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Distributed protocol
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A distributed protocol may use :

- no randomness : P(y/ |x/) =1, P(y;|x;) = 0 for all x; # x;*.

- local randomness : P(y1, ..., ¥a|X1, ..., xn) = [ 1721 P(¥i, | Xi, Ai).

- shared randomness : P(y1, ..., yn|X1, ..., Xn) = Lo P(A) T P(yilxi, A).
- quantum entanglement
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[Bell ’64] : Existence of correlations arising from quantum mechanics that cannot be modelled by a "local
hidden variable theory”, i.e.,

"shared randomness < quantum entanglement”
CHSH game

Winning condition :
Ya®Yb = XaA\Xp

Probability of winning :
- Using shared randomness : at most 0.75.
- Using a quantum "Bell state” : cos?(1/8) ~ 0.86.
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CHSH game

[Bell ’64] : Existence of correlations arising from quantum mechanics that cannot be modelled by a "local
hidden variable theory”, i.e.,

"shared randomness < quantum entanglement”

ya®yg=0if
Winning condition : (xa,x8) € {(0,0),(071)’(1’0)}
VaByp=xaAxp YADYB= 1 if
(XA7XB) = (1 71)

Probability of winning :
- Using shared randomness : at most 0.75.
- Using a quantum "Bell state” : cos?(1/8) ~ 0.86.
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Non-Signalling condition
Correlations arising from the quantum solution are non-signalling, i.e. the output of A doesn’t give any
information on the input of B and vice-versa.
Z,Vb ]P)(yaayb|xa7xb) = Zyb P(Yav}’b|xa,X[’,) = P(Ya|xa)
and

Y. P(Va, Yb|Xa; Xb) = Xy, P(Va, ¥b Xz, Xb) = P(¥b|Xb)




Introduction
Non-Signalling condition

Correlations arising from the quantum solution are non-signalling, i.e. the output of A doesn’t give any
information on the input of B and vice-versa.

Y P(ya, Yb|Xa, Xb) = Y P(ya, yb|Xas X[’,) =P(yalxa)

and
Y. P(Va, Yb|Xa; Xb) = Xy, P(Va, ¥b Xz, Xb) = P(¥b|Xb)
Classical C Quantum C Non-Signalling
o Not Non-Signalling implies not Quantum

o [Arfaoui 14] showed that for 2 players with binary input and ouput and output condition # y, @ yp the best
non-signalling probability distribution is classical.



Introduction
LOCAL model

Suppose we have a graph G = (V, E) modelling a communication network.

e Every node has a (unique) identifier.

e One round of communication : send & receive information to neighbours & do computation.
e Reliable synchronous rounds (no crash nor fault).

e k rounds of communication < exchange with neighbours at distance < k and do computation.
e Unbounded local computing power and bandwith.



Introduction

The Colouring Problem : a fundamental symmetry breaking problem

9 )

Distributed Colouring Problem in the LOCAL model

How many rounds of communication are necessary
and sufficient for g-colouring a graph ?
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The Colouring Problem : a fundamental symmetry breaking problem

a e Distributed Colouring Problem in the LOCAL model
9\3 =
(s)

How many rounds of communication are necessary
and sufficient for g-colouring a graph ?

[Cole & Vishkin °86] : O(log*(n)) rounds of communcation are sufficient.
[Linial *92] : Q(log*(n)) rounds of communication are necessary.

log“n=min{i>0:log) n< 1}




Physical Locality

[Gavoille, Kosowki & Markiewicz *09] : Non-Signalling + LOCAL = ¢-LOCAL

Non-Signalling

Choice of measurement ( \ Measurement outcome
Xk L Non-Signalling Resources 1,...,k J Yk
Choice of measurement ( \ Measurement outcome
Xn—k L Non-Signalling Resources k+1,...,n J Yn—k
0-LOCAL
?
Input () Output

0‘0




A Probabilistic Formulation
Colouring the infinite path
Consider a stochastic process (Xp)pez on Z.
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g-colouring process : X; € {1,...,q} and X, # Xpt1.
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Colouring the infinite path

Consider a stochastic process (Xp)pez on Z.
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g-colouring process : X; € {1,...,q} and X, # Xpt1.

k-localisability

For all (possibly empty) connected sets /, J at distance at least k of each other, P(X}, X;) depends only on
{15191}

Foreverync Z, If (Zn)nez is iid, then (X,)pez Where each
P(X<n, Xsntk) = P(X<p) - P(Xs i) Xn:=2Zn+ ...+ Znyk is k-dependent.



A Probabilistic Formulation

k-localisability and k-dependence

For all (possibly empty) connected sets /, J at distance at least k of each other, (X}, X;) depends only on
{11,191}
For every n € Z, P(X<p, X>ntk) = P(X<pn) - P(Xsntk)
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A Probabilistic Formulation

k-localisability and k-dependence

{113

For all (possibly empty) connected sets /, J at distance at least k of each other, (X}, X;) depends only on
For every n € Z, P(X<p, X>ntk) = P(X<pn) - P(Xsntk)

e 0-dependent = independent

o k-dependent and stationary = k-localisable

DA



A Probabilistic Formulation
k-localisability and k-dependence

k-localisability

For all (possibly empty) connected sets /, J at distance at least k of each other, (X}, X;) depends only on
{11,191}

k-dependence

For every n € Z, P(X<p, Xsn+k) = P(X<n) - P(X> ntk)

e 0-dependent = independent A random permutation of {1,...,n} is
e k-dependent and stationary = k-localisable 0-localisable but not k-dependent for all k < n.
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Easy to check : there is no k-dependent 2-colouring process for any k € N.
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e There is no 1-dependent 3-colouring process.
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k-dependent colouring

Easy to check : there is no k-dependent 2-colouring process for any k € N.

e There is a 1-dependent and stationary g-colouring process for every g > 4.

e There is a 2-dependent and stationary 3-colouring process.
e There is no 1-dependent 3-colouring process.

Iterative construction on the n-node path

n=1 n=2 n=3 n=4
121 1/48
131 1/48
114 | 12 112 | 141 1/48 | 1212 1/240
2 1/4 | 18 1712 | 123 1/32 | 1213 1/120
3 1/4 | 14 112 | 124 1/32 | 1231 1/96
4 1/4 etc. 132 1/32 etc.
134 1/32
etc.




A Probabilistic Formulation
k-dependent colouring

Easy to check : there is no k-dependent 2-colouring process for any k € N.

e There is a 1-dependent and stationary g-colouring process for every g > 4.
e There is a 2-dependent and stationary 3-colouring process.

e There is no 1-dependent 3-colouring process.

Iterative construction on the n-node path

n=1 n=2 n=3 n=4
121 1/48
131 1/48
114 | 12 112 | 141 1/48 | 1212 1/240
2 1/4 | 18 1712 | 123 1/32 | 1213 1/120
3 1/4 | 14 112 | 124 1/32 | 1231 1/96
4 1/4 etc. 132 1/32 etc.
134 1/32
etc.

en=3:P(1x1)=P(121) + P(181) + P(141) = 5 =1/16
en=4:
(1)  P(x1)=P(1*1x)
=3-P(1212) + 6-P(1213)

B
T 240 ' 120 240
=1/16

(2)  P(x1)=P(1xx1) =6-P(1231) = % —1/16

= (' =
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A Probabilistic Formulation
1-localisable colouring

Is there a 1-localisable 3-colouring process on Z ? No.
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1-localisable colouring

Is there a 1-localisable 3-colouring process on Z ? No.
Proof technique
Relies on studying an induced hard-core process.
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The supremum of the marginal probability p(P,) of
the colour black appearing in P, gives a lower bound
on the number of colours q : g > 1/p(Pnp).



A Probabilistic Formulation
1-localisable colouring

Is there a 1-localisable 3-colouring process on Z ? No.

Proof technique

Relies on studying an induced hard-core process.
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The supremum of the marginal probability p(P,) of
the colour black appearing in P, gives a lower bound
on the number of colours q : g > 1/p(Pnp).

Proof technique (continued)

e [Holroyd & Liggett *16] : p(P,) — 1/4 as
n — oo for a 1-dependent process.

Catalan [n/2]
Catalan [n/2)+1

e Our results : p(Pp) =
1-localisable process.
Therefore, p(P,) — 1/4 as n— oo for a
1-localisable process.

e Our proof relies on combinatorics and
linear programming.
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