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Buffon’s needle

Buffon, G., Essai d'arithmétique morale, 1777.

A needle dropped randomly on a floor with equally spaced 

parallel lines will cross one of the lines with probability 2/π. 
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Use repeated random sampling and statistical 

analysis to estimate parameters of interest

Monte Carlo algorithms:
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Use repeated random sampling and statistical 

analysis to estimate parameters of interest

Monte Carlo algorithms:

Empirical mean:

2/ Output: (x1 +…+ xn)/n

1/ Repeat the experiment n times: n i.i.d. samples x1, …, xn ~ X
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Use repeated random sampling and statistical 

analysis to estimate parameters of interest

Monte Carlo algorithms:

Empirical mean:

2/ Output: (x1 +…+ xn)/n

Law of large numbers:
x1 + . . . + xn

n
n→∞ E(X)

1/ Repeat the experiment n times: n i.i.d. samples x1, …, xn ~ X
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Empirical mean: μ̃ =
x1 + . . . + xn

n
with x1, . . . , xn ∼ X

How fast does it converge to E(X) ?
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Empirical mean: μ̃ =
x1 + . . . + xn

n
with x1, . . . , xn ∼ X

Chebyshev’s Inequality:

How fast does it converge to E(X) ?

| μ̃ − E(X) | ≤ ϵE(X)Objective:

multiplicative error 0 < ε < 1

with high probability
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(                         finite)E(X ), Var(X ) ≠ 0



(in fact                                          )

Empirical mean: μ̃ =
x1 + . . . + xn

n
with x1, . . . , xn ∼ X

Chebyshev’s Inequality:

How fast does it converge to E(X) ?

| μ̃ − E(X) | ≤ ϵE(X)Objective:

multiplicative error 0 < ε < 1

with high probability

Number of samples needed: O ( E(X2)
ϵ2E(X)2 ) O( Var(X )

ϵ2E(X )2 ) = O( 1
ϵ2 ( E(X2)

E(X )2
− 1))
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(in fact                                          )

Empirical mean: μ̃ =
x1 + . . . + xn

n
with x1, . . . , xn ∼ X

Chebyshev’s Inequality:

How fast does it converge to E(X) ?

| μ̃ − E(X) | ≤ ϵE(X)Objective:

multiplicative error 0 < ε < 1

with high probability

Number of samples needed: O ( E(X2)
ϵ2E(X)2 ) O( Var(X )

ϵ2E(X )2 ) = O( 1
ϵ2 ( E(X2)

E(X )2
− 1))

In practice: given an upper-bound                  ,  take                        samplesΔ2 ≥
E(X2)
E(X)2
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n = Ω ( Δ2

ϵ2 )

Relative second  
moment

(                         finite)E(X ), Var(X ) ≠ 0



Data stream model:  
Frequency moments, Collision probability [Alon, Matias, Szegedy’99] 
[Monemizadeh, Woodruff’] [Andoni et al.’11] [Crouch et al.’16]

Applications

Testing properties of distributions:  
Closeness [Goldreich, Ron’11] [Batu et al.’13] [Chan et al.’14], Conditional 
independence [Canonne et al.’18]

Estimating graph parameters:  
Number of connected components, Minimum spanning tree weight 
[Chazelle, Rubinfeld, Trevisan’05], Average distance [Goldreich, Ron’08], Number 
of triangles [Eden et al. 17]

Counting with Markov chain Monte Carlo methods: 
Counting vs. sampling [Jerrum, Sinclair’96] [Štefankovič et al.’09], Volume of 
convex bodies [Dyer, Frieze'91], Permanent [Jerrum, Sinclair, Vigoda’04]

etc.
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Random variable X over sample space Ω ⊂ R+

Classical sample: one value x ∈ Ω, sampled with probability px
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Quantum sample: one (controlled-)execution of a quantum sampler      or      , where

Random variable X over sample space Ω ⊂ R+

Classical sample: one value x ∈ Ω, sampled with probability px

SX |0⟩ = ∑
x∈Ω

px |ψx⟩ |x⟩

with ψx = arbitrary unit vector

SX S−1
X
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Can we use quadratically less samples in the quantum setting?
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 Number of samples Conditions

Classical samples 
(Chebyshev’s 

inequality)

[Brassard et al.’11] 
[Wocjan et al.’09] 
[Montanaro’15]

[Montanaro’15]

[Li, Wu’17]

Our result

Δ2 ≥
E(X2)
E(X)2

Δ2

ϵ2

      E(X) ≤ H

Δ2 ≥
E(X2)
E(X)2

Δ2 ≥
E(X2)
E(X)2

Sample space 

Ω ⊂ [0,B]

L ≤ E(X) ≤ H

B
ϵ E(X)

Δ2 ≥
E(X2)
E(X)2

Δ2

ϵ

Δ
ϵ

⋅
H
L

Δ
ϵ

⋅ log3 ( H
E(X) )

Can we use quadratically less samples in the quantum setting?
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Our Approach



Input:

Ampl-Est: O (
B

ϵ E(X) ) quantum samples to obtain

Random variable X on sample space Ω ⊂ [0,B]
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Amplitude Estimation Algorithm [Brassard et al.’02] [Brassard et al.’11] [Wocjan et al.’09] [Montanaro’15]

| μ̃ − E(X) | ≤ ϵ ⋅ E(X)



If                     : the number of samples is          B ≤
E(X2)
E(X)

O
E(X2)

ϵE(X)
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Amplitude Estimation Algorithm [Brassard et al.’02] [Brassard et al.’11] [Wocjan et al.’09] [Montanaro’15]

Ampl-Est: O (
B

ϵ E(X) ) quantum samples to obtain | μ̃ − E(X) | ≤ ϵ ⋅ E(X)

Input: Random variable X on sample space Ω ⊂ [0,B]



If                     : the number of samples is          B ≤
E(X2)
E(X)

O
E(X2)

ϵE(X)

If                    ?B ≫
E(X2)
E(X)
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Amplitude Estimation Algorithm [Brassard et al.’02] [Brassard et al.’11] [Wocjan et al.’09] [Montanaro’15]

Ampl-Est: O (
B

ϵ E(X) ) quantum samples to obtain | μ̃ − E(X) | ≤ ϵ ⋅ E(X)

Input: Random variable X on sample space Ω ⊂ [0,B]



0

1

Random variable X
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0 B

Largest outcome

px

x



0

1

Random variable Xb
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0 b
New largest outcome

px

x
≈

E(X2)
E(X )

B



If                     : the number of samples is          B ≤
E(X2)
E(X)

O
E(X2)

ϵE(X)

If                     : map the outcomes larger than              to 0E(X2)
E(X)

B ≫
E(X2)
E(X)
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?

Ampl-Est: O (
B

ϵ E(X) ) quantum samples to obtain | μ̃ − E(X) | ≤ ϵ ⋅ E(X)

Input: Random variable X on sample space Ω ⊂ [0,B]



If                     : the number of samples is          B ≤
E(X2)
E(X)

O
E(X2)

ϵE(X)

If                     : map the outcomes larger than              to 0E(X2)
E(X)

B ≫
E(X2)
E(X)

�13

Lemma: If                    thenb ≥
E(X2)
ϵE(X)

(1 − ϵ)E(X) ≤ E(Xb) ≤ E(X) .

Ampl-Est: O (
B

ϵ E(X) ) quantum samples to obtain | μ̃ − E(X) | ≤ ϵ ⋅ E(X)

Input: Random variable X on sample space Ω ⊂ [0,B]



If                     : the number of samples is          B ≤
E(X2)
E(X)

O
E(X2)

ϵE(X)

If                     : map the outcomes larger than              to 0E(X2)
E(X)

B ≫
E(X2)
E(X)
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Lemma: If                    thenb ≥
E(X2)
ϵE(X)

(1 − ϵ)E(X) ≤ E(Xb) ≤ E(X) .

Problem: given                     how to find a threshold                       ?Δ2 ≥
E(X2)
E(X)2

b ≈ E(X) ⋅ Δ2

Ampl-Est: O (
B

ϵ E(X) ) quantum samples to obtain | μ̃ − E(X) | ≤ ϵ ⋅ E(X)

Input: Random variable X on sample space Ω ⊂ [0,B]



Solution: use the Amplitude Estimation algorithm to do a

                logarithmic search on b (given an upper-bound H ≥ E(X))
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Problem: given                     how to find a threshold                       ?Δ2 ≥
E(X2)
E(X)2

b ≈ E(X) ⋅ Δ2



Threshold Input r.v. Number of samples Estimation

Solution: use the Amplitude Estimation algorithm to do a

                logarithmic search on b (given an upper-bound H ≥ E(X))

�14

Problem: given                     how to find a threshold                       ?Δ2 ≥
E(X2)
E(X)2

b ≈ E(X) ⋅ Δ2

b0 = HΔ2

b1 = (H/2)Δ2

b2 = (H/4)Δ2

μ̃0

…

Xb0 Δ

Δ

Δ

μ̃1

μ̃2

…… …
Stopping rule: μ̃i ≠ 0 Output: bi

Xb1

Xb2



Threshold Input r.v. Number of samples Estimation

Solution: use the Amplitude Estimation algorithm to do a

                logarithmic search on b (given an upper-bound H ≥ E(X))
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Problem: given                     how to find a threshold                       ?Δ2 ≥
E(X2)
E(X)2

b ≈ E(X) ⋅ Δ2

b0 = HΔ2

b1 = (H/2)Δ2

b2 = (H/4)Δ2

μ̃0

…

Xb0 Δ

Δ

Δ

μ̃1

μ̃2

…

Theorem: the first non-zero     is obtained w.h.p. when:μ̃i

2 ⋅ E(X)Δ2 ≤ bi ≤ 10 ⋅ E(X)Δ2

… …
Stopping rule: μ̃i ≠ 0 Output: bi

Xb1

Xb2
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Analysis

Theorem: the first non-zero     is obtained w.h.p. when:μ̃i

2 ⋅ E(X)Δ2 ≤ bi ≤ 10 ⋅ E(X)Δ2



Ingredient 1:

1/Δ2
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E(Xb)
b

Analysis

Theorem: the first non-zero     is obtained w.h.p. when:μ̃i

2 ⋅ E(X)Δ2 ≤ bi ≤ 10 ⋅ E(X)Δ2

The output of Amplitude-Estimation is 0 w.h.p. if and only if the normalized 
estimated mean is below the inverse-square number of samples.[Brassard et al.’02]



Ingredient 1:

1/Δ2

�15

E(Xb)
b

Analysis

If                            thenb ≥ 10 ⋅ E(X)Δ2 E(Xb)
b

≤
E(X)

b
≤

1
10 ⋅ Δ2

Theorem: the first non-zero     is obtained w.h.p. when:μ̃i

2 ⋅ E(X)Δ2 ≤ bi ≤ 10 ⋅ E(X)Δ2

Ingredient 2:

The output of Amplitude-Estimation is 0 w.h.p. if and only if the normalized 
estimated mean is below the inverse-square number of samples.[Brassard et al.’02]



Ingredient 1:

1/Δ2
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E(Xb)
b

If                        then E(Xb)
b

≈
E(X)

b
≈

1
Δ2

b ≈ E(X) ⋅ Δ2

Analysis

If                            thenb ≥ 10 ⋅ E(X)Δ2 E(Xb)
b

≤
E(X)

b
≤

1
10 ⋅ Δ2

Theorem: the first non-zero     is obtained w.h.p. when:μ̃i

2 ⋅ E(X)Δ2 ≤ bi ≤ 10 ⋅ E(X)Δ2

Ingredient 2:

Ingredient 3:

The output of Amplitude-Estimation is 0 w.h.p. if and only if the normalized 
estimated mean is below the inverse-square number of samples.[Brassard et al.’02]



Applications
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Input: graph G=(V,E) with n vertices, m edges, t triangles

Query access: unitaries Odeg |v⟩ |0⟩ = |v⟩ |deg(v)⟩

Opair |v⟩ |w⟩ |0⟩ = |v⟩ |w⟩ | (v, w) ∈ E ?⟩

Ongh |v⟩ | i⟩ |0⟩ = |v⟩ | i⟩ |vi⟩

ith neighbor of v

(degree query)

(pair query)

(neighbor query)

Application 1: approximating graph parameters
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Input: graph G=(V,E) with n vertices, m edges, t triangles

Θ̃ (
n

t1/6
+

m3/4

t ) degree/pair/neighbor quantum queries to approximate t

Result:

Query access: unitaries Odeg |v⟩ |0⟩ = |v⟩ |deg(v)⟩

Opair |v⟩ |w⟩ |0⟩ = |v⟩ |w⟩ | (v, w) ∈ E ?⟩

Ongh |v⟩ | i⟩ |0⟩ = |v⟩ | i⟩ |vi⟩

ith neighbor of v

(degree query)

(pair query)

(neighbor query)

Application 1: approximating graph parameters

Θ̃ (
n

m1/4 ) degree/neighbor quantum queries to approximate m



classical degree/neighbor queries)
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Input: graph G=(V,E) with n vertices, m edges, t triangles

Θ̃ (
n

t1/6
+

m3/4

t ) degree/pair/neighbor quantum queries to approximate t

Result:

(vs. Θ̃ ( n
t1/3

+
m3/2

t ) classical degree/pair/neighbor queries)

Query access: unitaries Odeg |v⟩ |0⟩ = |v⟩ |deg(v)⟩

Opair |v⟩ |w⟩ |0⟩ = |v⟩ |w⟩ | (v, w) ∈ E ?⟩

Ongh |v⟩ | i⟩ |0⟩ = |v⟩ | i⟩ |vi⟩

ith neighbor of v

(degree query)

(pair query)

(neighbor query)

Application 1: approximating graph parameters

Θ̃ (
n

m1/4 ) degree/neighbor quantum queries to approximate m

(vs. Θ̃ ( n

m )
[Goldreich, Ron’08] [Seshadhri’15]

[Eden, Levi, Ron’15] [Eden, Levi, Ron, Seshadhri’17]



Application 2: frequency moments in the streaming model
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Fk =
n

∑
i=1

|xi |
k (moment of order k ≥ 3)

Input: (finite) stream of updates                      on x = (0,…,0) of dimension n

Output: (at the end of the stream) approximate of 

xi ← xi + δ



Application 2: frequency moments in the streaming model
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Fk =
n

∑
i=1

|xi |
k

Algorithm with smallest possible memory M 

using P passes over the same stream?  

(moment of order k ≥ 3)

Input: (finite) stream of updates                      on x = (0,…,0) of dimension n

Output: (at the end of the stream) approximate of 

xi ← xi + δ



Application 2: frequency moments in the streaming model
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Fk =
n

∑
i=1

|xi |
k

Algorithm with smallest possible memory M 

using P passes over the same stream?  

(moment of order k ≥ 3)

[Monemizadeh, Woodruff’10]

[Andoni, Krauthgamer, Onak’11]

M = Õ ( n1−2/k

P2 )

Input: (finite) stream of updates                      on x = (0,…,0) of dimension n

Output: (at the end of the stream) approximate of 

Result:

xi ← xi + δ

qubits of memory

(vs. classical bits of memory)M = Θ̃ ( n1−2/k

P )



Conclusion
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The mean of a random variable X can be estimated with multiplicative error ε 

using                                   quantum samples, given                   and                .Δ2 ≥
E(X2)
E(X)2

H ≥ E(X)Õ ( Δ
ϵ

⋅ log3 ( H
E(X) ))
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ϵ

⋅ log3 ( H
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Lower bound: quantum samplesΩ ( Δ − 1
ϵ )
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The mean of a random variable X can be estimated with multiplicative error ε 

using                                   quantum samples, given                   and                .Δ2 ≥
E(X2)
E(X)2

H ≥ E(X)Õ ( Δ
ϵ

⋅ log3 ( H
E(X) ))

Lower bound: quantum samplesΩ ( Δ − 1
ϵ )

copies of the stateΩ ( Δ2 − 1
ϵ2 )or

arXiv: 1807.06456

SX |0⟩ = ∑
x∈Ω

px |ψx⟩ |x⟩


