski, Markiewicz DISC'09]
LOCAL model
no significant advantage reported

[Elkin, Klauck, Nanongkai, Pandurangan PODC'14] - CONGEST model

<u>negative results</u>: shows impossibility of quantum distributed computing faster than classical distributed computing for many important problems (shortest paths, MST,...)

Question: can quantum distributed computing be useful?

✓ Yes, in the CONGEST model [LG and Magniez PODC 2018]

sublinear-time quantum distributed algorithm for computing the diameter

 Maybe also in the LOCAL model [LG, Rosmanis and Nishimura STACS 2019] evidences that quantum can be superior to classical

Quantum LOCAL model

Messages can now have arbitrary length

Quantum CONGEST model

- ✓ network G=(V,E) of n nodes (all nodes have distinct identifiers)
- ✓ each node knows the identifiers of all its neighbors
- synchronous communication between adjacent nodes:
 one message of O(log n) qubits per round
- ✓ each node is a quantum processor (i.e., a quantum computer)

Complexity: the <u>number of rounds</u> needed for the computation

Quantum LOCAL model

- ✓ network G=(V,E) of n nodes (all nodes have distinct identifiers)
- ✓ each node knows the identifiers of all its neighbors
- ✓ synchronous communication between adjacent nodes: one message of arbitrary length per round
- ✓ each node is a quantum processor (i.e., a quantum computer)

Complexity: the <u>number of rounds</u> needed for the computation

Superiority of the Quantum LOCAL model [LG, Rosmanis and Nishimura STACS 2019]

multiple of 3 Consider a ring of size n (seen as a triangle)

Each "corner" gets a bit as input

Each node will output one bit

Superiority of the Quantum LOCAL model [LG, Rosmanis and Nishimura STACS 2019]

Claim 1: There is a 2-round quantum algorithm that outputs the uniform distribution over all binary strings $(z_1, z_2, ..., z_n) \in \{0,1\}^n$ satisfying the following condition:

$m_{odd} = 0$	if	$(b_1, b_2, b_3) = (0, 0, 0)$
$m_{odd} \oplus m_R = 1$	if	$(b_1, b_2, b_3) = (1, 1, 0)$
$m_{odd} \oplus m_B = 1$	if	$(b_1, b_2, b_3) = (0, 1, 1)$
$m_{odd} \oplus m_L = 1$	if	$(b_1, b_2, b_3) = (1, 0, 1)$.

Claim 1: There is a 2-round quantum algorithm that outputs the uniform distribution over all binary strings $(z_1, z_2, ..., z_n) \in \{0,1\}^n$ satisfying the following condition:

	$m_{odd} = 0$	if	$(b_1, b_2, b_3) = (0, 0, 0)$
J	$m_{odd} \oplus m_R = 1$	if	$(b_1, b_2, b_3) = (1, 1, 0)$
	$m_{odd} \oplus m_B = 1$	if	$(b_1, b_2, b_3) = (0, 1, 1)$
	$m_{odd} \oplus m_L = 1$	if	$(b_1, b_2, b_3) = (1, 0, 1)$.

Conclusions

- ✓ We have shown that in the CONGEST model the diameter of the network can be computed faster using quantum distributed algorithms (for constant diameter: $\Theta(\sqrt{n})$ rounds quantumly vs. $\Theta(n)$ rounds classically)
- ✓ We have shown that in the LOCAL model quantum distributed algorithms can also be faster, at least for some computational task (for our ring problem: 2 rounds quantumly vs. $\Theta(n)$ rounds classically)

Interesting research directions:

- Consider other applications of quantum distributed algorithms in the CONGEST model
- ✓ Find one <u>interesting</u> application of quantum distributed algorithms in the LOCAL model
- Consider other models (e.g., asynchronous computation) in the quantum setting