The Sparsest Additive Spanner via Multiple Weighted BFS Trees

Ami Paz IRIF–CNRS & Paris Diderot University
Joint work with:
Keren Censor-Hillel, Noam Ravid Technion

This project has received funding from the European Union's Horizon 2020 Research and Innovation Program under grant agreement no. 755839
The CONGEST Model

- Communication graph on $|V| = n$ nodes
- Bounded messages, $O(\log n)$ bits
- Synchronous
The CONGEST Model

- Communication graph on $|V| = n$ nodes
- Bounded messages, $O(\log n)$ bits
- Synchronous
- Input
 - Unique ID
 - Neighbors
The CONGEST Model

- Communication graph on $|V| = n$ nodes
- Bounded messages, $O(\log n)$ bits
- Synchronous
- Input
 - Unique ID
 - Neighbors
- Output—subgraph
 - Neighbors in the subgraph
The CONGEST Model

- Communication graph on $|V| = n$ nodes
- Bounded messages, $O(\log n)$ bits
- Synchronous
- Input
 - Unique ID
 - Neighbors
- Output—subgraph
 - Neighbors in the subgraph
Example: Distributed BFS
Example: Distributed BFS

Message: source
Example: Distributed BFS

• BFS in $O(D)$ rounds
Example: Multiple BFS trees
Example: Multiple BFS trees
Example: Multiple BFS trees
Example: Multiple BFS trees

- Prioritize by distance
- Secondary: by source

Message format: $(dist, source)$
Example: Multiple BFS trees

- Prioritize by distance
 - Secondary: by source

Message format: \((\text{dist}, \text{source})\)
Example: Multiple BFS trees

- Prioritize by distance
 - Secondary: by source
- Here:
 - \(s_1 \) before \(s_2 \)

Message format: \((\text{dist}, \text{source})\)
Example: Multiple BFS trees

• Prioritize by distance
 • Secondary: by source

Message format: \((\text{dist}, \text{source})\)
Example: Multiple BFS trees

- Prioritize by distance
 - Secondary: by source
Example: Multiple BFS trees

- Prioritize by distance
 - Secondary: by source
Example: Multiple BFS trees

- Prioritize by distance
 - Secondary: by source
Example: Multiple BFS trees

BFS from τ sources

- Trivial: $O(\tau \cdot D)$ rounds

Theorem [LP13]

It is possible to construct BFS trees from τ sources in $O(\tau + D)$ rounds
Weighted BFS

G weighted graph, τ source

Want: a BFS tree with minimal-weight paths from s

That is: from all shortest (s, t)-paths, find the lightest
Weighted BFS

G weighted graph, τ source

Want: a BFS tree with minimal-weight paths from s

• Is this a tree?

• Can we build it in CONGEST?

• Can we build multiple trees?
Weighted BFS

Claims:

• There is a tree with shortest-lightest paths
• It can be built in CONGEST
Weighted BFS

Claims:

• There is a tree with shortest-lightest paths
• It can be built in CONGEST

Message format:
$(\text{dist}, \text{source}, \text{w_dist})$

![Diagram](image)
Weighted BFS

Claims:
• There is a tree with shortest-lightest paths
• It can be built in CONGEST
Weighted BFS

G weighted graph, s source

Want: a BFS tree with minimal weight paths from s

• Is this a tree? 😊
• Can we build it in CONGEST? 😊
• Can we build multiple trees?
Weighted BFS

Claim:

- We can build multiple wBFS trees in CONGEST

Message format:
\((\text{dist}, \text{source}, \text{w_dist})\)
Weighted BFS

Claim:

- We can build multiple wBFS trees in CONGEST

Message format: $(dist, source, w_dist)$
Weighted BFS

Claim:

• We can be build multiple wBFS trees in CONGEST

Message format:
(dist, source, w_dist)
Weighted BFS

Claim:

• We can be build multiple wBFS trees in CONGEST

Message format:
\((dist, source, w_dist)\)
Weighted BFS

Claim:

- We can build multiple wBFS trees in CONGEST

Message format:
\((\text{dist}, \text{source}, \text{w_dist})\)

Sends \(s_1\) first
Weighted BFS

Claim:

• We can build multiple wBFS trees in CONGEST

Message format: $(dist, source, w_dist)$

All updates arrive before t sends (nontrivial)
Weighted BFS

G weighted graph, s source

Want: a BFS tree with minimal weight paths from s

• Is this a tree? 😊
• Can we build it in CONGEST? 😊
• Can we build multiple trees? 😊
Multiple Weighted BFS trees

Weighted BFS from τ sources

Theorem (New)

It is possible to construct weighted BFS trees from τ sources in $O(\tau + D)$ rounds
Spanners

A graph G on n nodes

Want: a subgraph H on the same nodes, that

• Approximately preserves distances
• Sparse
Spanners

A graph G on n nodes

Want: a subgraph H on the same nodes, that

- Approximately preserves distances
- Sparse

This talk:

only additive all-pairs spanners
Spanners

A $(+\beta)$-spanner of G is a subgraph H on the same nodes, s.t.

- for all $(u, v) \in V \times V$:
 \[
 \text{dist}_H(u, v) \leq \text{dist}_G(u, v) + \beta
 \]
Spanners

A $(+\beta)$-spanner of G is a subgraph H on the same nodes, s.t.

- for all $(u, v) \in V \times V$:
 \[\text{dist}_H(u, v) \leq \text{dist}_G(u, v) + \beta \]
Spanners

A $(+\beta)$-spanner of G is a subgraph H on the same nodes, s.t.

- for all $(u, v) \in V \times V$:
 \[\text{dist}_H(u, v) \leq \text{dist}_G(u, v) + \beta \]
Spanners

A $(+\beta)$-spanner of G is a subgraph H on the same nodes, s.t.

- for all $(u, v) \in V \times V$:
 \[
 \text{dist}_H(u, v) \leq \text{dist}_G(u, v) + \beta
 \]
Applications

• Synchronizers [Awe85,PU89]
• Information dissemination [CHHKM12]
• Compact routing schemes [PU89,TZ01,Che13]
• And many more...
Sequential Spanners

• Constructions
 • (+2): $O(n^{3/2})$ edges [ACIM99]
 • (+4): $\tilde{O}(n^{7/5})$ edges [Che13]
 • (+6): $O(n^{4/3})$ edges [BKMP10]

• Lower bound
 • Any: $n^{4/3}/2^{\Omega(\sqrt{\log n})}$ edges [AB16]

Goal:
Networks that build their own spanners
Distributed Additive Spanners

<table>
<thead>
<tr>
<th>Spanner</th>
<th>Number of edges</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sequential</td>
<td>(+2)-spanner</td>
<td>$O(n^{3/2})$ [ACIM99]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(+4)-spanner</td>
<td>$\tilde{O}(n^{7/5})$ [Che13]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(+6)-spanner</td>
<td>$O(n^{4/3})$ [BKMP10]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(+8)-spanner</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(+?-)-spanner</td>
<td>Optimal</td>
</tr>
</tbody>
</table>

[ACIM99]: [Reference](#)
[Che13]: [Reference](#)
[BKMP10]: [Reference](#)
Distributed Additive Spanners

<table>
<thead>
<tr>
<th>Spanner</th>
<th>Number of edges</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sequential</td>
</tr>
<tr>
<td>(+2)-spanner</td>
<td>$O(n^{3/2})$ [ACIM99]</td>
</tr>
<tr>
<td>(+4)-spanner</td>
<td>$\tilde{O}(n^{7/5})$ [Che13]</td>
</tr>
<tr>
<td>(+6)-spanner</td>
<td>$O(n^{4/3})$ [BKMP10]</td>
</tr>
<tr>
<td>(+8)-spanner</td>
<td></td>
</tr>
<tr>
<td>(+?)-spanner</td>
<td></td>
</tr>
</tbody>
</table>
Distributed Additive Spanners

<table>
<thead>
<tr>
<th>Spanner</th>
<th>Number of edges</th>
<th>Sequential</th>
<th>Distributed</th>
</tr>
</thead>
<tbody>
<tr>
<td>(+2)-spanner</td>
<td>$O(n^{3/2})$ [ACIM99]</td>
<td>$\tilde{O}(n^{3/2})$ [LP13]</td>
<td></td>
</tr>
<tr>
<td>(+4)-spanner</td>
<td>$\tilde{O}(n^{7/5})$ [Che13]</td>
<td>$\tilde{O}(n^{7/5})$ [CH+17]</td>
<td></td>
</tr>
<tr>
<td>(+6)-spanner</td>
<td>$O(n^{4/3})$ [BKMP10]</td>
<td>$\tilde{O}(n^{4/3})$</td>
<td></td>
</tr>
<tr>
<td>(+8)-spanner</td>
<td>$\tilde{O}(n^{15/11})$ [CH+17]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(+?)-spanner</td>
<td>$O(n^{4/3})$ (???)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Spanner Construction

Two phases:

• Clustering
• Path buying
Clustering

- Choose nodes as centers *at random*
- **Add edges** to their neighbors
 - All high-degree nodes are clustered w.h.p.
- **Add all edges of un-clustered nodes**
Clustering

- Choose nodes as centers at random
- Add edges to their neighbors
 - All high-degree nodes are clustered w.h.p.
- Add all edges of un-clustered nodes
Clustering

- Choose nodes as centers at random
- Add edges to their neighbors
 - All high-degree nodes are clustered w.h.p.
- Add all edges of un-clustered nodes
Clustering

- Choose nodes as centers at random
- Add edges to their neighbors
 - All high-degree nodes are clustered w.h.p.
- Add all edges of un-clustered nodes
Clustering

• Choose nodes as centers at random
• Add edges to their neighbors
 • All high-degree nodes are clustered w.h.p.
• Add all edges of un-clustered nodes
Clustering

- Choose nodes as centers \textit{at random}
- \textbf{Add edges} to their neighbors
 - All \textit{high-degree nodes} are clustered w.h.p.
- \textbf{Add all edges of un-clustered nodes}
Clustering

• Choose nodes as centers at random
• Add edges to their neighbors
 • All high-degree nodes are clustered w.h.p.
• Add all edges of un-clustered nodes
Path Buying

• For $k = 1, 2, 4, 8, \ldots, n^{2/3}$ do:
 • Build a set S_k of $\sim 1/k$ of the clusters
 • For each center c_i and a cluster $C_j \in S_k$
 • Add a shortest path from c_i to some $v \in C_j$
 • But only if it misses at most $2k$ edges
Path Buying

• For $k = 1, 2, 4, 8, \ldots, n^{2/3}$ do:
 • Build a set S_k of $\sim 1/k$ of the clusters
 • For each center c_i and a cluster $C_j \in S_k$
 • Add a shortest path from c_i to some $v \in C_j$
 • But only if it misses at most $2k$ edges

That is, for each (c_i, C_j):
1. $A \leftarrow \emptyset$
2. For each $v \in C_j$, if there is a (c_i, v)-path that is shortest and misses $\leq 2k$ edges add one to A
3. If $A \neq \emptyset$, add a shortest path from A
Path Buying

• For $k = 1, 2, 4, 8, \ldots, n^{2/3}$ do:
 • Build a set S_k of $\sim 1/k$ of the clusters
 • For each center c_i and a cluster $C_j \in S_k$
 • Add a shortest path from c_i to some $v \in C_j$
 • But only if it misses at most $2k$ edges
Path Buying

- For $k = 1, 2, 4, 8, \ldots, n^{2/3}$ do:
 - Build a set S_k of $\sim 1/k$ of the clusters
 - For each center c_i and a cluster $C_j \in S_k$
 - Add a shortest path from c_i to some $v \in C_j$
 - But only if it misses at most $2k$ edges
Path Buying

• For $k = 1, 2, 4, 8, \ldots, n^{2/3}$ do:
 • Build a set S_k of $\sim 1/k$ of the clusters
 • For each center c_i and a cluster $C_j \in S_k$
 • Add a shortest path from c_i to some $v \in C_j$
 • But only if it misses at most $2k$ edges
Path Buying

• For $k = 1, 2, 4, 8, \ldots, n^{2/3}$ do:
 • Build a set S_k of $\sim 1/k$ of the clusters
 • For each center c_i and a cluster $C_j \in S_k$
 • Add a shortest path from c_i to some $v \in C_j$
 • But only if it misses at most $2k$ edges
Path Buying

• For $k = 1, 2, 4, 8, \ldots, n^{2/3}$ do:
 • Build a set S_k of $\sim 1/k$ of the clusters
 • For each center c_i and a cluster $C_j \in S_k$
 • Add a shortest path from c_i to some $v \in C_j$
 • But only if it misses at most $2k$ edges
Distributed Spanner Construction

Theorem (New)

It is possible to construct:

- A (+6)-spanner
- With $\tilde{O}(n^{4/3})$ edges
- In $\tilde{O}(n^{2/3} + D)$ rounds
Stretch
Stretch
Stretch
Stretch
Stretch
Stretch

Misses $3k$ edges
Stretch

At least k adjacent clusters
Stretch

\[s \in S_k \]
Stretch
Stretch
Stretch

\[x'' \quad +2 \quad t \quad +2 \quad s \in S_k \quad +2 \quad y'' \]

\[x \quad x' \quad y' \quad y \]
Stretch

$\begin{align*}
&x'' \\
&x' \\
&t \\
&s \in S_k \\
&y' \\
&y'' \\
&x \\
&y
\end{align*}$

\(\text{+6 stretch}\)
Distributed Spanner Construction

Theorem (New)

It is possible to construct:

- A \((+6)\)-spanner
- With \(\tilde{O}(n^{4/3})\) edges
- In \(\tilde{O}(n^{2/3} + D)\) rounds
Clustering

• Choose nodes as centers at random
• Add edges to their neighbors
• Add all edges of un-clustered nodes
Path Buying

• For $k = 1, 2, 4, 8, \ldots, n^{2/3}$ do:
 • Build a set S_k of $\sim 1/k$ of the clusters
 • For each center c_i and a cluster $C_j \in S_k$
 • Add a shortest path from c_i to some $v \in C_j$
 • But only if it misses at most $2k$ edges

Join locally to S_k

For each (c_i, C_j), for each $v \in C_j$, need to find the shortest (c_i, v)-path that misses minimal num. of edges

Note: Graph and spanner are unweighted
Only use weights for the alg.

Weight edges: missing=1, others=0
Run wBFS from each c_i
Distributed Spanner Construction

Theorem (New)

It is possible to construct:

- A \((+6)\)-spanner
- With \(\tilde{O}(n^{4/3})\) edges
- In \(\tilde{O}(n^{2/3} + D)\) rounds
Conclusion

• New sequential algorithm for \((+6)\)-spanners
• New distributed implementation
 • Gives an almost-optimal \((+6)\)-spanner
• New distributed algorithm: weighted-BFS

• Open: lower bounds for distributed construction time

Thank You!