Distributed colouring with non-local resources

Cyril GAVOILLE2 \hspace{1cm} Ghazal KACHIGAR1,2 \hspace{1cm} Gilles ZÉMOR1

1 Institut de Mathématiques de Bordeaux
2 LaBRI

January 10, 2019
A distributed protocol may use:

- **no randomness** : \(P(y^*_i|x^*_i) = 1, P(y^*_i|x_i) = 0 \) for all \(x_i \neq x_i^* \).

- **local randomness** : \(P(y_1,\ldots,y_n|x_1,\ldots,x_n) = \prod_{i=1}^n P(y_i|x_i,\lambda_i) \).

- **shared randomness** : \(P(y_1,\ldots,y_n|x_1,\ldots,x_n) = \sum_{\lambda} P(\lambda) \prod_{i=1}^n P(y_i|x_i,\lambda) \).

- **quantum entanglement**
[Bell '64]: Existence of correlations arising from quantum mechanics that cannot be modelled by a "local hidden variable theory", i.e.,

"shared randomness ⪯ quantum entanglement"
[Bell '64]: Existence of correlations arising from quantum mechanics that cannot be modelled by a "local hidden variable theory", i.e.,

"shared randomness \leq quantum entanglement"

CHSH game

Winning condition:

$$y_A \oplus y_B = x_A \land x_B$$

Probability of winning:
- Using shared randomness: at most 0.75.
- Using a quantum "Bell state": $\cos^2(\pi/8) \approx 0.86$.
[Bell ’64]: Existence of correlations arising from quantum mechanics that cannot be modelled by a "local hidden variable theory", i.e.,

"shared randomness \leq quantum entanglement"

CHSH game

Winning condition:

$$y_a \oplus y_b = x_a \land x_b$$

More precisely

$$y_A \oplus y_B = 0 \text{ if } (x_A, x_B) \in \{(0,0), (0,1), (1,0)\}$$

$$y_A \oplus y_B = 1 \text{ if } (x_A, x_B) = (1,1)$$

Probability of winning:
- Using shared randomness: at most 0.75.
- Using a quantum "Bell state": $\cos^2(\pi/8) \approx 0.86$.
[Bell ’64]: Existence of correlations arising from quantum mechanics that cannot be modelled by a "local hidden variable theory", i.e.,

"shared randomness \lessgtr\ quantum entanglement"

CHSH game

Winning condition:

\[y_a \oplus y_b = x_a \land x_b \]

Probability of winning:

- Using shared randomness: at most 0.75.
- Using a quantum "Bell state": \(\cos^2(\pi/8) \approx 0.86 \).
Correlations arising from the quantum solution are **non-signalling**, i.e. the output of A doesn’t give any information on the input of B and vice-versa.

Mathematically

\[
\sum_{y_b} \mathbb{P}(y_a, y_b | x_a, x_b) = \sum_{y_b} \mathbb{P}(y_a, y_b | x_a, x'_b) = \mathbb{P}(y_a | x_a)
\]

and

\[
\sum_{y_a} \mathbb{P}(y_a, y_b | x_a, x_b) = \sum_{y_a} \mathbb{P}(y_a, y_b | x'_a, x_b) = \mathbb{P}(y_b | x_b)
\]
Correlations arising from the quantum solution are **non-signalling**, i.e. the output of A doesn’t give any information on the input of B and vice-versa.

Mathematically

\[
\sum_{y_b} P(y_a, y_b|x_a, x_b) = \sum_{y_b} P(y_a, y_b|x_a, x'_b) = P(y_a|x_a)
\]

and

\[
\sum_{y_a} P(y_a, y_b|x_a, x_b) = \sum_{y_a} P(y_a, y_b|x'_a, x_b) = P(y_b|x_b)
\]

Classical \(\subset\) Quantum \(\subset\) Non-Signalling

- Not Non-Signalling implies not Quantum
- [Arfaoui '14] showed that for 2 players with binary input and output and output condition \(\neq y_a \oplus y_b\) the best non-signalling probability distribution is classical.
Suppose we have a graph $G = (V, E)$ modelling a communication network.

LOCAL model

- Every node has a (unique) **identifier**.
- One **round** of communication: send & receive information to neighbours & do computation.
- **Reliable synchronous** rounds (no crash nor fault).
- k rounds of communication \Leftrightarrow exchange with neighbours at distance $\leq k$ and do computation.
- Unbounded local computing power and bandwidth.
Introduction

The Colouring Problem: a fundamental symmetry breaking problem

Distributed Colouring Problem in the LOCAL model

How many rounds of communication are necessary and sufficient for q-colouring a graph?

$q = \Delta + 1$ and graph = cycle or path

[Cole & Vishkin '86]: $O(\log^*(n))$ rounds of communication are sufficient.

[Linial '92]: $\Omega(\log^*(n))$ rounds of communication are necessary.

$\log^* n = \min \{ i \geq 0 : \log^i(n) \leq 1 \}$
Introduction
The Colouring Problem: a fundamental symmetry breaking problem

Distributed Colouring Problem in the LOCAL model

How many rounds of communication are necessary and sufficient for q-colouring a graph?

$q = \Delta + 1$ and graph = cycle or path

[Cole & Vishkin ’86]: $O(\log^*(n))$ rounds of communication are sufficient.

[Linial ’92]: $\Omega(\log^*(n))$ rounds of communication are necessary.

$log^* n = \min\{i \geq 0: \log^{(i)} n \leq 1\}$
[Gavoille, Kosowki & Markiewicz ’09]: Non-Signalling + LOCAL = \(\phi \)-LOCAL

Non-Signalling

\(X_k \) Choice of measurement \(\rightarrow \) Non-Signalling Resources 1, \ldots, \(k \) Measurement outcome \(\rightarrow \) \(Y_k \)

\(X_{n-k} \) Choice of measurement \(\rightarrow \) Non-Signalling Resources \(k + 1, \ldots, n \) Measurement outcome \(\rightarrow \) \(Y_{n-k} \)

\(\phi \)-LOCAL

Input

Output
Consider a stochastic process \((X_n)_{n \in \mathbb{Z}}\) on \(\mathbb{Z}\).

\[
\cdots \quad \bigcirc \quad \bigcirc \quad \bigcirc \quad \bigcirc \quad \bigcirc \quad \cdots
\]

\(q\)-colouring process: \(X_i \in \{1, \ldots, q\}\) and \(X_n \neq X_{n+1}\).
Consider a stochastic process \((X_n)_{n \in \mathbb{Z}}\) on \(\mathbb{Z}\).

\[
\cdots \quad \bullet \quad \bullet \quad \bullet \quad \bullet \quad \bullet \quad \cdots
\]

\(q\)-colouring process: \(X_i \in \{1, \ldots, q\}\) and \(X_n \neq X_{n+1}\).

\(k\)-localisability

For all (possibly empty) connected sets \(I, J\) at distance at least \(k\) of each other, \(\mathbb{P}(X_I, X_J)\) depends only on \(|I|, |J|\).
A Probabilistic Formulation
Colouring the infinite path

Consider a stochastic process \((X_n)_{n \in \mathbb{Z}}\) on \(\mathbb{Z}\).

\[
\cdots \quad \bigcirc \quad \bigcirc \quad \bigcirc \quad \bigcirc \quad \bigcirc \quad \bigcirc \quad \cdots
\]

\(q\)-colouring process: \(X_i \in \{1, \ldots, q\}\) and \(X_n \neq X_{n+1}\).

k-localisability

For all (possibly empty) connected sets \(I, J\) at distance at least \(k\) of each other, \(P(X_I, X_J)\) depends only on \(|I|, |J|\).

k-dependence

For every \(n \in \mathbb{Z}\),

\[
P(X_{\leq n}, X_{> n+k}) = P(X_{\leq n}) \cdot P(X_{> n+k})
\]

k-dependence: an example

If \((Z_n)_{n \in \mathbb{Z}}\) is iid, then \((X_n)_{n \in \mathbb{Z}}\) where each \(X_n := Z_n + \ldots + Z_{n+k}\) is \(k\)-dependent.
A Probabilistic Formulation

k-localisability and k-dependence

k-localisability

For all (possibly empty) connected sets I, J at distance at least k of each other, $\mathbb{P}(X_I, X_J)$ depends only on $\{|I|, |J|\}$.

k-dependence

For every $n \in \mathbb{Z}$, $\mathbb{P}(X_{\leq n}, X_{> n+k}) = \mathbb{P}(X_{\leq n}) \cdot \mathbb{P}(X_{> n+k})$.
A Probabilistic Formulation

k-localisability and k-dependence

k-localisability

For all (possibly empty) connected sets I, J at distance at least k of each other, $\mathbb{P}(X_I, X_J)$ depends only on $\{|I|, |J|\}$.

k-dependence

For every $n \in \mathbb{Z}$, $\mathbb{P}(X_{\leq n}, X_{>n+k}) = \mathbb{P}(X_{\leq n}) \cdot \mathbb{P}(X_{>n+k})$

Remarks

- 0-dependent = independent
- k-dependent and stationary \Rightarrow k-localisable
A Probabilistic Formulation

k-localisability and k-dependence

k-localisability

For all (possibly empty) connected sets I, J at distance at least k of each other, $P(X_I, X_J)$ depends only on $\{|I|, |J|\}$.

k-dependence

For every $n \in \mathbb{Z}$, $P(X_{\leq n}, X_{>n+k}) = P(X_{\leq n}) \cdot P(X_{>n+k})$

Remarks

• 0-dependent = independent
• k-dependent and stationary \Rightarrow k-localisable

Example

A random permutation of $\{1, \ldots, n\}$ is 0-localisable but not k-dependent for all $k \leq n$.
A Probabilistic Formulation

k-dependent colouring

Easy to check: there is no k-dependent 2-colouring process for any $k \in \mathbb{N}$.
A Probabilistic Formulation

k-dependent colouring

Easy to check: there is no \(k \)-dependent 2-colouring process for any \(k \in \mathbb{N} \).

\(k \)-dependent colouring of \(\mathbb{Z} \) [Holroyd & Liggett ’15], [Holroyd & Liggett ’16]

- There is a 1-dependent and stationary \(q \)-colouring process for every \(q \geq 4 \).
- There is a 2-dependent and stationary 3-colouring process.
- There is no 1-dependent 3-colouring process.
A Probabilistic Formulation

k-dependent colouring

Easy to check: there is no k-dependent 2-colouring process for any $k \in \mathbb{N}$.

k-dependent colouring of \mathbb{Z} [Holroyd & Liggett ’15], [Holroyd & Liggett ’16]

- There is a 1-dependent and stationary q-colouring process for every $q \geq 4$.
- There is a 2-dependent and stationary 3-colouring process.
- There is no 1-dependent 3-colouring process.

Iterative construction on the n-node path

<table>
<thead>
<tr>
<th>$n = 1$</th>
<th>$n = 2$</th>
<th>$n = 3$</th>
<th>$n = 4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1/4</td>
<td>12 1/12</td>
<td>121 1/48</td>
<td>1212 1/240</td>
</tr>
<tr>
<td>2 1/4</td>
<td>13 1/12</td>
<td>131 1/48</td>
<td>1213 1/120</td>
</tr>
<tr>
<td>3 1/4</td>
<td>14 1/12</td>
<td>141 1/48</td>
<td>1231 1/96</td>
</tr>
<tr>
<td>4 1/4</td>
<td>etc.</td>
<td>123 1/32</td>
<td>etc.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>132 1/32</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>134 1/32</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>etc.</td>
<td></td>
</tr>
</tbody>
</table>
A Probabilistic Formulation

k-dependent colouring

Easy to check: there is no k-dependent 2-colouring process for any $k \in \mathbb{N}$.

k-dependent colouring of \mathbb{Z} [Holroyd & Liggett ’15], [Holroyd & Liggett ’16]

- There is a 1-dependent and stationary q-colouring process for every $q \geq 4$.
- There is a 2-dependent and stationary 3-colouring process.
- There is no 1-dependent 3-colouring process.

Iterative construction on the n-node path

<table>
<thead>
<tr>
<th>$n = 1$</th>
<th>$n = 2$</th>
<th>$n = 3$</th>
<th>$n = 4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1/4</td>
<td>12 1/12</td>
<td>121 1/48</td>
<td>1212 1/240</td>
</tr>
<tr>
<td>2 1/4</td>
<td>13 1/12</td>
<td>141 1/48</td>
<td>1213 1/120</td>
</tr>
<tr>
<td>3 1/4</td>
<td>14 1/12</td>
<td>123 1/32</td>
<td>1231 1/96</td>
</tr>
<tr>
<td>4 1/4</td>
<td>etc.</td>
<td>132 1/32</td>
<td>etc.</td>
</tr>
</tbody>
</table>

Example: check that $\mathbb{P}(1 \ast 1) = 1/16 = \mathbb{P}(1)\mathbb{P}(1)$

- $n = 3$: $\mathbb{P}(1 \ast 1) = \mathbb{P}(121) + \mathbb{P}(131) + \mathbb{P}(141) = \frac{3}{48} = 1/16$
- $n = 4$:

 1. $\mathbb{P}(1 \ast 1) = \mathbb{P}(1 \ast 1 \ast)$

 $= 3 \cdot \mathbb{P}(1212) + 6 \cdot \mathbb{P}(1213)$

 $= \frac{3}{240} + \frac{6}{120} = \frac{15}{240}$

 $= 1/16$

 2. $\mathbb{P}(1 \ast 1) = \mathbb{P}(1 \ast \ast 1) = 6 \cdot \mathbb{P}(1231) = \frac{6}{96} = 1/16
A Probabilistic Formulation
1-localisable colouring

Our results

Is there a 1-localisable 3-colouring process on \mathbb{Z}? **No.**
Our results

Is there a 1-localisable 3-colouring process on \mathbb{Z}? **No.**

Proof technique

Relies on studying an induced hard-core process.

The supremum of the marginal probability $\rho(P_n)$ of the colour black appearing in P_n gives a lower bound on the number of colours $q : q \geq 1/\rho(P_n)$.

Proof technique (continued)

- **[Holroyd & Liggett ’16]**: $\rho(P_n) \to 1/4$ as $n \to \infty$ for a 1-dependent process.
- Our results: $\rho(P_n) = \text{Catalan} \left\lfloor \frac{n}{2} \right\rfloor \text{Catalan} + 1$ for a 1-localisable process.
 Therefore, $\rho(P_n) \to 1/4$ as $n \to \infty$ for a 1-localisable process.

- Our proof relies on combinatorics and linear programming.
A Probabilistic Formulation
1-localisable colouring

Our results

Is there a 1-localisable 3-colouring process on \mathbb{Z}? No.

Proof technique

Relies on studying an induced hard-core process.

The supremum of the marginal probability $\rho(P_n)$ of the colour black appearing in P_n gives a lower bound on the number of colours q:

\[q \geq \frac{1}{\rho(P_n)}. \]

Proof technique (continued)

- [Holroyd & Liggett '16]: $\rho(P_n) \to 1/4$ as $n \to \infty$ for a 1-dependent process.

- **Our results**: $\rho(P_n) = \frac{\text{Catalan}_{\lfloor n/2 \rfloor}}{\text{Catalan}_{\lfloor n/2 \rfloor + 1}}$ for a 1-localisable process. Therefore, $\rho(P_n) \to 1/4$ as $n \to \infty$ for a 1-localisable process.

- Our proof relies on combinatorics and linear programming.

Alexander E. Holroyd and Thomas M. Liggett. Finitely dependent coloring.
Forum of Mathematics, Pi, 4 :e9, 43, 2016.

Nathan Linial. Locality in Distributed Graph Algorithms.