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Introduction
Distributed protocol

(x1, ...,xn) Processor (y1, ...,yn)

x1 Processor 1 y1

xn Processor n yn

Centralised protocol

Distributed protocol

. . .

A distributed protocol may use :

- no randomness : P(y∗i |x∗i ) = 1, P(y∗i |xi ) = 0 for all xi 6= x∗i .

- local randomness : P(y1, ...,yn|x1, ...,xn) = ∏
n
i=1P(yi , |xi ,λi ).

- shared randomness : P(y1, ...,yn|x1, ...,xn) = ∑λP(λ)∏
n
i=1P(yi |xi ,λ).

- quantum entanglement



Introduction
CHSH game

[Bell ’64] : Existence of correlations arising from quantum mechanics that cannot be modelled by a ”local
hidden variable theory”, i.e.,

”shared randomness � quantum entanglement”

xa ya

xb yb

CHSH game

Winning condition :
ya⊕ yb = xa∧ xb

More precisely

yA⊕ yB = 0 if
(xA,xB)∈ {(0,0),(0,1),(1,0)}
yA⊕ yB = 1 if
(xA,xB) = (1,1)

Probability of winning :

- Using shared randomness : at most 0.75.

- Using a quantum ”Bell state” : cos2(π/8)≈ 0.86.
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Introduction
Non-Signalling condition

Correlations arising from the quantum solution are non-signalling, i.e. the output of A doesn’t give any
information on the input of B and vice-versa.

Mathematically

∑yb
P(ya,yb|xa,xb) = ∑yb

P(ya,yb|xa,x ′b) = P(ya|xa)

and

∑ya
P(ya,yb|xa,xb) = ∑ya

P(ya,yb|x ′a,xb) = P(yb|xb)

Classical ( Quantum ( Non-Signalling

• Not Non-Signalling implies not Quantum

• [Arfaoui ’14] showed that for 2 players with binary input and ouput and output condition 6= ya⊕ yb the best
non-signalling probability distribution is classical.
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Introduction
LOCAL model

Suppose we have a graph G = (V ,E) modelling a communication network.

LOCAL model

• Every node has a (unique) identifier.
• One round of communication : send & receive information to neighbours & do computation.

• Reliable synchronous rounds (no crash nor fault).

• k rounds of communication⇔ exchange with neighbours at distance ≤ k and do computation.

• Unbounded local computing power and bandwith.



Introduction
The Colouring Problem : a fundamental symmetry breaking problem

1

3 4 2

5

6 1

3 4 2

5

6

=⇒

Distributed Colouring Problem in the LOCAL model

How many rounds of communication are necessary
and sufficient for q-colouring a graph ?

q = ∆ + 1 and graph=cycle or path

[Cole & Vishkin ’86] : O(log∗(n)) rounds of communcation are sufficient.

[Linial ’92] : Ω(log∗(n)) rounds of communication are necessary.

log∗ n = min{i ≥ 0 : log(i) n ≤ 1}
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Physical Locality

[Gavoille, Kosowki & Markiewicz ’09] : Non-Signalling + LOCAL = φ-LOCAL

Non-Signalling

Xk Non-Signalling Resources 1, . . . ,k Yk

Xn−k Non-Signalling Resources k + 1, . . . ,n Yn−k

Choice of measurement

Choice of measurement

Measurement outcome

Measurement outcome

φ-LOCAL

5

2

93

8

5

2

93

8

?

Input Output



A Probabilistic Formulation
Colouring the infinite path

Consider a stochastic process (Xn)n∈Z on Z.

. . . . . .

q-colouring process : Xi ∈ {1, . . . ,q} and Xn 6= Xn+1.

k-localisability

For all (possibly empty) connected sets I, J at distance at least k of each other, P(XI ,XJ ) depends only on
{|I|, |J|}.

k -dependence

For every n ∈ Z,
P(X≤n,X>n+k ) = P(X≤n) ·P(X>n+k )

k -dependence : an example

If (Zn)n∈Z is iid, then (Xn)n∈Z where each
Xn := Zn + . . .+ Zn+k is k -dependent.
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A Probabilistic Formulation
k -localisability and k -dependence

k -localisability

For all (possibly empty) connected sets I, J at distance at least k of each other, P(XI ,XJ ) depends only on
{|I|, |J|}.

k -dependence

For every n ∈ Z, P(X≤n,X>n+k ) = P(X≤n) ·P(X>n+k )

Remarks

• 0-dependent = independent
• k -dependent and stationary⇒ k -localisable

Example

A random permutation of {1, . . . ,n} is
0-localisable but not k -dependent for all k ≤ n.
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A Probabilistic Formulation
k -dependent colouring

Easy to check : there is no k -dependent 2-colouring process for any k ∈ N.

k -dependent colouring of Z [Holroyd & Liggett ’15], [Holroyd & Liggett ’16]

• There is a 1-dependent and stationary q-colouring process for every q ≥ 4.

• There is a 2-dependent and stationary 3-colouring process.

• There is no 1-dependent 3-colouring process.

Iterative construction on the n-node path

n = 1 n = 2 n = 3 n = 4

1 1/4
2 1/4
3 1/4
4 1/4

12 1/12
13 1/12
14 1/12

etc.

121 1/48
131 1/48
141 1/48
123 1/32
124 1/32
132 1/32
134 1/32

etc.

1212 1/240
1213 1/120
1231 1/96

etc.

Example : check that P(1∗1) = 1/16 = P(1)P(1)

• n = 3 : P(1∗1) = P(121)+P(131)+P(141) = 3
48 = 1/16

• n = 4 :

(1) P(1∗1) = P(1∗1∗)
= 3 ·P(1212)+6 ·P(1213)

=
3

240
+

6
120

=
15
240

= 1/16

(2) P(1∗1) = P(1∗∗1) = 6 ·P(1231) =
6

96
= 1/16
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A Probabilistic Formulation
1-localisable colouring

Our results

Is there a 1-localisable 3-colouring process on Z? No.

Proof technique

Relies on studying an induced hard-core process.

. . . . . .

. . . . . .

The supremum of the marginal probability ρ(Pn) of
the colour black appearing in Pn gives a lower bound
on the number of colours q : q ≥ 1/ρ(Pn).

Proof technique (continued)

• [Holroyd & Liggett ’16] : ρ(Pn)→ 1/4 as
n→ ∞ for a 1-dependent process.

• Our results : ρ(Pn) =
Catalanbn/2c

Catalanbn/2c+1
for a

1-localisable process.
Therefore, ρ(Pn)→ 1/4 as n→ ∞ for a
1-localisable process.

• Our proof relies on combinatorics and
linear programming.
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