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Quantum Computing

v' Computation paradigm based on the laws of
guantum mechanics

)

guantum mechanics: 1 photon
{ a wave function

The position of a photon is described by-&—@t@ﬁ@@tﬂﬁm

photon
Double-slit experiment: . ' 7.
interfe

double slit screen




Quantum Mechanics: Discrete Case

1 bit of information 1 quantum bit (qubit) of information
1 O 1 O

or
0 — O 0 -

wave function over 0 and 1
(quantum superposition over 0 and 1)

/

one 2-dimensional complex vector of norm 1

a
(,3) witha, 8 € C and |a|? + |B|?> =1

la|? is the probability to observe the particle at state 0
|5]# is the probability to observe the particle at state 1

example: <_1/\/2> observing the qubit gives 0 with
1/v2 ) probability ¥ and 1 with probability %



Quantum Mechanics: Discrete Case

n bits of information n guantum bits of information

one binary string of length n guantum superposition over all the binary

/ strings of length n

one 2"-dimensional complex vector of norm 1

a1
( ) with a, € C and Y;|a;|* =1
azn

la;|% is the probability to observe the i-th binary string

v' Quantum information is attractive since it can store and manipulate an exponentially
large amount of information (as a quantum superposition)

v' Observing the quantum particles, however, does not give more than a random

string (with probabilities depending of the coefficients in the superposition)
the art of qguantum programming

v' But since the coefficients can be negative we can@xploit interferencesto amplify
the probabillities of observing a good outcome and reducing the probability to
observing a bad outcome




Quantum Algorithms

What can we do with a quantum computer?

quantum algorithm for integer factoring [Shor 1994] S
m) breaks RSA cryptosystem (B

guantum algorithm for search [Grover 1996]
m) fast for generic search problems




What can we do with a quantum @

guantum algorithm for integer factorin

guantum algorithm for search [Grover 1

Quantum Algorith

m) breaks RSA cryptosystem

m) fast for generic search prol

guantum algorithms with amplitude amplification [Bras
guantum algorithms for adiabatic evolution [Fahri et al
guantum algorithms for element disjointness [Ambainis
guantum algorithms for Gauss sums [van Dam et al. 2
guantum algorithms for solving Pell’'s equation [Hallgre
guantum algorithms for quantum simulations [Childs 2
guantum algorithms for hidden subgroups [Kuperberg
guantum algorithms for finding an unit group [Hallgren
guantum algorithms for triangle finding [Magniez et al.
guantum algorithms for computing knot invariants [Ahd

m (Quantum Algorithm Zoo

TR ™0«

This is a comprehensive catalog of quantum algorithms. If you notice any errors or omissions, please
email me at stephen.jordan@nist.gov. Your help is appreciated and will be acknowledged.

Algebraic and Number Theoretic Algorithms

Algorithm: Factoring
Speedup: Superpolynomial
Description: Given an n-bit integer, find the prime factorization. The quantum algorithm of Peter Shor

solves this in 5(71,3) time [82,125]. The fastest known classical algorithm for integer factorization is

the general number field sieve, which is believed to run in time 20(n") The best rigorously proven

upper bound on the classical complexity of factoring is 0(2”/3+"(1)) [252]. Shor's factoring algorithm
breaks RSA public-key encryption and the closely related quantum algorithms for discrete logarithms
break the DSA and ECDSA digital signature schemes and the Diffie-Hellman key-exchange protocol.
A guantum algorithm even faster than Shor's for the special case of factoring “semiprimes”, which are
widely used in croptography is given in [271]. There are proposed classical public-key cryptosystems
not believed to be broken by quantum algorithms, cf. [248]. At the core of Shor's factoring algorithm is
order finding, which can be reduced to the Abelian hidden subgroup problem, which is solved using
the quantum Fourier transform. A number of other problems are known to reduce to integer
factorization including the membership problem for matrix groups over fields of odd order [253], and
certain diophantine problems relevant to the synthesis of quantum circuits [254].

Algorithm: Discrete-log

Speedup: Superpolynomial

Description: We are given three n-bit numbers a, b, and N, with the promise thatb = a®* mod N
for some s. The task is to find s. As shown by Shor [82], this can be achieved on a quantum computer
in poly(n) time. The fastest known classical algorithm requires time superpolynomial in n. By similar
techniques to those in [82], quantum computers can solve the discrete logarithm problem on elliptic
curves, thereby breaking elliptic curve cryptography [109]. The superpolynomial guantum speedup
has also been extended to the discrete logarithm problem on semigroups [203, 204]. See also Abelian
Hidden Subgroup.

Algorithm: Pell's Equation

Speedup: Superpolynomial

Description: Given a positive nonsquare integer d, Pell's equation is g dy2 = 1. For any such d
there are infinitely many pairs of integers (x,y) solving this equation. Let (.:(:1 ; yl) be the pair that
minimizes * + y\/c_i. If d is an n-bit integer (i.e. 0 < d < 2"), (:cl, yl) may in general require

guantum algorithms for data streams [LG 2006]

guantum algorithms for hidden nonlinear structures [Childs et al. 2007]
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guantum algorithms for evaluating NAND formulas [Fahri et al. 2007]
guantum algorithms using span programs [Belovs 2011]

guantum algorithms for matrix multiplication [LG 2012]

guantum algorithms for matrix inversion [Ta-Shma 2013]
guantum algorithms for the edit distance [Boroujeni et al. 2017]
guantum algorithms for dynamic programming [Ambainis+ 2018]




Quantum Distributed Computing

v' Mostly been studied in the framework of 2-party communication complexity

v Relatively few results focusing on more than two parties:

» exact quantum protocols for leader election on anonymous networks
[Tani, Kobayashi, Matsumoto PODC’09]

» study of quantum distributed algorithms on non-anonymous networks

|Gavollle, Kosowski, Markiewicz DISC’09] <— | OCAL model
no significant advantage reported

[Elkin, Klauck, Nanongkai, Pandurangan PODC’14] <«=== CONGEST model

negative results: shows impossibility of quantum distributed
computing faster than classical distributed computing for many
Important problems (shortest paths, MST,...)

Question: can quantum distributed computing be useful?

v Yes, in the CONGEST model [LG and Magniez PODC 2018]
sublinear-time quantum distributed algorithm for computing the diameter

v' Maybe also in the LOCAL model [LG, Rosmanis and Nishimura STACS 2019]
evidences that quantum can be superior to classical




Quantum CONGEST model

Quantum CONGEST model

CONGEST model where quantum bits can be sent instead of usual bits

/

one quantum bit (qubit) = one quantum particle (e.g., one photon)
v’ can be created using a laser and sent using optical fibers

v’ generalizes the concept of bit (hence quantum distributed
computing can trivially simulate classical distributed computing)

More formally:

v" network G=(V,E) of n nodes (all nodes have distinct identifiers)
v'each node knows the identifiers of all its neighbors
v' synchronous communication between adjacent nodes:
one message of O(log n) gubits per round
v' each node is a quantum processor (i.e., a quantum computer)

Complexity: the number of rounds needed for the computation




Diameter and Eccentricity

Consider an undirected and unweighted network G = (V,E) with n nodes

The diameter of the graph is the maximum distance between two nodes

D = max {
uvev

d(u,v)}

\

—d(u,v) = distance between u and v




Diameter and Eccentricity

D = Envaexv{d(u,v)}

= max {ecc (u)}

uev

The eccentricity of a node u Is defined as

ecc (u) = max {d(u,v)}

AP oWoWDN

Consider an undirected and unweighted network G = (V,E) with n nodes

The diameter of the graph is the maximum distance between two nodes

—d(u,v) = distance between u and v

(d(a,a) =0

d(a,b) =2
d(a,c)=1
d(a,d) =2
d(a,e) =2
d(a, f) =3

| d(a,g) =3



Diameter and Eccentricity

Consider an undirected and unweighted network G = (V,E) with n nodes

The diameter of the graph is the maximum distance between two nodes

D = Envaexv{d(u,v)}

— Té'"])/( {eCC (U)} —d(u,v) = distance between u and v

The eccentricity of a node u Is defined as

ecc (u) = max {d(u,v)}

In the classical (i.e., hon-guantum) CONGEST model:

v ecc(u) can be computed in O(D) rounds by
constructing a Breadth-First Search tree rooted at u

v' computing the diameter (i.e., the maximum eccentricity) requires

©(n) rounds even for constant D
[Frischknecht+12, Holzer+12, Peleg+12, Abboud+16]



Computation of the Diameter in the CONGEST model

main result: sublinear-round quantum computation of the diameter whenever D=0(n)
(our algorithm uses O((log n)?) qubits of quantum memory per node)

first gap between classical and quantum in the CONGEST model for a major
problem of interest to the distributed computing community

Classical Quantum (our results)

Exact computation (upper bounds) 0 (Tl) 0 ( V nD)

[Holzer+12, Peleg+12]

Exact computation (lower bounds) Q(n) ﬁ( \/7D)
n

[Frischknecht+12]

[conditional]

number of rounds needed to compute the diameter (n: number of nodesyD: diameter)

condition: holds for quantum distributed algorithms
using only polylog(n) qubits of memory per node

3/2-approximation (upper bounds) O(vWn + D) 0 (3\/ nD + D)

[Lenzen+13, Holzer+14]

(3/2-€)-approximation (lower bounds) Q(n) Q(+/n + D) [unconditionall
[Holzer+12, Abboud+16]




Our Upper Bound

main result: sublinear-round quantum computation of the diameter whenever D=0(n)
(our algorithm uses O((log n)?) qubits of quantum memory per node)

first gap between classical and quantum in the CONGEST model for a major
problem of interest to the distributed computing community

Classical Quantum (our results)

Exact computation (upper bounds) 0 (Tl) 0 ( V nD)

[Holzer+12, Peleg+12]

number of rounds needed to compute the diameter (n: number of nodes, D: diameter)



Quantum Distributed Computation of the Diameter

Computation of the diameter (decision version)

Given an integer d, decide if diameter 2 d

there is a vertex u such that ecc (u) 2d

This is a search problem
ldea: use the technique called “quantum search”



Centralized Quantum Search: Grover’s algorithm

Let f: X — {0,1} be a Boolean function given as a black box

Classical
X e—f p—
Algorithm f(X)

Goal: find an element x € X such that f(x) = 1

Classically this can be done using 0(|X]) calls to the black box
(“brute force search: try all the elements x”)

There Is a quantum centralized algorithm solving Quantum search
this problem with 0(/|X|) calls to the black box [Grover 96]

Example of application: guantum algorithm for Boolean satisfiability (SAT)

SAT: given a Boolean formula f of poly size on M variables, find a
satisfying assignment (if such an assignment exists)




Centralized Quantum Search: Grover’s algorithm

Let f: X — {0,1} be a Boolean function given as a black box

Xﬁ

Classical )
Algorithm f(X)

Goal: find an element x € X such that f(x) = 1

Classically this can be done using O0(|X|) calls to the black box

(“brute force search: try all the elements x”)

There Is a quantum centralized algorithm solving
this problem with 0(y/|X|) calls to the black box

Quantum search
[Grover 96]

Example of application: guantum algorithm for Boolean satisfiability (SAT)

SAT: given a Boolean formula f of poly size on M variables, find a
satisfying assignment (if such an assignment exists)

X = set of all possible assignments -

Black box: computes f(x) from x <

[X] = 2V
poly(M) time



Centralized Quantum Search: Grover’s algorithm

Let f: X — {0,1} be a Boolean function given as a black box

Xﬁ

Classical )
Algorithm f(X)

Goal: find an element x € X such that f(x) = 1

Classically this can be done using O0(|X|) calls to the black box

(“brute force search: try all the elements x”)

There Is a quantum centralized algorithm solving
this problem with 0(,/|X|) calls to the black box

Quantum search
[Grover 96]

Example of application: guantum algorithm for Boolean satisfiability (SAT)

SAT: given a Boolean formula f of poly size on M variables, find a
satisfying assignment (if such an assignment exists)

X = set of all possible assignments -

Black box: computes f(x) from x <

[X] = 2V
poly(M) time

—> Quantum search solves SAT in O(2M2 x poly(M)) time



Quantum Distributed Computation of the Diameter

1ifecc(u)=d

Define the function f: V — {0,1} such that f(u) = {o otherwise

Goal: find u such that f(u) = 1 (or report that no such vertex exist)

There Is a quantum centralized algorithm for this search | Quantum search
problem using 0(+y/n) calls to a black box evaluating f [Grover 96]

e > f(U)

Computation of the diameter (decision version)

Given an integer d, decide if diameter 2 d

there iIs a vertex u such that ecc (u) 2d

This is a search problem
ldea: use the technique called “quantum search”



Quantum Distributed Computation of the Diameter

Define the function f: V — {0,1} such that f(u) = {

1lifecc(u)=d
O otherwise

Goal: find u such that f(u) = 1 (or report that no such vertex exist)

There Is a quantum centralized algorithm for this search
problem using 0(+y/n) calls to a black box evaluating f

Quantum distributed algorithm computing the diameter

Quantum search
[Grover 96]

(v The network elects a leader

v' The leader locally runs this centralized quantum algorithm for search,
In which each call to the black box is implemented by executing the
\ standard O(D)-round classical algorithm computing the eccentricity y

~

O(D)-round classical

U =P distributed algorithm for the == f(U)

eccentricity




Quantum Distributed Computation of the Diameter

P

eccentricities of D vertices [Peleg+12]

vertices (there are n/D groups) In

/ Classically in O(D) rounds it Is possible to simultaneously compute the\

Thus we can instead do a Grover search over groups of D

\_ O0(y/n/D X D) = 0(/nD) rounds

/

uantum distributed algorithm computing the diameter

(v The network elects a leader

v' The leader locally runs this centralized quantum algorithm for search,
In which each call to the black box is implemented by executing the
\ standard O(D)-round classical algorithm computing the eccentricity y

~

Complexity: 0(y/n X D) rounds

u#

With further work, the complexity

O(D)-round classical
distributed algorithm for the
eccentricity

> f(U)

can be reduced to 0(vnD) rounds



Subtlety: Quantum Access to the Black Box

1ifecc(u)=d

Define the function f: V — {0,1} such that f(u) = {o otherwise

Goal: find u such that f(u) = 1 (or report that no such vertex exist)

There Is a quantum centralized algorithm for this search | Quantum search
problem using 0(+y/n) calls to a black box evaluating f [Grover 96]

Classical
U —
Algorithm A f(U)

Subtlety: guantum search requires accessing the black box “in superposition”

Quantum

uantum superposition of many u's —f . ) . GUANIUM superposition of
) PEP g Algorithm A the corresponding f(u)’s

Why does this not introduce congestions?



Implementati

Node a introduces 1 register zuevaum)am)
Node a applies CNOTS Zuevaulwalu)
_ Node a sends the second register to c zuevaulwalu)c

Zau|u)|0) - _:_ Node c introduces 3 registers zuevaum)a lu)c|0) |0) |0)
uev L | Node c applies CNOTS Euevaum)a Wl ) [

Node c sends the registers to b,e,d ZuevauW)a [w)cludplweludg
Example:
V:{a,b,c,d,e,f,g} Initially node a owns Z a,|u)q
here leader = node a uev

1. “Broadcast” this state, which gives [ecc(a) < D rounds]

> aulwaludp ludchn)gludelung

uev

2. The nodes implement the classical protocol [O(D) rounds]
for computing the eccentricity of u, which gives

D ayualwplwclugluelu) wglecew)a

uev




Implementation of the Oracle in O(D) rounds

z ay,|u)al0)a - oracle - z ay|uyalecc(u))a

uev ] uev

Initially node a owns z a,|u)q

V={a,b,c,d,e f,g} UEV
e 1. “Broadcast” this state, which gives [ecc(a) < D rounds]

> aulwaludp ludchn)gludelung

uev
2. The nodes implement the classical protocol [O(D) rounds]
e @ for computing the eccentricity of u, which gives

D ayualwplwclugluelu) wglecew)a

(£ =

3. The nodes revert Step 1 [ecc(a) < D rounds]




The Upper Bound

v" We have just described a O(y/n x D)-round quantum distributed algorithm
for computing (with high probabillity) the diameter

v With further work, the complexity can be reduced to O(v/nD ) rounds

Classical Quantum. (our results)

Exact computation (upper bounds) 0 (Tl) 0 ( V nD)
[Holzer+12, Peleg+12]




The Lower Bounds

Classical Quantum (our results)

Exact computation (lower bounds) | Q.(n) 9(\/% + D) [unconditional]
[Frischknecht+12] Q( TlD) [conditional]

via two-party commuynication complexity gf the disjointness function (DISJ)
classical lower bound

v the (two-party) communication complexity/of DYSJ,, is Q(n) bits [Kalyanasundaram+92]

v' reduce DISJ to the distributed computay/ of diameter [Frischknecht+12]

. 7
unconditional quantum lower bound /

v same reduction from DISJ to the distributed computation of diameter
v' the (two-party) communication complexity of DISJ,, is Q(+/n) qubits [Razborov03]

/

conditional gquantum lower bound

v Claim: if the quantum distributed algorithm for diameter uses few quantum memory
per node, then the reduction can be adjusted to give a two-party protocol for DISJ
using few messages (idea: send communication in batches)

v' the (two-party) r-message quantum communication complexity of DISJ,, is
Q(n/r + r) qubits [Braverman+15]




Summary of the first part

main result: sublinear-round quantum computation of the diameter in the
CONGEST model (when D is small enough)

Classical Quantum (our results)

Exact computation (upper bounds) 0 (n) 0 ( V nD)
[Holzer+12, Peleg+12]

Q(n) Q(y¥/n + D) [unconditional]
[Frischknecht+12] ﬁ (\ In D) [conditional]

number of rounds needed to compute the diameter (n: number of nodes, D: diameter)

Exact computation (lower bounds)

3/2-approximation (upper bounds) O(vWn + D) 0 (3\/ nD + D)

[Lenzen+13, Holzer+14]

(3/2-€)-approximation (lower bounds) Q(n) Q(+/n + D) [unconditionall
[Holzer+12, Abboud+16]




Summary of the first part

Useful for problems in distributed computing where the bottleneck is a search problem

/

“Recipe” to build a quantum distributed algorithm
(even without knowing anything about quantum computation):

If you need to find a good element among N candidates and have a
r-round procedure to check if an element is good, there is a

KO(r\/N)-round quantum algorithm for this search problem.
/

v Our upper bounds are obtained by showing how to implement quantum
search in a distributed setting

v' Interesting research direction: apply this technique to other problems in
distributed computing



Quantum Distributed Computing

v' Mostly been studied in the framework of 2-party communication complexity

v Relatively few results focusing on more than two parties:

» exact quantum protocols for leader election on anonymous networks
[Tani, Kobayashi, Matsumoto PODC’09]

» study of quantum distributed algorithms on non-anonymous networks

|Gavollle, Kosowski, Markiewicz DISC’09] <— | OCAL model
no significant advantage reported

[Elkin, Klauck, Nanongkai, Pandurangan PODC’14] <«=== CONGEST model

negative results: shows impossibility of quantum distributed
computing faster than classical distributed computing for many
Important problems (shortest paths, MST,...)

Question: can quantum distributed computing be useful?

v Yes, in the CONGEST model [LG and Magniez PODC 2018]
sublinear-time quantum distributed algorithm for computing the diameter

v' Maybe also in the LOCAL model [LG, Rosmanis and Nishimura STACS 2019]
evidences that quantum can be superior to classical
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v' Mostly been studied in the framework of 2-party communication complexity
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Important problems (shortest paths, MST,...)

Question: can quantum distributed computing be useful?

v Yes, in the CONGEST model [LG and Magniez PODC 2018]
sublinear-time guantum distributed algorithm for computing the diameter

v' Maybe also in the LOCAL model [LG, Rosmanis and Nishimura STACS 2019]
evidences that quantum can be superior to classical




Quantum LOCAL model

Messages can now have arbitrary length

Quantum CONGEST model

network G=(V,E) of n nodes (all nodes have distinct identifiers)
each node knows the identifiers of all its neighbors
synchronous communication between adjacent nodes:

one message of O(log n) qubits per round

v' each node is a guantum processor (i.e., a guantum computer)

ENERNERN

Complexity: the number of rounds needed for the computation

Quantum LOCAL model

network G=(V,E) of n nodes (all nodes have distinct identifiers)
each node knows the identifiers of all its neighbors
synchronous communication between adjacent nodes:

one message of arbitrary length per round

v' each node is a quantum processor (i.e., a gquantum computer)

A NI

Complexity: the number of rounds needed for the computation




Superiority of the Quantum LOCAL model

[LG, Rosmanis and Nishimura STACS 2019]
. multiple of 3 b, n=18

Consider a ring of size n (seen as a triangle) l

Each “corner” gets a bit as input
Each node will output one bit

O

O
@
@,
@,
/



Superiority of the Quantum LOCAL model

[LG, Rosmanis and Nishimura STACS 2019]
. multiple of 3 b, n=18

Consider a ring of size n (seen as a triangle) l/ 2y

Each “corner” gets a bit as input 218 w_

Each node will output one bit 217 w_
Define the following four bits: 216 «_

Z
mp = 2,0z,Dz, SN

(parity of the outputs of the nodes of even index on the right) z 14 w_

mp = zg®z,,Dz;, Z13 . 4T
(parity of the outputs of the nodes of even index on the bottom) NN N\ )
NN/ AN N
my = Z140216DZ13 / l l l l l b
(parity of the outputs of the nodes of even index on the left) b 2
212 211 Z10 Zg9 Zg

Moga = Z1D23DZsDZ;D29D211D213D215D 217
(parity of the outputs of all the nodes of odd index)



1. Each node creates 1 qubit

2. Each node makes its qubit interact with its two neighbors (2 rounds)

3. Each non-corner node makes a “measurement in the X basis” to its qubit, and 18
C outputs the bit corresponding to the measurement outcome

4. Each corner node makes a “measurement in the X basis” to its qubit if its input bit
E IS 0, or makes a “measurement in the Y basis” to its qubit if its input bit is 1, and
E outputs the bit corresponding to the measurement outcome
Define the following four bits: 216 «_

215 w

Mmp = Z,Z4DZ¢

Claim 1:

There Is a 2-round quantum algorithm that outputs the uniform distribution
over all binary strings (z4, z,, ..., z,;) € {0,1}" satisfying the following condition:

(Mygq = 0 if (by,b,, bs) = (0,0,0)
Moga ® mr=1 if (by, by b3) = (1,1,0)
Moga ® mp=1 if (by, by b3) =(0,1,1)
\Modd ®my=1 if (by,b,b3) =(1,01).




In the LOCAL model, any C[Esi%algorithm that outputs the same

distribution must use at least n/6 rounds.

v" In any classical protocol using less than n/6 rounds: ?1 n=18

mpg IS an affine function of b, and b,

mpg IS an affine function of b, and b,

m; Is an affine function of b, and b,
m,qq IS an affine function of b,, b, and b,

v Such functions cannot satisfy all the linear conditions of |

Claim 1
mR — 226924@26 214 " ~ 26
(parity of the outputs of the nodes of even index on the right)
mp = Zg®z,,Dz;, 213 4T
(parity of the outputs of the nodes of even index on the bottom) NN N\ )
NN/ AN ,\

my = Z140216D 213 / l l l l l b,
Moga = Z1DZ3DZsDz7D29D211D213D215D 217 0 Z12 Z11 Z10 Zg Zg

Claim 1:| There iund guantum algorithm that outputs the uniform distribution
over all binary strings (z4, z,, ..., z,;) € {0,1}" satisfying the following condition:

(Mygq = 0 if (by,b,, bs) = (0,0,0)

< Moga ® mg=1 if (by, b, b3) = (1,1,0)
Mpga ® mg=1 if (by, by by) =(0,1,1)

| Moaa ® my=1 if (by, by b3) =(1,0,1).




Conclusions

v" We have shown that in the CONGEST model the diameter of the network
can be computed faster using quantum distributed algorithms
(for constant diameter: ©(y/n) rounds quantumly vs. @(n) rounds classically)

v We have shown that in the LOCAL model quantum distributed algorithms
can also be faster, at least for some computational task
(for our ring problem: 2 rounds quantumly vs. ®(n) rounds classically)

Interesting research directions:

v Consider other applications of quantum distributed algorithms in the
CONGEST model

v Find one interesting application of quantum distributed algorithms in
the LOCAL model

v Consider other models (e.g., asynchronous computation) in the
guantum setting
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