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Recent Development

In the CONGEST model, there is a O(n2/3)-round classical algorithm for 
triangle finding and a O(n3/4)-round classical algorithm for triangle listing.

~

Our result (PODC 2017)

New development (Chang, Pettie and Zhang SODA 2019)

~

In the CONGEST model, there is O(n1/2)-round classical algorithms for 
triangle finding and listing.

~

They show how to partition the set of edges into three sets E1, E2, E3
such that:
 each connected component of the graph induced by E1 is well connected
 the graph induced by E2 has small arboricity
 the graph induced by E3 is sparse



Triangle Finding

Given a graph G=(V,E), decide if it contains a triangle  

unweighted (and undirected)
three vertices u,v,w such that (u,v) ∈ E, 

(u,w) ∈ E and (v,w) ∈ E 



Triangle Finding

Given a graph G=(V,E), decide if it contains a triangle  

no triangle

u

v

w

Examples:

unweighted (and undirected)
three vertices u,v,w such that (u,v) ∈ E, 

(u,w) ∈ E and (v,w) ∈ E 



Triangle Finding in Sequential Computing

Given a graph G=(V,E), decide if it contains a triangle  

★ one of “most elementary” unsettled graph-theoretic problems 

★ many algorithmic applications:

Triangle Finding

graph-theoretic problems

Boolean matrix multiplication

3SUM

Max2SAT

★ has become one of the central problems in the field of “fine-
grained computational complexity”

[Itai, Rodeh 78]
[Vassilevska-Williams, Williams 10]

[Patrascu 10] 

folklore, [Williams 04]



Triangle Finding in Distributed Computing
In this work we consider the CONGEST model:

 network G=(V,E) of n nodes (all nodes have distinct identifiers)
 each node knows the identifiers of all its neighbors
 communication between adjacent nodes: one message of O(log n) bits per round 

if G has a triangle, then at least one node must output a triangle
(otherwise all nodes should output “not found”) 

Triangle Finding:

Triangle Listing:
each triangle of G is output by at least one node

(the same triangle may be output more than once)

 trivial algorithm using n rounds for both problems: 
“each node sends to each neighbor the list of all its neighbors”

 Related problem: property testing for triangle-freeness
[Fraigniaud et al. DISC’16] [Fischer et al. PODC’17]



Round Complexity of Triangle Finding/Listing

Bounds Problem Model Deterministic or 
randomized

Dolev et al. 
DISC’12 O(n1/3) Listing CONGEST clique deterministic

Censor-Hillel et al. 
PODC’15 O(n0.1572) Finding CONGEST clique deterministic

This work O(n2/3) Finding CONGEST randomized

This work O(n3/4) Listing CONGEST randomized

~

~

~

Pandurangan et al. 
2016 Ω

𝑛𝑛1/3

log3𝑛𝑛 Listing CONGEST clique randomized

This work Ω
𝑛𝑛1/3

log 𝑛𝑛 Listing CONGEST clique randomized

First algorithms with sublinear round complexity in the CONGEST model 

the tilde notation removes polylog(n) factors communication allowed even between non-adjacent nodes

Note: a lower bound for the CONGEST clique model implies a lower 
bound for the CONGEST model

Drucker et al. 
PODC’14

Ω
𝑛𝑛

exp( log𝑛𝑛) Finding CONGEST broadcast deterministic



Pandurangan et al. 
2016 Ω

𝑛𝑛1/3

log3𝑛𝑛 Listing CONGEST clique randomized

This work Ω
𝑛𝑛1/3

log 𝑛𝑛 Listing CONGEST clique randomized

Lower bound: Idea of the Proof

Note: a lower bound for the CONGEST clique model implies a lower 
bound for the CONGEST model

 A graph of n nodes can contain Ω(n3) triangles
(e.g., a random graph)

 Thus at least one node has to output Ω(n2) triangles
 Fact: Ω(t2/3) edges are needed to form t triangles 
 Thus at least one node have information about Ω(n4/3) edges

It must then receive Ω(n4/3) bits, which requires Ω(n1/3 / log n) rounds 

at each round a node receives at most O(n log n) bits



Upper Bounds: Heavy and Light Triangles

We say that a triangle is ε-heavy if one of its edges is shared by at 
least nε triangles. 

…

≥ nε

Let ε be any constant such that 0 ≤ ε ≤ 1 

Finding one ε-heavy triangle O(n1-ε) rounds

Finding one ε-light triangle O(n1-ε + n(1+ε)/2) rounds

Listing all ε-heavy triangles O(n1-ε/2) rounds

Listing all ε-light triangles O(n1-ε + n(1+ε)/2) rounds

~

~

~

ε-heavy

Otherwise we say that it is ε-light.

Taking ε = 1/3 gives the claimed complexity O(n2/3) for Finding ~

Taking ε = 1/2 gives the claimed complexity O(n3/4) for Listing ~

randomized algorithms
~

success probability at least 1-1/poly(n)

same 
complexity

for light 
triangles



u

2. Each node i sends to each neighbor u the set {v∈N(i) such that hu(v)=0}.
Node u then outputs all the triangles he learns from what he receives.

repeat O(log n) times to list all ε-heavy 
triangles with success probability 1-1/poly(n)

…

≥ nεε-heavy

1. Each node u of the graph takes a pairwise independent hash function           
ℎu: V → {0,1, … , 𝑛𝑛𝜀𝜀/2 }

(node u tells its neighbors which function it took)

Listing all ε-heavy triangles in O(n1-ε/2) rounds~

i

j

k Pr[hu(j)=0 and hu(k)=0] = Θ(1/nε) 

For any ε-heavy triangle (i,j,k), where {i,j} is the edge shared by at least nε

triangles, the following happens with probability Θ(1/nε) :
Correctness:

 u receives j and k from i, and 
 u receives k from j.

Conclusion: with constant probability at least one node u will output (i,j,k)
In this case u outputs the triangle (i,j,k).

(expected) size of this set: O(n1-ε/2)
N(i) = set of neighbors of i



Heavy Triangles

We say that a triangle is ε-heavy if one of its edges is shared by at 
least nε triangles. 

…

≥ nε

Let ε be any constant such that 0 ≤ ε ≤ 1 

Finding one ε-heavy triangle O(n1-ε) rounds

Finding one ε-light triangle O(n1-ε + n(1+ε)/2) rounds

Listing all ε-heavy triangles O(n1-ε/2) rounds

Listing all ε-light triangles O(n1-ε + n(1+ε)/2) rounds

~

~

~

ε-heavy

Otherwise we say that it is ε-light.

Taking ε = 1/3 gives the claimed complexity O(n2/3) for Finding ~

Taking ε = 1/2 gives the claimed complexity O(n3/4) for Listing ~

randomized algorithms
~

same 
algorithm



Listing all ε-light triangles in O(n1-ε+n(1+ε)/2) rounds

1. Select randomly Θ(n1-ε) nodes. Let X be the set of selected nodes.

3. Each node k sends the set N(k) ∩ X to all its neighbors.
2. Each node tells its neighbors if it has been selected or not.

~

x1

x2

N(x1)

N(x2)

X

Δ(X) = all pairs of vertices except the green ones

Δ(X) = Set of all pairs of vertices of the graph that are not 
in the neighborhood of a same vertex in XFirst key definition:

for instance: each node selects itself with probability ≈ 1/nε

~

example:



Listing all ε-light triangles in O(n1-ε+n(1+ε)/2) rounds

1. Select randomly Θ(n1-ε) nodes. Let X be the set of selected nodes.

3. Each node k sends the set N(k) ∩ X to all its neighbors.
2. Each node tells its neighbors if it has been selected or not.

~

Claim 1: With high probability (on the choice of X), each ε-light triangle has 
its three edges in Δ(X). 

…

ε-light

i

j
k

≤ nε nodes : each is put in X with probability ≈ 1/(nε log n)

with high probability, none of them is put in X, 
in which case {i,j} is in Δ(X). 

Δ(X) = Set of all pairs of vertices of the graph that are not 
in the neighborhood of a same vertex in XFirst key definition:

~



Listing all ε-light triangles in O(n1-ε+n(1+ε)/2) rounds

1. Select randomly Θ(n1-ε) nodes. Let X be the set of selected nodes.

3. Each node k sends the set N(k) ∩ X to all its neighbors.
2. Each node tells its neighbors if it has been selected or not.

~

First key definition:

Goal: list all triangles with three edges in Δ(X). 

Δ(X) = Set of all pairs of vertices of the graph that are not 
in the neighborhood of a same vertex in X

~

Claim 1: With high probability (on the choice of X), each ε-light triangle has 
its three edges in Δ(X). 



Listing all ε-light triangles in O(n1-ε+n(1+ε)/2) rounds

1. Select randomly Θ(n1-ε) nodes. Let X be the set of selected nodes.

3. Each node k sends the set N(k) ∩ X to all its neighbors.
2. Each node tells its neighbors if it has been selected or not.

~

i

kj

Δ(X) ∋

Let {i,k} be any edge.
Consider the set S(i,k) of all vertices j such that {j,k} is an edge and {i,j} ∈ Δ(X). 
It can be computed by k without communication 
from the information received at Step 3.

Second key definition:

Claim 2: With high probability (on the choice of X), the average value 
of |S(i,k)|, over all edges {i,k} of the graph, is O(nε). 

Proof: proof of Claim 1 + a counting argument

~



Listing all ε-light triangles in O(n1-ε+n(1+ε)/2) rounds

1. Select randomly Θ(n1-ε) nodes. Let X be the set of selected nodes.

3. Each node k sends the set N(k) ∩ X to all its neighbors.
2. Each node tells its neighbors if it has been selected or not.

~

4. Each node k sends to each of its neighbor i the set S(i,k). 
The neighbor i outputs all triangles consisting of i, k and a vertex in S(i,k)

i

kj

Δ(X) ∋

Let {i,k} be any edge.
Consider the set S(i,k) of all vertices j such that {j,k} is an edge and {i,j} ∈ Δ(X). 
It can be computed by k without communication 
from the information received at Step 3.

Second key definition:

~

Claim 2: With high probability (on the choice of X), the average value 
of |S(i,k)|, over all edges {i,k} of the graph, is O(nε). 

Proof: proof of Claim 1 + a counting argument



Listing all ε-light triangles in O(n1-ε+n(1+ε)/2) rounds

1. Select randomly Θ(n1-ε) nodes. Let X be the set of selected nodes.

3. Each node k sends the set N(k) ∩ X to all its neighbors.
2. Each node tells its neighbors if it has been selected or not.

~

4. Each node k sends to each of its neighbor i the set S(i,k). 
The neighbor i outputs all triangles consisting of i, k and a vertex in S(i,k)

i

kj

Δ(X) ∋

Correctness: at Step 4 each triangle with at least one edge in Δ(X), 
and thus each ε-light triangle, is output.

Round complexity of Step 4:
maximum value of |S(i,k)|, not its average!

Proof: proof of Claim 1 + a counting argument

~

Claim 2: With high probability (on the choice of X), the average value 
of |S(i,k)|, over all edges {i,k} of the graph, is O(nε). 



Listing all ε-light triangles in O(n1-ε+n(1+ε)/2) rounds

1. Select randomly Θ(n1-ε) nodes. Let X be the set of selected nodes.

3. Each node k sends the set N(k) ∩ X to all its neighbors.
2. Each node tells its neighbors if it has been selected or not.

~

4. Each node k sends to each of its neighbor i the set S(i,k) if |S(i,k)| ≤ nε+δ.
The neighbor i outputs all triangles consisting of i, k and a vertex in S(i,k)

Trick: send S(i,k) only if its size does not exceed too much the average
It remains to deal with the S(i,k) that exceed the average by a factor nδ

5. Deal with the triangles involving edges {i,k} such that |S(i,k)| ≥ nε+δ.
(Details omitted.)

idea:  there is only a small number of such edges, so   
we can apply recursively the algorithm on a sparser graph

~



Listing all ε-light triangles in O(n1-ε+n(1+ε)/2) rounds

1. Select randomly Θ(n1-ε) nodes. Let X be the set of selected nodes.

3. Each node k sends the set N(k) ∩ X to all its neighbors.
2. Each node tells its neighbors if it has been selected or not.

~

4. Each node k sends to each of its neighbor i the set S(i,k) if |S(i,k)| ≤ nε+δ.
The neighbor i outputs all triangles consisting of i, k and a vertex in S(i,k)

Trick: send S(i,k) only if its size does not exceed too much the average
It remains to deal with the S(i,k) that exceed the average by a factor nδ

5. Deal with the triangles involving edges {i,k} such that |S(i,k)| ≥ nε+δ.
(Details omitted.)

idea:  there is only a small number of such edges, so   
we can apply recursively the algorithm on a sparser graph

Conclusion: The round complexity of Steps 4-5 is O(n(1+ε)/2)
(the optimal choice for δ is δ=(1-ε)/2)

~

~



Light Triangles

We say that a triangle is ε-heavy if one of its edges is shared by at 
least nε triangles. 

…

≤ nε

Let ε be any constant such that 0 ≤ ε ≤ 1 

Finding one ε-heavy triangle O(n1-ε) rounds

Finding one ε-light triangle O(n1-ε + n(1+ε)/2) rounds

Listing all ε-heavy triangles O(n1-ε/2) rounds

Listing all ε-light triangles O(n1-ε + n(1+ε)/2) rounds

~

~

~

ε-light

Otherwise we say that it is ε-light.

Taking ε = 1/3 gives the claimed complexity O(n2/3) for finding ~

Taking ε = 1/2 gives the claimed complexity O(n3/4) for listing ~

randomized algorithms
~

same 
algorithm



Conclusion
We constructed the first sublinear-time algorithms for Triangle 
Finding and Listing in the CONGEST model:

Bounds Problem Model Deterministic or 
randomized

Dolev et al. 
DISC’12 O(n1/3) Listing CONGEST clique deterministic

Censor-Hillel et al. 
PODC’15 O(n0.1572) Finding CONGEST clique deterministic

This work O(n2/3) Finding CONGEST randomized

This work O(n3/4) Listing CONGEST randomized

Pandurangan et al. 
2016 Ω

𝑛𝑛1/3

log3𝑛𝑛 Listing CONGEST clique randomized

This work Ω
𝑛𝑛1/3

log 𝑛𝑛 Listing CONGEST clique randomized

Open problem:
What about quantum algorithms?

~

~

~



Conclusion

Bounds Problem Model Deterministic or 
randomized

Dolev et al. 
DISC’12 O(n1/3) Listing CONGEST clique deterministic

Censor-Hillel et al. 
PODC’15 O(n0.1572) Finding CONGEST clique deterministic

This work O(n2/3) Finding CONGEST randomized

This work O(n3/4) Listing CONGEST randomized
Chang et al.
SODA 2019 O(n1/2) Listing CONGEST randomized

~

~

~

~

We constructed the first sublinear-time algorithms for Triangle 
Finding and Listing in the CONGEST model:

They show how to partition the set of edges into three sets E1, E2, E3
such that:
 each connected component of the graph induced by E1 is well connected
 the graph induced by E2 has small arboricity
 the graph induced by E3 is sparse
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