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Quantum Computing
 Computation paradigm based on the laws of 

quantum mechanics

The position of a photon is described by a probability distribution

Double-slit experiment:

1 photon

photon

double slit screen

interferences

a wave function
quantum mechanics:



Quantum Mechanics: Discrete Case

1

0

or

1 bit of information 1 quantum bit (qubit) of information

1

0
wave function over 0 and 1

example: −1/√2
1/√2

one 2-dimensional complex vector of norm 1
𝛼𝛼
𝛽𝛽 with α,𝛽𝛽 ∈ ℂ and α 2 + 𝛽𝛽 2 = 1

α 2 is the probability to observe the particle at state 0
𝛽𝛽 2 is the probability to observe the particle at state 1

(quantum superposition over 0 and 1)

observing the qubit gives 0 with 
probability ½ and 1 with probability ½ 



Quantum Mechanics: Discrete Case
n bits of information n quantum bits of information

𝛼𝛼1

𝛼𝛼2𝑛𝑛

one 2n-dimensional complex vector of norm 1

quantum superposition over all the binary 
strings of length n

one binary string of length n

α𝑖𝑖 2 is the probability to observe the i-th binary string

with  α𝑖𝑖 ∈ ℂ and ∑𝑖𝑖 α𝑖𝑖 2 = 1

 Quantum information is attractive since it can store and manipulate an exponentially 
large amount of information (as a quantum superposition)

 Observing the quantum particles, however, does not give more than a random 
string (with probabilities depending of the coefficients in the superposition)

 But since the coefficients can be negative we can exploit interferences to amplify 
the probabilities of observing a good outcome and reducing the probability to 
observing a bad outcome 

the art of quantum programming



quantum algorithm for integer factoring [Shor 1994]

5

What can we do with a quantum computer?

Quantum Algorithms

breaks RSA cryptosystem

fast for generic search problems
quantum algorithm for search [Grover 1996]



quantum algorithm for integer factoring [Shor 1994]

What can we do with a quantum computer?

breaks RSA cryptosystem

fast for generic search problems
quantum algorithm for search [Grover 1996]

 quantum algorithms with amplitude amplification [Brassard et al. 1999]
 quantum algorithms for adiabatic evolution [Fahri et al. 2000]
 quantum algorithms for element disjointness [Ambainis 2002]
 quantum algorithms for Gauss sums [van Dam et al. 2002] 
 quantum algorithms for solving Pell’s equation [Hallgren 2002]
 quantum algorithms for quantum simulations [Childs 2004]
 quantum algorithms for hidden subgroups [Kuperberg 2004]
 quantum algorithms for finding an unit group [Hallgren 2005]
 quantum algorithms for triangle finding [Magniez et al. 2005]
 quantum algorithms for computing knot invariants [Aharonov et al. 2006]
 quantum algorithms for data streams [LG 2006]
 quantum algorithms for hidden nonlinear structures [Childs et al. 2007]
 quantum algorithms for evaluating NAND formulas [Fahri et al. 2007]
 quantum algorithms using span programs [Belovs 2011]
 quantum algorithms for matrix multiplication [LG 2012]
 quantum algorithms for matrix inversion [Ta-Shma 2013]
 quantum algorithms for the edit distance [Boroujeni et al. 2017]
 quantum algorithms for dynamic programming [Ambainis+ 2018]

6

Quantum Algorithms That’s all?

278 entries (2019/2/11)



Quantum Distributed Computing
 Mostly been studied in the framework of 2-party communication complexity

Question: can quantum distributed computing be useful? 

 Yes, in the CONGEST model [LG and Magniez PODC 2018] 

negative results: shows impossibility of quantum distributed 
computing faster than classical distributed computing for many 
important problems (shortest paths, MST,…)

no significant advantage reported

 Relatively few results focusing on more than two parties:

 exact quantum protocols for leader election on anonymous networks 
[Tani, Kobayashi, Matsumoto PODC’09]

 study of quantum distributed algorithms on non-anonymous networks
[Gavoille, Kosowski, Markiewicz DISC’09] LOCAL model

CONGEST model[Elkin, Klauck, Nanongkai, Pandurangan PODC’14]

 Maybe also in the LOCAL model [LG, Rosmanis and Nishimura STACS 2019]

sublinear-time quantum distributed algorithm for computing the diameter

evidences that quantum can be superior to classical



CONGEST model where quantum bits can be sent instead of usual bits

one quantum bit (qubit) = one quantum particle (e.g., one photon) 
 can be created using a laser and sent using optical fibers
 generalizes the concept of bit (hence quantum distributed 

computing can trivially simulate classical distributed computing)

Quantum CONGEST model

Complexity: the number of rounds needed for the computation

 network G=(V,E) of n nodes (all nodes have distinct identifiers)
 each node knows the identifiers of all its neighbors
 synchronous communication between adjacent nodes:         

one message of O(log n) qubits per round 
 each node is a quantum processor (i.e., a quantum computer)

More formally:

Quantum CONGEST model



Diameter and Eccentricity

Consider an undirected and unweighted network G = (V,E) with n nodes

a

c
b d

e
f

g

D = max {d(u,v)}
u,v ∈ 𝑉𝑉

The diameter of the graph is the maximum distance between two nodes

d(u,v) = distance between u and v



Diameter and Eccentricity

Consider an undirected and unweighted network G = (V,E) with n nodes

a

c
b d

e
f

g D = 4

D = max {d(u,v)}
u,v ∈ 𝑉𝑉

The diameter of the graph is the maximum distance between two nodes

The eccentricity of a node u is defined as  

ecc (u) = max {d(u,v)}
v ∈ 𝑉𝑉

d(u,v) = distance between u and v= max {ecc (u)}
u ∈ 𝑉𝑉

ecc (a) = 3
ecc (b) = 3
ecc (c) = 2
ecc (d) = 3
ecc (e) = 3
ecc (f ) = 4
ecc (g) = 4

d(a,a) = 0
d(a,b) = 2
d(a,c) = 1
d(a,d) = 2
d(a,e) = 2
d(a, f) = 3
d(a,g) = 3



Diameter and Eccentricity

Consider an undirected and unweighted network G = (V,E) with n nodes

D = max {d(u,v)}
u,v ∈ 𝑉𝑉

The diameter of the graph is the maximum distance between two nodes

The eccentricity of a node u is defined as  

ecc (u) = max {d(u,v)}
v ∈ 𝑉𝑉

d(u,v) = distance between u and v= max {ecc (u)}
u ∈ 𝑉𝑉

 ecc(u) can be computed in O(D) rounds by 
constructing a Breadth-First Search tree rooted at u 

 computing the diameter (i.e., the maximum eccentricity) requires 
Θ(n) rounds even for constant D  
[Frischknecht+12, Holzer+12, Peleg+12, Abboud+16]

In the classical (i.e., non-quantum) CONGEST model:



Computation of the Diameter in the CONGEST model

Classical Quantum (our results)

Exact computation (upper bounds) 𝑂𝑂(𝑛𝑛)
[Holzer+12, Peleg+12]

𝑂𝑂( 𝑛𝑛𝑛𝑛)

~

3/2-approximation (upper bounds) 𝑂𝑂( 𝑛𝑛 + 𝐷𝐷)
[Lenzen+13, Holzer+14]

𝑂𝑂(3 𝑛𝑛𝑛𝑛 + 𝐷𝐷)

(3/2-ε)-approximation (lower bounds) �Ω(𝑛𝑛)
[Holzer+12, Abboud+16]

�Ω( 𝑛𝑛 + 𝐷𝐷) [unconditional]

Exact computation (lower bounds) �Ω(𝑛𝑛)
[Frischknecht+12]

�Ω( 𝑛𝑛 + 𝐷𝐷) [unconditional]

condition: holds for quantum distributed algorithms 
using only polylog(n) qubits of memory per node

main result: sublinear-round quantum computation of the diameter whenever D=o(n)

�Ω( 𝑛𝑛𝑛𝑛) [conditional]

(our algorithm uses O((log n)2) qubits of quantum memory per node)

first gap between classical and quantum in the CONGEST model for a major 
problem of interest to the distributed computing community

number of rounds needed to compute the diameter (n: number of nodes, D: diameter)



main result: sublinear-round quantum computation of the diameter whenever D=o(n)

Our Upper Bound

Classical Quantum (our results)

Exact computation (upper bounds) 𝑂𝑂(𝑛𝑛)
[Holzer+12, Peleg+12]

𝑂𝑂( 𝑛𝑛𝑛𝑛)

(our algorithm uses O((log n)2) qubits of quantum memory per node)

number of rounds needed to compute the diameter (n: number of nodes, D: diameter)

first gap between classical and quantum in the CONGEST model for a major 
problem of interest to the distributed computing community



Quantum Distributed Computation of the Diameter

Given an integer d, decide if diameter ≥ d

Computation of the diameter (decision version)

there is a vertex u such that ecc (u) ≥ d

This is a search problem
Idea: use the technique called “quantum search”



Centralized Quantum Search: Grover’s algorithm

Let f: X → {0,1} be a Boolean function given as a black box

Classical 
Algorithm

x f(x)

Goal: find an element x ∈ X such that f(x) = 1 

Classically this can be done using 𝑂𝑂(|𝑋𝑋|) calls to the black box 
(“brute force search: try all the elements x”)

There is a quantum centralized algorithm solving 
this problem with 𝑂𝑂( |𝑋𝑋|) calls to the black box

Quantum search
[Grover 96]

SAT:  given a Boolean formula f of poly size on M variables, find a 
satisfying assignment (if such an assignment exists)  

Example of application: quantum algorithm for Boolean satisfiability (SAT)
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satisfying assignment (if such an assignment exists)  

Example of application: quantum algorithm for Boolean satisfiability (SAT)
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Centralized Quantum Search: Grover’s algorithm

Let f: X → {0,1} be a Boolean function given as a black box

Classical 
Algorithm

x f(x)

Goal: find an element x ∈ X such that f(x) = 1 

There is a quantum centralized algorithm solving 
this problem with 𝑂𝑂( |𝑋𝑋|) calls to the black box

Quantum search
[Grover 96]

SAT:  given a Boolean formula f of poly size on M variables, find a 
satisfying assignment (if such an assignment exists)  

Example of application: quantum algorithm for Boolean satisfiability (SAT)

X = set of all possible assignments                  |X| = 2M

Black box: computes f(x) from x                     poly(M) time 
Quantum search solves SAT in O(2M/2 x poly(M)) time 

Classically this can be done using 𝑂𝑂(|𝑋𝑋|) calls to the black box 
(“brute force search: try all the elements x”)



Quantum Distributed Computation of the Diameter

There is a quantum centralized algorithm for this search 
problem using 𝑂𝑂( 𝑛𝑛) calls to a black box evaluating f 

Quantum search
[Grover 96]

Define the function f: V → {0,1} such that f(u) = 1 if ecc (u) ≥ d
0 otherwise 

Goal: find u such that f(u) = 1 (or report that no such vertex exist)

Given an integer d, decide if diameter ≥ d

Computation of the diameter (decision version)

there is a vertex u such that ecc (u) ≥ d

This is a search problem
Idea: use the technique called “quantum search”

u f(u)



Quantum Distributed Computation of the Diameter

There is a quantum centralized algorithm for this search 
problem using 𝑂𝑂( 𝑛𝑛) calls to a black box evaluating f 

Quantum search
[Grover 96]

u f(u)

Quantum distributed algorithm computing the diameter

O(D)-round classical 
distributed algorithm for the 

eccentricity

Define the function f: V → {0,1} such that f(u) = 1 if ecc (u) ≥ d
0 otherwise 

Goal: find u such that f(u) = 1 (or report that no such vertex exist)

 The network elects a leader
 The leader locally runs this centralized quantum algorithm for search, 

in which each call to the black box is implemented by executing the 
standard O(D)-round classical algorithm computing the eccentricity



Quantum Distributed Computation of the Diameter

There is a quantum centralized algorithm for this search 
problem using 𝑂𝑂( 𝑛𝑛) calls to a black box evaluating f 

Quantum search
[Grover 96]

u f(u)

Quantum distributed algorithm computing the diameter

O(D)-round classical 
distributed algorithm for the 

eccentricity With further work, the complexity 
can be reduced to 𝑂𝑂( 𝑛𝑛𝐷𝐷) rounds 

Complexity: 𝑂𝑂( 𝑛𝑛 × D) rounds 

Define the function f: V → {0,1} such that f(u) = 1 if ecc (u) ≥ d
0 otherwise 

Goal: find u such that f(u) = 1 (or report that no such vertex exist)

 The network elects a leader
 The leader locally runs this centralized quantum algorithm for search, 

in which each call to the black box is implemented by executing the 
standard O(D)-round classical algorithm computing the eccentricity

Classically in O(D) rounds it is possible to simultaneously compute the 
eccentricities of D vertices [Peleg+12]

Thus we can instead do a Grover search over groups of D 
vertices (there are n/D groups) in 

𝑂𝑂( 𝑛𝑛/𝐷𝐷 × D) = 𝑂𝑂( 𝑛𝑛𝑛𝑛) rounds 



Subtlety: Quantum Access to the Black Box

There is a quantum centralized algorithm for this search 
problem using 𝑂𝑂( 𝑛𝑛) calls to a black box evaluating f 

Quantum search
[Grover 96]

Goal: find u such that f(u) = 1 (or report that no such vertex exist)

Classical 
Algorithm A

u f(u)

Subtlety: quantum search requires accessing the black box “in superposition”

quantum superposition of many u’s quantum superposition of 
the corresponding f(u)’s

Quantum 
Algorithm A’

Define the function f: V → {0,1} such that f(u) = 1 if ecc (u) ≥ d
0 otherwise 

Why does this not introduce congestions?



Implementation of the Oracle in O(D) rounds

oracle⟩|𝑢𝑢 ⟩|0 ⟩|𝑢𝑢 ⟩|𝑒𝑒𝑒𝑒𝑒𝑒(𝑢𝑢)�
𝑢𝑢∈𝑉𝑉

⟩𝛼𝛼𝑢𝑢|𝑢𝑢 ⟩|0 �
𝑢𝑢∈𝑉𝑉

⟩𝛼𝛼𝑢𝑢|𝑢𝑢 ⟩|𝑒𝑒𝑒𝑒𝑒𝑒(𝑢𝑢)

a

c

b d

e
f

g

V={a,b,c,d,e,f,g}

1. “Broadcast” this state, which gives

�
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢 b ⟩|𝑢𝑢 c ⟩|𝑢𝑢 d ⟩|𝑢𝑢 e ⟩|𝑢𝑢 f ⟩|𝑢𝑢 g

The nodes implement the classical protocol  
for computing the eccentricity of u, which gives 

�
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢 b ⟩|𝑢𝑢 c ⟩|𝑢𝑢 d ⟩|𝑢𝑢 e ⟩|𝑢𝑢 f ⟩|𝑢𝑢 g ⟩|𝑒𝑒𝑒𝑒𝑒𝑒(𝑢𝑢) a

2. 

[ecc(a) ≤ D rounds] 

[O(D) rounds]

Initially node a owns �
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a

a

c

b d

e

g

f

Node a introduces 1 register �
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|0

Node a applies CNOTS �
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢

Node a sends the second register to c �
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢 c

�
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢 c ⟩|0 ⟩|0 ⟩|0Node c introduces 3 registers

�
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢 c ⟩|𝑢𝑢 ⟩|𝑢𝑢 ⟩|𝑢𝑢Node c applies CNOTS

�
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢 c ⟩|𝑢𝑢 b ⟩|𝑢𝑢 e ⟩|𝑢𝑢 dNode c sends the registers to b,e,d
……

here leader = node a

Example:



Implementation of the Oracle in O(D) rounds

oracle

a

c

b d

e
f

g

V={a,b,c,d,e,f,g}
1. “Broadcast” this state, which gives

�
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢 b ⟩|𝑢𝑢 c ⟩|𝑢𝑢 d ⟩|𝑢𝑢 e ⟩|𝑢𝑢 f ⟩|𝑢𝑢 g

The nodes implement the classical protocol   
for computing the eccentricity of u, which gives 

�
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑢𝑢 b ⟩|𝑢𝑢 c ⟩|𝑢𝑢 d ⟩|𝑢𝑢 e ⟩|𝑢𝑢 f ⟩|𝑢𝑢 g ⟩|𝑒𝑒𝑒𝑒𝑒𝑒(𝑢𝑢) a

2. 

[ecc(a) ≤ D rounds] 

3. The nodes revert Step 1 [ecc(a) ≤ D rounds] 

�
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|0 a �
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a ⟩|𝑒𝑒𝑒𝑒𝑒𝑒(𝑢𝑢) a

Initially node a owns �
𝑢𝑢∈𝑉𝑉

𝛼𝛼𝑢𝑢 ⟩|𝑢𝑢 a

[O(D) rounds]



The Upper Bound

Classical Quantum (our results)

Exact computation (upper  bounds) 𝑂𝑂(𝑛𝑛)
[Holzer+12, Peleg+12]

𝑂𝑂( 𝑛𝑛𝑛𝑛)

 We have just described a O( 𝑛𝑛 x D)-round quantum distributed algorithm 
for computing (with high probability) the diameter 

 With further work, the complexity can be reduced to O( 𝑛𝑛𝐷𝐷 ) rounds



The Lower Bounds

 reduce DISJ to the distributed computation of diameter [Frischknecht+12]

classical lower bound

 the (two-party) communication complexity of DISJn is Ω(n) bits [Kalyanasundaram+92]

unconditional quantum lower bound
 same reduction from DISJ to the distributed computation of diameter 
 the (two-party) communication complexity of DISJn is Ω( 𝑛𝑛) qubits [Razborov03]

Classical Quantum (our results)

Exact computation (upper  bounds) 𝑂𝑂(𝑛𝑛)
[Holzer+12, Peleg+12]

𝑂𝑂( 𝑛𝑛𝑛𝑛)

~

Exact computation (lower bounds) �Ω(𝑛𝑛)
[Frischknecht+12]

�Ω( 𝑛𝑛 + 𝐷𝐷) [unconditional]
�Ω( 𝑛𝑛𝑛𝑛) [conditional]

via two-party communication complexity of the disjointness function (DISJ)

conditional quantum lower bound
 Claim: if the quantum distributed algorithm for diameter uses few quantum memory

per node, then the reduction can be adjusted to give a two-party protocol for DISJ 
using few messages (idea: send communication in batches) 

 the (two-party) r-message quantum communication complexity of DISJn is
Ω( 𝑛𝑛/𝑟𝑟 + 𝑟𝑟 ) qubits [Braverman+15]



Summary of the first part

Classical Quantum (our results)

Exact computation (upper bounds) 𝑂𝑂(𝑛𝑛)
[Holzer+12, Peleg+12]

𝑂𝑂( 𝑛𝑛𝑛𝑛)

~

3/2-approximation (upper  bounds) 𝑂𝑂( 𝑛𝑛 + 𝐷𝐷)
[Lenzen+13, Holzer+14]

𝑂𝑂(3 𝑛𝑛𝑛𝑛 + 𝐷𝐷)

(3/2-ε)-approximation (lower bounds) �Ω(𝑛𝑛)
[Holzer+12, Abboud+16]

�Ω( 𝑛𝑛 + 𝐷𝐷) [unconditional]

Exact computation (lower bounds) �Ω(𝑛𝑛)
[Frischknecht+12]

�Ω( 𝑛𝑛 + 𝐷𝐷) [unconditional]

main result: sublinear-round quantum computation of the diameter in the 
CONGEST model (when D is small enough)

�Ω( 𝑛𝑛𝑛𝑛) [conditional]

number of rounds needed to compute the diameter (n: number of nodes, D: diameter)



Summary of the first part

~
 Our upper bounds are obtained by showing how to implement quantum 

search in a distributed setting
 Interesting research direction: apply this technique to other problems in 

distributed computing

“Recipe” to build a quantum distributed algorithm 
(even without knowing anything about quantum computation):

If you need to find a good element among 𝑁𝑁 candidates and have a 
𝑟𝑟-round procedure to check if an element is good, there is a 
𝑂𝑂 𝑟𝑟 𝑁𝑁 -round quantum algorithm for this search problem.

Useful for problems in distributed computing where the bottleneck is a search problem



Quantum Distributed Computing
 Mostly been studied in the framework of 2-party communication complexity

Question: can quantum distributed computing be useful? 

 Yes, in the CONGEST model [LG and Magniez PODC 2018] 

negative results: shows impossibility of quantum distributed 
computing faster than classical distributed computing for many 
important problems (shortest paths, MST,…)

no significant advantage reported

 Relatively few results focusing on more than two parties:

 exact quantum protocols for leader election on anonymous networks 
[Tani, Kobayashi, Matsumoto PODC’09]

 study of quantum distributed algorithms on non-anonymous networks
[Gavoille, Kosowski, Markiewicz DISC’09] LOCAL model

CONGEST model[Elkin, Klauck, Nanongkai, Pandurangan PODC’14]

 Maybe also in the LOCAL model [LG, Rosmanis and Nishimura STACS 2019]

sublinear-time quantum distributed algorithm for computing the diameter

evidences that quantum can be superior to classical
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 Mostly been studied in the framework of 2-party communication complexity

Question: can quantum distributed computing be useful? 

 Yes, in the CONGEST model [LG and Magniez PODC 2018] 

negative results: shows impossibility of quantum distributed 
computing faster than classical distributed computing for many 
important problems (shortest paths, MST,…)

no significant advantage reported

 Relatively few results focusing on more than two parties:

 exact quantum protocols for leader election on anonymous networks 
[Tani, Kobayashi, Matsumoto PODC’09]

 study of quantum distributed algorithms on non-anonymous networks
[Gavoille, Kosowski, Markiewicz DISC’09] LOCAL model

CONGEST model[Elkin, Klauck, Nanongkai, Pandurangan PODC’14]

 Maybe also in the LOCAL model [LG, Rosmanis and Nishimura STACS 2019]

sublinear-time quantum distributed algorithm for computing the diameter

evidences that quantum can be superior to classical



Quantum LOCAL model

Complexity: the number of rounds needed for the computation

 network G=(V,E) of n nodes (all nodes have distinct identifiers)
 each node knows the identifiers of all its neighbors
 synchronous communication between adjacent nodes:         

one message of O(log n) qubits per round 
 each node is a quantum processor (i.e., a quantum computer)

Quantum CONGEST model

Complexity: the number of rounds needed for the computation

 network G=(V,E) of n nodes (all nodes have distinct identifiers)
 each node knows the identifiers of all its neighbors
 synchronous communication between adjacent nodes:         

one message of arbitrary length per round 
 each node is a quantum processor (i.e., a quantum computer)

Quantum LOCAL model

Messages can now have arbitrary length



Superiority of the Quantum LOCAL model

Consider a ring of size n (seen as a triangle)
Each “corner” gets a bit as input

b1

b2b3

multiple of 3

Each node will output one bit

[LG, Rosmanis and Nishimura STACS 2019]

n=18



Superiority of the Quantum LOCAL model

Consider a ring of size n (seen as a triangle)
Each “corner” gets a bit as input

b1

b2b3

z1

z2

z3

z4

z5

z6

z7

z8z9z10z11z12

z13

z14

z15

z16

z17

z18

multiple of 3 n=18

𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑧𝑧1⨁𝑧𝑧3⨁𝑧𝑧5⨁𝑧𝑧7⨁𝑧𝑧9⨁𝑧𝑧11⨁𝑧𝑧13⨁𝑧𝑧15⨁𝑧𝑧17

𝑚𝑚𝑅𝑅 = 𝑧𝑧2⨁𝑧𝑧4⨁𝑧𝑧6

𝑚𝑚𝐵𝐵 = 𝑧𝑧8⨁𝑧𝑧10⨁𝑧𝑧12

𝑚𝑚𝐿𝐿 = 𝑧𝑧14⨁𝑧𝑧16⨁𝑧𝑧18

Define the following four  bits:

(parity of the outputs of the nodes of even index on the right)

(parity of the outputs of the nodes of even index on the bottom)

(parity of the outputs of the nodes of even index on the left)

(parity of the outputs of all the nodes of odd index)

Each node will output one bit

[LG, Rosmanis and Nishimura STACS 2019]



[LG, Rosmanis and Nishimura STACS 2019]

Each node will output one bit

Superiority of the Quantum LOCAL model

Consider a ring of size n (seen as a triangle)
Each “corner” gets a bit as input

b1

b2b3

z1

z2

z3

z4

z5

z6

z7

z8z9z10z11z12

z13

z14

z15

z16

z17

z18

multiple of 3 n=18

𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 = 0 if 𝑏𝑏1, 𝑏𝑏2, 𝑏𝑏3 = (0,0,0)
𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 ⨁ 𝑚𝑚𝑅𝑅 = 1 if 𝑏𝑏1,𝑏𝑏2, 𝑏𝑏3 = (1,1,0)
𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 ⨁ 𝑚𝑚𝐵𝐵 = 1 if 𝑏𝑏1,𝑏𝑏2, 𝑏𝑏3 = (0,1,1)
𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 ⨁ 𝑚𝑚𝐿𝐿 = 1 if 𝑏𝑏1,𝑏𝑏2, 𝑏𝑏3 = (1,0,1)

There is a 2-round quantum algorithm that outputs the uniform distribution 
over all binary strings 𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑛𝑛 ∈ 0,1 𝑛𝑛 satisfying the following condition:

Claim 1:

1. Each node creates 1 qubit
2. Each node makes its qubit interact with its two neighbors (2 rounds)
3. Each non-corner node makes a “measurement in the X basis” to its qubit, and 

outputs the bit corresponding to the measurement outcome
4. Each corner node makes a “measurement in the X basis” to its qubit if its input bit 

is 0, or makes a “measurement in the Y basis” to its qubit if its input bit is 1, and 
outputs the bit corresponding to the measurement outcome

.

𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑧𝑧1⨁𝑧𝑧3⨁𝑧𝑧5⨁𝑧𝑧7⨁𝑧𝑧9⨁𝑧𝑧11⨁𝑧𝑧13⨁𝑧𝑧15⨁𝑧𝑧17

𝑚𝑚𝑅𝑅 = 𝑧𝑧2⨁𝑧𝑧4⨁𝑧𝑧6

𝑚𝑚𝐵𝐵 = 𝑧𝑧8⨁𝑧𝑧10⨁𝑧𝑧12

𝑚𝑚𝐿𝐿 = 𝑧𝑧14⨁𝑧𝑧16⨁𝑧𝑧18

Define the following four  bits:

(parity of the outputs of the nodes of even index on the right)

(parity of the outputs of the nodes of even index on the bottom)



b1

b2b3

z1

z2

z3

z4

z5

z6

z7

z8z9z10z11z12

z13

z14

z15

z16

z17

z18

n=18

𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 = 0 if 𝑏𝑏1, 𝑏𝑏2, 𝑏𝑏3 = (0,0,0)
𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 ⨁ 𝑚𝑚𝑅𝑅 = 1 if 𝑏𝑏1,𝑏𝑏2, 𝑏𝑏3 = (1,1,0)
𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 ⨁ 𝑚𝑚𝐵𝐵 = 1 if 𝑏𝑏1,𝑏𝑏2, 𝑏𝑏3 = (0,1,1)
𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 ⨁ 𝑚𝑚𝐿𝐿 = 1 if 𝑏𝑏1,𝑏𝑏2, 𝑏𝑏3 = (1,0,1)

There is a 2-round quantum algorithm that outputs the uniform distribution 
over all binary strings 𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑛𝑛 ∈ 0,1 𝑛𝑛 satisfying the following condition:

Claim 1:

Claim 2: In the LOCAL model, any classical algorithm that outputs the same 
distribution must use at least n/6 rounds.

 In any classical protocol using less than n/6 rounds: 
𝑚𝑚𝑅𝑅 is an affine function of b1 and b2
𝑚𝑚𝐵𝐵 is an affine function of b2 and b3
𝑚𝑚𝐿𝐿 is an affine function of b1 and b3
𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 is an affine function of b1, b2 and b3

 Such functions cannot satisfy all the linear conditions of 
Claim 1

.

𝑚𝑚𝑅𝑅 = 𝑧𝑧2⨁𝑧𝑧4⨁𝑧𝑧6

𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑧𝑧1⨁𝑧𝑧3⨁𝑧𝑧5⨁𝑧𝑧7⨁𝑧𝑧9⨁𝑧𝑧11⨁𝑧𝑧13⨁𝑧𝑧15⨁𝑧𝑧17

𝑚𝑚𝐿𝐿 = 𝑧𝑧14⨁𝑧𝑧16⨁𝑧𝑧18

𝑚𝑚𝐵𝐵 = 𝑧𝑧8⨁𝑧𝑧10⨁𝑧𝑧12
(parity of the outputs of the nodes of even index on the right)

(parity of the outputs of the nodes of even index on the bottom)



Conclusions
 We have shown that in the CONGEST model the diameter of the network 

can be computed faster using quantum distributed algorithms 
(for constant diameter: Θ( 𝑛𝑛) rounds quantumly vs. Θ(𝑛𝑛) rounds classically)

 We have shown that in the LOCAL model quantum distributed algorithms 
can also be faster, at least for some computational task 
(for our ring problem: 2 rounds quantumly vs. Θ(𝑛𝑛) rounds classically)

Interesting research directions:

 Consider other applications of quantum distributed algorithms in the 
CONGEST model

 Find one interesting application of quantum distributed algorithms in 
the LOCAL model

 Consider other models (e.g., asynchronous computation) in the 
quantum setting
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