
Chapter 3

Random Generation

3.1 Context and motivations

In the coming chapter, we consider methods for the random generation of objects from a given
combinatorial class C = [n�0Cn indexed by a size parameter n. In general, if not explicitly
mentioned, we aim at uniform generation at a fixed size n. In other words, for a given size n,
the algorithm has to return an object in Cn uniformly at random (u.a.r), that is, under the
distribution:

P(�) = 1

#Cn
for each � 2 Cn.

More generally, if C is endowed with a probability law, we can also be interested in sampling
according to this probability.

3.1.1 Motivations

There are many motivations to design such algorithms. Here are a few of them :
• To test the robustness of a programm: a random generator can produce a set of instances

that can be used to test that the programm behaves in the expected way.
• To check the validity of a model. For instance, one of the big challenge of today’s

research is to get a better understanding of the graph world wide web. As of December,
31st 2013, 48.109 webpages were indexed by Google and the total number of webpages
is believed to be of order 14.1012.
It is beyond hope to get an exact picture of the graph, but to check whether a random
model of graphs makes a suitable approximation, one can study the probability law of
the degree of a node (which is believed to follow a power-law, i.e P(deg = n) ⇡ n

�↵),
or to study the resistance to attacks by suppressing a random number of servers.

• To get statistical datas on abstract structures.
• In a research perspective: to establish or check conjectures on the typical behavior of

large random objects.

3.1.2 Context and Hypotheses

We assume all along the course that we have at our disposal a perfect generator of bits
b1, b2, b3, . . . that are independent and unbiased: P(b = 0) = P(b = 1) = 1/2. (In prac-
tice, there are e�cient deterministic procedures that return a binary string having statistical

33

34 CHAPTER 3. RANDOM GENERATION

properties close to perfect randomness, see the detailed study in [Knuth, The art of computer
programming, vol.2]).

We can interpret the sequence of random bits as a real value x taken uniformly at random
in [0, 1], which we denote by x rnd(0, 1). From this, it is easy to draw a random integer in
an interval {1, . . . , n} :

rnd[1..n] : returnbrnd(0, 1) ⇤ nc+ 1).

We can also draw a Bernoulli law of a parameter p 2 (0, 1), which returns “true” (or 1) with
probability p and “false” (or 0) with probability 1� p :

Bern(p) : return rnd(0, 1)  p.

A note on complexity: if not explicitly mentioned, we adopt an arithmetic complexity
model (in contrast to a bit complexity), assuming cost O(1) for operations such as rnd[1..n]),
Bern(p), access to a pointed element, Note that with a bit complexity model, operations
such as rnd[1..n]) would require order of log2(n) bits; indeed log2(n) bits are already necessary
to write down the development of n in base 2.

In the next sections, we are going to investigate di↵erent methods to get e�cient (com-
plexity linear or in the worst case quadratic in the size of the object) random samplers. We
start with simple ad-hoc method that rely on bijections, surjections and rejections before
moving to more systematic ways of designing random samplers such as the recursive method
and Boltzmann samplers.

3.2 Elementary methods

3.2.1 Permutations

Algorithm 1: RandPerm(n)

Input: n an integer
Output: a random permutation of {1, . . . , n}

let tab = [1, .., n];
for i 2 to n do

swap (tab[i],tab[rnd[1..i]]);

return tab;

Proposition 31. The algorithm RandPerm(n) returns a uniform permutation of Sn and its
bit-complexity is optimal.

Proof. For i 2 N, the bit complexity of [rnd[1..i]] is of order log2(i). Hence the total bit
complexity of RandPerm(n) is equal to

Pn
i=2 log2(i) = log2(n!). Since #Sn = n!, it is

optimal.
The fact that the result of RandPerm(n) is a uniform permutation follows directly from

the next lemma.

3.2. ELEMENTARY METHODS 35

Lemma 32. For all � 2 Sn, there exists a unique (⌧2, . . . , ⌧n), such that for all 2  k  n,
⌧k = (ik, k), with ik  k and ⌧ = ⌧n . . . ⌧2.

Proof. We start by proving the existence part by induction. The result is clear if n  2. Let
� 2 Sn be fixed and set ⌧n = (�(n), n). Then (⌧n�)(n) = (n) and ⌧n� can be seen as a
permutation of Sn�1 and by the induction hypothesis, there exists (⌧2, . . . , ⌧n�1) satisfying
the properties of the lemma and such that ⌧n� = ⌧2, . . . , ⌧n�1, which concludes the existence
part.

The uniqueness comes from the fact that the number of (n � 1)-tuples of permutations
satisfying the assumptions of the Lemma is equal to n!. Thus the construction described above
is a bijection between such (n� 1)-tuples and the set of permutations on n elements.

3.2.2 Generation by permutations: compositions and balanced binary words

Let Cn,k be the set of compositions of n in k parts. In other words,

Cn,k =
�
(n1, . . . , nk) such that 81  i  k, ni 2 N? and

kX

i=1

ni = n

.

It is convenient to see elements of Cn,k as binary words with n � k letters a and k � 1
letters b in the following way. To an element (n1, . . . , nk) of Cn,k, we associate the word
a
n1�1

ba
n2�1

b . . . ba
nk�1. This is clearly a bijection which enables in particular to see that

#Cn,k =
�n�1
k�1

�
.

Note now that for any fixed n and k, there is a simple surjective mapping from Sn�1 to
Cn,k: associate with � 2 Sn�1 the word �k(�) = w = w1 . . . wn�1, where wi = a if �(i)  n�k

and wi = b otherwise. For instance for n = 10 and k = 4, the permutation 2 6 7 3 8 9 4 1 5
is mapped to aababbaaa, which corresponds to the composition 10 = 3 + 2 + 1 + 4.

Since �k is surjective and each c 2 Cn,k has (n � k � 1)!(k � 1)! preimages under �k,
the uniform distribution on Sn�1 is projected by �k to the uniform distribution on Cn,k.
Therefore the following algorithm is a uniform random generator on Cn,k of complexity O(n)
(in an arithmetic model):

GenCn,k : � RandPerm(n� 1); return �k(�).

Remark 7. In terms of bit complexity, this algorithm is not optimal. The bit complexity
is of order O(n log n) (which comes from the sampling of a uniform permutation of size n),
whereas the size of Cn,k is for instance of order 2n when k ⇠ n (and is then encoded by O(n)
bits).

Another classical application of generation by permutations is the random generation of
a balanced binary word. The set B2n of balanced binary words of size n is the set of words
with n letters a and n letters b. Again there is a simple surjective mapping from S2n to B2n:
associate with � 2 S2n the word �k(�) = w = w1 . . . w2n, where wi = a if �(i)  n and
wi = b otherwise. We’ll come back to this über-classical example in Section3.3.2 and will
explain how to achieve linear bit complexity on average.

3.2.3 Cycle lemma and Dyck/Lukaciewicz words

We can combine the construction given in previous section and the cycle Lemma (see Lemma 25)
to obtain a random sample for a binary tree of size n as described in Algorithm 2.

36 CHAPTER 3. RANDOM GENERATION

Algorithm 2: RandDyckWord(n)

Input: n an integer
Output: a random Dyck word with n up-steps and n+ 1 down-steps

let � = RandPerm (2n+ 1), w = empty word, u = empty word ;
for i 1 to 2n+ 1 do

if �(i)  n then
w = w u

else

w = w d

let CurrentHeight = 0, min = 0, ind = 0 ;
for i 1 to 2n+ 1 do

if wi = u then

CurrentHeight = CurrentHeight + 1

else

CurrentHeight = CurrentHeight- 1;
if CurrentHeight < min then

min = CurrentHeight;
ind = i

for k 1 to 2n+ 1 do

if ind+k  2n+ 2 then
u = u·wind+k�1

else
u = u·wind+k�2n�2

return u

Remark 8. This construction can be generalized to get a uniform sampler of random forests
with a fixed passport. We let to the reader the care to check the details.

3.3 Generation by rejection

The general principle of generation by rejection is very simple. Suppose we want to design a
uniform sampler for a class C and that we have a uniform sample GenS of a larger combina-
torial class say S, which contains C. Then the following algorithm gives a uniform sampler
for C :

GenCn : repeat c GenSn

until c 2 Cn

return c.

For each call to the random sampler, GenSn, the probability that its result belong to Cn is
equal to |Cn|/|Sn|. So, for a fixed element c of Cn, we have:

P
⇣
GenCn = c

⌘
=

1

|Sn|

1X

k=0

✓
1�

|Cn|

|Sn|

◆k

=
1

|Cn|
.

3.3. GENERATION BY REJECTION 37

Hence, when the algorithm terminates, it produces a uniform random element of Cn. Since it
may happen (with probability 0 but still... remember that usually we don’t want to wait an
infinite amount of time for an algorithm to terminate) that the algorithm does not terminate,
this algorithm is in fact what is called a pseudo-algorithm.

Remark 9. The complexity of a rejection (pseudo-)algorithm is driven by the complexity of
the sampler GenSn and the expected number of times it has to be called.
Recall that a random variable X is said to follow a geometric law of parameter p if :

P(X = k) = p(1� p)k�1 for k � 1.

In other words, the variable X counts the number of trials needed to obtain a success, when
the probability of success is equal to p, (be careful that the definition of a geometric law may
fluctuate slightly by allowing the variable X to be equal to 0, in this case, X represents the
number of failures before getting a success).
The expected value and the variance of X are given by :

E[X] =
1

p
and var(X) =

1� p

p2
.

3.3.1 Simple connected labeled graphs

Suppose we want to sample a random simple connected labeled graph on n vertices such as
the one represented in Figure 3.1. This is a priori not an easy task and in particular the
number of such graphs is not known.

Figure 3.1: An example of a simple labeled connected graph .

A much easier task is to sample a random (not-necessarily connected) simple graph on

n vertices. The number of such graphs is easily seen to be 2(
n
2). Indeed, for each pair of

vertices {i, j}, we can add the edge in the graph or not, resulting in 2(
n
2) possibilities. This

construction also gives a random sampler GenGn for simple graphs on n vertices: for each
pair of vertices {i, j}, add the edge {i, j} to the graph with probability 1/2. GenGn produces
a uniform graph of a given size, indeed for a fixed simple graph gn,

P(GenGn = gn) =
X

1i<jn

1

2
=

1

2(
n
2)
.

In fact, GenGn is a special case of a classical construction called the Erdös-Renyi graph,
defined as follows. Fixed p 2 [0, 1] and n 2 N, then the so-called Erdös-Renyi graph Gn,p of
parameter p and size n denotes a random graph on n vertices where each edge is kept with
probability p. This model of graph has been much studied and in particular if p = p(n) >>

log n/n, then

P(Gn,p(n) is connected)!1 (which implies in particular P(Gn,1/2) is connected)!1).

Therefore, the rejection method in this case works extraordinary well, with probability tending
to 1 with n, GenGn actually produces a random connected simple graph.

38 CHAPTER 3. RANDOM GENERATION

3.3.2 Dyck words and Florentine rejection

Recall that at the end of Section 3.2.2, we explain how to project a permutation on 2n elements
to a balanced binary word. But even if this algorithm has arithmetic complexity O(n), the
number of random bits it actually requires is of order n log2(n), which are required to draw
a permutation on 2n elements. However, the entropy (defined as the log2 of the cardinality
of B2n is only linear, so it is a pity to project from S2n which is much larger than B2n; and
hopefully one can generate in B2n with only O(n) random bits. In this section, relying on
simple rejection principles, we describe a random generation algorithm on B2n that needs
O(n) random bits on average.

First, notice that for any set of binary words E ⇢ {a, b}
2n, the algorithm that generates a

string of 2n random bits until the resulting binary word is in E is a uniform (naive) random
generator on E . The probability of success when E = B2n is equal to:

probability of success =

�2n
n

�

22n
⇡

1
p
n
,

where we used Stirling approximation to get
�2n
n

�
⇡ 22n/

p
n.

The computation above indicates that in average we need O(
p
n) calls to the algorithm

that produces a string of 2n random bits and hence on average, the total of random bits used
is O(n3/2). This is way worse that the approach using permutations and an intuitive reason
to explain this (bad) behavior is that the probability of success is low and above all the cost
of each call to the random sampler is high (linear in n).

The principle of Florentine rejection is to lower the cost of each failure by determining as
soon as possible whether the string of random bits is going to produce a valid candidate or
not. In the algorithm described above, we have to wait until the last bit is sampled to decide
whether the word belongs to B2n. Is there a way to modify the problem in an equivalent one
for which we could decide earlier ?

There is indeed a way, described by Poulalhon and Schae↵er in Combinatorics on words.
The first idea is to establish a bijection between B2n and P2n, where P2n is the set of non-
negative walks of length 2n, that is walks with 2n steps, where these steps are either upsteps
(+1,+1) and downsteps (+1,�1) starting from (0, 0) and such that the ordinate remains
nonnegative. Then we can perform a rejection algorithm on P2n instead of B2n. The advan-
tage is that the generation can be aborted very early in P2n, at the first time the walk visits
negative ordinates.

Proposition 33. There exists an explicit bijection � between B2n and P2n for n � 0. The
complexity of the bijection in both directions is O(n).

Proof. For k � 0, let B(k) be the subfamily of walks in B with k downsteps from ordinate 0
to ordinate -1. For k � 0, let P(k) be the subfamily of walks in P with endpoint at ordinate
2k. To prove the proposition, we prove the stronger result that there is an explicit bijection

between B
(k)
2n and P

(k)
2n .

Observe first that B(k) admits a description as a regular language given by (DdD
�
u)kD,

where D represents the set of Dyck excursions (i.e D = B \ P), d is a downstep, u an upstep
and D

� represents the set of mirrored Dyck excursions. In other words, if we denote d1, . . . , dk
the k downsteps from ordinate 0 to ordinate -1 in an element B of B(k), they alternate with

3.3. GENERATION BY REJECTION 39

d1 d2 d3u1 u2 u3

(a) The decomposition of a walk of B(k).

s0

s2

s4

s1

s3

s5

2k

(b) The decomposition of a walk of P(k).

Figure 3.2: The bijection between paths of P(k) and of B(k).

k upsteps u1, . . . , uk and these 2k steps separate B into 2k + 1 walks D0, D1, . . . , D2k, where
D0, D2, . . . , D2k are Dyck excursions and D1, D3, . . . , D2k�1 are mirrored Dyck excursions (see
Fig.3.2(a)).

Similarly, we can decompose a path W of P(k). For 0  i  2k� 1, let si be the last step
from ordinate i to ordinate i+1. Then the steps s0, . . . , s2k�1 split W into 2k+1 Dyck paths
(see Fig.3.2(b)).

Then, to go from W 2 P
(k) to W

0
2 B

(k). For 0  i  k�1, we apply an horizontal mirror
to the walk between s2i and s2i+1 and flip the step s2i. The inverse bijection is similar and is
left to the reader. The complexity of the bijection is clearly linear : to find the last-passage
steps s0, . . . , s2k�1, we read the path from right to left and record the down steps si of first
arrival to ordinate i for i from 2k � 1 to 0. This takes time O(n) and the flip and mirror
operations can also be performed in linear time.

Thanks to the bijection � from P2n to B2n, generating uniformly in B2n boils down to
generating uniformly in P2n, which is e�ciently done by rejection:

Then the generator GenB2n is

GenB2n : return �(RandPositiveWord(n)

40 CHAPTER 3. RANDOM GENERATION

Algorithm 3: RandPositiveWord(n)

Input: n an integer
Output: a random positive word with 2n steps

let CurrentHeight = 0, w = empty word ;
for i 1 to 2n+ 1 do

if Bern(1/2) then
CurrentHeight = CurrentHeight + 1;
w = w·u;

else

CurrentHeight = CurrentHeight � 1;
w = w·d;

if CurrentHeight < 0 then

break;

return tab

Theorem 34. The algorithm GenB2n is a uniform random sampler for B2n of expected com-
plexity O(n). The number of random bits required is also O(n) in average.

Proof. Since � is a bijection and RandPositiveWord(n) produces a random positive word with
2n steps, GenB2n is clearly a uniform random sampler for B2n. We thus only need to check
that the bit complexity of RandPositiveWord(n) is O(n).

At each trial to get a positive word on 2n steps, either we fail after 2i + 1 steps (with
0  i < n) or we succeed after 2n steps. Since a failure after 2i + 1 consists of a Dyck path
of length 2i followed by a downstep, we get:

E[cost of a failure] =
n�1X

i=0

|D2i|

22i+1
(2i+ 1),

where D2i is the set of Dyck paths of length 2i. Since |D2i| ⇡ 4ii�3/2, we get:

E[cost of a failure] =
n�1X

i=0

i
�3/2

2
(2i+ 1) ⇡

n�1X

i=0

1
p
i
= ✓(
p
n).

On the other hand, the probability of success is of order 1p
n

(as for the balanced binary

words). In conclusion, we start on average with
p
n failures, each of them has an average bit

complexity of
p
n and end with a success with has bit complexity of n. That gives a total

bitcomplexity of n.

Remark 10. This idea of “florentine rejection” can be applied to other combinatorial classes:
for instance to Motzkin paths, directed animals, . . .
The main di�culty is to find a criterion to get an anticipated rejection (here it required a non-
trivial bijection between two family of paths). Also, one has to keep in mind, that the cost of
checking at each step of the construction that the object still belongs to the appropriate step
may be higher that generating the whole object and check at the last step. There is in fact
often a trade-o↵ between the complexity in time and the number of random bits required.

3.4. TARGETTING METHOD 41

3.4 Targetting method

3.4.1 Balanced binary words revisited

We describe a third method to generate walks from B2n ⇡ S(anbn). Actually, we describe
more generally a method to generate from the set Wi,j of walks with i up-steps and j down-
steps, hence Wi,j ⇡ S(aibj) and Wi,j =

�i+j
j

�
. The name of the method is due to the fact

that we fix the endpoint (i+ j, i� j) to arrive : the target of the walk.
Clearly, for w 2Wi,j taken uniformly at random:

P(w starts with 0
a
0) =

Wi�1,j

Wi,j
=

(i+ j � 1)!

(i� 1)!j!
·

i!j!

(i+ j)!
=

i

i+ j
,

which yields the following random generation algorithm:

GenWi,j : if (i = j = 0) return empty word

if Bern(i/(i+ j)) return (0a0 + GenWi�1,j)

else return (0b0 + GenWi,j�1) end if ,

that is clearly uniform on Wi,j by recurrence on i + j. Then a generator for B2n is simply
obtained as the particular case GenWn,m. and gives an algorithm with linear arithmetic
complexity to sample balanced binary words.

3.4.2 Binary trees and Remy’s algorithm

We start this section by a bijection due to Remy between binary trees with n� 1 nodes and
a marked side of edge and binary trees with n nodes and a marked leaf. Let An denote the
set of binary trees with n nodes. In the following, it will be convenient to imagine the tree
as hanging from a root, with an edge connecting the root to the “topmost” vertex of the tree
as shown in Figure 3.3 (these trees are usually called planted binary trees). Note, that with
this convention a tree t 2 An has n+ 1 leaves and 2n+ 1 edges.

Figure 3.3: Two examples of Remy’s bijection .

The bijection goes as follows. Starting from a tree with n nodes and a marked leaf `, we
erase the leaf and its parent edge. The parent of ` lies now in the middle of an edge, we erase
it and mark this edge on the side where the parent edge of ` used to lie, see Figure 3.3. This
construction admits an obvious inverse by adding a vertex on the middle of the marked edge

42 CHAPTER 3. RANDOM GENERATION

and grafting on it an edge and a leaf on the marked side. This gives in particular a nice proof
of the fact that:

2(2n� 1)#An�1 = (n+ 1)#An.

This also yields an elegant method to sample a binary tree :

GenAn : if (n = 0) return the unique tree in A0

t GenAn�1;

choose a side of edge e of t uniformly at random;

attach at the middle of e of t (and toward the chosen side of e) an edge ended by a leaf;

return the obtained tree.

Theorem 35. The algorithm GenAn is a uniform random generator on An of complexity
O(n).

Proof. The proof of uniformity goes by induction. For n = 0, this is evident, assume it is
true for n� 1, the second and third line of the algorithm draw a uniform element on the set
of trees with n � 1 nodes with a marked side of edge. The fourth line is Remy’s algorithm
which guarantees that the result is uniform in the set of trees with n nodes and a marked
leaf. Since every binary tree with n nodes has n + 1 leaves, forgetting the marked leaf gives
a uniform element of An.

The linear complexity is also clear if, at each stage, the tree is encoded in such a way
that each node has two pointers towards its two childen and a global array stores the edges
(identified to the pointers from a node to a child and including the root-edge). Thus choosing
a side of edge uniformly at random takes time 0

O(1) and the tree modifications, which are
very local, take also time O(1). Thus the overall complexity over the n steps is O(n).

3.5 Recursive method

3.5.1 Introduction

The recursive method is an automatic method introduced by Nijenhuis and Wilf in 1978 an
formalized (and developed) later by Flajolet, Van Custem and Zimmermann (1994). For
any combinatorial class described by a recursive specification and any fixed size, this method
produces a random sampler of the given size.

In theses notes, we illustrate only the method for unlabeled combinatorial classes whose
specification involves +, ? and Seq. We refer the reader to the work of Flajolet et al. for a
more general setting. As before, we use the notation �C[n] for a uniform random sampler on
Cn.

This method is illustrated on Figure 3.4 for the combinatorial class of complete binary
trees of size 4.

3.5.2 Products and sums

Assume A and B are two combinatorial classes for which we already have fixed-size uniform
generators �A[i] and �B[i]. How can we construct a uniform random generator �C[n] for
C = A+ B or C = A ? B ?

3.5. RECURSIVE METHOD 43

Figure 3.4: The sampling procedure to produce a uniform random binary tree with 4 nodes.

Disjoint union

Consider C = A+B. Note that an object taken uniformly in Cn belongs to An with probability
an/cn. Hence the following random sampler is uniform in Cn:

�Cn (C = A+ B) : if Ber(an/cn) return �An

else return �Bn

Proof. Let � 2 Cn, assume wlog that � 2 An, then:

P(�Cn = �) = P
�
Ber(an/cn) = 1

�
· P(�An = �) =

an

cn
·
1

an
=

1

cn
.

Product

Consider C = A?B. Note that for any object � = (↵,�) taken uniformly in Cn, the probability
that |↵|A = k is equal to akbn�k/cn. Hence the following random sampler is uniform in Cn:

�Cn (C = A ? B) : Draw k under the distribution P (k = `) = a`bn�`/cn

return (�Ak,�Bn�k)

44 CHAPTER 3. RANDOM GENERATION

Proof. Let � = (↵,�) 2 Cn, assume wlog that |↵|A = `, then:

P(�Cn = �) = P(k = `) · P(�Ak = ↵) · P(�Bn�k = �) =
akbn�k

cn
·
1

ak
·

1

bn�k
=

1

cn
.

The size k of the first component is drawn by the following procedure :

�P : p Rand[cn]; k 0; d a0bn

while(p > d) do

k k + 1; d d+ akbn�k;

od;

return k.

Note that the (arithmetic) cost of drawing k is equal to the number of iterative steps, i.e. is
equal to k.

3.5.3 Complexity analysis

Example of the complete binary trees

The combinatorial class A of binary trees enumerated by their number of (inner) nodes is
specified recursively by

A = 1 + Z ?A
2
,

since it is either empty or has a root-node with a left subtree and a right subtree.

For a 2 A, let �(a) be the cost of sampling a. If a is of size 0, then �(a) = 0. Otherwise,
denote a1 the left subtree of a and a2 its right subtree, then:

�(a) = |a1|+ �(a1) + �(a2), (3.1)

where the term |a1| comes from the cost of sampling the appropriate size for a1 and a2.

Now let ⇤(z) be the generating function of cost, that is ⇤(z) =
P

a2A �(a)z|a|. Using
Equation (3.1), we get:

⇤(z) =
X

a1,a2

(|a1|+ �(a1) + �(a2))z
|a1|+|a2|+1

= z

hX

a1,a2

(|a1|z
|a1|z|a2|) +

X

a1,a2

(�(a1)z
|a1|z|a2|) +

X

a1,a2

(�(a2)z
|a1|z|a2|)

i

= z
2
A

0(z)A(z) + 2A(z)⇤(z)z.

Since, A(z) = 1 + zA(z)2,

A
0(z) =

A(z)2

1� 2zA(z)
,

we get:

⇤(z) =
z
2
A(z)3

(1� 2zA(z))2
.

3.5. RECURSIVE METHOD 45

Using the fact that the coe�cients of A(z) are the Catalan numbers, we get an ⇠ 4n/
p

⇡n3,
hence �n ⇠ 4n/2 and finally:

En(cost) =
�n

an
⇠

p
⇡

2
n
3/2

.

Remark 11. These computations can be extended to all combinatorial classes, with the help
of complex analysis to determine the asymptotics of the coe�cients of A(z) and ⇤(z), when
no closed form is known. We refer again the interested reader to the work of Flajolet et al.
for more details.

3.5.4 How to lower the complexity ?

Boustrophedonic strategy

When the specification of a combinatorial class includes a product, the main contribution to
the total cost of the sampling procedure comes from the sampling of the distribution of sizes
within the two components. Indeed, for large binary trees, most of the size n is concentrated
either on the left subtree or on the right subtree. Since the complexity of sampling the
size of the left subtree is linear in its size, the cases where it concentrates most of the mass
contributes a huge cost to the total complexity.

Therefore, a (simple) idea to improve the complexity (of the sampling of the distribution
of sizes) is to explore the possible values of the size of the left subtree in the following order:
0, n, 1, n-1, 2, n-2 , . . . instead of the natural order : 0, 1, 2, 3, 4, . . .

If we now compute the cost �b(a) of sampling a tree in A with this new procedure, instead
of Equation (3.1), we get:

�b(a)  2min(|a1|, |a2|) + �b(a1) + �b(a2) + 2.

Recurrences of a similar flavor have been studied by Knuth and his results enable to show
that in this case ⇤b(n) = ✓(n log n) in the worst case.

Pointing

Recall that for any combinatorial class A, we can consider its pointed version A
•, which is

defined as A• = [nAn⇥ [1..n] and corresponds to the set of objects in A with a marked atom
(such as a tree with a marked node). The pointing operator obeys simple rules with respect
to the classical specifications:

(A+ B)• = A
• + B

• and (A ? B)• = A
•
? B +A ? B

•
.

For the class A of binary trees (this time counted according to their number of leaves) specified
by A = Z +A

2, we get:

A
• = Z

• +A
•
?A+A ?A

•
⇡ Z + 2A ?A

•
.

Since, for a given size n, there are n more pointed trees than trees, the distribution of the
size K

• of the first component in A ?A
• is biased toward smaller values. Indeed

P (K• = `) =
a`(n� `)an�`

nan
,

46 CHAPTER 3. RANDOM GENERATION

so that E(K•) = ✓(
p
n), instead of n/2 for the non-pointed version.

Therefore, on average the complexity is improved by a factor
p
n at each step of the

algorithm. A careful analysis of the cost in the pointed version enables to show that the total
cost of the pointed version of a recursive method has complexity O(n log n) on average.

Remark 12. A uniform sampler in the pointed class can immediately be transformed into
a uniform sampler in the non-pointed class, just by forgetting the pointing. Since any (non-
pointed) object of size n has exactly n pointed versions, pointing or depointing does not alter
the uniformity of the sampling.

Cost of the pre-computation of the coe�cients

Let us finally comment on the complexity of computing the coe�cients a0, a1, . . . , an which
are required to draw the sizes of the subtrees at a node. A naive recursive method, using the
expression an =

Pn�1
k=0 akan�1�k would require O(n2) operations (O(n) operations for each

coe�cient). A faster way is to derive a linear di↵erential equation for the specification.
For instance, from the algebraic equation A = 1 + zA

2, one obtains a linear di↵erential
equation (with coe�cient polynomial in z) satisfied by A(z). From which, one obtains, by
coe�cient extraction, a linear recurrence (with coe�cients that are fixed polynomials in n)
satisfies by the an’s :

A(z) = 1 + zA(z)2 =) z(1� 4z)A0(z) + (1� 2z)A(z) = 0

=) (n+ 1)an � 2(2n� 1)an�1 = 0 for n > 0.

In this, we recover the recurrence satisfied by Catalan numbers (already obtained by Remy’s
bijection, see Section3.4.2). But this method applies more generally for any algebraic gener-
ating function, i.e. satisfying an equation of the form P (f(z), z) = 0, with P a polynomial.
Using such a recurrence, the cost of computing each coe�cient an is O(1), so the cost of
computing all the n first coe�cients is reduced to O(n).

3.6 Boltzmann sampling

We end this chapter about random generation by describing another automatic method called
Boltzmann sampling. This section borrows its material from the article “Boltzmann samplers
for the random generation of combinatorial structures” by Duchon, Flajolet, Louchard and
Schae↵er published in 2004. This article is of course much more complete that what is
presented here and we encourage the reader to refer to it for more details.

The great strength of the recursive method is that it is automatic: meaning that it can
be applied verbatim to any decomposable class. Its main drawback however is its complexity
when it comes to the pre computation of coe�cients and the sampling of the size of one of
the component when a product appears in the specification. Boltzmann sampling solves these
two issues at the expense of getting only approximate size sampling.

3.6.1 Bolzmann model

Let C = [nCn be a combinatorial class with generating series C(x) =
P

n cnx
n =

P
�2C x

|�|.
Let x in (0, ⇢C) be a fixed parameter (where ⇢C is the radius of convergence of C(z)), then

3.6. BOLTZMANN SAMPLING 47

the free Boltzmann model with parameter x is the probability law Px on C given by:

Px(�) =
x
|�|

C(x)
, for any �inC.

In the following, we will denote �C(x) a so-called Boltzmann sampler which draws an element
of C under the probability law Px.

Note that the a Boltzmann sampler can return an object of any size. But, since Px depends
only on the size of �, given the size of the object produced, the latter is uniform among the
objects of this size.

In the case where C(⇢C) < 1, we can define the free Boltzmann model with parameter
⇢C , which we call the critical Boltzmann model.

The size of an object drawn by a Boltzmann sampler of parameter x is a random variable
that we denote N . Then we have:

Proposition 36. The random variable N satisfies:

Ex(N) = x
C

0(x)

C(x)
, Ex(N

2) =
xC

00(x) + xC
0(x)

C(x)

and furthermore Ex(N) is an increasing function of x.

Proof. By definition:

Ex(N) =

P
n ncnx

n

C(x)
=

xC
0(x)

C(x)
.

A similar computation gives the expression of Ex(N2). Now, di↵erentiating the latter equation
gives:

x
@

@x
Ex(N) = x

C
0(x)

C(x)
+

x
2
C

00(x)

C(x)
�

x
2
C

0(x)2

C(x)2
= Ex(N

2)�
�
Ex(N)

�2
= var(N) > 0.

Remark 13. Even if a Boltzmann sampler produces an object of approximate size, its ex-
pected value can be controlled by picking an appropriate value of x.
In the following, we always assume that the evaluation of the series at x are exactly known.

3.6.2 Boltzmann samplers for elementary constructions

Assume A and B are two combinatorial classes for which we already have Boltzmann samplers
�A(x) and �B(x). How can we construct a Boltzmann sampler �C(x) for C = A+B, C = A?B

or C = Seq(A)?

Disjoint union

Consider C = A+ B. Note that for ↵ 2 A,

P(�C(x) = ↵) =
x
|↵|

C(x)
and so P(�C(x) 2 A) =

A(x)

C(x)
.

Hence the following sampler is a Boltzmann sampler for C of parameter x:

�C(x) (C = A+ B) : if Ber(A(x)/C(x)) = 1 return �A(x)

else return �B(x)

48 CHAPTER 3. RANDOM GENERATION

Product

Consider C = A ? B. Let � = (↵,�) be an element of C, then :

P(�C(x) = (↵,�)) =
x
|↵|+|�|

C(x)
=

x
|↵|

A(x)
·
x
|�|

B(x)
,

Hence the following sampler is a Boltzmann sampler for C of parameter x:

�C(x) (C = A ? B) : return (�A(x),�B(x))

Sequence

If C = SEQ(A), then C = 1 + A ? C. A combination of Boltzmann samplers for the disjoint
union and the product hence yields the following algorithm :

�C(x) (C = SEQ A) : if Ber(A(x)) = 1 return (�A(x),�C(x))

else return 1.

We can reformulate this first sampler by noticing that the number of times that the Bernoulli
variable of parameter A(x) is going to be equal to 1 follows a geometric law of parameter
A(x). We obtain the following equivalent second sampler :

�C(x) (C = SEQA) :k Geom (A(x))

return(�A(x), . . . ,�A(x)) (with k independant calls to �A(x))

3.6.3 Complexity

A Boltzmann sampler for a disjoint union or a cartesian products requires two independent
calls to a Boltzmann sampler of the ”simple” classes. Hence, its complexity is easy to analyse.
On the other hand, a Boltzmann sampler for a sequence first requires sampling a variable
according to a geometrical law. Denote pk the probability that a geometric law of parameter
� is equal to k. Then pk = (1� �)�k = �pk�1 and p0 = 1� �. It gives the following sampler
for a geometric law of parameter �:

�Geom(�) : r Rand(0, 1); k 0; s p0

while(r � s) do

s s+ pk; k k + 1;

od;

return k.

Note that the (arithmetic) cost of drawing k is equal to the number of iterative steps, i.e. is
equal to k.

The only element of complexity left to discuss is the evaluation of the generating series at
x. We assume that the values of the generating series at x are known up to an arbitrary big
precision, this is the so-called oracle assumption. In parctive, one evaluates the generating
functions with a fixed precision, say up to N digits (where typically N = 20) and in the
unlikely case we need more digits during the sampling, we compute a few more digits. With
this assumption, we have :

3.6. BOLTZMANN SAMPLING 49

Theorem 37. Consider a decomposable class A (i.e. such that A admits a recursive speci-
fication involving {+, ?, SEQ} and the basic classes {1,Z}) and let �A(x) be the Boltzmann
sampler obtained from the sampling rules. Then, under the oracle assumption, the sampling
of a uniform element alpha of A is linear in |↵|.

3.6.4 Singular Boltzmann samplers

Usually, a Boltzmann sampler for a combinatorial class A is defined for a real x smaller than
the radius of convergence ⇢A of A(x). In some cases though, it makes sense to take x equal
to ⇢A.

Supercritical sequences

Let C = SEQ(A), with ⇢A � ⇢C , or in other words A(⇢C) = 1. Clearly, C(⇢C) = 1, and
the intuitive idea is that this divergence is due to the sequence operator and not to the sizes
of the structures that belong to this sequence. More formally, A(⇢C) is finite, so we could
sample according to �A(⇢C). But the issue comes from the geometric law which appears in
the Boltmann sampling of a sequence, it would have parameter 1 in this example.

To avoid dealing with infinite sequences, an idea is to generate enough elements according
to �A(⇢C) and to stop as soon as the desired total size is achieved. More formally, let n

be the desired size of the output, sample a1, a2, . . . , ak, ak+1 according to �A(⇢C), wherePk
i=1 |ai|  n <

Pk+1
i=1 |ai| > n. Denote � = (a1, . . . ak). The k-tuple � is an element of C, it

remains to prove that this sampling procedure gives a uniform result for a fixed size:

P
�
�C(⇢C) = �

�
=

⇢
|a1|
C

A(⇢C)
· . . . ·

⇢
|ak|
C

A(⇢C)
P
�
|ak+1| > n� |�|

�

= ⇢
|�|
C · P

�
|�A(⇢C)| > n� |�|

�
,

since the last quantity depends only on the size of �, it concludes the proof.
Remark: It can be proved that asymptotically almost surely this sampling procedure pro-
duces a sequence of size n+O(1). A combination with some rejection hence gives a sampling
procedure in exact size which runs in O(n).

Singular ceiled rejection

Consider a combinatorial class C such that C(⇢C) <1, it could make sense to use a Boltzmann
sampler evaluated at ⇢C . Let us see how this can be performed for the case of trees. Most
of the families of trees we are interested with admit a generating function with a ”square-
root type” singularity. It implies in particular that the coe�cients of their generating series
behave as c⇢

n
n
�3/2. Hence, the expected value of the size of the output of a Boltzmann

sampler evaluated at ⇢ is infinite.
A simple modification of Boltzmann sampling uses ceiled rejection. The idea is to fix a

maximum size, say M and perform Boltzmann sampling as usual, keeping only tracks of the
number of atoms created. If this number happens to be larger than M at some point of the
algorithm, then it is aborted and a new sampling starts.

It can be proved (and we refer to DFLS04 for the details) that such a procedure takes
a linear time to produce a uniform tree of approximate size (see next section for the precise
definition) and quadratic time for exact size.

50 CHAPTER 3. RANDOM GENERATION

3.6.5 Exact size vs approximate size

Let n 2 N, a random sampler can either produce a random object of size exactly n (and
uniform among all the objects of size n of the combinatorial class of interest) or produce a
random object of size between n(1 � ") and n(1 + "), (where " > 0 is fixed). In the latter
case, we still require the object to be uniform among all the objects of the same size.

The rejection paradigm enables to transform any sampler in approximate size to a sampler
in exact size. The first step is of course to pick the value of the Boltzmann sampler so that the
expected size of its output is equal to the ”target size”. If the distribution (i.e the law of the
size of an element sampled via a Boltzmann procedure) we consider is concentrated (or flat)
around its expected value, then the rejection method works reasonably well (e.g. partitions,
binary words,...). Unfortunately in the case of trees, this is not at all the case: a Boltzmann
sampler for trees is going to produce trees of very small size. A solution in this case is to use
some pointed objects.

Let us illustrate this fact on the (surprisingly enough) combinatorial class B of binary
trees counted according to their number of leaves. We know that B(x) = (1 �

p
1� 4x)/2,

B
0(x) = (1 � 4x)�1/2 and bn ⇠ c⇢

�n
n
�3/2, where ⇢ = 1/4 is the radius of convergence of B.

Fix n the target size (and think of n as big) and x = ⇢(1� "). The expected cost of sampling

one binary tree is linear in the size of the produced tree and then is linear in x
B

0(x)

B(x)
. On

the other hand the probability that the size of the output is exaclty n is equal to bnx
n
/B(x).

Hence:

Ex(total cost) =
Ex(cost of sampling one element)

P(exact size achieved)
⇠

B
0(x)

bnx
n�1

.

The latter expression is equivalent to n
3/2

/(
p
"(1� ")n�1). This is minimal for " = 1/2n and

then gives a total quadratic complexity. This is of course far less e�cient that the procedure
we obtained with the recursive method. But observe that if we’re interested in a sampling
procedure in approximate size, the complexity becomes linear (which is quite cool) and is
often what we are looking for.

If we want to improve the probability for the sampler to produce a tree which is of size
approximately n, it can again be interesting to consider a pointed version. The combinatorial
class B satisfies the decomposition B = Z + B ? B. Hence the pointed version B

• of the class

satisfies B• = Z + B
•
? B + B ? B

•. Recall that B(x) = 1�
p
1�4x
2 and denote:

p0 =
2x

1�
p
1� 4x

and p1 =
p
1� 4x.

The Boltzmann samplers for B and B
• can then be described as:

�B(x) : if Ber(p0) = 1 return Z

else return (�B(x),�B(x)).

3.6. BOLTZMANN SAMPLING 51

and

�B•(x) : if Ber(p1) = 1 return Z

else if Ber(1/2) = 1 return (�B•(x),�B(x))

else return (�B(x),�B•(x))

Let us illustrate the relative e�ciency of simple Boltzmann samplers versus pointed Boltz-
mann samplers. Fix n = 200, then we must pick x to be equal to 0.2499984297 for the non-
pointed version and to 0.2493734336 for the pointed version. Here are the sequences of sizes
of trees obtained by several runs of the Boltzmann samplers, in the non-pointed case first:

1, 5, 4, 1, 1, 393, 6, 28, 4, 1, 1, 1, 1, 1, 2, 110, 2204, 29, 1, 1, 2, 1, 83, 4, 1, 1, 1, 1, 1, 1, 4, 2, 15299, 1, 1, 1, ...

and in the pointed case:

166, 76, 96, 395, 21, 443, 36, 80, 842, 151, 12, 38, 71, 254, 163, 40, 37, 147, 194, 7, 12, 584, 135, 3, ...

We let the numbers speak for themselves!

